Comprehensive Physiology Wiley Online Library

Initiation and Control of Chemoreceptor Activity in the Carotid Body

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Structure
1.1 General Anatomy, Histology, and Embryology of Carotid Body
1.2 Carotid Body Ultrastructure
1.3 Pathological Changes and Physiologically Induced Changes in Carotid Body Morphology
2 Response of Chemoreceptors
2.1 Resting Chemoreceptor Discharge
2.2 Chemoreceptor Response to Hypoxia
2.3 Chemoreceptor Response to Partial Pressure of CO2 and pH
2.4 Chemoreceptor Response to Temperature and Osmolarity
2.5 Carotid Body Blood Flow, O2 Consumption, and Chemoresponse
2.6 Efferent Modulation of Chemosensory Discharge
3 Mechanisms of Chemoreception
3.1 Transducer Element(s) in Carotid Body
3.2 Biophysical Aspects of Chemoreception
3.3 Role of Putative Neurotransmitters in Chemotransduction
3.4 Hypotheses on Mechanisms of Chemoreception
4 Addendum
4.1 Recent Advances in Carotid Body Chemoreception
4.2 Structure
4.3 Response of Chemoreceptors
4.4 Mechanisms of Chemoreception
Figure 1. Figure 1.

Various types of cells in cat carotid body. A, afferent nerve ending; E, vascular endothelial cell; F, fibroblast; G, type I cell; P, perineurial cell; S, sheath cell (type II cell); SC, Schwann cell; SM, vascular smooth muscle cell; V, blood vessel lumen; arrows, unmyelinated axons, x13,800.

Courtesy of Dr. Donald McDonald
Figure 2. Figure 2.

Cellular, neural, and vascular architecture of carotid body. Functional pathways are indicated (see text for detailed discussion).

From Williams and Warwick 522
Figure 3. Figure 3.

A: averaged neural discharge (expressed as percentage of maximum asphyxie activity) from carotid bodies of 7 cats anesthetized with pentobarbital and paralyzed with gallamine in response to changing arterial O2 tension () plotted semilogarithmically. Mean values ± 1 SD are shown for arterial pH (pHa) and arterial CO2 tension () and slope of response curve between of 30 and 40 Torr. B: averaged neural discharge from carotid body of cat in response to changing at 2 values of but with pHa kept nearly unchanged by administration of NaHCO3 before was increased. To provide physiological scale of response of carotid body in A and B, 0% activity has been defined as minimum level of response seen on hyperventilation with O2, whereas 100% response is plateau of discharge occurring with transient asphyxia of animal. C: rate of chemoreceptor afferent discharges (impulses/s) in single fibers plotted against (all values from same cat). Middle graph shows 2 fibers (•, ○) from same strand; upper and lower graphs are from single fibers. Range of for upper graph, 28‐31 Torr; for middle graph, 29‐31 Torr; for lower graph, 31‐34 Torr. Mean arterial pressure ± SD for upper graph, 95 ± 7 Torr; for middle graph, 97 ± 5 Torr; for lower graph, 123 ± 6 Torr.

From Hornbein 264. From Hornbein and Roos 266. From Biscoe et al. 50
Figure 4. Figure 4.

A: nerve discharge (impulses/s) recorded from single chemoreceptor afferent fiber plotted against arterial CO2 tension (). For each curve, pH was kept constant. ○, pH = 7.25, mean arterial pressure ± SD = 91 ± 9 Torr. •, pH = 7.45, mean arterial pressure ± SD = 85 ± 4 Torr. Arterial O2 tension () was 80 Torr throughout. B: discharge rate (impulses/min) recorded from single chemoreceptor afferent fiber plotted against (○, •, □) and against pH (Δ). ○, pH = 7.51‐7.54; •, pH = 7.35–7.37; ○, pH = 7.15‐7.17; Δ, = 26 Torr. Value for was 270 Torr. Some additional data not shown on other graphs were used for pH plot.

From Biscoe et al. 50
Figure 5. Figure 5.

Threshold stimuli for single carotid chemoreceptors. Each point represents combination of arterial CO2 () and O2 () tensions at which receptor was just active. Clearly, threshold was lower at lower .

From Lahiri 303
Figure 6. Figure 6.

A: 3‐dimensional graph of average carotid chemoreceptor response curves from 5 cats. Percent of maximum asphyxie response (% of MAR) is plotted as function of arterial CO2 tension () at 4 levels of arterial O2 tension (); it was averaged from curves for individual animals at intervals of 5 mmHg . Generally, n for “average points” is 5, but it may drop to 3 at higher values of curve. B: single chemoreceptor fiber. Response to sudden application of hypercapnic stimulus before (upper graph) and after (lower graph) inhibiting carbonic anhydrase of carotid body with acetazolamide (Diamox).

From Fitzgerald and Parks 185. From Black et al. 60
Figure 7. Figure 7.

A: summary of O2 tensions () found in 27 cats in which mean arterial pressure was above 70 mmHg. Surface: = 68, SE = 0.7, range = 0‐109. Deep: = 42, SE = 1.8, range = 0‐107. B: frequency distribution of tissue values in cat carotid body. On x‐axis, tissue values are divided into ranges; y‐axis shows frequency of observed values: n = 351 = 100%; = 25 Torr; median = 20 Torr.

From Whalen et al. 516. From Acker et al. 7
Figure 8. Figure 8.

A: effects of acetylcholine (ACh; 50 μg) on membrane potential of normal (upper trace) and 6‐day‐denervated (lower trace) glomus cells impaled with micropipette filled with 6% Procion yellow. Cells identified after ejecting dye from pipette. Resting membrane potential, −52 mV. B: impalement of single nerve ending yields spontaneous depolarizing potentials (SDPs) that, if large enough, appear to evoke sensory discharges. Notice that smaller SDPs do not give rise to action potentials and that terminal was invaded by spikes originating elsewhere (collateral branches?). Nerve ending was identified by staining after recording. C: carotid body in vitro. Depolarizing potentials recorded by glass tubes filled with 3 M KCl agar separated by sucrose gap. L, Locke solution; S, sucrose. Nerve crushed (x) on right‐side L compartment. Arrows: upper trace, injection of 100 μg of ACh; middle trace, injection of 7.5‐μg of NaCN; lower trace, injection of 20‐μl of Locke solution at pH 2. Calibration: 5 mV, 10 s (top calibration for upper and middle traces, bottom calibration for lower trace).

From Hayashida and Eyzaguirre 229. From Hayashida et al. 230. From Eyzaguirre et al. 150
Figure 9. Figure 9.

Effects of low O2 on release of dopamine (DA) and chemoreceptor discharge recorded from rabbit carotid body during superfusion of organ in vitro. Organs were incubated for 2 h in 100% O2‐equilibrated Tyrode's solution containing [3H]tyrosine (DA precursor) prior to experiment. Release of DA is measured as sum of [3H]DA plus 3H‐labeled 3,4‐dihydroxyphenylacetic acid (DO‐PAC; principal DA catabolite in carotid body); chemoreceptor discharge was recorded from CSN with suction electrodes. A: release of [3H]DA and efflux of [3H]DOPAC during 3 stimulus cycles of 0% O2, 30% O2, and 10% O2. Each stimulus cycle consisted of 5‐min control period (superfusion with 100% O2‐equilibrated Tyrode's solution), 5‐min stimulus period (superfusion with respective stimulus gas–equilibrated Tyrode's solution), and 3 successive poststimulus collection periods (superfusion with 100% O2‐equilibrated media). Chemoreceptor discharge during each 5‐min stimulus period is shown by insets in A. B: relationship between total [3H]DA release ([3H]DA + [3H]DOPAC), peak (max) chemoreceptor discharge, and mean chemoreceptor discharge during stimulus periods are indicated. Response ratio is net stimulus‐induced change in release or discharge (i.e., stimulated‐control/control).

From Fidone et al. 169


Figure 1.

Various types of cells in cat carotid body. A, afferent nerve ending; E, vascular endothelial cell; F, fibroblast; G, type I cell; P, perineurial cell; S, sheath cell (type II cell); SC, Schwann cell; SM, vascular smooth muscle cell; V, blood vessel lumen; arrows, unmyelinated axons, x13,800.

Courtesy of Dr. Donald McDonald


Figure 2.

Cellular, neural, and vascular architecture of carotid body. Functional pathways are indicated (see text for detailed discussion).

From Williams and Warwick 522


Figure 3.

A: averaged neural discharge (expressed as percentage of maximum asphyxie activity) from carotid bodies of 7 cats anesthetized with pentobarbital and paralyzed with gallamine in response to changing arterial O2 tension () plotted semilogarithmically. Mean values ± 1 SD are shown for arterial pH (pHa) and arterial CO2 tension () and slope of response curve between of 30 and 40 Torr. B: averaged neural discharge from carotid body of cat in response to changing at 2 values of but with pHa kept nearly unchanged by administration of NaHCO3 before was increased. To provide physiological scale of response of carotid body in A and B, 0% activity has been defined as minimum level of response seen on hyperventilation with O2, whereas 100% response is plateau of discharge occurring with transient asphyxia of animal. C: rate of chemoreceptor afferent discharges (impulses/s) in single fibers plotted against (all values from same cat). Middle graph shows 2 fibers (•, ○) from same strand; upper and lower graphs are from single fibers. Range of for upper graph, 28‐31 Torr; for middle graph, 29‐31 Torr; for lower graph, 31‐34 Torr. Mean arterial pressure ± SD for upper graph, 95 ± 7 Torr; for middle graph, 97 ± 5 Torr; for lower graph, 123 ± 6 Torr.

From Hornbein 264. From Hornbein and Roos 266. From Biscoe et al. 50


Figure 4.

A: nerve discharge (impulses/s) recorded from single chemoreceptor afferent fiber plotted against arterial CO2 tension (). For each curve, pH was kept constant. ○, pH = 7.25, mean arterial pressure ± SD = 91 ± 9 Torr. •, pH = 7.45, mean arterial pressure ± SD = 85 ± 4 Torr. Arterial O2 tension () was 80 Torr throughout. B: discharge rate (impulses/min) recorded from single chemoreceptor afferent fiber plotted against (○, •, □) and against pH (Δ). ○, pH = 7.51‐7.54; •, pH = 7.35–7.37; ○, pH = 7.15‐7.17; Δ, = 26 Torr. Value for was 270 Torr. Some additional data not shown on other graphs were used for pH plot.

From Biscoe et al. 50


Figure 5.

Threshold stimuli for single carotid chemoreceptors. Each point represents combination of arterial CO2 () and O2 () tensions at which receptor was just active. Clearly, threshold was lower at lower .

From Lahiri 303


Figure 6.

A: 3‐dimensional graph of average carotid chemoreceptor response curves from 5 cats. Percent of maximum asphyxie response (% of MAR) is plotted as function of arterial CO2 tension () at 4 levels of arterial O2 tension (); it was averaged from curves for individual animals at intervals of 5 mmHg . Generally, n for “average points” is 5, but it may drop to 3 at higher values of curve. B: single chemoreceptor fiber. Response to sudden application of hypercapnic stimulus before (upper graph) and after (lower graph) inhibiting carbonic anhydrase of carotid body with acetazolamide (Diamox).

From Fitzgerald and Parks 185. From Black et al. 60


Figure 7.

A: summary of O2 tensions () found in 27 cats in which mean arterial pressure was above 70 mmHg. Surface: = 68, SE = 0.7, range = 0‐109. Deep: = 42, SE = 1.8, range = 0‐107. B: frequency distribution of tissue values in cat carotid body. On x‐axis, tissue values are divided into ranges; y‐axis shows frequency of observed values: n = 351 = 100%; = 25 Torr; median = 20 Torr.

From Whalen et al. 516. From Acker et al. 7


Figure 8.

A: effects of acetylcholine (ACh; 50 μg) on membrane potential of normal (upper trace) and 6‐day‐denervated (lower trace) glomus cells impaled with micropipette filled with 6% Procion yellow. Cells identified after ejecting dye from pipette. Resting membrane potential, −52 mV. B: impalement of single nerve ending yields spontaneous depolarizing potentials (SDPs) that, if large enough, appear to evoke sensory discharges. Notice that smaller SDPs do not give rise to action potentials and that terminal was invaded by spikes originating elsewhere (collateral branches?). Nerve ending was identified by staining after recording. C: carotid body in vitro. Depolarizing potentials recorded by glass tubes filled with 3 M KCl agar separated by sucrose gap. L, Locke solution; S, sucrose. Nerve crushed (x) on right‐side L compartment. Arrows: upper trace, injection of 100 μg of ACh; middle trace, injection of 7.5‐μg of NaCN; lower trace, injection of 20‐μl of Locke solution at pH 2. Calibration: 5 mV, 10 s (top calibration for upper and middle traces, bottom calibration for lower trace).

From Hayashida and Eyzaguirre 229. From Hayashida et al. 230. From Eyzaguirre et al. 150


Figure 9.

Effects of low O2 on release of dopamine (DA) and chemoreceptor discharge recorded from rabbit carotid body during superfusion of organ in vitro. Organs were incubated for 2 h in 100% O2‐equilibrated Tyrode's solution containing [3H]tyrosine (DA precursor) prior to experiment. Release of DA is measured as sum of [3H]DA plus 3H‐labeled 3,4‐dihydroxyphenylacetic acid (DO‐PAC; principal DA catabolite in carotid body); chemoreceptor discharge was recorded from CSN with suction electrodes. A: release of [3H]DA and efflux of [3H]DOPAC during 3 stimulus cycles of 0% O2, 30% O2, and 10% O2. Each stimulus cycle consisted of 5‐min control period (superfusion with 100% O2‐equilibrated Tyrode's solution), 5‐min stimulus period (superfusion with respective stimulus gas–equilibrated Tyrode's solution), and 3 successive poststimulus collection periods (superfusion with 100% O2‐equilibrated media). Chemoreceptor discharge during each 5‐min stimulus period is shown by insets in A. B: relationship between total [3H]DA release ([3H]DA + [3H]DOPAC), peak (max) chemoreceptor discharge, and mean chemoreceptor discharge during stimulus periods are indicated. Response ratio is net stimulus‐induced change in release or discharge (i.e., stimulated‐control/control).

