Comprehensive Physiology Wiley Online Library

Glucose and Intermediary Metabolism of the Lungs

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Major Pathways of Glucose Metabolism
1.1 Glycolysis
1.2 Cellular Respiration
2 Physiological Significance of Lung Carbohydrate Metabolism
3 Methods of Study of Lung Carbohydrate Metabolism
3.1 Isotopic Tracer Techniques
3.2 Compartmentation
3.3 Isolated Lung Mitochondria
4 Glucose Transport by Lung Tissue
5 Glucose Consumption by Lung Tissue
6 Glycogenesis and Gluconeogenesis
7 Regulation of Pulmonary Carbohydrate Metabolism
7.1 Hypoxia
7.2 Nutrition
7.3 Insulin and Diabetes
8 Major Products of Lung Glucose Metabolism
8.1 Lactate
8.2 Lactate Production In Vivo
8.3 Lactate Metabolism by Perfused Lung
8.4 Generation of Reducing Equivalents
8.5 Pentose Phosphate Pathway
9 Lung Energy Production
9.1 Substrates
9.2 Oxygen as Substrate
9.3 Nucleotide Pools
10 Pathophysiology and Toxicology
10.1 Oxidants and Carbohydrate Metabolism
10.2 Glucose Consumption During Pulmonary Edema
Figure 1. Figure 1.

NAD+, NADH, glycolysis, and lactate production. In cytoplasm, glycolysis converts NAD+ to NADH. Reconversion uses either a shuttle mechanism through mitochondria or lactate production.

Figure 2. Figure 2.

Control of glycolysis. Parallel arrows, reaction rate is promoted; rectangles, reaction rate is slowed. G6P, glucose 6‐phosphate; F6P, fructose 6‐phosphate; FDP, fructose 1, 6‐diphosphate; PEP, phosphoenolpyruvate; Pyr, pyruvate; TCA, tricarboxylic acid cycle. Plentiful supply of ATP slows glycolysis at 2 steps indicated, whereas accumulation of ADP and AMP when ATP is consumed accelerates glycolysis; net result is a system highly responsive to changes of ATP concentration in cytoplasm.

Figure 3. Figure 3.

Pentose phosphate cycle. This cycle contributes NADPH to cytoplasm at steps indicated with production of a pentose (D‐ribulose 5‐phosphate); 6 molecules of the pentose can then reappear as 5 molecules of a hexose or in pools of various carbohydrates. In this cycle the 1st carbon atom is released as CO2; therefore [1‐14C]glucose loses its 14C and does not pass it to other carbohydrates as it progresses through the cycle. All other labeled carbon atoms in glucose reenter carbohydrate pool, however. D‐Ribulose 5‐phosphate may be utilized for nucleotide synthesis, but cycle activity is generally controlled by NADPH requirements.



Figure 1.

NAD+, NADH, glycolysis, and lactate production. In cytoplasm, glycolysis converts NAD+ to NADH. Reconversion uses either a shuttle mechanism through mitochondria or lactate production.



Figure 2.

Control of glycolysis. Parallel arrows, reaction rate is promoted; rectangles, reaction rate is slowed. G6P, glucose 6‐phosphate; F6P, fructose 6‐phosphate; FDP, fructose 1, 6‐diphosphate; PEP, phosphoenolpyruvate; Pyr, pyruvate; TCA, tricarboxylic acid cycle. Plentiful supply of ATP slows glycolysis at 2 steps indicated, whereas accumulation of ADP and AMP when ATP is consumed accelerates glycolysis; net result is a system highly responsive to changes of ATP concentration in cytoplasm.



Figure 3.

Pentose phosphate cycle. This cycle contributes NADPH to cytoplasm at steps indicated with production of a pentose (D‐ribulose 5‐phosphate); 6 molecules of the pentose can then reappear as 5 molecules of a hexose or in pools of various carbohydrates. In this cycle the 1st carbon atom is released as CO2; therefore [1‐14C]glucose loses its 14C and does not pass it to other carbohydrates as it progresses through the cycle. All other labeled carbon atoms in glucose reenter carbohydrate pool, however. D‐Ribulose 5‐phosphate may be utilized for nucleotide synthesis, but cycle activity is generally controlled by NADPH requirements.