From Fidone et al. 169
 1. Acker, H. The meaning of tissue PO2 and local blood flow for the chemoreceptive process of the carotid body. Federation Proc. 39: 2641–2647, 1980.
 2. Acker, H., H.‐P. Keller, D. W. Lübbers, D. Bingman, H. Schulze, and H. Caspers. The relationship between neuronal activity of chemoreceptor fibers and tissue PO2 of the carotid body of the cat during changes in arterial PO2 and blood pressure. Pfluegers Arch. 343: 287–296, 1973.
 3. Acker, H., and D. W. Lübbers. The meaning of the tissue Po2 of the carotid body for the chemoreceptive process. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 325–343.
 4. Acker, H., and D. W. Lübbers. The kinetics of local tissue Po2 decrease after perfusion stop within the carotid body of the cat in vivo and in vitro. Pfluegers Arch. 369: 135–140, 1977.
 5. Acker, H., and D. W. Lübbers. Relationship between local flow, tissue Po2, and total flow of the cat carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 271–276.
 6. Acker, H., D. W. Lübbers, and H. Durst. The relationship between local flow and total flow of the cat carotid body at changes of blood pressure, arterial Po2 and Pco2. Bibl. Anat. 15: 395–398, 1977.
 7. Acker, H., D. W. Lübbers, and M. J. Purves. Local oxygen tension field in the glomus caroticum of the cat and its change at changing arterial Po2. Pfluegers Arch. 329: 136–155, 1971.
 8. Acker, H., and R. G. O'Regan. The effects of stimulation of autonomic nerves on carotid body blood flow in the cat. J. Physiol. London 315: 99–110, 1981.
 9. Acker, H., and F. Pietruschka. Meaning of the type I cell for the chemoreceptive process. An electrophysiological study on cultured type I cells of the carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 92–98.
 10. Acker, H., H. Weigelt, D. W. Lübbers, D. Bingman, and H. Caspers. Effect of changes in Ca++ and K+ activity upon tissue Po2 and chemoreceptor activity of the cat carotid body. In: Morphology and Mechanisms of Chemoreception, edited by A. S. Paintal. New Delhi, India: Navchetan, 1976, p. 103–112.
 11. Adams, W. E. The Comparative Morphology of the Carotid Body and Carotid Sinus. Springfield, IL: Thomas, 1958.
 12. Al‐Lami, F., and R. G. Murray. Fine structure of carotid body: normal and anoxic cats. In: Proc. EMSA 25th Anniversary Meet., edited by C. J. Arceneaux. Baton Rouge, LA: Claitor's Book Store, 1967, p. 150.
 13. Al‐Lami, F., and R. G. Murray. Fine structure of the carotid body of normal and anoxic cats. Anat. Rec. 160: 697–718, 1968.
 14. Al‐Lami, F., and R. G. Murray. Fine structure of the carotid body of Macaca mulatta monkey. J. Ultrastruct. Res. 24: 465–478, 1968.
 15. Alvarez‐Buylla, R. Estudio cuantitativo de la actividad quimorreceptora del seno carotideo del perro. Arch. Inst. Cardiol. Mex. 21: 408–421, 1951.
 16. Anichkov, S. V., and M. L. Belen'kii. Pharmacology of the Carotid Body Chemoreceptors. New York: Macmillan, 1963.
 17. Arias‐Stella, J. Human carotid body at high altitudes (Abstract). Am. J. Pathol. 55: 82a, 1969.
 18. Atwater, I., B. Ribalet, and E. Rojas. Mouse pancreatic beta‐cells: tetraethyl‐ammonium blockage of the potassium permeability increase induced by depolarisation. J. Physiol. London 288: 561–574, 1979.
 19. Bader, B., J. Bartels, and W. Thorn. Biosynthesis of catecholamines in bovine carotid body. Mol. Physiol. 1: 273–285, 1981.
 20. Ballard, K. J., and J. V. Jones. The fine structural localisation of cholinesterases in the carotid body of the cat. J. Physiol. London 219: 747–753, 1971.
 21. Ballard, K. J., and J. V. Jones. Demonstration of choline acetyltransferase activity in the carotid body of the cat. J. Physiol. London 227: 87–94, 1972.
 22. Band, D. M., I. R. Cameron, and S. J. Semple. The effect on respiration of abrupt changes in carotid artery pH and Pco2 in the cat. J. Physiol. London 211: 479–494, 1970.
 23. Band, D. M., M. McClelland, D. L. Phillips, K. B. Saunders, and C. B. Wolff. Sensitivity of the carotid body to within‐breath changes in arterial Pco2. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 768–777, 1978.
 24. Band, D. M., and C. B. Wolff. Respiratory oscillations in discharge frequency of chemoreceptor afferents in sinus nerve of anaesthetized cats at normal and low arterial oxygen tensions. J. Physiol. London 282: 1–6, 1978.
 25. Banister, R. J. Catecholamines in the carotid labyrinth of Rana temporaria. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 193–194.
 26. Banister, R. J., P. J. Portig, and M. Vogt. The content and localisation of catecholamines in the carotid labyrinths and aortic arches of Rana temporaria. J. Physiol. London 192: 529–535, 1967.
 27. Barcroft, J. The diffusion of O2 through pulmonary epithelium. In: The Respiratory Function of the Blood. Cambridge, UK: Cambridge Univ. Press, 1925, vol 1., p. 63–74.
 28. Baron, M., and C. Eyzaguirre. Thermal responses of carotid body cells. J. Neurobiol. 6: 521–527, 1975.
 29. Baron, M., and C. Eyzaguirre. Effects of temperature on some membrane characteristics of carotid body cells. Am. J. Physiol. 233 (Cell Physiol. 2): C35–C46, 1977.
 30. Battaglia, G. Ultrastructural observations on the biogenic amines in the carotid and aortic abdominal bodies of the human fetus. Z. Zellforsch. Mikrosk. Anat. 99: 529–537, 1969.
 31. Becker, A. E., J. Drukker, and A. E. F. H. Meijer. Histochemical characteristics of chemoreceptor organs (glomera). Histochemie 11: 195–204, 1967.
 32. Belmonte, C., and C. Eyzaguirre. Efferent influences on carotid body chemoreceptors. J. Neurophysiol. 37: 1131–1143, 1974.
 33. Belmonte, C., C. Gonzalez, and A. G. Garcia. Dopamine beta‐hydroxylase activity in cat carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 99–105.
 34. Belmonte, C., R. Rigual, and R. Gallego. Responses of carotid nerve fibers regenerating into the superior cervical ganglion. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone.] Leicester, UK: Leicester Univ. Press, 1981, p. 124–132.
 35. Berger, A. J. The distribution of the cat's carotid sinus nerve afferent and efferent cell bodies using the horseradish peroxidase technique. Brain Res. 190: 309–320, 1980.
 36. Bernthal, T., and W. F. Weeks. Respiratory and vasomotor effects of variations in carotid body temperature. A study of the mechanism of chemoreceptor stimulation. Am. J. Physiol. 127: 94–105, 1939.
 37. Bingman, D., H. Caspers, E. W. Kienecker, and H. Knoche. Chemoreceptive properties of the carotid sinus nerve after its implantation into the external carotid artery (Abstract). J. Physiol. London 284: 163P–164P, 1978.
 38. Bingman, D., E. W. Kienecker, H. Caspers, and H. Knoche. Chemoreceptor activity of sinus nerve fibers after their implantation into the wall of the external carotid artery. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 92–104.
 39. Bingman, D., E. W. Kienecker, H. Caspers, and H. Knoche. Receptive properties of regenerating sinus nerve endings in the wall of the external carotid artery. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 105–114.
 40. Bingman, D., E. W. Kienecker, and H. Knoche. Chemoreceptor activity in the rabbit carotid sinus nerve during regeneration. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 36–43.
 41. Birks, R. I., and F. C. McIntosh. Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39: 787–827, 1961.
 42. Biscoe, T. J. Carotid body: structure and function. Physiol. Rev. 51: 427–495, 1971.
 43. Biscoe, T. J., G. W. Bradley, and M. J. Purves. The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow. J. Physiol. London 208: 99–120, 1970.
 44. Biscoe, T. J., A. Lall, and S. R. Sampson. Electron microscopic and electrophysiological studies on the carotid body following intracranial section of the glossopharyngeal nerve. J. Physiol. London 208: 133–152, 1970.
 45. Biscoe, T. J., and D. J. Pallot. Serial reconstruction with the electron microscope of carotid body tissue. The type I cell nerve supply. Experientia 28: 33–34, 1972.
 46. Biscoe, T. J., and D. J. Pallot. The carotid chemoreceptor in the normal and wobbler mutant mouse (Abstract). J. Physiol. London 258: 120P–121P, 1976.
 47. Biscoe, T. J., and D. J. Pallot. The carotid chemoreceptor: an investigation in the mouse. Q. J. Exp. Physiol. 67: 557–576, 1982.
 48. Biscoe, T. J., and M. J. Purves. Observations on the rhythmic variation in the cat carotid body chemoreceptor activity which has the same period as respiration. J. Physiol. London 190: 389–412, 1967.
 49. Biscoe, T. J., and M. J. Purves. Factors affecting the cat carotid chemoreceptors and carotid sympathetic activity with special references to passive hind‐limb movements. J. Physiol. London 190: 425–441, 1967.
 50. Biscoe, T. J., M. J. Purves, and S. R. Sampson. The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J. Physiol. London 208: 121–131, 1970.
 51. Biscoe, T. J., and S. R. Sampson. Spontaneous activity recorded from the central cut end of the carotid sinus nerve of the cat. Nature London 216: 294–295, 1967.
 52. Biscoe, T. J., and S. R. Sampson. Rhythmical and non‐rhythmical spontaneous activity recorded from the central cut end of the sinus nerve. J. Physiol. London 196: 327–338, 1968.
 53. Biscoe, T. J., and A. Silver. The distribution of cholinesterases in the cat carotid body. J. Physiol. London 183: 501–512, 1966.
 54. Biscoe, T. J., and W. E. Stehbens. Ultrastructure of the carotid body. J. Cell Biol. 30: 563–578, 1966.
 55. Biscoe, T. J., and W. E. Stehbens. Ultrastructure of the denervated carotid body. Q. J. Exp. Physiol. 52: 31–36, 1967.
 56. Biscoe, T. J., and A. Taylor. The discharge pattern recorded in chemoreceptor afferent fibres from the cat carotid body with normal circulation and during perfusion. J. Physiol. London 168: 332–344, 1963.
 57. Bisgard, G. E., R. A. Mitchell, and D. A. Herbert. Effects of dopamine, norepinephrine, and 5‐hydroxytryptamine on the carotid body of the dog. Respir. Physiol. 37: 61–80, 1979.
 58. Black, A. M. S., J. H. Comroe, Jr., and L. Jacobs. Species difference in carotid body responses of cat and dog to dopamine and serotonin. Am. J. Physiol. 223: 1097–1102, 1972.
 59. Black, A. M. S., D. I. McCloskey, and R. W. Torrance. The responses of peripheral chemoreceptors to sudden changes of hypercapnic and hypoxic stimuli (Abstract). J. Physiol. London 185: 67P–68P, 1966.
 60. Black, A. M. S., D. I. McCloskey, and R. W. Torrance. The responses of carotid body chemoreceptors in the cat to sudden changes in hypercapnic and hypoxic stimuli. Respir. Physiol. 13: 36–49, 1971.
 61. Black, A. M. S., and R. W. Torrance. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir. Physiol. 13: 221–237, 1971.
 62. Blessing, M. H., and J. Kaldeweide. Light and electron microscopic observations on the carotid bodies of rats following adaptation to high altitude. Virchows Arch. B 18: 315–329, 1975.
 63. Blessing, M. H., and H. Wolff. Observations on the glomus caroticum of rats maintained at a simulated altitude of 7500 m. Virchows Arch. A. 360: 79–92, 1973.
 64. Blümcke, S., J. Rode, and H. R. Niedorf. The carotid body after irritation. Verh. Dtsch. Ges. Pathol. 51: 376–381, 1967.
 65. Blümcke, S., J. Rode, and H. R. Niedorf. The carotid body after oxygen deficiency. Z. Zellforsch. Mikrosk. Anat. 80: 52–77, 1967.
 66. Böck, P. Noradrenaline and acidic protein(s) in four types of cat carotid body chief cells. Arch. Histol. Jpn. 43: 23–34, 1980.
 67. Böck, P., and K. Gorgas. Catecholamines and granule content of carotid body type I cells. In: Chromaffin, Enterochromaffin and Related Cells, edited by R. E. Coupland and T. Fujita. Amsterdam: Elsevier, 1976, p. 355–374.
 68. Böck, P., and K. Gorgas. Fine structure of baroreceptor terminals in the carotid sinus of guinea pigs and mice. Cell Tissue Res. 170: 95–112, 1976.
 69. Böck, P., and H. Lassmann. Histochemische Untersuchungen über die Reserpinwirkung am Glomus caroticum (Ratte). Verh. Anat. Ges. 67: 229–232, 1973.
 70. Böck, P., L. Stockinger, and E. Vyslonzil. Die Feinstruktur des Glomus caroticum beim Menschen. Z. Zellforsch. Mikrosk. Anat. 105: 543–568, 1970.
 71. Bolme, P., K. Fuxe, T. Hökfelt, and M. Goldstein. Studies on the role of dopamine in cardiovascular and respiratory control: central versus peripheral mechanisms. Adv. Biochem. Pyschopharmacol. 16: 281–290, 1977.
 72. Boushey, H. A., and P. S. Richardson. The reflex effects of intralaryngeal carbon dioxide on the pattern of breathing. J. Physiol. London 228: 181–191, 1973.
 73. Brandt, B. L., S. Hagiwara, Y. Kidokoro, and S. Miyazaki. Action potentials in the rat chromaffin cell and effects of acetylcholine. J. Physiol. London 263: 417–439, 1976.
 74. Brown, H. M., and J. A. B. Gray. Some effects of nicotinelike substances and their relation to sensory nerve endings (Abstract). J. Physiol. London 107: 306, 1948.
 75. Burn, J. H., and M. J. Rand. Sympathetic postganglionic mechanisms. Nature London 184: 163–165, 1959.
 76. Burt, A. M., and A. Silver. DFP as a prerequisite in histochemical demonstration of choline acetyltransferase. Brain Res. 57: 518–521, 1973.
 77. Cajal, S. R. Degeneration and Regeneration in the Nervous System. New York: Hafner, 1928, vol. 1.
 78. Carbonetto, S. T., D. M. Fambrough, and K. J. Miller. Nonequivalence of α‐bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons. Proc. Natl. Acad. Sci. USA 75: 1016–1020, 1978.
 79. Cardenas, H., and P. Zapata. Dual effects of dopamine upon chemosensory responses to cyanide. Neurosci. Lett. 18: 317–322, 1980.
 80. Cardenas, H., and P. Zapata. Dopamine‐induced ventilatory depression in the rat mediated by carotid nerve afferents. Neurosci. Lett. 24: 29–33, 1981.
 81. Chalazonitis, N. Chemoreception and transduction on neuronal models. Adv. Exp. Med. Biol. 78: 85–100, 1977.
 82. Chen, I.‐L., and R. D. Yates. Electron microscopic radioautographic studies of the carotid body following injections of labeled biogenic amine precursors. J. Cell Biol. 42: 794–803, 1969.
 83. Chen, I.‐L., R. D. Yates, and D. Duncan. The effects of reserpine and hypoxia on the amine‐storing granules of the hamster carotid body. J. Cell Biol. 42: 804–816, 1969.
 84. Cherniack, N. S. The clinical assessment of the chemical regulation of ventilation. Chest 70: 274–81, 1976.
 85. Chiba, T., and N. Doba. Catecholaminergic axo‐axonic synapses in the nucleus of the tractus solitarius (pars commissuralis) of the cat: possible relation to presynaptic regulation of baroreceptor reflexes. Brain Res. 102: 255–265, 1976.
 86. Chiba, T., and M. Kato. Synaptic structures and quantification of catecholaminergic axons in the nucleus tractus solitarius of the rat: possible modulatory roles of catecholamines in baroreceptor reflexes. Brain Res. 151: 323–338, 1978.
 87. Chiocchio, S. R., M. E. Barrio‐Rendo, and J. H. Tramezzani. Increased norepinephrine and dopamine content of the rat carotid body after chronic hypoxia. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. J. Pallot, H. Acker,and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 237–244.
 88. Chiocchio, S. R., A. M. Biscardi, and J. H. Tramezzani. Catecholamines in the carotid body of the cat. Nature London 212: 834–835, 1966.
 89. Chiocchio, S. R., A. M. Biscardi, and J. H. Tramezzani. 5‐Hydroxytryptamine in the carotid body of the cat. Science 158: 790–791, 1967.
 90. Chiocchio, S. R., M. P. King, and E. T. Angelakos. Carotid body catecholamines. Histochemical studies on the effects of drug treatments. Histochemie 25: 52–59, 1971.
 91. Chiocchio, S. R., M. P. King, L. Carballo, and E. T. Angelakos. Monoamines in the carotid body cells of the cat. J. Histochem. Cytochem. 19: 621–626, 1971.
 92. Chiodi, H., D. B. Dill, F. Consolazio, and S. M. Horvath. Respiratory and circulatory responses to acute CO poisoning. Am. J. Physiol. 134: 683–693, 1941.
 93. Christie, R. V. The function of the carotid gland (glomus caroticum). I. The action of extracts of a carotid gland tumor in man. Endocrinology 17: 421–432, 1933.
 94. Collier, B., and D. Ilson. The effect of preganglionic nerve stimulation on the accumulation of certain analogues of choline by a sympathetic ganglion. J. Physiol. London 264: 489–509, 1977.
 95. Comroe, J. H.,Jr. Physiology of Respiration. Chicago, IL: Year Book, 1965.
 96. Comroe, J. H., Jr., and C. F. Schmidt. The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog. Am. J. Physiol. 121: 75–97, 1938.
 97. Coxon, R. V. Regulation of biochemical reactions by oxygen and carbon dioxide. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 91–102.
 98. Cuello, A. C., and D. S. McQueen. Substance P: a carotid body peptide. Neurosci. Lett. 17: 215–219, 1980.
 99. Cunningham, D. J. C. Integrative aspects of the regulation of breathing: a personal view. In: Respiratory Physiology I, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1974, vol. 2, p. 303–369. (Int. Rev. Physiol. Ser.).
 100. Daly, M. de B., C. J. Lambertsen, and A. Schweitzer. Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat. J. Physiol. London 125: 67–89, 1954.
 101. Davies, R. O., and M. Kalia. Carotid sinus nerve projections to the brain stem in the cat. Brain Res. Bull. 6: 531–541, 1981.
 102. Davies, R. O., T. Nishino, and S. Lahiri. Sympathectomy does not alter the response of carotid chemoreceptors to hypoxemia during carboxyhemoglobinemia or anemia. Neurosci. Lett. 21: 159–163, 1981.
 103. Dean, P. M., and E. K. Matthews. Glucose‐induced electrical activity in pancreatic islet cells. J. Physiol. London 210: 255–264, 1970.
 104. Dearnaley, D. P., M. Fillenz, and R. I. Woods. The identification of dopamine in the rabbit's carotid body. Proc. R. Soc. London Ser. B 170: 195–203, 1968.
 105. De Castro, F. Sur la structure et l'innervation de la glande intercarotidienne (glomus caroticum) de l'homme et des mammiferes, et sur un nouveau système d'innervation autonome du nerf glossopharyngien. Trab. Lab. Invest. Biol. Univ. Madrid 24: 365–432, 1926.
 106. De Castro, F. Sur la structure et l'innervation du sinus carotidien de l'homme et des mammifères. Nouveaux faits sur l'innervation et la fonction du glomus caroticum. Etudes anatomiques et physiologiques. Trab. Lab. Invest. Biol. Univ. Madrid 25: 331–380, 1928.
 107. De Castro, F. Nuevas observaciones sobre la inervacion de la region carotidea. Los quimio y presorreceptores. Trab. Lab. Invest. Biol. Univ. Madrid 32: 297–384, 1940.
 108. De Castro, F. Sur la structure de la synapse dans les chemocepteurs: leur mecanisme d'excitation et rôle dans la circulation sanguine locale. Acta Physiol. Scand. 22: 14–43, 1951.
 109. De Castro, F. Sur la vascularisation et l'innervation des corpuscules carotidiens aberrants. Arch. Int. Pharmacodyn. Ther. 139: 212–224, 1962.
 110. De Castro, F., and M. Rubio. The anatomy and innervation of the blood vessels of the carotid body and the role of chemoreceptive reactions in the autoregulation of the blood flow. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 267–277.
 111. De Groat, W. C., I. Nadelhaft, C. Morgan, and T. Schauble. The central origin of efferent pathways in the carotid sinus nerve of the cat. Science 205: 1017–1018, 1979.
 112. Dejours, P. Approaches to the study of arterial chemoreceptors. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 41–48.
 113. De Kock, L. L. Intraglomerular tissues of the carotid body. Acta Anat. 21: 101–116, 1954.
 114. De Kock, L. L., and A. E. G. Dunn. Ultra‐structure of carotid body tissue as seen in serial sections. Nature London 202: 821–822, 1964.
 115. De Kock, L. L., and A. E. G. Dunn. An electron microscope study of the carotid body. Acta Anat. 64: 163–178, 1966.
 116. Delpiano, M., and H. Acker. Relationship between tissue Po2 and chemoreceptor activity of the carotid body in vitro. Brain Res. 195: 85–93, 1980.
 117. Delpiano, M., and H. Acker. Relationship between extracellular potassium activity, tissue Po2 and nervous chemoreceptor discharge of the cat carotid body in vitro. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 382–391.
 118. Diamond, J. Observations on the excitation by acetylcholine and by pressure of sensory receptors in the cat's carotid sinus. J. Physiol. London 130: 513–532, 1955.
 119. Dimsdale, J. E., and J. Moss. Plasma catecholamines in stress and exercise. J. Am. Med. Assoc. 243: 340–342, 1980.
 120. Dinger, B., C. Gonzalez, K. Yoshizaki, and S. Fidone. α‐Bungarotoxin binding in cat carotid body. Brain Res. 205: 187–193, 1981.
 121. Dinger, B., C. Gonzalez, K. Yoshizaki, and S. Fidone. [3H]spiroperidol binding in normal and denervated carotid bodies. Neurosci. Lett. 21: 51–55, 1981.
 122. Docherty, R. J. The effects of benztropine and pargyline on the response of cat carotid chemoreceptors to sodium cyanide, acetylcholine and dopamine (Abstract). J. Physiol. London 292: 53P, 1979.
 123. Docherty, R. J., and D. S. McQueen. Inhibitory action of dopamine on cat carotid chemoreceptors. J. Physiol. London 279: 425–436, 1978.
 124. Docherty, R. J., and D. S. McQueen. The effects of acetylcholine and dopamine on carotid chemosensory activity in the rabbit. J. Physiol. London 288: 411–423, 1979.
 125. Douglas, W. W. The effect of a ganglionic‐blocking drug, hexamethonium, on the response of the cat's carotid body to various stimuli. J. Physiol. London 118: 373–383, 1952.
 126. Douglas, W. W. Is there chemical transmission at chemoreceptors? Pharmacol. Rev. 6: 81–83, 1954.
 127. Douglas, W. W., and J. A. B. Gray. The excitant action of acetylcholine and other substances on cutaneous sensory pathways and its prevention by hexamethonium and d‐tubocurarine. J. Physiol. London 119: 118–128, 1953.
 128. Duke, H. N., J. H. Green, and E. Neil. Carotid chemoreceptor impulse activity during inhalation carbon monoxide mixtures. J. Physiol. London 118: 520–527, 1952.
 129. Echeverria, O. M., G. H. Vasquez‐Nin, and B. Chavez. Correlated ultrastructural and biochemical studies on the mechanisms of secretion of catecholamines. Acta Anat. 98: 313–324, 1977.
 130. Edwards, C. W. The carotid body in animals at high altitude. In: High Altitude Physiology: Cardiac and Respiratory Aspects, edited by R. Porter and J. Knight. London: Churchill Livingstone, 1971, p. 79–88. (Ciba Found. Symp.).
 131. Edwards, C., D. Heath, and P. Harris. The carotid body in emphysema and left ventricular hypertrophy. J. Pathol. 104: 1–13, 1971.
 132. Edwards, C., D. Heath, P. Harris, Y. Castillo, H. Kruger, and J. Arias‐Stella. The carotid body in animals at high altitude. J. Pathol. 104: 231–238, 1971.
 133. Edwards, M. W., and E. Mills. Arterial chemoreceptor oxygen utilization and oxygen tension. J. Appl. Physiol. 27: 291–294, 1969.
 134. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid body chemoreceptor stimulation. J. Physiol. London 222: 319–333, 1972.
 135. Eldridge, F. L. Maintenance of respiration by central neural feedback mechanisms. Federation Proc. 36: 2400–2404, 1977.
 136. Eldridge, F. L., and P. Gill‐Kumar. Mechanisms of hyperpnea induced by isoproterenol. Respir. Physiol. 40: 349–363, 1980.
 137. Erhan, B., E. Mulligan, and S. Lahiri. Metabolic regulation of aortic chemoreceptor responses to CO2. Neurosci. Lett. 24: 143–147, 1981.
 138. Euler, U. S. von, G. Liljestrand, and Y. Zotterman. The excitation mechanism of the chemoreceptors of the carotid body. Skand. Arch. Physiol. 83: 132–152, 1939.
 139. Euler, U. S. von, G. Liljestrand, and Y. Zotterman. Über den Reizmechanismus der Chemorezeptoren im Glomus caroticum. Acta Physiol. Scand. 1: 383–385, 1941.
 140. Eyzaguirre, C., M. Baron, and R. Gallego. Effects of temperature and stimulating agents on carotid body cells. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 71–78.
 141. Eyzaguirre, C., M. Baron, and R. Gallego. Intracellular studies of carotid body cells: effects of temperature, “natural” stimuli and chemical substances. In: Tissue Hypoxia and Ischemia, edited by M. Reivich, R. Coburn, S. Lahiri, and B. Chance. New York: Plenum, 1977, p. 209–223.
 142. Eyzaguirre, C., M. Baron, Y. Hayashida, L. Monti‐Bloch, and R. Gallego. Effects of different stimuli on the glomus cell membrane. Proc. Int. Congr. Physiol. Sci., 28th, Budapest, 1980, vol. 14, p. 399–408.
 143. Eyzaguirre, C., and S. J. Fidone. A study of some mechanisms operating in carotid body chemoreceptors. In: Studies in Neurophysiology, edited by R. Porter. London: Cambridge Univ. Press, 1978, p. 109–130.
 144. Eyzaguirre, C., and S. J. Fidone. Transduction mechanism in the carotid body: glomus cells, putative neurotransmitters, and nerve endings. Am. J. Physiol. 239 (Cell Physiol. 8): C135–C152, 1980.
 145. Eyzaguirre, C., S. Fidone, and K. Nishi. Recent studies on the generation of chemoreceptor impulses. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 175–194.
 146. Eyzaguirre, C., and H. Koyano. Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J. Physiol. London 178: 385–409, 1965.
 147. Eyzaguirre, C., and H. Koyano. Effects of some pharmacological agents on chemoreceptor discharges. J. Physiol. London 178: 410–437, 1965.
 148. Eyzaguirre, C., and H. Koyano. Effects of electrical stimulation on the frequency of chemoreceptor discharges. J. Physiol. London 178: 438–462, 1965.
 149. Eyzaguirre, C., H. Koyano, and J. R. Taylor. Presence of acetylcholine and transmitter release from carotid body chemoreceptors. J. Physiol. London 178: 463–476, 1965.
 150. Eyzaguirre, C., L. M. Leitner, K. Nishi, and S. Fidone. Depolarization of chemosensory nerve endings in carotid body of the cat. J. Neurophysiol. 33: 685–696, 1970.
 151. Eyzaguirre, C., and J. Lewin. Chemoreceptor activity of the carotid body of the cat. J. Physiol. London 159: 222–237, 1961.
 152. Eyzaguirre, C., and J. Lewin. Effect of different oxygen tensions of the carotid body in vitro. J. Physiol. London 159: 238–250, 1961.
 153. Eyzaguirre, C., and J. Lewin. The effect of sympathetic stimulation on carotid nerve activity. J. Physiol. London 159: 251–267, 1961.
 154. Eyzaguirre, C., and L. Monti‐Bloch. Similarities and differences in the physiology and pharmacology of cat and rabbit carotid bodies. Federation Proc. 39: 2653–2656, 1980.
 155. Eyzaguirre, C., and K. Nishi. Further study on mass receptor potential of carotid body chemosensors. J. Neurophysiol. 37: 156–169, 1974.
 156. Eyzaguirre, C., and K. Nishi. Effects of different ions on resting polarization and on the mass receptor potential of carotid body chemosensors. J. Neurobiol. 7: 417–434, 1976.
 157. Eyzaguirre, C., and K. Uchizono. Observations on the fibre content of nerves reaching the carotid body of the cat. J. Physiol. London 159: 268–281, 1961.
 158. Eyzaguirre, C., and P. Zapata. A discussion of possible transmitter or generator substances in carotid body chemoreceptors. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 213–251.
 159. Eyzaguirre, C., and P. Zapata. Pharmacology of pH effects on carotid body chemoreceptors in vitro. J. Physiol. London 195: 557–588, 1968.
 160. Eyzaguirre, C., and P. Zapata. The release of acetylcholine from carotid body tissues. Further study on the effects of acetylcholine and cholinergic blocking agents on the chemosensory discharge. J. Physiol. London 195: 589–607, 1968.
 161. Eyzaguirre, C., and P. Zapata. Transmitter substance release from carotid body chemoreceptors. Actual. Neurophysiol. 8: 73–88, 1968.
 162. Fay, F. S. Oxygen consumption of the carotid body. Am. J. Physiol. 218: 518–523, 1970.
 163. Fidone, S., B. Dinger, C. Gonzalez, and K. Yoshizaki. Studies on the localization of dopaminergic and cholinergic receptors in the carotid body. In: Arterial Chemoreceptor Mechanisms and Respiration, edited by I. Hutas and L. A. Debreczeni. Budapest: Pergamon, 1980, vol. 10, p. 435–440.
 164. Fidone, S. J., and C. Gonzalez. Catecholamine synthesis in rabbit carotid body in vitro. J. Physiol. London 333: 69–79, 1982.
 165. Fidone, S. J., C. Gonzalez, and K. Yoshizaki. Synthesis and release of catecholamines by the cat carotid body: effects of hypoxic stimulation. Soc. Neurosci. Abstr. 5: 402, 1979.
 166. Fidone, S. J., C. Gonzalez, and K. Yoshizaki. Putative neurotransmitters in the carotid body: the case for dopamine. Federation Proc. 39: 2636–2640, 1980.
 167. Fidone, S. J., C. Gonzalez, and K. Yoshizaki. A study of the relationship between dopamine release and chemosensory discharge from the rabbit carotid body in vitro: preliminary findings. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 209–219.
 168. Fidone, S. J., C. Gonzalez, and K. Yoshizaki. Effects of hypoxia on catecholamine synthesis in rabbit carotid body in vitro. J. Physiol. London 333: 81–91, 1982.
 169. Fidone, S. J., C. Gonzalez, and K. Yoshizaki. Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J. Physiol. London 333: 93–110, 1982.
 170. Fidone, S. J., T. O'Leary, and C. Eyzaguirre. A simple method for the preparation of and recording from thin slices of living tissue. Brain Res. 30: 401–406, 1971.
 171. Fidone, S. J., and A. Sato. A study of chemoreceptor and baroreceptor A and C‐fibres in the cat carotid nerve. J. Physiol. London 205: 527–548, 1969.
 172. Fidone, S. J., and A. Sato. Efferent inhibition and antidromic depression of chemoreceptor A‐fibers from the cat carotid body. Brain Res. 22: 181–193, 1970.
 173. Fidone, S. J., A. Sato, and C. Eyzaguirre. Acetylcholine activation of carotid body chemoreceptor A fibers. Brain Res. 9: 374–376, 1968.
 174. Fidone, S. J., L. J. Stensaas, and P. Zapata. Sensory nerve endings containing “synaptic” vesicles: an electron‐microscopic autoradiographic study. J. Neurobiol. 6: 423–427, 1975.
 175. Fidone, S. J., S. Weintraub, and W. B. Stavinoha. Acetylcholine content of normal and denervated cat carotid bodies measured by pyrolysis gas chromatography/mass fragmentometry. J. Neurochem. 26: 1047–1049, 1976.
 176. Fidone, S. J., S. Weintraub, W. B. Stavinoha, C. Stirling, and L. Jones. Endogenous acetylcholine levels in cat carotid body and the autoradiographic localization of a high affinity component of choline uptake. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlinx: Springer‐Verlag, 1977, p. 106–113.
 177. Fidone, S. J., P. Zapata, and L. J. Stensaas. Axonal transport of labeled material into sensory nerve endings of cat carotid body. Brain Res. 124: 9–28, 1977.
 178. Fidone, S. J., P. Zapata, and L. J. Stensaas. Origin of nerve terminals on glomus cells in cat carotid body: a study of axoplasmic movement of labeled material along sensory neurons of the petrosal ganglion. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 9–16.
 179. Fitzgerald, R. S. Single fiber chemoreceptor responses of aortic and carotid bodies. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Navchetan, 1976, p. 27–35.
 180. Fitzgerald, R. S., and G. A. Dehghani. Neural responses of the cat carotid and aortic bodies to hypercapnia and hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 596–601, 1982.
 181. Fitzgerald, R. S., G. A. Dehghani, A. Anand, and A. M. Goldberg. The failure of differences in neurally contained acetylcholine to explain differences between carotid body and aortic body chemoreception. Brain Res. 179: 176–180, 1979.
 182. Fitzgerald, R. S., P. Garger, L. Fechter, H. Raff, and M. Hauer. Hypoxia, hypercapnia and catecholamine release in the cat carotid body (Abstract). Physiologist 23 (4): 68, 1980.
 183. Fitzgerald, R. S., P. Garger, M. C. Hauer, H. Raff, and L. Fechter. Effect of hypoxia and hypercapnia on catecholamine content in cat carotid body. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1408–1413, 1983.
 184. Fitzgerald, R. S., L. M. Leitner, and M. J. Liaubet. Carotid chemoreceptor response to intermittent or sustained stimulation in the cat. Respir. Physiol. 6: 395–402, 1969.
 185. Fitzgerald, R. S., and D. C. Parks. Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir. Physiol. 12: 218–229, 1971.
 186. Fitzgerald, R. S., H. Raff, P. Garger, A. Anand, and S. Said. Vasoactive intestinal polypeptide (VIP) and the carotid body. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 289–298.
 187. Fjallbrant, N., and A. Iggo. The effect of histamine, 5‐hydroxytryptamine and acetylcholine on cutaneous afferent fibres. J. Physiol. London 156: 578–590, 1961.
 188. Flandrois, R., R. Favier, and J. M. Pequignot. Role of adrenaline on gas exchanges and respiratory control in the dog at rest and exercise. Respir. Physiol. 30: 291–303, 1977.
 189. Fleming, R. M., and W. G. Clark. Quantitative thin‐layer chromatographic estimation of labeled dopamine and norepinephrine, their precursors and metabolites. J. Chromatogr. 52: 305–312, 1970.
 190. Floyd, W. F., and E. Neil. The influence of the sympathetic innervation of the carotid bifurcation on chemoreceptor and baroreceptor activity in the cat. Arch. Int. Pharmacodyn. Ther. 91: 230–239, 1952.
 191. Forster, R. E. The diffusion of gases in the carotid body. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 115–132.
 192. Gallego, R., and C. Belmonte. The effects of blood osmolality changes on cat carotid body chemoreceptors in vivo. Pfluegers Arch. 380: 53–58, 1979.