References
 1. Atkinson, D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7: 4030–4034, 1968.
 2. Ayuso, M. S., A. B. Fisher, R. Parilla, And J. R. Williamson. Glucose metabolism by isolated rat lung cells. Am. J. Physiol. 225: 1153–1160, 1973.
 3. Ayuso‐Parrilla, M. S., J. Pérez‐DÍAZ, And R. Parrilla. Glucose inhibition of oxygen utilization by isolated rat lung cells. Biochimie 60: 823–862, 1978.
 4. Barron, E. S. G., Z. B. Miller, And G. R. Bartlett. Studies in biological oxidations. XXI. The metabolism of lung as determined by a study of slices and ground tissue. J. Biol. Chem. 171: 791–800, 1947.
 5. Bassett, D. J. P., and A. B. Fisher. Metabolic response to carbon monoxide by isolated rat lungs. Am. J. Physiol. 230: 658–663, 1976.
 6. Bassett, D. J. P., and A. B. Fisher. Stimulation of rat lung metabolism with 2,4‐dinitrophenol and phenazine methosulfate. Am. J. Physiol. 231: 898–902, 1976.
 7. Bassett, D. J. P., and A. B. Fisher. Pentose cycle activity of the isolated perfused rat lung. Am. J. Physiol. 231: 1527–1532, 1976.
 8. Bassett, D. J. P., and A. B. Fisher. Alterations of glucose metabolism during perfusion of rat lung with paraquat. Am. J. Physiol. 234
 9. ( Endocrinol. Metab. Gastrointest. Physiol. 3): E653–E659, 1978.
 10. Bassett, D. J. P., A. B. Fisher, And J. L. Rabinowitz. Effect of hypoxia on incorporation of glucose carbons into lipids by isolated rat lung. Am. J. Physiol. 227: 1103–1108, 1974.
 11. Blair, P. V. Induction of mitochondrial contraction and concomitant inhibition of succinate oxidation by magnesium ions. Arch. Biochem. Biophys. 181: 550–568, 1977.
 12. Bloxham, D. P. Metabolic flux through phosphofructokinase and fructose 1,6‐diphosphatase. Int. J. Biochem. 5: 429–434, 1974.
 13. Bonnevie‐Nielsen, V., and E. F. Geppert. Presence of surface receptors for insulin and absence of glucagon receptors on rat alveolar type II cells (Abstract). Am. Rev. Respir. Dis. 125, Suppl.: 229, 1982.
 14. Brigham, K. L., and P. J. Owen. Increased sheep lung vascular permeability caused by histamine. Circ. Res. 37: 647–657, 1975.
 15. Bucher, T., B. Brauser, A. Conze, F. Klein, O. Langguth, And H. Sies. State of oxidation‐reduction and state of binding in the cytosolic NADH‐system as disclosed by equilibration with extracellular lactate/pyruvate in hemoglobin‐free perfused rat liver. Eur. J. Biochem. 27: 301–317, 1972.
 16. Butterick, C. J., D. A. Williams, L. A. Boxer, R. A. Jersild, JR., N. Mantich, C. Higgins, And R. L. Baehner. Changes in energy metabolism, structure and function in alveolar macrophages under anaerobic conditions. Br. J. Haematol. 48: 523–532, 1981.
 17. Chaisson, C. F. and D. Massaro. 2‐Deoxy‐d‐glucose uptake by lung slices from fed and fasted rats. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 44: 380–383, 1978.
 18. Chance, B., and J. R. Williams. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Subj. Biochem. 17: 65–134, 1956.
 19. Chao, D. L. S., and E. J. Davis. Studies on the role of Mg2+ and the Mg2+‐stimulated adenosine triphosphatase in oxidative phosphorylation. Biochemistry 11: 1943–1952, 1972.
 20. Chvapil, M. Lactate dehydrogenase isoenzyme pattern and total LDH activity in the lung and liver of rats chronically exposed to low and high oxygen concentrations. Life Sci. 17: 761–766, 1975.
 21. Crapo, J. D., M. Peters‐Golden, J. Marsh‐Salin, And J. S. Shelburne. Pathologic changes in lungs of oxygen adapted rats: a morphometric analysis. Lab. Invest. 39: 640–653, 1978.
 22. Crapo, J. D., and D. F. Tierney. Superoxide dismutase and pulmonary oxygen toxicity. Am. J. Physiol. 226: 1401–1407, 1974.
 23. Datta, H., and K. G. G. M. Alberti. Substrate utilization by the isolated perfused rat lung. Biochem. Soc. Trans. 5: 1312–1316, 1977.
 24. Datta, H., and K. G. G. M. Alberti. Substrate utilization by the isolated perfused rat lung. Biochem. Soc. Trans. 7: 1026–1028, 1979.
 25. Datta, H., W. A. Stubbs, And K. G. G. M. Alberti. Substrate utilization by the lung. In: Metabolic Activities of the Lung, edited by R. Porter and J. Whelan. Amsterdam: Excerpta Med., 1980, p. 85–104. (Ciba Found. Symp. 78.)
 26. Dawson, D. D., T. L. Goodfriend, And N. O. Kaplan. Lactic dehydrogenases: function of the two types. Science 143: 929–933, 1964.
 27. Eggleston, L. V., and H. A. Krebs. Regulation of the pentose phosphate cycle. Biochem. J. 138: 425–435, 1974.
 28. Elbrink, J. and I. Bihler. Membrane transport: its relation to cellular metabolic rates. Science 188: 1177–1184, 1975.
 29. Elsayed, N., A. Hacker, M. Mustafa, K. Kuehn, And G. Schrauzer. Effects of decreased glutathione peroxidase activity on the pentose phosphate cycle in mouse lung. Biochem. Biophys. Res. Commun. 104: 564–569, 1982.
 30. Estabrook, R. W. Mitochondrial respiratory control and the polarographic measurement of ADP:0 ratios. Methods Enzymol. 10: 41–47, 1967.
 31. Evans, R. M., and R. W. Scholz. Phosphopyruvate carboxylase of rat lung. Biochim. Biophys. Acta 321: 671–680, 1973.
 32. Evans, R. M., and R. W. Scholz. Citrate formation by rat lung mitochondrial preparations. Biochim. Biophys. Acta 381: 278–291, 1975.
 33. Evans, R. M., and R. W. Scholz. Pulmonary fatty acid synthesis. I. Mitochondrial acetyl transfer by rat lung in vitro. Am. J. Physiol. 232 (Endocrinol. Metab. Gastrointest. Physiol. 1): E358–E363, 1977.
 34. Fisher, A. B. Energy status of the rat lung after exposure to elevated Po2. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 56–59, 1978.
 35. Fisher, A. B. and C. Dodia. Lung as a model for evaluation of critical intracellular Po2 and Pco. Am. J. Physiol. 241 (Endocrinol. Metab. 4): E47–E50, 1981.
 36. Fisher, A. B., C. Dodia, And J. Linask. Perfusate composition and edema formation in isolated rat lungs. Exp. Lung Res. 1: 13–21, 1980.
 37. Fisher, A. B., L. Furia, And H. Berman. Metabolism of rat granular pneumocytes isolated in primary culture. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 49: 743–750, 1980.
 38. Fisher, A. B., L. Furia, And B. Chance. Evaluation of redox state of isolated perfused rat lung. Am. J. Physiol. 230: 1198–1204, 1976.
 39. Fisher, A. B., G. A. Huber, And D. J. P. Bassett. Oxidation of α‐glycophosphate by mitochondria from lungs of rabbits, sheep and pigeons. Comp. Biochem. Physiol. 50: 5–8, 1975.