 193. Gallego, R., C. Eyzaguirre, and L. Monti‐Bloch. Thermal and osmotic responses of arterial receptors. J. Neurophysiol. 42: 665–680, 1979.
 194. Garcia‐Sancho, J., F. Giraldez, and C. Belmonte. Absence of apparent cell pH variations during hypoxia in the carotid body chemoreceptors in vitro. Neurosci. Lett. 10: 247–249, 1978.
 195. Gehrich, J. L., and G. P. Moore. Statistical analysis of cyclic variations in carotid body chemoreceptor activity. J. Appl. Physiol. 35: 642–648, 1973.
 196. Gillis, R. A., C. J. Helke, B. L. Hamilton, W. P. Norman, and D. M. Jacobowitz. Evidence that substance P is a neurotransmitter of baro‐ and chemoreceptor afferents in nucleus tractus solitarius. Brain Res. 181: 476–481, 1980.
 197. Goldberg, A. M., A. P. Lentz, and R. S. Fitzgerald. Neurotransmitter mechanism in the carotid body: absence of ACh in the carotid sinus nerve. Brain Res. 140: 374–377, 1978.
 198. Gomez, L. P. The anatomy and pathology of the carotid gland. Am. J. Med. Sci. 136: 98–111, 1908.
 199. Gonzalez, C. Neurotransmission in the Carotid Body. Valladolid, Spain: 1977. PhD thesis.
 200. Gonzalez, C., and S. Fidone. Increased release of 3H‐dopamine during low O2 stimulation of rabbit carotid body in vitro. Neurosci. Lett. 6: 95–99, 1977.
 201. Gonzalez, C., Y. Kwok, J. W. Gibb, and S. Fidone. Effects of hypoxia on tyrosine hydroxylase activity in rat carotid body. J. Neurochem. 33: 713–719, 1979.
 202. Gonzalez, C., Y. Kwok, J. W. Gibb, and S. J. Fidone. Reciprocal modulation of tyrosine hydroxylase activity in rat carotid body. Brain Res. 172: 572–576, 1979.
 203. Gonzalez, C., Y. Kwok, J. W. Gibb, and S. Fidone. Physiological and pharmacologic effects on TH activity in rabbit and cat carotid body. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 1): R38–R43, 1981.
 204. Gonzalez, C., Y. Kwok, J. W. Gibb, and S. Fidone. Regulation of tyrosine hydroxylase activities in carotid body, superior cervical ganglion and adrenal gland of rat, rabbit and cat. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 187–197.
 205. Gonzalez, C., K. Yoshizaki, and S. Fidone. Catecholamine synthesis from tyrosine and dopa in rabbit carotid body: effects of natural stimulation. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 198–208.
 206. Goodman, N. W. Efferent control of arterial chemoreceptors (Abstract). J. Physiol. London 225: 31P–32P, 1972.
 207. Goodman, N. W. Efferent control of arterial chemoreceptors mediated by glossopharyngeal fibres and artifacts introduced by stimulation techniques. J. Physiol. London 230: 295–311, 1973.
 208. Goodman, N. W. Some observations on the homogeneity of response of single chemoreceptor fibers. Respir. Physiol. 20: 271–281, 1974.
 209. Goodman, N. W. Efferent inhibition of arterial chemoreceptors and stimulation of the sinus nerve. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 241–252.
 210. Goodman, N. W., and D. I. McCloskey. Intracellular potentials in the carotid body. Brain Res. 39: 501–504, 1972.
 211. Goodman, N. W., and B. S. Nail. Oscillatory behaviour and randomness of firing of chemoreceptor fibres in the cat. Brain Res. 59: 379–83, 1973.
 212. Goodman, N. W., B. S. Nail, and R. W. Torrance. Oscillations in the discharge of single carotid chemoreceptor fibres of the cat. Respir. Physiol. 20: 251–269, 1974.
 213. Goormaghtigh, N., and R. Pannier. Les paraganglions du coeur et des zones vaso‐sensibles carotidienne et cardio‐aortique chez le chat adulte. Arch. Biol. 50: 455–533, 1939.
 214. Gorgas, K., and P. Bock. Fine structure of pressoreceptor terminals in the carotid body (mouse, cat, rat). In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 55–61.
 215. Gray, B. A. Response of the perfused carotid body to changes in pH and Pco2. Respir. Physiol. 4: 229–245, 1968.
 216. Grillo, M. A. Ultrastructural evidence for a sensory innervation of some SIF cells in rat superior cervical ganglia (Abstract). Anat. Rec. 190: 407, 1978.
 217. Grimley, P. M., and G. G. Glenner. Ultrastructure of the human carotid body. A perspective on the mode of chemoreception. Circulation 37: 648–665, 1968.
 218. Grönblad, M., K. E. Akerman, and O. Eránkö. Induction of exocytosis from glomus cells by incubation of the carotid body of the rat with calcium and ionophore A23187. Anat. Rec. 195: 387–395, 1979.
 219. Grundfest, H. The general electrophysiology of input membrane in electrogenic excitable cells. In: Handbook of Sensory Physiology. Principles of Receptor Physiology, edited by W. R. Loewenstein, New York: Springer‐Verlag, 1971, vol. I, chapt. 4, p. 135–165.
 220. Hanbauer, I. Catecholamines and rat carotid body function. In: Arterial Chemoreceptor Mechanisms and Respiration, edited by I. Hutas and L. A. Debreczeni. Budapest: Pergamon, 1980, vol. 10, p. 425–434.
 221. Hanbauer, I., and S. Hellström. The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia. J. Physiol. London 282: 21–34, 1978.
 222. Hanbauer, I., F. Karoum, S. Hellström, and S. Lahiri. Effects of long‐term hypoxia lasting up to one month on the catecholamine content in rat carotid body. Neuroscience 6: 81–86, 1981.
 223. Hanbauer, I., W. Lovenberg, and E. Costa. Induction of tyrosine 3‐mono‐oxygenase in carotid body of rats exposed to hypoxic conditions. Neuropharmacology 16: 277–282, 1977.
 224. Hansen, J. T., and D. S. Christie. Rat carotid body catecholamines determined by high performance liquid chromatography with electrochemical detection. Life Sci. 29: 1791–1795, 1981.
 225. Hansen, J. T., and N. K. R. Smith. Calcium binding sites on the vesicles of the carotid and aortic body chief cells. Cell Tissue Res. 199: 145–151, 1979.
 226. Hanson, M. A., P. C. G. Nye, and R. W. Torrance. The exodus of an extracellular bicarbonate theory of chemoreception and the genesis of an intracellular one. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 403–416.
 227. Harms, B. Gehalte an freien Aminosäuren, biogenen Aminen und Neurotransmittern und Untersuchungen zur Catecholamin‐Biosynthese im Glomus Caroticum des Rindes. Hamburg, West Germany: Univ. of Hamburg, 1979. PhD thesis.
 228. Hatcher, J. D., L. K. Chiu, and D. B. Jennings. Anemia as a stimulus to aortic and carotid chemoreceptors in the cat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 696–702, 1978.
 229. Hayashida, Y., and C. Eyzaguirre. Voltage noise of carotid body type I cells. Brain Res. 167: 189–194, 1979.
 230. Hayashida, Y., H. Koyano, and C. Eyzaguirre. An intracellular study of chemosensory fibers and endings. J. Neurophysiol. 44: 1077–1088, 1980.
 231. Hayashida, Y., H. Koyano, and C. Eyzaguirre. Intracellular recording from chemoreceptor afferents and terminals. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 362–372.
 232. Hayes, M. W., K. Balwant, B. K. Maini, and R. W. Torrance. Reduction of the responses of carotid chemoreceptors by acetazolamide. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Navchetan, 1976, p. 36–47.
 233. Heath, D., and C. Edwards. The carotid body in cardiopulmonary disease. Geriatrics 26: 110–120, 1971.
 234. Heath, D., C. Edwards, M. Winson, and P. Smith. Effects on the right ventricle, pulmonary vasculature, and carotid bodies of the rat of exposure to, and recovery from, simulated high altitude. Thorax 28: 24–28, 1973.
 235. Hebb, C. Discussion remarks. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 138–139.
 236. Heinrich, R., and H. Acker. Tissue Po2 (PGo2) in the carotid body of the cat and tidal volume (V) during normovolemic haemodilution. Adv. Exp. Med. Biol. 94: 517–523, 1977.
 237. Hellström, S. Morphometric studies of dense‐cored vesicles in type I cells of rat carotid body. J. Neurocytol. 4: 77–86, 1975.
 238. Hellström, S. Type I cells of carotid body from rats treated with 5‐OH‐DOPA and l‐DOPA: an electron microscopical study. J. Neurocytol. 4: 439–451, 1975.
 239. Hellström, S. Effects of hypoxia on carotid body type I cells and their catecholamines. A biochemical and morphologic study. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 122–129.
 240. Hellström, S. Putative neurotransmitters in the carotid body. Mass fragmentographic studies. Adv. Biochem. Psychopharmacol. 16: 257–263, 1977.
 241. Hellström, S., and I. Hanbauer. Modification of the dopamine content in rat carotid body by methacholine and hypoxia. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 220–230.
 242. Hellström, S., I. Hanbauer, and E. Costa. Selective decrease of dopamine content in rat carotid body during exposure to hypoxic conditions. Brain Res. 118: 352–355, 1976.
 243. Hellström, S., and S. H. Koslow. Biogenic amines in carotid body of adult and infant rats, a gas chromatographicmass spectrometric assay. Acta Physiol. Scand. 93: 540–547, 1975.
 244. Helpap, B., and K. Hempel. Autoradiographic examination with 3H‐DOPA regarding the catecholamine metabolism of the carotid body. Verh. Dtsch. Ges. Pathol. 52: 464–469, 1968.
 245. Helpap, B., and K. Hempel. The metabolism of catecholamines in the carotid body of the rat. Radio‐autographic studies using 3H‐DOPA. Virchows Arch. B 3: 270–81, 1969.
 246. Hervonen, A., L. Kanerva, O. Korkala, and S. Partanen. Effects of hypoxia and glucocorticoids on the histochemically demonstrable catecholamines of the newborn rat carotid body. Acta Physiol. Scand. 86: 109–114, 1972.
 247. Hess, A. Electron microscopic observations of normal and experimental cat carotid bodies. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 51–56.
 248. Hess, A. Hyposensitivity of deafferented receptor cells in the rat carotid body. Brain Res. 98: 348–353, 1975.
 249. Hess, A. Calcium inhibits catecholamine depletion by reserpine from carotid body glomus cells. Brain Res. Bull. 1: 359–362, 1976.
 250. Hess, A. The effects of 6‐hydroxydopamine on the appearance of granulated vesicles in glomus cells of the rat carotid body. Tissue Cell 8: 381–387, 1976.
 251. Hess, A. Histofluorescent and ultrastructural studies on the effects of reserpine and calcium on dense‐cored vesicles in glomus cells of the rat carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 201–206.
 252. Hess, A. Some aspects of localization, depletion, uptake and turnover of catecholamines by glomus cells of the rat carotid body. Adv. Exp. Med. Biol. 78: 233–243, 1977.
 253. Hess, A. Are glomus cells in the rat carotid body dopaminergic or noradrenergic. Neuroscience 3: 412–418, 1978.
 254. Hess, A. A simple procedure for distinguishing dopamine from noradrenaline in peripheral nervous structures in the fluorescence microscope. J. Histochem. Cytochem. 26: 141–144, 1978.
 255. Hess, A., and P. Zapata. Innervation of the cat carotid body; normal and experimental studies. Federation Proc. 31: 1365–1382, 1972.
 256. Heymans, C., J. J. Bouckaert, and L. Dautrebande. Sinus carotidien et réflexes respiratoires. II. Influences respiratoires réflexes de l'acidôse, de l'alcalôse, de l'anhydride carbonique, de l'ion hydrogène et de l'anoxémie: sinus carotidiens et échanges respiratoires dans les poumons et au delá des poumons. Arch. Int. Pharmacodyn. Ther. 39: 400–408, 1930.
 257. Heymans, C., J. J. Bouckaert, and L. Dautrebande. Sinus carotidien et réflexes respiratoires; sensibilité des sinus carotidiens aux substances chimiques. Action stimulante respiratoire réflexe du sulfure de sodium, du cyanure de potassium, de la nicotine et de la lobéline. Arch. Int. Pharmacodyn. Ther. 40: 54–91, 1931.
 258. Heymans, C., J. J. Bouckaert, S. Farber, and F. J. Hsu. Influence réflexogène de l'acétylcholine sur les terminaisons nerveuses chimio‐sensitives du sinus carotidien. Arch. Int. Pharmacodyn. Ther. 54: 129–135, 1936.
 259. Heymans, C., and E. Neil. Reflexogenic Areas of the Cardiovascular System. London: Churchill, 1958, p. 192.
 260. Heymans, C., and P. Rijlant. Le courant d'action du nerf du sinus carotidien intact. C. R. Soc. Biol. 113: 69–73, 1933.
 261. Hoffman, H., and J. H. W. Birrell. The carotid body in normal and anoxic states: an electron microscopic study. Acta Anat. 32: 297–311, 1958.
 262. Hollinshead, W. H., and C. H. Sawyer. Mechanisms of carotid body stimulation. Am. J. Physiol. 144: 79–86, 1945.
 263. Honig, A., B. Flemming, U. Rauhut, H. Roloff, C. Boege, D. Matthais, and H. Waltman. Die Funktion der innervierten Nieren während der Reizung der Karotis‐Chemorezeptoren bei Konstantem renalem. Perfusiondruck Acta Biol. Med. Ger. 34: 1025–1036, 1975.
 264. Hornbein, T. F. The relation between stimulus to chemoreceptors and their response. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 65–78.
 265. Hornbein, T. F., Z. J. Griffo, and A. Roos. Quantitation of chemoreceptor activity: interrelation of hypoxia and hypercapnia. J. Neurophysiol. 24: 561–568, 1961.
 266. Hornbein, T. F., and A. Roos. Specificity of H ion concentration as a carotid chemoreceptor stimulus. J. Appl. Physiol. 18: 580–584, 1963.
 267. Jacobowitz, D. M., and C. J. Helke. Localization of substance P immunoreactive nerves in the carotid body. Brain Res. Bull. 5: 195–197, 1980.
 268. Jobsis, F. F. What is a molecular oxygen sensor? What is a transduction process? In: Tissue Hypoxia and Ischemia, edited by M. Reivich, R. Coburn, S. Lahiri, and B. Chance. New York: Plenum, 1977, p. 3–18.
 269. Joels, N., and E. Neil. Chemoreceptor impulse activity evoked by perfusion of the glomus at various Pco2 and pH values (Abstract). J. Physiol. London 154: 7P, 1960.
 270. Joels, N., and E. Neil. The idea of a sensory transmitter. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 153–178.
 271. Joels, N., and H. White. The contribution of the arterial chemoreceptors to the stimulation of respiration by adrenaline and noradrenaline. J. Physiol. London 197: 1–23, 1968.
 272. Jones, J. V. Localization and quantitation of carotid body enzymes: their relevance to the cholinergic transmitter hypothesis. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 143–162.
 273. Jones, J. V., and K. J. Ballard. Cholinesterases in the carotid body of the cat as seen with the electron microscope. Nature London 233: 146–148, 1971.
 274. Kalia, M., and R. O. Davies. A neuroanatomical search for glossopharyngeal efferents to the carotid body using the retrograde transport of horseradish peroxidase. Brain Res. 149: 477–481, 1978.
 275. Kebabian, J. W., and P. B. Calne. Multiple receptors for dopamine. Nature London 277: 92–96, 1979.
 276. Keller, H. P., and D. W. Lübbers. Measurement of local blood flow in the carotid body of the cat by means of a hydrogen microelectrode. Pfluegers Arch. 332, Suppl.: R10, 1972.
 277. Keller, H. P., and D. W. Lübbers. Flow measurements in the carotid body of the cat by the hydrogen clearance method. Pfluegers Arch. 336: 217–224, 1972.
 278. Kienecker, E. W., H. Knoche, and D. Bingman. Functional properties of regenerating sinus nerve fibres in the rabbit. Neuroscience 3: 977–988, 1978.
 279. King, A. S., D. Z. King, R. D. Hodges, and J. Henry. Synaptic morphology of the carotid body of the domestic fowl. Cell Tissue Res. 162: 459–473, 1975.
 280. Kobayashi, S. Fine structure of the carotid body of the dog. Arch. Histol. 30: 95–120, 1968.
 281. Kobayashi, S. Catecholamines in the avian carotid body. Experientia 25: 1075–1076, 1969.
 282. Kobyashi, S. On the fine structure of the carotid body of the bird, Uroloncha domestica. Arch. Histol. Jpn. 31: 9–19, 1969.
 283. Kobyashi, S. Comparative cytological studies of the carotid body. I. Demonstration of monoamine‐storing cells by correlated chromaffin reaction and fluorescence histochemistry. Arch. Histol. Jpn. 33: 319–339, 1971.
 284. Kobyashi, S. Comparative cytological studies of the carotid body. II. Ultrastructure of the synapses on the chief cell. Arch. Histol. Jpn. 33: 397–420, 1971.
 285. Kobyashi, S. Ultrastructure of the synapses on the chief cell of the carotid body: a comparative study. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 25–39.
 286. Kobyashi, S. An autoradiographic study of the mouse carotid body using tritiated leucine, dopa, dopamine, and ATP with special reference to the chief cell as a paraneuron. Arch. Histol. Jpn. 39: 295–317, 1976.
 287. Kobyashi, S., and M. Uehara. Occurrence of afferent synaptic complexes in the carotid body of the mouse. Arch. Histol. Jpn. 32: 193–201, 1970.
 288. Koelle, G. B. The histochemical differentiation of types of cholinesterase and their localizations in tissues of the cat. J. Pharmacol. Exp. Ther. 100: 158–179, 1950.
 289. Kohn, A. Über den Bau and die Entwicklung der sog. Carotisdruse. Arch. Mikrosk. Anat. 56: 81–148, 1900.