 40. Fisher, A. B., A. Scarpa, K. F. LaNoue, D. Bassett, And J. R. Williamson. Respiration of rat lung mitochondria and the influence of Ca2+ on substrate utilization. Biochemistry 12: 1438–1445, 1973.
 41. Fisher, A. B., H. Steinberg, And D. Bassett. Energy utilization by the lung. Am. J. Med. 57: 437–446, 1974.
 42. Fisher, A. B., H. Steinberg, And C Dodia. Reversal of 2‐deoxyglucose inhibition of serotonin uptake in isolated guinea pig lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 447–450, 1979.
 43. Fisher, H. K., J. A. Clements, D. F. Tierney, And R. R. Wright. Pulmonary effects of paraquat in the first day after injection. Am. J. Physiol. 228: 1217–1223, 1975.
 44. Fisher, H. K., J. A. Clements, And R. R. Wright. Enhancement of oxygen toxicity by the herbicide paraquat. Am. Rev. Respir. Dis. 107: 246–252, 1973.
 45. Flohe, L. Glutathione peroxidase brought into focus. In: Free Radicals in Biology, edited by W. A. Pryor. New York: Academic, 1982, vol. 5, p. 223–254.
 46. Freeman, B. A., and J. D. Crapo. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256: 10986–10992, 1981.
 47. Fricke, R. F., and W. J. Longmore. Effects of insulin and diabetes on 2‐deoxy‐d‐glucose uptake by the isolated perfused rat lung. J. Biol. Chem. 254: 5092–5098, 1979.
 48. Goodale, R. L., B. Goetzman, And M. B. Visscher. Hypoxia and iodoacetic acid and alveolocapillary barrier permeability to albumin. Am. J. Physiol. 219: 1226–1230, 1970.
 49. Goodman, B. E., and E. D. Crandall. Dome formation in primary cultured monolayers of alveolar epithelial cells. Am. J. Physiol. 243 (Cell Physiol. 12): C96–C100, 1982.
 50. Gregorio, C. A. and D. Massaro. Influence of insulin on amino acid uptake by lung slices. J. Appl. Physiol.: Respirat. Enviroh. Exercise Physiol. 42: 216–220, 1977.
 51. Hance, A. J., E. D. Robin, L. M. Simon, S. Alexander, L. A. Herzenberg, And J. Theodore. Regulation of glycolytic enzyme activity during chronic hypoxia by changes in rate‐limiting enzyme content. J. Clin. Invest. 66: 1258–1264, 1980.
 52. Hochachka, P. W., G. C. Liggins, J. Qvist, R. Schneider, M. Y. Snider, T. R. Wonders, And W. M. Zapol. Pulmonary metabolism during diving: conditioning blood for the brain. Science 198: 831–834, 1977.
 53. Huijing, F. Glycogen metabolism and glycogen‐storage diseases. Physiol. Rev. 55: 609–658, 1975.
 54. Kamen, M. D. Isotopic Tracers in Biology: An Introduction to Tracer Methodology (3rd ed.), edited by L. F. Fieser and M. Fieser. New York: Academic, 1957.
 55. Kappus, H. and H. Sies. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 37: 1233–1358, 1981.
 56. Katz, J. Use of isotopes for the study of glucose metabolism in vivo. In: Techniques in the Life Sciences. Techniques in Metabolic Research, edited by H. L. Kornberg, J. C. Metcalf, D. H. Northcote, C. I. Pogson, and K. F. Tipton. Amsterdam: Elsevier/North‐Holland, 1979, vol. B207, p. 1–22.
 57. Katz, J. and N. Grunnet. Estimation of metabolic pathways in steady state in vitro. Rates of tricarboxylic and pentose cycles. In: Techniques in the Life Sciences. Techniques in Metabolic Research, edited by H. L. Kornberg, J. C. Metcalf, D. H. Northcote, C. I. Pogson, and K. F. Tipton. Amsterdam: Elsevier/North‐Holland, 1979, vol. B208, p. 1–18.