 290. Kondo, H. A light and electron microscopic study on the embryonic development of the rat carotid body. Am. J. Anat. 144: 275–294, 1975.
 291. Kondo, H. Innervation of the carotid body of the adult rat. Cell Tissue Res. 173: 1–15, 1976.
 292. Kondo, H. Innervation of the chief cells of the carotid body: an ultrastructural review. Arch. Histol. Jpn. 40, Suppl.: 221–230, 1977.
 293. Korkala, O., and A. Hervonen. Origin and development of the catecholamine‐storing cells of the human fetal carotid body. Histochemie 37: 287–297, 1973.
 294. Korkala, O., S. Partanen, and O. Eranko. Postnatal development of the adrenergic nerve connections and catecholamine‐containing cells of the rat carotid body. Z. Anat. Entwicklungsgesch. 143: 135–141, 1974.
 295. Korkala, O., and T. Waris. The acetylcholinesterase reaction and catecholamine fluorescence in the glomus cells of rat carotid body. Experientia 33: 1363–1364, 1977.
 296. Krammer, E. Carotid body chemoreceptor function: hypothesis based on a new circuit model. Proc. Natl. Acad. Sci. USA 75: 2507–2511, 1978.
 297. Kreuzer, F. Transmission of alveolar oxygen pressure oscillations. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Navchetan, 1976, p. 176–190.
 298. Krivoy, W. A., J. R. Couch, J. M. Stewart, and E. Zimmerman. Substance P as a synaptic modulator. In: Neuropeptides and Neural Transmission, edited by C. Ajmone‐Marsan and W. Z. Traczky. New York: Raven, 1980, p. 85–103.
 299. Krylov, S. S., and S. V. Anichkov. The effect of metabolic inhibitors on carotid chemoreceptors. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 103–113.
 300. Kumakura, K., F. Karoum, A. Guidotti, and E. Costa. Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells. Nature London 283: 489–492, 1980.
 301. Lack, E. E. Carotid body hypertrophy in patients with cystic fibrosis and cyanotic congenital heart disease. Hum. Pathol. 8: 39–51, 1977.
 302. Lack, E. E. Hyperplasia of vagal and carotid body paraganglia in patients with chronic hypoxemia. Am. J. Pathol. 91: 497–516, 1978.
 303. Lahiri, S. Introductory remarks: oxygen linked response of chemoreceptors. Adv. Exp. Med. Biol. 78: 185–202, 1977.
 304. Lahiri, S. Chemical modification of carotid body chemoreception by sulfhydryls. Science 212: 1065–1066, 1981.
 305. Lahiri, S., and R. G. Delaney. Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir. Physiol. 24: 249–266, 1975.
 306. Lahiri, S., and R. G. Delaney. Relationship between carotid chemoreceptor activity and ventilation in the cat. Respir. Physiol. 24: 267–286, 1975.
 307. Lahiri, S., and R. G. Delaney. The nature of response of single chemoreceptor fibers of carotid body changes in arterial Po2 and Pco2‐H+. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Navchetan, 1976, p. 18–24.
 308. Lahiri, S., E. Mulligan, and A. Mokashi. Adaptive response of carotid body chemoreceptors to Co2. Brain Res. 234: 137–147, 1982.
 309. Lahiri, S., E. Mulligan, T. Nishino, A. Mokashi, and R. O. Davies. Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 50: 580–586, 1981.
 310. Lahiri, S., and T. Nishino. Inhibitory and excitatory effects of dopamine on carotid chemoreceptors. Neurosci. Lett. 20: 313–318, 1980.
 311. Lahiri, S., T. Nishino, A. Mokashi, and E. Mulligan. Relative responses of aortic body and carotid body chemoreceptors to hypotension. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 781–788, 1980.
 312. Lahiri, S., T. Nishino, A. Mokashi, and E. Mulligan. Interaction of dopamine and haloperidol with O2 and CO2 chemoreception in carotid body. J. Appl. Physiol: Respi at. Environ. Exercise Physiol. 49: 45–51, 1980.
 313. Laidler, P., and J. M. Kay. A quantitative morphological study of the carotid bodies of rats living at a simulated titude of 4300 meters. J. Pathol. 117: 183–191, 1974.
 314. Laidler, P., and J. M. Kay. The effect of chronic hypoxia on the number and nuclear diameter of type I cells in the carotid body of rats. Am. J. Pathol. 79: 311–320, 1975.
 315. Laidler, P., and J. M. Kay. A quantitative study of some ultrastructural features of the type I cells in the carotid bodies of rats living at a simulated altitude of 4300 metres. J. Neurocytol. 7: 183–192, 1978.
 316. Laidler, P., and J. M. Kay. Ultrastructure of carotid body in rats living at a simulated altitude of 4300 metres. J. Pathol. 124: 27–33, 1978.
 317. Landgren, S., G. Liljestrand, and Y. Zotterman. The effect of certain autonomic drugs on the action potentials of the sinus nerve. Acta Physiol. Scand. 26: 264–290, 1952.
 318. Landgren, S., G. Liljestrand, and Y. Zotterman. Impulse activity in the carotid sinus nerve following intracarotid injections of sodium iodo‐acetate, histamine hydrochloride, lergitin, and some purine and barbituric acid derivatives. Acta Physiol. Scand. 30: 149–160, 1954.
 319. Landgren, S., and E. Neil. Chemoreceptor impulse activity following haemorrhage. Acta Physiol. Scand. 23: 158–167, 1951.
 320. Laurent, P., S. Dunel, and A. Barets. Localisation histochimique de l'anhydrase carbonique au niveau des chémorécepteurs artériels des mammifères, des batraciens et des poissons. Histochemie 17: 99–107, 1969.
 321. Le Douarin, N., C. Le Lievre, and J. Fontaine. Recherches expérimentales sur l'origine embryologique du corps carotidien chez les oiseaux. C. R. Acad. Sci. Ser. D 275: 583–586, 1972.
 322. Lee, K. D. Enzyme activity of the carotid body. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 133–138.
 323. Lee, K. D., T. Dunwiddie, and B. Hoffer. Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. II. Effects on interneuron excitability. Brain Res. 184: 331–342, 1980.
 324. Lee, K. D., R. A. Mayou, and R. W. Torrance. The effect of blood pressure upon chemoreceptor discharge to hypoxia, and the modification of this effect by the sympathetic‐adrenal system. Q. J. Exp. Physiol. 49: 171–183, 1964.
 325. Leitner, L. M., and P. Dejours. The speed of response of chemoreceptors. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 79–90.
 326. Leitner, L. M., and M. J. Liaubet. Carotid body oxygen consumption of the cat in vitro. Pfluegers Arch. 323: 315–322, 1971.
 327. Leitner, L. M., B. Pages, R. Puccinelli, and P. Dejours. Etudes simultanées de la ventilation et des décharges des chémorécepteurs du glomus carotidien chez le chat. I. Au cours d'inhalations brèves d'oxygène pur. Arch. Int. Pharmacodyn. Ther. 154: 421–426, 1965.
 328. Leitner, L. M., M. Roumy, and A. Verna. Further studies on the cryodestruction of the rabbit carotid body. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 85–91.
 329. Lever, J. D., and J. D. Boyd. Osmiophile granules in glomus cells of the rabbit carotid body. Nature London 179: 1082–1083, 1957.
 330. Lever, J. D., P. R. Lewis, and J. D. Boyd. Observations on the fine structure and histochemistry of the carotid body in the cat and rabbit. J. Anat. 93: 478–490, 1959.
 331. Levitt, M., S. Spector, A. Sjoerdsma, and S. Udenfriend. Elucidation of the rate‐limiting step in norepinephrine biosynthesis in the perfused guinea pig heart (Abstract). J. Pharmacol. Exp. Ther. 148: 108, 1965.
 332. Liljestrand, G. The action of certain drugs on respiration. Br. Med. J. 2: 623–627, 1951.
 333. Liljestrand, G. Transmission at chemoreceptors. Pharmacol. Rev. 6: 73–78, 1954.
 334. Lishajko, F. Release and uptake of dopamine in isolated granules from a human carotid body tumour. Acta Physiol. Scand. 79: 533–536, 1970.
 335. Llados, F., and P. Zapata. Effects of dopamine analogues and antagonists on carotid body chemosensors in situ. J. Physiol. London 274: 487–499, 1978.
 336. Llados, F., and P. Zapata. Effects of adrenoceptor stimulating and blocking agents on carotid body chemosensory inhibition. J. Physiol. London 274: 501–509, 1978.
 337. Lloyd, B. B., D. J. C. Cunningham, and R. C. Goode. Depression of hypoxic hyperventilation in man by sudden inspiration of carbon monoxide. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 145–148.
 338. Lovenberg, W., and E. A. Bruckwick. Mechanisms of receptor mediated regulation of catecholamine synthesis in brain. In: Pre‐ and Postsynaptic Receptors, edited by E. Usdin and W. E. Bunney, Jr. New York: Dekker, 1975, p. 149–168.
 339. Lübbers, D. W., H. Acker, H. P. Keller, and E. Seidl. The influence of blood pressure and blood flow in the local tissue Po2 of the carotid body. Adv. Exp. Med. Biol. 33: 463–472, 1972.
 340. Lübbers, D. W., L. Teckhaus, and E. Seidl. Capillary distances and oxygen supply to the specific tissue of the carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 62–70.
 341. Lundberg, J. M., T. Hökfelt, J. Fahrenkrug, G. Nilsson, and L. Terenius. Peptides in the cat carotid body (glomus caroticum): VIP‐, enkephalin‐, and substance P‐like immunoreactivity. Acta Physiol. Scand. 107: 279–281, 1979.
 342. Majcherczyk, S., L. Chruscielewski, and A. Trzebski. Effect of stimulation of carotid body chemoreceptors upon ganglioglomerular nerve activity and on chemoreceptor discharges in contralateral sinus nerve. Brain Res. 76: 167–70, 1974.
 343. Majcherczyk, S., and P. Willshaw. Inhibition of peripheral chemoreceptor activity during superfusion with an alkaline C.S.F. of the ventral brain stem surface of the cat (Abstract). J. Physiol. London 231: 26P–27P, 1973.
 344. Majcherczyk, S., and P. Willshaw. The influence of hyperventilation on efferent control of peripheral chemoreceptors. Brain Res. 124: 561–564, 1977.
 345. Majumdar, S., P. G. Smith, and E. Mills. Evidence for central reorganization of ventilatory chemoreflex pathways in the cat during regeneration of visceral afferents in the carotid sinus nerve. Neuroscience 7: 1309–1316, 1982.
 346. Matsumoto, S., T. Nakajima, T. Uchida, H. Ozawa, and J. Ushiyama. Effects of sodium cyanide, dopamine and acetylcholine on the resting membrane potential of glomus cells in the rabbit. Brain Res. 239: 674–678, 1982.
 347. Matsuura, S. Chemoreceptor properties of glomus tissue found in the carotid region of the cat. J. Physiol. London 235: 57–73, 1973.
 348. Matthews, M. R., and G. Raisman. The ultrastructure and somatic efferent synapses of small granule‐containing cells in the superior cervical ganglion. J. Anat. 105: 255–282, 1969.
 349. McCloskey, D. I. Carbon dioxide and the carotid body. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 279–296.
 350. McCloskey, D. I. Mechanisms of autonomic control of carotid chemoreceptor activity. Respir. Physiol. 25: 53–61, 1975.
 351. McCloskey, D. I., and R. W. Torrance. Autoregulation of blood flow in the carotid body. Respir. Physiol. 13: 23–35, 1971.
 352. McDonald, D. M. Structure and function of reciprocal synapses interconnecting glomus cells and sensory nerve terminals in the rat carotid body. In: Chromaffin, Enterochromaffin and Related Cells, edited by R. E. Coupland and T. Fujita. Amsterdam: Elsevier, 1976, p. 375–394.
 353. McDonald, D. M. Structure‐function relationships of chemoreceptive nerves in the carotid body. Am. Rev. Respir. Dis. 115: 193–207, 1977.
 354. McDonald, D. M. Regulation of chemoreceptor sensitivity in the carotid body: the role of presynaptic sensory nerves. Federation Proc. 39: 2627–2635, 1980.
 355. McDonald, D. M. Peripheral chemoreceptors: structure‐function relationships of the carotid body. In: Lung Biology in Health and Disease. The Regulation of Breathing, edited by T. F. Hornbein. New York: Dekker, 1981, vol. 17, p. 105–319.
 356. McDonald, D. M. A morphometric analysis of blood vessels and perivascular nerves in the rat carotid body. J. Neurocytol. 12: 155–199, 1983.
 357. McDonald, D. M., and D. T. Larue. The ultrastructure and connections of blood vessels supplying the rat carotid body and carotid sinus. J. Neurocytol. 12: 117–153, 1983.
 358. McDonald, D. M., and R. A. Mitchell. A quantitative analysis of synaptic connections in the rat carotid body. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 101–131.
 359. McDonald, D. M., and R. A. Mitchell. The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. J. Neurocytol. 4: 177–230, 1975.
 360. McDonald, D. M., and R. A. Mitchell. Hypoxia‐ and hypercapnia‐induced changes in ultrastructure and firing rate of chemoreceptive nerves in the rat carotid body. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Navchetan, 1976, p. 248–259.
 361. McDonald, D. M., and R. A. Mitchell. The neural pathway involved in “efferent inhibition” of chemoreceptors in the cat carotid body. J. Comp. Neurol. 201: 457–476, 1981.
 362. McQueen, D. S. A quantitative study of the effects of cholinergic drugs on carotid chemoreceptors in the cat. J. Physiol. London 273: 515–532, 1977.
 363. McQueen, D. S. Effects of substance P on carotid chemoreceptor activity in the cat. J. Physiol. London 302: 31–47, 1980.
 364. McQueen, D. S. Effects of some polypeptides on carotid chemoreceptor activity. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 299–308.
 365. McQueen, D. S. Effects of selective dopamine receptor agonists and antagonists on carotid body chemoreceptor activity. In: The Peripheral Arterial Chemoreceptors, Proc. 7th Int. Meet., edited by D. J. Pallot. Leicester, UK: Croom Helm, 1984, p. 325–333.
 366. McQueen, D. S., and C. Eyzaguirre. Effects of temperature on carotid chemoreceptor and baroreceptor activity. J. Neurophysiol. 37: 1287–1296, 1974.
 367. Meijling, H. A. Bau und Innervation von Glomus caroticum und Sinus caroticum. Eine Untersuchung unter Benutzung spezificher Nervenfärbungsmethoden. Acta Neerl. Morphol. Norm. Pathol. 1: 193–288, 1938.
 368. Metz, B. Release of acetylcholine from the carotid body by hypoxia and hypoxia plus hypercapnia. Respir. Physiol. 6: 386–394, 1969.
 369. Michaelis, L. L., and J. P. Gilmore. Renal effects of electrical stimulation of the carotid sinus nerve. Surgery 65: 797–801, 1969.
 370. Michelson, M. J., and E. V. Zeimal. Acetylcholine—An Approach to the Molecular Mechanism of Action. New York: Pergamon, 1973.
 371. Mills, E. Activity of aortic chemoreceptors during electrical stimulation of the stellate ganglion in the cat. J. Physiol. London 199: 103–114, 1968.
 372. Mills, E. Spectrophotometric and fluorometric studies on the mechanism of chemoreception in the carotid body. Federation Proc. 31: 1394–1398, 1972.
 373. Mills, E. Metabolic aspects of chemoreceptor function. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 373–386.
 374. Mills, E., and M. W. Edwards, Jr. Stimulation of aortic and carotid chemoreceptors during carbon monoxide inhalation. J. Appl. Physiol. 25: 494–502, 1968.
 375. Mills, E., and F. F. Jöbsis. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J. Neurophysiol. 35: 405–428, 1972.
 376. Mills, E., and T. A. Slotkin. Catecholamine content of the carotid body in cats ventilated with 8–40% oxygen. Life Sci. 16: 1555–1562, 1975.
 377. Mills, E., and P. G. Smith. Carotid sinus nerve function and chemoreflexes after glomectomy. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 166–175.
 378. Mills, E., P. G. Smith, T. A. Slotkin, and G. Breese. Role of carotid body catecholamines in chemoreceptor function. Neuroscience 3: 1137–1146, 1978.
 379. Mir, A. K., D. J. Pallot, and S. R. Nahorski. Catecholamines: their receptors and cyclic AMP generating systems in the carotid body. In: The Peripheral Arterial Chemoreceptors, Proc. 7th Int. Meet., edited by D. J. Pallot. Leicester, UK: Croom Helm, 1984, p. 311–323.
 380. Mishra, J., H. N. Sapru, and A. Hess. Physiological effects of dopamine agonists and antagonists on rat carotid body (Abstract). Federation Proc. 38: 1143, 1979.
 381. Mitchell, R. A., and D. I. McCloskey. Chemoreceptor responses to sympathetic stimulation and changes in blood pressure. Respir. Physiol. 20: 297–302, 1974.
 382. Mitchell, R. A., and D. M. McDonald. Adjustment of chemoreceptor sensitivity in the cat carotid body by reciprocal synapses. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 269–291.
 383. Mitchell, R. A., A. K. Sinha, and D. M. McDonald. Chemoreceptive properties of regenerated endings of the carotid sinus nerve. Brain Res. 43: 681–685, 1972.
 384. Moe, G. K., L. R. Capo, and B. Peralta. Action of tetraeth‐ylammonium on chemoreceptor and stretch receptor mechanisms. Am. J. Physiol. 153: 601–605, 1948.
 385. Moller, M., K. Mollgard, and S. C. Sørensen. The ultrastructure of the carotid body in chronically hypoxic rabbits. J. Physiol. London 238: 447–453, 1974.
 386. Monti‐Bloch, L., and C. Eyzaguirre. A comparative physiological and pharmacological study of cat and rabbit carotid body chemoreceptors. Brain Res. 193: 449–470, 1980.