 58. Katz, J. and R. Rognstad. Futile cycles in the metabolism of glucose. Curr. Top. Cell. Regul. 10: 237–289, 1976.
 59. Kerr, J. S., N. J. Baker, D. J. P. Bassett, And A. B. Fisher. Effect of perfusate glucose concentration on rat lung glycolysis. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E229–E233, 1979.
 60. Kerr, J. S., A. B. Fisher, And A. Kleinzeller. Transport of glucose analogues in rat lung. Am. J. Physiol. 241 (Endocrinol. Metab. 4): E191–E195, 1981.
 61. Kirby, W., and C. B. Taylor. Multiple forms of phosphofructokinase in rat tissue. Int. J. Biochem. 5: 89–93, 1974.
 62. Klass, D. J. Dibutyryl cyclic GMP and hyperventilation promote rat lung phospholipid release. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 47: 285–289, 1979.
 63. Koobs, D. H. Phosphate mediation of the Crabtree and Pasteur effects. Science 178: 127–133, 1972.
 64. Krebs, H. A. Body size and tissue respiration. Biochim. Biophys. Acta 4: 249–269, 1950.
 65. Lee, Y. P., and H. A. Lardy. Influence of thyroid hormones on L‐α‐glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat. J. Biol. Chem. 240: 1427–1436, 1965.
 66. Lehninger, A. L. Bioenergetics (2nd ed.). Menlo Park, CA: Benjamin, 1972.
 67. Lehninger, A. L. Biochemistry (2nd ed.). New York: Worth, 1975.
 68. Levy, S. E. The role of glucose in lung metabolism (Abstract). Clin. Res. 19: 145, 1971.
 69. Levy, S. E. and E. Harvey. Effect of tissue slicing on rat lung metabolism. J. Appl. Physiol. 37: 239–240, 1974.
 70. Longmore, W. J., And J. T. Mourning. Lactate production in isolated perfused rat lung. Am. J. Physiol. 231: 351–354, 1976.
 71. Maniscalco, W. M., C. M. Wilson, And I. Gross. Influence of aminophylline and cyclic AMP of glycogen metabolism in fetal rat lung in organ culture. Pediatr. Res. 13: 1319–1322, 1979.
 72. Maniscalco, W. M., C. M. Wilson, I. Gross, L. Gobran, S. A. Rooney, And J. B. Warshaw. Development of glycogen and phospholipid metabolism in fetal and newborn rat lung. Biochim. Biophys. Acta 530: 333–346, 1978.
 73. Mason, R. J., M. C. Williams, R. D. Greenleaf, And J. A. Clements. Isolation and properties of type II alveolar cells from rat lung. Am. Rev. Respir. Dis. 115: 1015–1026, 1977.
 74. Mason, R. J., M. C. Williams, J. H. Widdicombe, M. J. Sanders, D. S. Misfeldt, And L. C. Berry, JR. Transepithelial transport by pulmonary alveolar type II cells in primary culture. Proc. Natl. Acad. Sci. USA 79: 6033–6037, 1982.
 75. Massaro, G. D., D. B. Gail, And D. Massaro. Lung oxygen consumption and mitochondria of alveolar epithelial and endothelial cells. J. Appl. Physiol. 38: 588–592, 1975.
 76. Massaro, G. D. and D. Massaro. Mitochondria of the pulmonary granular pneumocyte in different species. Am. Rev. Respir. Dis. 115: 359–361, 1977.
 77. Misra, H. P., and L. D. Gorsky. Paraquat and NADPH‐dependent lipid peroxidation in lung microsomes. J. Biol. Chem. 256: 9994–9998, 1981.
 78. Morishige, W. K. Endocrine influences on aspects of lung biochemistry. In: Metabolic Activities of the Lung, edited by R. Porter and J. Whelan. Amsterdam: Excerpta Med., 1980, p. 239–250. (Ciba Found. Symp. 78.)