 387. Monti‐Bloch, L., and C. Eyzaguirre. Effects of M‐enkephalin (ME) and substance P (SP) on the sensory discharge and response of carotid body chemoreceptors to ACh and dopamine. Soc. Neurosci. Abstr. 6: 282, 1980.
 388. Monti‐Bloch, L., L. J. Stensaas, and C. Eyzaguirre. Effect of ischemia on carotid body structure and function. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 133–142.
 389. Monti‐Bloch, L., L. J. Stensaas, and C. Eyzaguirre. Induction of chemosensitivity in a muscle nerve after grafting the carotid body into the muscle. Soc. Neurosci. Abstr. 7: 469, 1981.
 390. Morgado, E., F. Llados, and P. Zapata. Dopamine‐β‐hydroxylase activity in normal and sympathectomized carotid bodies. Neurosci. Lett. 3: 139–143, 1976.
 391. Morgan, M., R. J. Pack, and A. Howe. Nerve endings in the rat carotid body. Cell Tissue Res. 157: 255–272, 1975.
 392. Morgan, S. E., D. J. Pallot, and P. Willshaw. The effect of ventilation with different concentrations of oxygen upon the synaptic vesicle density in nerve endings of the cat carotid body. Neuroscience 6: 1461–1467, 1981.
 393. Morita, E., S. R. Chiocchio, and J. H. Tramezzani. Four types of main cells in the carotid body of the cat. J. Ultrastruct. Res. 28: 399–410, 1969.
 394. Mueller, R. A., H. Thoenen, and J. Axelrod. Increase in tyrosine hydroxylase activity after reserpine administration. J. Pharmacol. Exp. Ther. 169: 74–79, 1969.
 395. Mulligan, E. Metabolic Aspects of O2 and CO2 Chemoreception in the Carotid Body. Philadelphia, PA: Univ. of Pennsylvania, 1980. PhD thesis.
 396. Mulligan, E., and S. Lahiri. Dependence of carotid chemo‐receptor stimulation by metabolic agents on Pao2 and Paco2. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 50: 884–891, 1981.
 397. Mulligan, E., and S. Lahiri. Mitochondrial oxidative metabolism and chemoreception in the carotid body. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 316–326.
 398. Mulligan, E., and S. Lahiri. Separation of carotid body chemoreceptor responses to O2 and CO2 by oligomycin and by antimycin A. Am. J. Physiol. 242 (Cell Physiol. 11): C200–C206, 1982.
 399. Mulligan, E., S. Lahiri, and B. T. Storey. Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 438–446, 1981.
 400. Muratori, G. Ricerche anatomiche sulla vascolarizzazione sanguigna del glomo carotico. Ist. Biochim. Ital. Arch. 15: 145–169, 1943.
 401. Muratori, G., and G. Battaglia. Observazione sulla reazione iodoafine nel paraganglio carotico. Boll. Soc. Ital. Biol. Sper. 36: 402–405, 1960.
 402. Naeye, R. L. Sudden infant death. Sci. Am. 242: 56–62, 1980.
 403. Naeye, R. L., R. Fisher, M. Ryser, and P. Whalen. Carotid body in the sudden infant death syndrome. Science 191: 567–569, 1976.
 404. Nahorski, S., N. Cook, D. J. Pallot, and K. Al‐Neamy. Catecholamines in cat and rat carotid bodies.] J. Anat. 131: 749, 1980.
 405. Nair, P., J. I. Spande, and W. J. Whalen. Marking the tip location of Po2 microelectrodes or glass micropipettes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 916–918, 1980.
 406. Neil, E., and N. Joels. The carotid glomus sensory mechanism. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd. Oxford, UK: Blackwell, 1963, p. 163–171.
 407. Neil, E., and R. G. O'Regan. Effects of sinus and aortic nerve efferents on arterial chemoreceptor function (Abstract). J. Physiol. London 200: 69P–71P, 1969.
 408. Neil, E., and R. G. O'Regan. Efferent and afferent impulse activity in the “intact” sinus nerve (Abstract). J. Physiol. London 205: 20P–21P, 1969.
 409. Neil, E., and R. G. O'Regan. The effects of electrical stimulation of the distal end of the cut sinus and aortic nerves on peripheral arterial chemoreceptor activity in the cat. J. Physiol. London 215: 15–32, 1971.
 410. Neil, E., and R. G. O'Regan. Efferent and afferent impulse activity recorded from few fibre preparations of otherwise intact sinus and aortic nerves. J. Physiol. London 215: 33–47, 1971.
 411. Niedorf, H. R. Die normale und pathologische Anatomie des Glomus caroticum. Med. Welt. 21: 251–257, 1970.
 412. Niedorf, H. R., J. Rode, and S. Blümcke. Feinstruktur und Catecholamingehalt des Glomus caroticum der Ratte nach einmaliger Resperpin‐Injektion. Virchows Arch. B 5: 113–123, 1970.
 413. Niemi, M., and K. Ojala. Cytochemical demonstration of catecholamines in the human carotid body. Nature London 203: 539–540, 1964.
 414. Nishi, K. The action of 5‐hydroxytryptamine on chemoreceptor discharges of the cat's carotid body. Br. J. Pharmacol. 55: 27–40, 1975.
 415. Nishi, K. Serial section analysis of the ultrastructure of nerve endings and glomus cells in the carotid body. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Navchetan, 1976, p. 1–24.
 416. Nishi, K. A pharmacologic study on a possible inhibitory role of dopamine in the cat carotid body chemoreceptor. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 145–151.
 417. Nishi, K., and C. Eyzaguirre. Effects of atropine on chemoreceptor discharges in the carotid body of the cat. Brain Res. 70: 292–297, 1970.
 418. Nishi, K., and C. Eyzaguirre. The action of some cholinergic blockers on carotid body chemoreceptors in vivo. Brain Res. 33: 37–56, 1971.
 419. Nishi, K., Y. Okajima, and K. Sugahara. Alterations of the response of the carotid body chemoreceptor to various stimuli after acute ischemia of the carotid body. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 143–153.
 420. Nishi, K., N. Sakanashi, and P. Takenaka. Activation of afferent cardiac sympathetic nerve fibers of the cat by pain‐producing substances and by noxious heat. Pfluegers Arch. 372: 53–61, 1977.
 421. Nishi, K., and L. J. Stensaas. The ultrastructure and source of nerve endings in the carotid body. Cell Tissue Res. 154: 303–319, 1974.
 422. North, R. A. Opiates, opioid peptides and single neurons. Life Sci. 24: 1527–1546, 1979.
 423. O'Regan, R. G. The influences exerted by the centrifugal innervation of the carotid sinus nerve. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 221–240.
 424. O'Regan, R. G. Carotid chemoreceptor response to sympathetic excitation (Abstract). J. Physiol. London 263: 267P, 1976.
 425. O'Regan, R. G. Control of carotid body chemoreceptors by autonomic nerves. Ir. J. Med. Sci. 146: 199–205, 1977.
 426. O'Regan, R. G. Variable influences of the sympathetic nervous system upon carotid body chemoreceptor activity. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 160–167.
 427. O'Regan, R. G. Oxygen usage of the cat carotid body perfused with cell‐free solutions. J. Med. Sci. 148: 69–77, 1979.
 428. O'Regan, R. G. Responses of the chemoreceptors of the cat carotid body perfused with cell‐free solutions. J. Med. Sci. 148: 78–85, 1979.
 429. O'Regan, R. G. Decline of glomerular oxygen usage and carotid chemosensory responsiveness during perfusion of the cat carotid body with cell‐free solutions. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 417–429.
 430. O'Regan, R. G. Responses of carotid body chemosensory activity and blood flow to stimulation of sympathetic nerves in the cat. J. Physiol. London 315: 81–88, 1981.
 431. O'Regan, R. G., and H. Acker. Effects of efferent nerves upon total flow, local flow, tissue Po2 and chemoreceptor activity of the cat carotid body. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 448–456.
 432. Osborne, M. P., and P. J. Butler. New theory for receptor mechanisms of carotid body chemoreceptors. Nature London 254: 701–703, 1975.
 433. Ott, N., P. Kiwull, and W. Wiemer. Activation of carotid chemoreceptors by local decrease of arterial pressure in rabbits and cats. Pfluegers Arch. 325: 28–39, 1971.
 434. Paintal, A. S. Mechanisms of stimulation of aortic chemoreceptors by natural stimuli and chemical substances. J. Physiol. London 189: 63–84, 1967.
 435. Paintal, A. S. Some considerations relating to studies on chemoreceptor responses. In: Arterial Chemoreceptors, edited by R. W. Torrance, Oxford, UK: Blackwell, 1968, p. 253–261.
 436. Paintal, A. S. Further evidence that acetylcholine is not a transmitter at chemoreceptors (Abstract). J. Physiol. London 204: 94P–95P, 1969.
 437. Paintal, A. S. The responses of chemoreceptors at reduced temperatures. J. Physiol. London 217: 1–18, 1971.
 438. Paintal, A. S. Mechanical transmission of sensory information at chemoreceptors. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Navchetan, 1976, p. 121–130.
 439. Pallot, D. Experiences with serial reconstruction of glomus complex. In: The Peripheral Arterial Chemoreceptors. edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 41–50.
 440. Pallot, D. J., and T. J. Biscoe. Studies of normal and wobbler mutant carotid bodies. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 51–53.
 441. Panneton, W. M., and A. D. Loewy. Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat. Brain Res. 191: 239–244, 1980.
 442. Pearse, A. G. E., J. M. Polak, F. W. D. Rost, J. Fontaine, C. Le Lievre, and N. Le Douarin. Demonstration of the neural crest origin of type I (APUD) cells in the avian carotid body, using a cytochemical marker system. Histochemie 34: 191–203, 1973.
 443. Peters, J. P., and D. D. van Slyke. Quantitative Clinical Chemistry. Baltimore, MD: Williams & Wilkins, 1931.
 444. Pietruschka, F. Cytochemical demonstration of catecholamines in cells of the carotid body in primary tissue culture. Cell Tissue Res. 151: 317–321, 1974.
 445. Pokorski, M., and S. Lahiri. Effects of naloxone on carotid body chemoreception and ventilation in the cat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1533–1538, 1981.
 446. Ponte, J., and M. J. Purves. Frequency response of carotid body chemoreceptors in the cat to changes of Paco2, Pao2, and pHa. J. Appl. Physiol. 37: 635–647, 1974.
 447. Ponte, J., and M. J. Purves. On the speed of response of the chemoreceptors. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 357–372.
 448. Purves, M. J. The effect of hypoxia, hypercapnia and hypotension upon carotid body blood flow and oxygen consumption in the cat. J. Physiol. London 209: 395–416, 1970.
 449. Purves, M. J. The role of the cervical sympathetic nerve in the regulation of oxygen consumption of the carotid body of the cat. J. Physiol. London 209: 416–431, 1980.
 450. Purves, M. J., and J. Ponte. Further studies on the fluctuation of chemoreceptor discharges in the cat. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, pp. 175–181.
 451. Rahn, K. H. Morphological studies on the carotid paraganglion with histochemical and pharmacological demonstration of noradrenaline. Anat. Anz. 110: 140–159, 1961.
 452. Reddy, D. V. N., and V. E. Kinsey. Chemistry and dynamics of aqueous humor. In: The Rabbit in Eye Research, edited by J. H. Prince. Springfield, IL: Thomas, 1964, p. 218–319.
 453. Rees, P. M. The distribution of biogenic amines in the carotid bifurcation region. J. Physiol. London 193: 245–253, 1967.
 454. Roumy, M., and L. M. Leitner. Role of calcium ions in the mechanisms of arterial chemoreceptor excitation. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 257–263.
 455. Said, S. I., and V. Mutt. Polypeptide with broad biological activity: isolation from small intestine. Science 169: 1217–1218, 1970.
 456. Saldana, M. J., L. E. Salem, and R. Travezan. High altitude hypoxia and chemodectomas. Hum. Pathol. 4: 251–263, 1973.
 457. Sampson, S. R. Effects of mecamylamine on responses of carotid body chemoreceptors in vivo to physiological and pharmacological stimuli. J. Physiol. London 212: 655–666, 1971.
 458. Sampson, S. R. Innervation of the carotid body: another point of view. Federation Proc. 31: 1383–1384, 1972.
 459. Sampson, S. R. Mechanism of efferent inhibition of carotid body chemoreceptors in the cat. Brain Res. 45: 266–270, 1972.
 460. Sampson, S. R. Pharmacology of feedback inhibition of carotid body chemoreceptors in the cat. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 207–220.
 461. Sampson, S. R., M. J. Aminoff, R. A. Jaffe, and E. H. Vidruk. Analysis of inhibitory effect of dopamine on carotid body chemoreceptors in cats. Am. J. Physiol. 230: 1494–1498, 1976.
 462. Sampson, S. R., M. J. Aminoff, R. A. Jaffe, and E. H. Vidruk. A pharmacological analysis of neurally induced inhibition of carotid body chemoreceptor activity in cats. J. Pharmacol. Exp. Ther. 197: 119–125, 1976.
 463. Sampson, S. R., and T. J. Biscoe. Efferent control of the carotid body chemoreceptor. Experientia 26: 261–262, 1970.
 464. Sampson, S. R., G. Nicolaysen, and R. A. Jaffe. Influence of centrifugal sinus nerve activity on carotid body catecholamines: microphotometric analysis of formaldehyde‐induced fluorescence. Brain Res. 85: 437–446, 1975.
 465. Sampson, S. R., and E. H. Vidruk. Hyperpolarising effects of dopamine on chemoreceptor nerve endings from cat and rabbit carotid bodies in vitro. J. Physiol. London 268: 211–221, 1977.
 466. Sapru, H. N., and A. J. Krieger. Effect of 5‐hydroxytryp‐tamine on the peripheral chemoreceptors in the rat. Res. Commun. Chem. Pathol. Pharmacol. 16: 245–250, 1977.
 467. Schafer, D., E. Seidl, H. Acker, H. P. Keller, and D. W. Lübbers. Arteriovenous anastomoses in the cat carotid body. Z. Zellforsch. Mikrosk. Anat. 142: 515–524, 1973.
 468. Schweitzer, A., and S. Wright. Action of prostigmine and acetylcholine on respiration. Q. J. Exp. Physiol. 28: 33–47, 1938.
 469. Seidl, E. On the morphology of the vascular system of the carotid body of cat and rabbit and its relation to the glomus Type I cells. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 293–299.
 470. Seidl, E. On the variability of form and vascularization of the cat carotid body. Anat. Embryol. 149: 79–86, 1976.
 471. Seidl, E., D. Schafer, K. Zierold, H. Acker, and D. W. Lübbers. Light‐microscopic and electron‐microscopic studies on the morphology of cat carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 1–8.
 472. Semple, S. J., and C. B. Wolff. The relationship of breath‐to‐breath oscillations in arterial pH to the respiratory control mechanism. Bull. Physio‐Pathol. Respir. 9: 787–795, 1973.
 473. Serafini‐Fracassini, A., and P. Frasson. Histochemical observations on the carotid body of the dog. Acta Anat. 63: 240–248, 1966.
 474. Share, L., and M. N. Levy. Effect of carotid chemoreceptor stimulation on plasma antidiuretic hormone titer. Am. J. Physiol. 210: 157–161, 1966.
 475. Skopkova, J., I. Albrecht, and J. H. Cort. A natriuresis receptor at the carotid bifurcation specifically activated by oxytocin. Pfluegers Arch. 343: 123–132, 1973.
 476. Smith, P. G., and E. Mills. Autoradiographic identification of the termination of petrosal ganglion neurons in the cat carotid body. Brain Res. 113: 174–178, 1976.
 477. Smith, P. G., and E. Mills. Identification of sensory axon terminations in the carotid body by autoradiography. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 17–24.
 478. Smith, P. G., and E. Mills. Physiological and ultrastructural observations on regenerated carotid sinus nerves after removal of the carotid bodies in cats. Neuroscience 4: 2009–2020, 1979.
 479. Smith, P. G., and E. Mills. Restoration of reflex ventilatory response to hypoxia after removal of carotid bodies in the cat. Neuroscience 5: 573–580, 1980.
 480. Sørensen, S. C. The ultrastructure and catecholamine content of the carotid body during chronic hypoxia. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Novchetan, 1976, p. 260–264.
 481. Starlinger, H. Enzymes and inhibitors of catecholamine metabolism in the cat carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 136–144.
 482. Starlinger, H. Activity of dopamine β‐monooxygenase in the tissue of the cat's carotid body. Hoppe‐Seyler's Z. Physiol. Chem. 358: 491–497, 1979.
 483. Starlinger, H. Tyrosine 3‐mono‐oxygenase activity in the cat carotid body tissue. Hoppe‐Seyler's Z. Physiol. Chem. 361: 1457–1460, 1980.
 484. Starlinger, H., and D. W. Lübbers. Oxygen consumption of the isolated carotid body tissue (cat). Pfluegers Arch. 366: 61–66, 1976.
 485. Steele, R. H., and H. Hinterberger. Catecholamines and 5‐hydroxytryptamine in the carotid body in vascular, respiratory, and other diseases. J. Lab. Clin. Med. 80: 63–70, 1972.
 486. Stein, W. The Movement of Molecules Across Cell Membranes. New York: Academic, 1967.
 487. Stensaas, L. J., B. Dinger, and S. J. Fidone. A comparison of reinnervation of cat carotid body by carotid sinus and lingual nerves. Soc. Neurosci. Abstr. 6: 94, 1980.