 79. Morishige, W. K., C. A. Uetake, F. C. Greenwood, And J. Akaka. Pulmonary insulin responsitivity: in vivo effects of insulin on the diabetic rat lung and specific insulin binding to lung receptors in normal rats. Endocrinology 100: 1710–1722, 1977.
 80. Moxley, M. A., and W. J. Longmore. Effect of experimental diabetes and insulin on lipid metabolism in the isolated perfused rat lung. Biochim. Biophys. Acta 488: 218–224, 1977.
 81. Murphy, B., W. M. Zapol, And P. W. Hochachka. Metabolic activities of heart, lung, and brain during diving and recovery in the Weddell seal. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 596–605, 1980.
 82. Mustafa, M. G., and C. E. Cross. Lung cell mitochondria: rapid oxidation of glycerol‐1–phosphate but slow oxidation of 3‐hydroxybutyrate. Am. Rev. Respir. Dis. 109: 301–303, 1974.
 83. Mustafa, M. G., and D. F. Tierney. Biochemical and metabolic changes in the lung with oxygen, ozone and nitrogen dioxide toxicity. Am. Rev. Respir. Dis. 118: 1061–1090, 1978.
 84. Neufeld, N. D., A. Sevanian, C. T. Barrett, And S. A. Kaplan. Inhibition of surfactant production by insulin in fetal rabbit lung slices. Pediatr. Res. 13: 752–754, 1979.
 85. O'Neil, J. J., R. L. Sanford, S. Wasserman, And D. F. Tierney. Metabolism in rat lung tissue slices: technical factors. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 902–906, 1977.
 86. O'Neil, J. J., and D. F. Tierney. Rat lung metabolism: glucose utilization by isolated perfused lungs and tissue slices. Am. J. Physiol. 226: 867–873, 1974.
 87. O'Neil, J. J., and S. L. Young. Tissue slices in the study of lung metabolism. In: Lung Development: Biological and Clinical Perspectives, edited by P. M. Farrell. New York: Academic, 1982, p. 87–99.
 88. Pathak, R. M., A. Mahmood, And D. Subrahmayam. The effect of undernutrition on lipid metabolism in lung: in vivo incorporation of labeled glucose into lipids. Biochem. Med. 24: 268–273, 1980.
 89. Pérez‐Díaz, J., A. Martín‐Requero, M. S. Ayuso‐Parrilla, And R. Parrilla. Metabolic features of isolated rat lung cells. I. Factors controlling glucose utilization. Am. J. Physiol. 232 (Endocrinol. Metab. Gastrointest. Physiol. 1): E394–E400, 1977.
 90. Plopper, C. G., and W. K. Morishige. Alterations in granular (type II) pneumocyte ultrastructure by streptozotocin‐induced diabetes in the rat. Lab. Invest. 38: 143–184, 1978.
 91. Plopper, C. G., and W. K. Morishige. Alterations in the ultrastructure of nonciliated bronchiolar epithelial (Clara) cells by streptozotocin‐induced diabetes in rats. Am. Rev. Respir. Dis. 120: 1137–1143, 1979.
 92. Postlethwait, E. M., and S. L. Young. Alteration of rat lung adenine nucleotide content after pulmonary edema. Lung 158: 157–164, 1980.
 93. Radziuk, J. Developments in the tracer measurement of gluconeogenesis and glycogenesis in vivo: an overview. Federation Proc. 41: 88–90, 1982.
 94. Reiss, O. K. Properties of mitochondrial preparations from rabbit lung. Med. Thorac. 22: 100–103, 1965.
 95. Reiss, O. K. Studies of lung metabolism. I. Isolation and properties of subcellular fractions from rabbit lung. J. Cell Biol. 30: 45–57, 1966.
 96. Rhoades, R. A. Net uptake of glucose, glycerol, and fatty acids by the isolated perfused rat lung. Am. J. Physiol. 226: 144–149, 1974.
 97. Rhoades, R. A. Influence of starvation on the lung: effect on glucose and palmitate utilization. J. Appl. Physiol. 38: 513–516, 1975.