 488. Stensaas, L. J., and S. J. Fidone. An ultrastructural study of the cat petrosal ganglia: a search for autonomic ganglion cells. Brain Res. 124: 29–39, 1977.
 489. Stensaas, L. J., S. S. Stensaas, C. Gonzalez, and S. J. Fidone. Analytical electronmicroscopy of granular vesicles in the carotid body of the normal and reserpinized cat. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 176–186.
 490. Thorn, W., and I. Schon. The activity of dopamine‐β‐hydroxylase in the bovine glomus caroticum. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 231–236.
 491. Torrance, R. W. Prolegomena. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 277.
 492. Torrance, R. W. Arterial chemoreceptors. In: Respiratory Physiology I, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1974, vol. 2, p. 247–271. (Int. Rev. Physiol. Ser.).
 493. Torrance, R. W. A comparison of central and peripheral chemoreceptors. In: Acid‐Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System, edited by H. H. Loeschcke. Stuttgart, West Germany: Thieme, 1976, p. 95–103.
 494. Torrance, R. W. Convergence of stimuli in arterial chemoreceptors. Adv. Exp. Med. Biol. 78: 203–207, 1977.
 495. Torrance, R. W. Manipulation of bicarbonate in the carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 286–293.
 496. Travis, D. M. Molecular CO2 is inert on the carotid chemoreceptors. Demonstration by inhibition of carbonic anhydrase. J. Pharmacol. Exp. Ther. 178: 529–540, 1971.
 497. Trzebski, A., L. Chruscielewski, and S. Majcherczyk. Effect of hyperosmotic solutions on the carotid baroreceptor and chemoreceptor discharges in cats (Abstract). Eur. J. Clin. Invest. 7: 236, 1977.
 498. Verna, A. Infrastructure des divers types de terminaisons nerveuses dans le glomus carotidien du lapin. J. Microsc. 10: 59–66, 1971.
 499. Verna, A. Terminaisons nerveuses afférentes et efférentes dans le glomus carotidien du lapin. J. Microsc. 16: 299–308, 1973.
 500. Verna, A. Contribution a l'étude du glomus carotidien du lapin. Recherches cytologiques, cytochimiques et expérimentales. Bordeaux, France: Univ. of Bordeaux, 1975. PhD thesis.
 501. Verna, A. Observations on the innervation of the carotid body of the rabbit. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 75–99.
 502. Verna, A. Dense‐cored vesicles and cell types in the rabbit carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lubbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 216–220.
 503. Verna, A. Ultrastructure of the carotid body in mammals. Int. Rev. Cytol. 60: 271–330, 1979.
 504. Verna, A. Ultrastructural localizations of post‐ganglionic sympathetic nerve endings in the rabbit carotid body. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 54–63.
 505. Verna, A. The carotid body blood supply: Evidence against plasma skimming. In: Arterial Chemoreceptors, Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 336–343.
 506. Verna, A., M. Roumy, and L. M. Leitner. Loss of chemo‐receptive properties of the rabbit carotid body after destruction of the glomus cells. Brain Res. 100: 13–23, 1975.
 507. Weigelt, H., and H. Acker. Comparative measurements of tissue Po2 in the carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lubbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 244–249.
 508. Weigelt, H., E. Seidl, H. Acker, and D. W. Lübbers. The application of histological analysis for the localization of tissue Po2 and local blood flow with the example of the glomus caroticum of the rabbit (Oryctolagus cuniculus). Adv. Exp. Med. Biol. 75: 17–23, 1976.
 509. Weigelt, H., E. Seidl, H. Acker, and D. W. Lübbers. Distribution of oxygen partial pressure in the carotid body region and in the carotid body (rabbit). Pfluegers Arch. 388: 137–142, 1980.
 510. Weiss, G. K., and W. E. Crill. Carotid sinus nerve: primary afferent depolarization evoked by hypothalamic stimulation. Brain Res. 16: 269–272, 1969.
 511. Welsh, M. J., D. D. Heistad, and F. M. Abboud. Depression of ventilation by dopamine in man. Evidence for an effect on the chemoreceptor reflex. J. Clin. Invest. 61: 708–713, 1978.
 512. Whalen, W. J., and P. Nair. Some factors affecting tissue Po2 in the carotid body. J. Appl. Physiol. 39: 562–566, 1975.
 513. Whalen, W. J., and P. Nair. Po2 in the carotid body perfused and/or superfused with cell‐free media. J. Appl. Physiol. 41: 180–184, 1976.
 514. Whalen, W. J., and P. Nair. Factors affecting O2 consumption of the cat carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lubbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 233–239.
 515. Whalen, W. J., and P. Nair. Functional correlates with tissue Po2 in the carotid body. In: Oxygen and Physiological Function, edited by F. F. Jobsis. Dallas, TX: Prof. Info. Library, 1977, p. 545–550.
 516. Whalen, W. J., and P. Nair. “Hypoxic” discharge of chemoreceptors in the carotid body. Microvasc. Res. 13: 371–376, 1977.
 517. Whalen, W. J., and P. Nair. Tissue Po2 in the cat carotid body and related functions. Adv. Exp. Med. Biol. 78: 225–232, 1977.
 518. Whalen, W. J., P. Nair, L. Sidebotham, J. Spande, and M. Lacerna. Cat carotid body: oxygen consumption and other parameters. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 129–133, 1981.
 519. Whalen, W. J., J. Savoca, and P. Nair. Oxygen tension measurements in carotid body of the cat. Am. J. Physiol. 225: 986–991, 1973.
 520. Wharton, J., J. M. Polak, A. G. E. Pearse, G. P. McGregor, M. G. Bryant, S. R. Bloom, P. C. Emson, G. E. Bisgard, and J. A. Will. Enkephalin‐, VIP‐, and substance‐P‐like immunoreactivity in the carotid body. Nature London 284: 269–271, 1980.
 521. Whelan, R. F., and I. M. Young. The effect of adrenaline and noradrenaline infusion on respiration in man. Br. J. Pharmacol. Chemother. 8: 98–102, 1953.
 522. Whipp, B. J., and K. Wasserman. Carotid bodies and ventilatory control dynamics in man. Federation Proc. 39: 2668–2673, 1980.
 523. Whittam, R., K. P. Wheeler, and A. Blake. Oligomycin and active transport reactions in cell membranes. Nature London 203: 720–724, 1964.
 524. Wiemer, W. Functional significance of the arterial chemoreceptors in the rabbit. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi: Navchetan, 1976, p. 222–228.
 525. Williams, P. L., and R. Warwick (editors). Splanchnology. In: Gray's Anatomy. Philadelphia, PA: Saunders, 1980, chapt. 8, p. 1228–1464.
 526. Willshaw, P. Sinus nerve efferents as a link between central and peripheral chemoreceptors. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 253–267.
 527. Willshaw, P. Mechanism of inhibition of chemoreceptor activity by sinus nerve efferents. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lubbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 168–174.
 528. Willshaw, P., and R. M. McAllen. Sinus nerve efferent activity originates outside the brain. In: Arterial Chemoreceptors. Proc. 6th Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 440–447.
 529. Winder, C. V. On the mechanism of stimulation of carotid gland chemoreceptors. Am. J. Physiol. 118: 389–398, 1937.
 530. Witzleb, E. W. The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd. Oxford, UK: Blackwell, 1963.
 531. Woods, R. I. Distribution of cytochrome oxidase, monoamine oxidase and carbonic anhydrase in the carotid body of the rabbit (Abstract). Nature London 213: 1240, 1967.
 532. Woods, R. I. Penetration of horseradish peroxidase between all elements of the carotid body. In: Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 195–205.
 533. Yamamoto, W. S. Mathematical analysis of the time course of alveolar CO2. J. Appl. Physiol. 15: 215–219, 1960.
 534. Yamashita, H. Effect of baro‐ and chemoreceptor activation on supraoptic nuclei neurons in the hypothalamus. Brain Res. 126: 551–556, 1977.
 535. Yasuhara, H., S. Nakayama, and T. Mayahara. Depressed respiration induced by intravenously administered dopamine in anesthetized dogs. Jpn. J. Pharmacol. 30: 251–255, 1980.
 536. Yates, R. D., I. L. Chen, and D. Duncan. Effects of sinus nerve stimulation on the carotid body glomus cells. J. Cell Biol. 47: 544–552, 1970.
 537. Yokota, H., L. J. C. Hoofd, and F. Kreuzer. Alveolar oxygen tension in anesthetized, artifically ventilated dogs. Pfluegers Arch. 340: 273–290, 1973.
 538. Yokota, H., and F. Kreuzer. Alveolar to arterial transmission of oxygen fluctuations due to respiration in anesthetized dogs. Pfluegers Arch. 340: 291–306, 1973.
 539. Zapata, P. Effects of dopamine on carotid chemo‐ and baro‐receptors in vitro. J. Physiol. London 244: 235–251, 1975.
 540. Zapata, P., A. Hess, E. L. Bliss, and C. Eyzaguirre. Chemical, electron microscopic and physiological observations on the role of catecholamines in the carotid body. Brain Res. 14: 473–498, 1969.
 541. Zapata, P., A. Hess, and C. Eyzaguirre. Reinnervation of carotid body and sinus with superior laryngeal nerve fibers. J. Neurophysiol. 32: 215–228, 1969.
 542. Zapata, P., and F. Llados. Blockade of carotid body chemosensory inhibition. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lubbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 152–159.
 543. Zapata, P., A. Serani, H. Cardenas, and M. Lavados. Characterization of dopaminoceptors in the carotid body chemoreceptors. In: The Peripheral Arterial Chemoreceptors, Proc. 7th Int. Meet., edited by D. J. Pallot. Leicester, UK: Croom Helm, 1984, p. 335–352.
 544. Zapata, P., L. J. Stensaas, and C. Eyzaguirre. Axon regeneration following a lesion of the carotid nerve: electrophysiological and ultrastructural observations. Brain Res. 113: 235–253, 1976.
 545. Zapata, P., L. J. Stensaas, and C. Eyzaguirre. Recovery of chemosensory function of regenerating carotid nerve fibers. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lubbers, and R. W. Torrance. Berlin: Springer‐Verlag, 1977, p. 44–50.
 546. Zapata, P., and A. Zuazo. Respiratory effects of dopamine‐induced inhibition of chemosensory inflow. Respir. Physiol. 40: 79–92, 1980.
 547. Zapata, P., A. Zuazo, and F. Llados. Respiratory and circulatory reflexes induced by nicotine injections: role of carotid body chemoreceptors. Arch. Int. Pharmacodyn. Ther. 219: 128–139, 1976.
 548. Zotterman, Y. A note on the action of lobeline, nicotine and acetylcholine on the different nerves of the tongue (Abstract). Acta Physiol. Scand. 8: 377, 1944.
References in Addendum
 1. Acker, H., and H. Starlinger. Adenosine triphosphate content in the cat carotid body under different arterial O2 and CO2 conditions. Neurosci. Lett. 50: 175–179, 1984.
 2. Almaraz, L. Neurotransmisores en el Proceso de Quimior‐recepcion. Valladolid, Spain: Universidad de Valladolid, 1983. PhD thesis.
 3. Almaraz, L., A. Obeso, and C. Gonzalez. Metabolic dissociation of carotid body chemoreceptor responses to different types of stimulation: preliminary findings. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 141–152.
 4. Almaraz, L., A. Obeso, and C. Gonzalez. Release of 3H‐dopamine from the carotid body by increasing K+ in the superfusion media. Soc. Neurosci. Abstr. 10: 362, 1984.
 5. Bernon, R., L. M. Leitner, M. Roumy, and A. Verna. Effects of ion‐containing liposomes upon the chemoafferent activity of the rabbit carotid body superfused in vitro. Neurosci. Lett. 35: 289–295, 1983.
 6. Bingman, D., and E.‐W. Kienecker. Effects of hypoxia on regenerated sinus nerve fibres in vivo and on neurons in vitro. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 243–252.
 7. Boadle‐Biber, M.‐C., and R. H. Roth. Formation of dopamine and noradrenaline in cat vas deferens: comparison with guinea pig vas deferens. Br. J. Pharmacol. 55: 73–78, 1975.
 8. Böck, P. Adenine nucleotides in the carotid body. Cell Tissue Res. 206: 279–290, 1980.
 9. Böck, P. Histochemical demonstration of adenine nucleotides in carotid body Type I cells. In: Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells, and Paraneurons, edited by O. Eränkö, S. Soinela, and H. Päivärinta. New York: Raven, 1980, p. 235–239.
 10. Bowes, G., E. R. Townsend, L. F. Kozar, S. M. Bromley, and E. A. Phillipson. Effect of carotid body denervation on arousal response to hypoxia in sleeping dogs. J. Appl. Physiol.: Respirat Environ. Exercise Physiol. 51: 40–45, 1981.
 11. Cardenas, H., and P. Zapata. Ventilatory reflexes originated from carotid and extracarotid chemoreceptors in rats. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 13): R119–R125, 1983.
 12. Chen, I., J. A. Mascorro, and R. D. Yates. Autoradiographic localization of alpha‐bungarotoxin binding sites in the carotid body of the rat. Cell Tissue Res. 219: 609–618, 1981.
 13. Chen, I. L., and R. D. Yates. Two types of glomus cell in the rat carotid body as revealed by alpha‐bungarotoxin binding. J. Neurocytol. 13: 281–302, 1984.
 14. Chiocchio, S. R., S. M. Hilton, J. H. Tramezzani, and P. Willshaw. Loss of peripheral chemoreflexes to hypoxia after carotid body removal in the rat. Respir. Physiol. 57: 235–246, 1984.
 15. Clarke, J. A., and M. B. de Daly. Distribution of carotid body type I cells and other periadventitial type I cells in the carotid bifurcation regions of the rabbit. Cell Tissue Res. 216: 603–614, 1981.
 16. Clarke, J. A., and M. de B. Daly. A comparative study of the distribution of carotid body type I cells and periadventitial type I cells in the carotid bifurcation regions of the rabbit, rat, guinea pig and mouse. Cell Tissue Res. 220: 753–772, 1981.
 17. Clarke, J. A., and M. de B. Daly. Distribution of carotid body type I cells and periadventitial type I cells in the carotid bifurcation regions of the dog. Acta Anat. 113: 352–370, 1982.
 18. Clarke, J. A., and M. de B. Daly. Distribution of carotid body type I cells and other periadventitial type I cells in the carotid bifurcation regions of the cat. Anat. Embryol. 166: 169–189, 1983.
 19. Delpiano, M. A., and H. Acker. O2 chemoreception of the cat carotid body in vitro. Adv. Exp. Med. Biol. 169: 705–717, 1982.
 20. Delpiano, M. A., and H. Acker. The extracellular Ca++ and K+ activities in the cat carotid body in vitro and their relationship to chemoreception. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 101–110.
 21. Dhillon, D. P., G. R. Barer, and M. Walsh. The enlarged carotid body of the chronically hypoxic and hypercapnic rat: a morphometric analysis. Q. J. Exp. Physiol. 69: 301–317, 1984.
 22. Dhillon, D. P., G. R. Barer, and M. Walsh. Morphometry of the rat carotid body chronically stimulated by hypoxia +/‐ hypercapnia or the peripheral chemoreceptor drug almitrine: a preliminary report. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 269–276.
 23. Dinger, B., C. Gonzalez, K. Yoshizaki, and S. Fidone. Localization and function of cat carotid body nicotinic receptors. Brain Res. In press.
 24. Dinger, B., T. Hirano, and S. J. Fidone. Muscarinic receptor localization in rabbit carotid body. Soc. Neurosci. Abstr. 10: 992, 1984.
 25. Donnelly, D. F., E. J. Smith, and R. E. Dutton. Neural response of carotid chemoreceptors following dopamine blockade. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 172–177, 1981.
 26. Donnelly, D. F., E. Smith, and R. E. Dutton. Carbon dioxide vs. H ion as a chemoreceptor stimulus. Brain Res. 245: 136–138, 1982.
 27. Edwards, C., D. Heath, and P. Harris. The carotid body in emphysema and left ventricular hypertrophy. J. Pathol. 104: 1–13, 1971.
 28. Eyzaguirre, C., and L. Monti‐Bloch. Nicotinic and muscarinic reactive sites in mammalian glomus cells. Brain Res. 252: 181–184, 1982.
 29. Eyzaguirre, C., L. Monti‐Bloch, and Y. Hayashida. Effects of temperature on denervated carotid body (glomus) cells. Brain Res. 279: 282–285, 1983.
 30. Eyzaguirre, C., L. Monti‐Bloch, Y. Hayashida, and M. Baron. Biophysics of the carotid body receptor complex. In: Physiology of the Peripheral Arterial Chemoreceptors, edited by H. Acker and R. G. O'Regan. Amsterdam: Elsevier, 1983, p. 59–88.
 31. Fishman, M. C., and A. E. Schaffner. Carotid body cell culture and selective growth of glomus cells. Am. J. Physiol. 246 (Cell Physiol. 15): C106–C113, 1984.
 32. Fitzgerald, R. S., and G. A. Dehghani. Neural responses of the cat carotid and aortic bodies to hypercapnia and hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 596–601, 1982.
 33. Fitzgerald, R. S., P. Garger, M. C. Hauer, H. Raff, and L. Fechter. Effect of hypoxia and hypercapnia on catecholamine content in cat carotid body. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1408–1413, 1983.
 34. Folgering, H., J. Ponte, and T. Sadig. Adrenergic mechanisms and chemoreception in the carotid body of the cat and rabbit. J. Physiol. London 325: 1–21, 1982.
 35. Goldman, W. F., and C. Eyzaguirre. The effects of dopamine on glomus cell membranes in the rabbit. Brain Res. 321: 337–340, 1984.
 36. Gonzalez, E., R. Rigual, C. Gonzalez, and S. Fidone. Uptake and metabolism of dopamine by the carotid body. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 353–362.
 37. Grönblad, M. Improved demonstration of exocytotic profiles in glomus cells of rat carotid body after perfusion with glutaraldehyde fixative containing a high concentration of potassium. Cell Tissue Res. 229: 627–637, 1983.
 38. Grünblad, M., and K. E. Akerman. Electron‐dense endoplasmic reticulum‐like profiles closely associated with mitochondria in glomus cells of the carotid body after fixation with oxalate. Exp. Cell Res. 152: 161–168, 1984.
 39. Grönblad, M., K. E. Akerman, and O. Eranko. Ultrastructural evidence for endocytosis from glomus cells after incubation of adult rat carotid bodies in potassium‐rich calcium‐containing media. Brain Res. 189: 576–581, 1980.
 40. Grönblad, M., K. E. Akerman, and O. Eranko. Electrondense precipitates in glomus cells of rat carotid body after fixation in glutaraldehyde and pyroantimonate‐osmium tetroxide mixture as possible indicators of calcium localization. Cell Tissue Res. 217: 93–104, 1981.
 41. Grönblad, M., P. Liesi, and L. Rechardt. Serotonin‐like immunoreactivity in rat carotid body. Brain Res. 276: 348–350, 1983.
 42. Gual, A. Effects of calcium antagonists on chemosensory activity of the superfused cat carotid body. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 95–100.
 43. Habeck, J. O., A. Honig, C. Huckstorf, and C. Pfeiffer. Arteriovenous anastomoses at the carotid bodies of rat. Anat. Anz. 156: 209–215, 1984.
 44. Hansen, J. T. Chemoreceptor nerve and type A glomus cell activity following hypoxia, hypercapnia or anoxia: a morphological study in the rat carotid body. J. Ultrastruct. Res. 77: 189–198, 1981.
 45. Hansen, J. T., J. Brokaw, D. Christie, and M. Karasek. Localization of enkephalin‐like immunoreactivity in the cat carotid and aortic body chemoreceptors. Anat. Rec. 203: 405–410, 1982.
 46. Hanson, G. R., L. Jones, and S. Fidone. Effects of hypoxia and denervations on carotid body peptides. Soc. Neurosci. Abstr. 9: 143, 1983.
 47. Heath, D. The human carotid body (Editorial). Thorax 38: 561–564, 1983.
 48. Hellström, S., and J.‐M. Pequignot. Morphometric studies on intact and sympathectomized carotid bodies of long‐term hypoxic rats. A light and electron microscopical study. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 293–302.
 49. Hofer, M. A. Lethal respiratory disturbance in neonatal rats after arterial chemoreceptor denervation. Life Sci. 34: 489–496, 1984.
 50. Holzbauer, M., and D. F. Sharman. The distribution of catecholamines in vertebrates. In: Handbook of Experimental Pharmacology. Catecholamines, edited by A. Blascho and E. Muscholl. Berlin: Springer‐Verlag, 1972, vol. 33, p. 110–185.
 51. Honig, A., and M. Schmidt. Kidney function during carotid chemoreceptor stimulation: influence of unilateral renal nerve section. In: Hormonal Regulation of Sodium Excretion, edited by B. Lichardus, R. W. Schrier, and J. Ponec. Amsterdam: Elsevier/North‐Holland, 1980, p. 93–98.
 52. Horn, N. M., F. F. Hasan, and R. Waters. Dopamine receptors in the peripheral chemoreceptors of the rat. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 345–353.
 53. Howe, A., R. J. Pack, and J. C. M. Wise. Arterial chemo‐receptor‐like activity in the abdominal vagus of the rat. J. Physiol. London 320: 309–318, 1981.
 54. Hunt, C. E., K. McCulloch, and R. T. Brouillette. Diminished hypoxic ventilatory responses in near‐miss sudden infant death syndrome. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1313–1317, 1981.
 55. Katz, D. M., K. A. Markey, M. Goldstein, and I. B. Black. Expression of catecholaminergic characteristics by primary sensory neurons in the normal adult rat in vivo. Proc. Natl. Acad. Sci. USA 80: 3526–3530, 1983.
 56. Kirby, G. C., and D. S. McQueen. Effects of the antagonists MDL 72222 and ketanserin on responses of the cat carotid body chemoreceptors to 5‐hydroxytryptamine. Br. J. Pharmacol. 83: 259–269, 1984.
 57. Kobyashi, S., T. Uchida, T. Okashi, T. Fujita, K. Nakao, T. Yoshimasa, H. Imura, T. Mochijuki, C. Yanaihara, N. Yanaihara, et al. Immunocytochemical demonstration of the co‐storage of noradrenaline with Met‐enkephalin‐Arg 6‐Phe 7 and Met‐enkephalin‐Arg 6‐Gly 7‐Leu 8 in the carotid body chief cells of the dog. Arch. Histol. Jpn. 46: 713–722, 1983.
 58. Kondo, H., T. Iwanaga, and T. Nakajima. Immunocytochemical study on the localization of neuron specific enolase and S‐100 protein in the carotid body of rats. Cell Tissue Res. 227: 291–295, 1982.
 59. Kondo, H., and G. D. Pappas. The effects of postsynaptic denervation on the presynaptic chief cell in the rat carotid body. Brain Res. 215: 125–133, 1981.
 60. Lahiri, S. Inhibition of oxygen chemoreception and oxidative metabolism do not inhibit chemosensory adaptation to carbon dioxide. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 131–140.
 61. Lahiri, S., E. Mulligan, and A. Mokashi. Adaptive response of carotid body chemoreceptors to CO2. Brain Res. 234: 137–147, 1982.
 62. Lahiri, S., M. Pokorski, and R. O. Davies. Augmentation of carotid body chemoreceptor responses by isoproterenol in the cat. Respir. Physiol. 44: 351–364, 1981.
 63. Lahiri, S., N. Smatresk, M. Pokorski, P. Barnard, and A. Mokashi. Efferent inhibition of carotid body chemoreception in chronically hypoxic cats. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 14): R678–R683, 1983.
 64. Lahiri, S., N. J. Smatresk, M. Pokorski, P. Barnard, A. Mokashi, and A. McGregor. Altered structure and function of carotid body in chronically hypoxic cat. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 303–310.
 65. Lahiri, S., N. Smatresk, M. Pokorski, P. Barnard, A. Mokashi, and K. H. McGregor. Dopaminergic efferent inhibition of carotid body chemoreceptors in chronically hypoxic cats. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 15): R24–R28. 1984.
 66. Leitner, L. M., M. Roumy, and A. Verna. In vitro recording of chemoreceptor activity in catecholamine‐depleted rabbit carotid bodies. Neuroscience 10: 883–891, 1983.
 67. Majcherczyk, S., R. G. O'Regan, and A. Bradford. The effects of prolonged activation of carotid body chemoreceptors on sinus and ganglioglomerular nerve efferent discharges. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 47–56.
 68. Matsumoto, S. Effects of carotid body chemoreceptor stimulation by 5‐HT on phrenic nerve activity and ventilation in the rabbit. Arch. Int. Pharmacodyn Ther. 254: 282–292, 1981.
 69. Matsumoto, S., T. Nakajima, T. Uchida, H. Ozawa, and J. Ushiyama. Effects of sodium cyanide, dopamine and acetylcholine on the resting membrane potential of glomus cells in the rabbit. Brain Res. 239: 674–678, 1982.
 70. McDonald, D. M. A morphometric analysis of blood vessels and perivascular nerves in the rat carotid body. J. Neurocytol. 12: 155–199, 1983.
 71. McDonald, D. M., and R. W. Blewett. Location and size of carotid body‐like organs (paraganglia) revealed in rats by the permeability of blood vessels to Evans blue dye. J. Neurocytol. 10: 607–643, 1981.
 72. McDonald, D. M., and A. Haskell. Morphology of connections between arterioles and capillaries in the rat carotid body analyzed by reconstructing serial sections. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 195–206.
 73. McDonald, D. M., and D. T. Larue. The ultrastructure and connections of blood vessels supplying the rat carotid body and carotid sinus. J. Neurocytol. 12: 117–153, 1983.
 74. McQueen, D. S. Pharmacological aspects of putative transmitters in the carotid body. In: Physiology of the Peripheral Arterial Chemoreceptors, edited by H. Acker and R. G. O'Regan. Amsterdam: Elsevier, 1984, p. 149–195.
 75. McQueen, D. S. Effects of selective dopamine receptor agonists and antagonists on carotid body chemoreceptor activity. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1983, p. 325–335.
 76. McQueen, D. S., and J. A. Ribeiro. Inhibitory actions of methionine‐enkephalin and morphine on the cat carotid chemoreceptors. Br. J. Pharmacol. 71: 297–305, 1980.
 77. McQueen, D. S., and J. A. Ribeiro. Effect of adenosine on carotid chemoreceptor activity in the cat. Br. J. Pharmacol. 74: 129–136, 1981.
 78. McQueen, D. S., and J. A. Ribeiro. Effects of beta‐endorphin, vasoactive intestinal polypeptide and cholecystokinin octapeptide on cat carotid chemoreceptor activity. Q. J. Exp. Physiol. 66: 273–284, 1981.
 79. McQueen, D. S., and J. A. Ribeiro. On the specificity and type of receptor involved in carotid body chemoreceptor activation by adenosine in the cat. Br. J. Pharmacol. 80: 347–354, 1983.
 80. Milsom, W. K., and T. Sadig. Interaction between norepinephrine and hypoxia on carotid body chemoreception in rabbits. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 1893–1898, 1983.
 81. Mir, A. K., K. Al‐Neamy, D. J. Pallot, and S. R. Nahorski. Catecholamines in the carotid body of several mammalian species: effects of surgical and chemical sympathectomy. Brain Res. 252: 335–342, 1982.
 82. Mir, A. K., D. S. McQueen, D. J. Pallot, and S. R. Nahorski. Direct biochemical and neuropharmacological identification of dopamine D‐2 receptors in the rabbit carotid body. Brain Res 291: 273–283, 1984.
 83. Mir, A. K., D. J. Pallot, and S. R. Nahorski. Biogenic amine‐stimulated cyclic adenosine‐3′,5′‐monophosphate formation in the rat carotid body. J. Neurochem. 41: 663–669, 1983.
 84. Mir, A. K., D. J. Pallot, and S. R. Nahorski. Catecholamines: their receptors and cyclic AMP generating systems in the carotid body. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 311–324.
 85. Monti‐Bloch, L., and Eyzaguirre, C. Effects of methionine‐enkephalin and substance P on the chemosensory discharge of the cat carotid body. Brain Res. In press.
 86. Mulligan, E., H. Acker, and F. Degner. Tissue Po2 and local flow measurements in the cat carotid body treated with metabolic inhibitors. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 121–130.
 87. Nolan, W. F., D. F. Donnelly, E. J. Smith, and R. E. Dutton. Inhibition of carotid chemoreception by haloperidol in vitro (Abstract). Federation Proc. 43: 813, 1984.
 88. Obeso, A. Hipotesis metabolica de quimiotransduccion: hechos experimentales. Valladolid, Spain: Universidad de Valladolid, 1984. PhD thesis.
 89. Obeso, A., L. Almaraz, and C. Gonzalez. Effects of 2‐deoxyglucose on the carotid body chemoreceptors. Soc. Neurosci. Abstr. 9: 682, 1983.
 90. Obeso, A., L. Almaraz, and C. Gonzalez. Correlation between ATP levels, dopamine release and electrical activity in the carotid body. Support for the metabolic hypothesis. Brain Res. In press.
 91. Obeso, A., C. Gonzalez, and S. Fidone. Stimulus‐secretion coupling in the carotid body chemoreceptors. Federation Proc. In press.
 92. Okajima, Y., and K. Nishi. Analysis of inhibitory and excitatory actions of dopamine on chemoreceptor discharges of carotid body of cat in vivo. Jpn. J. Physiol. 31: 695–704, 1981.
 93. O'Regan, R. G., and S. Majcherczyk. Role of peripheral chemoreceptors and central chemosensitivity in the regulation of respiration and circulation. J. Exp. Biol. 100: 23–40, 1982.
 94. O'Regan, R. G., and S. Majcherczyk. Control of peripheral chemoreceptors by efferent nerves. In: Physiology of the Peripheral Arterial Chemoreceptors, edited by H. Acker and R. G. O'Regan. Amsterdam: Elsevier, 1983, p. 257–298.
 95. Pequignot, J.‐M., and S. Hellström. Intact and sympathectomized carotid bodies of long‐term hypoxic rats. Virchows Arch. A 400: 235–243, 1983.
 96. Pequignot, J.‐M., S. Hellström, and C. Johansson. Intact and sympathectomized carotid bodies of long‐term rats: a morphometric ultrastructural study. J. Neurocytol. 13: 481–493, 1984.
 97. Perrin, D. G., E. Cutz, L. E. Becker, A. C. Bryan, A. Madapallimatum, and M. J. Sole. Sudden infant death syndrome: increased carotid body dopamine and noradrenaline content. Lancet 2: 535–537, 1984.
 98. Perrin, D. G., E. Cutz, L. E. Becker, and A. C. Bryan. Ultrastructure of carotid bodies in sudden infant death syndrome. Pediatrics 73: 646–651, 1984.
 99. Pokorski, M., and S. Lahiri. Inhibition of aortic chemoreceptor responses by metabolic alkalosis in the cat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 75–80, 1982.
 100. Pokorski, M., and S. Lahiri. Aortic and carotid chemoreceptor responses to metabolic acidosis in the cat. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 13): R652–R658, 1983.
 101. Prabhakar, N. R., M. Runold, Y. Yamamoto, M. Langercrantz, and C. Von Euler. Effects of substance P antagonist on the hypoxia‐induced carotid chemoreceptor activity. Acta Physiol. Scand. 121: 301–303, 1984.
 102. Przybylski, J. Do arterial chemoreceptors play a role in the pathogenesis of hypertension. Med. Hypotheses 7: 127–131, 1981.
 103. Ridderstrale, Y., and M. A. Hanson. Histochemical localization of carbonic anhydrase in the cat carotid body. Ann. NY Acad. Sci. 429: 398–400, 1984.
 104. Rigual, R. Efectos de la estimulacion natural sobre el metabolismo de catecolaminas en el cuerpo carotideo de gato. Valladolid, Spain: Universidad de Valladolid, 1984. PhD thesis.
 105. Rigual, R., E. Gonzalez, S. Fidone, and C. Gonzalez. Effects of low pH on synthesis and release of catecholamines in the cat carotid body in vitro. Brain Res. 309: 178–181, 1984.
 106. Rigual, R., C. Iniguez, J. Carreres, and C. Gonzalez. Localization of carbonic anhydrase in the cat carotid body. Histochemistry. In press.
 107. Roos, A., and W. F. Boron. Intracellular pH. Physiol. Rev. 61: 296–434, 1981.
 108. Rubin, R. P. Calcium and Cellular Secretion. New York: Plenum, 1982.
 109. Shannon, D. C., and D. H. Kelly. SIDS and near‐SIDS. N. Engl. J. Med. 306: 959–965, 1982.
 110. Shannon, D. C., and D. H. Kelly. SIDS and near‐SIDS. N. Engl. J. Med. 306: 1022–1028, 1982.
 111. Smatresk, N. J., M. Pokorski, and S. Lahiri. Opposing effects of dopamine receptor blockade on ventilation and carotid chemoreceptor activity. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1567–1573, 1983.
 112. Smith, P., R. Jago, and D. Heath. Glomic cells and blood vessels in the hyperplastic carotid bodies of spontaneously hypertensive rats. Cardiovasc. Res. 18: 471–482, 1984.
 113. Starlinger, H., H. Acker, and R. Heinrich. Dopamine‐beta‐hydroxylase activity of the cat carotid body under different arterial O2 and CO2 conditions. J. Neurochem. 41: 1533–1537, 1983.
 114. Tafil, M., and A. Trzebski. Arterial chemoreceptor reflex and human essential hypertension. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 57–66.
 115. Trzebski, A., M. Tafil, M. Zoltowski, and J. Przybylski. Increased sensitivity of the arterial chemoreceptor drive in young men with mild hypertension. Cardiovasc. Res. 16: 163–172, 1982.
 116. Varndell, I. M., F. J. Tapia, J. DeMay, R. A. Rush, S. R. Bloom, and J. M. Polak. Electron immunocytochemical localization of enkephalin‐like material in catecholamine‐containing cells of the carotid body, the adrenal medulla and in pheochromocytomas of man and other mammals. J. Histochem. Cytochem. 30: 682–690, 1982.
 117. Viveros, O. H., E. J. Diliberto, E. Hazum, and K.‐J. Chang. Opiate‐like materials in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol. Pharmacol. 16: 1101–1108, 1979.
 118. Weiss, G. B. (editor). New Perspectives on Calcium Antagonists. Bethesda, MD: Am. Physiol. Soc., 1981.
 119. Whalen, W. J., and P. Nair. Oxidative metabolism and tissue pO2 of the carotid body. In: Physiology of the Peripheral Arterial Chemoreceptors, edited by H. Acker and R. G. O'Regan. Amsterdam: Elsevier, 1984, p. 117–132.
 120. Zapata, P., A. Serani, H. Cardenas, and M. Lavados. Characterization of dopaminoceptors in carotid body chemoreceptors. In: The Peripheral Arterial Chemoreceptors, edited by D. J. Pallot. London: Croom Helm, 1984, p. 335–345.
 121. Zapata, P., A. Serani, and M. Lavados. Inhibition in carotid body chemoreceptors mediated by D‐2 dopaminoceptors: antagonism by benzamides. Neurosci. Lett. 42: 179–184, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Salvatore J. Fidone, Constancio Gonzalez. Initiation and Control of Chemoreceptor Activity in the Carotid Body. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 247-312. First published in print 1986. doi: 10.1002/cphy.cp030209