 98. Rhoades, R. A., and D. A. Ryder. Fetal lung metabolism response to maternal fasting. Biochim. Biophys. Acta 663: 621–629, 1981.
 99. Rhoades, R. A., M. E. Shaw, And M. L. Eskew. Influence of altered O2 tension on substrate metabolism in perfused rat lung. Am. J. Physiol. 229: 1476–1479, 1975.
 100. Rhoades, R. A., M. E. Shaw, M. L. Eskew, And S. Wall. Lactate metabolism in perfused rat lung. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E619–E623, 1978.
 101. Rochester, D. F., W. A. Wichern, JR., H. W. Fritts, JR., P. R. B. Caldwell, M. L. Lewis, C. Guintini, And J. W. Garfield. Arteriovenous differences of lactate and pyruvate across healthy and diseased human lung. Am. Rev. Respir. Dis. 107: 442–448, 1973.
 102. Sayeed, M. M., and A. E. Baue. Mitochondrial metabolism of succinate, ã‐hydroxybutyrate, and α‐ketogluturate in hemorrhagic shock. Am. J. Physiol. 220: 1275–1281, 1971.
 103. Sayeed, M. M., I. H. Chaudry, And A. E. Baue. Na+‐K+ transport and adenosine nucleotides in the lung in hemorrhagic shock. Surgery 77: 395–402, 1975.
 104. Sayeed, M. M., R. M. Senior, I. H. Chaudry, And A. E. Baue. Characteristics of sodium and potassium transport in the lung. Am. J. Physiol. 229: 1073–1079, 1975.
 105. Schuyler, M. R., D. E. Niewoehner, S. R. Inkley, And R. Kohn. Abnormal lung elasticity in juvenile diabetes mellitus. Am. Rev. Respir. Dis. 113: 37–41, 1976.
 106. Shasby, D. M., S. S. Shasby, J. M. Sullivan, And M. J. Peach. Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ. Res. 51: 657–661, 1982.
 107. Shaw, M. E., and R. A. Rhoades. Substrate metabolism in the perfused lung: response to changes in circulating glucose and palmitate levels. Lipids 12: 930–935, 1977.
 108. Simon, L. M., E. D. Robin, J. R. Phillips, J. Acevedo, S. G. Axline, And J. Theodore. Enzymatic bases for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2. J. Clin. Invest. 59: 443–448, 1977.
 109. Simon, L. M., E. D. Robin, T. Raffin, J. Theodore, And W. H. J. Douglas. Bioenergetic pattern of isolated type II pneumocytes in air and during hypoxia. J. Clin. Invest. 61: 1232–1239, 1978.
 110. Smith, B. T., C. J. Giroud, M. Robert, And M. E. Avery. Insulin antagonism of cortisol action on lecithin synthesis by cultured fetal lung cells. J. Pediatr. 87: 953–955, 1975.
 111. Sorokin, S. P. Cells of the lung. In: Morphology of Experimental Respiratory Carcinogenesis, edited by P. Nettesheim, M. G. Hanna, Jr., and J. W. Deatherage, Jr. Oak Ridge, TN: USAEC, Div. Tech. Info., 1970, p. 3–41.
 112. Spear, R. K., and L. Lumeng. A method for isolating lung mitochondria from rabbits, rats and mice with improved respiratory characteristics. Anal. Biochem. 90: 211–219, 1978.
 113. Stubbs, W. A., D. M. Kelly, F. J. Walters, And K. G. M. M. Alberti. The metabolic characteristics of the ventilated and non‐ventilated perfused rat lung. Biochem. Soc. Trans. 5: 1312–1314, 1977.
 114. Stubbs, W. A., I. Morgan, B. Lloyd, And K. G. M. M. Alberti. The effect of insulin on lung metabolism in the rat. Clin. Endocrinol. 7: 181–184, 1977.
 115. Thet, L. A., M. D. Delaney, C. A. Gregorio, And D. Massaro. Protein metabolism by rat lung: influence of fasting, glucose, and insulin. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 463–467, 1977.
 116. Tierney, D. F. Lactate metabolism in rat lung tissue. Arch. Intern. Med. 127: 858–860, 1971.
 117. Tierney, D. F. Intermediary metabolism of the lung. Federation Proc. 33: 2232–2237, 1974.
 118. Tierney, D. F., L. Ayers, S. Herzog, And J. Yang. Pentose pathway and production of reduced nicotinamide adenine dinucleotide phosphate. Am. Rev. Respir. Dis. 108: 1348–1351, 1973.
 119. Tierney, D. F., L. Ayers, And R. S. Kasuyama. Altered sensitivity to oxygen toxicity. Am. Rev. Respir. Dis. 115: 59–65, 1977.
 120. Tierney, D. F., and S. E. Levy. Glucose metabolism. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, 1976, vol. 2, chapt. 4, p. 105–126.
 121. Tierney, D. F., J. Yang, And L. Ayers. Enzymatic activity in rat lungs: some changes with exposure to 1 ATM oxygen. Chest 67, Suppl.: 40–42, 1975.
 122. Tierney, D. F., S. L. Young, J. J. O'Neil, And M. Abe. Isolated perfused lung‐substrate utilization. Federation Proc. 36: 161–165, 1977.
 123. Tsan, M. F. Effect of phagocytosis by human polymorphonuclear leukocytes and rabbit alveolar macrophages on 2‐deoxyglucose transport. J. Cell. Physiol. 99: 23–30, 1979.
 124. Turrens, J., B. A. Freeman, And J. D. Crapo. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch. Biochem. Biophys. 217: 411–421, 1982.
 125. Von Wichert, P. Studies on the metabolism of ischemic rabbit lungs. Conclusions for lung transplantation. J. Thorac. Cardiovasc. Surg. 63: 284–291, 1972.
 126. Wallace, H. W., T. P. Stein, And E. M. Liquori. Lactate and lung metabolism. J. Thorac. Cardiovasc. Surg. 68: 810–814, 1974.
 127. Watkins, C. A., And D. E. Rannels. In situ perfusion of rat lungs: stability and effects of oxygen tension. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 325–329, 1979.
 128. Weibel, E. R. Morphological basis of alveolar‐capillary gas exchange. Physiol. Rev. 53: 419–495, 1973.
 129. Williamson, D. H., P. Lund, And H. A. Krebs. The redox state of free nicotinamide‐adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103: 514–527, 1967.
 130. Witschi, H., S. Kacew, K. I. Hirai, And M. G. Côté. In vitro oxidation of reduced nicotinamide‐adenine dinucleotide phosphate by paraquat and diquat in rat lung. Chem. Biol. Interact. 19: 143–160, 1977.
 131. Wolfe, R. R., P. W. Hockachka, R. L. Trelstad, And J. F. Burke. Lactate oxidation in perfused rat lung. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E276–E282, 1979.
 132. Wu, R. and E. Racker. IV. Pasteur effect and Crabtree effect in ascites tumor cells. Regulatory mechanisms in carbohydrate metabolism. J. Biol. Chem. 234: 1036–1041, 1959.
 133. Yeager, H., Jr., And P. S. Hicks. Glucose metabolism in lung slices of late fetal, newborn, and adult rats. Proc. Soc. Exp. Biol. Med. 141: 1–3, 1972.
 134. Yeager, H., Jr., And D. Massaro. Glucose metabolism and glycoprotein synthesis by lung slices. J. Appl. Physiol. 32: 477–482, 1972.
 135. Young, S. L., J. J. O'Neil, R. S. Kasuyama, And D. F. Tierney. Glucose utilization by edematous rat lungs. Lung 157: 165–177, 1980.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Donald F. Tierney, Stephen L. Young. Glucose and Intermediary Metabolism of the Lungs. Compr Physiol 2011, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions: 255-275. First published in print 1985. doi: 10.1002/cphy.cp030106