Comprehensive Physiology Wiley Online Library

Integration of Respiratory Responses to Changes in Alveolar Partial Pressures of CO2 and O2 and in Arterial pH

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Feedback Loop
1.1 Metabolic Hyperbola
1.2 Steady‐State Relations Between Stimulus and Response
1.3 Sites of Interaction Between Hypercapnic and Hypoxic Drives
1.4 Apnea Point: Carbon Dioxide‐Acid Thresholds
2 Dynamic Properties of Respiratory Control System
2.1 Dynamics of Receptors
2.2 Dynamic Properties of Overall System
2.3 Respiratory Oscillations and Whole‐System Responses
3 Pattern of Breathing
3.1 Mean Values in Steady States
3.2 Changing States: Dynamic Responses
3.3 Nonclassic Dynamic Stimuli
4 Potassium
5 Stability of Alveolar and Arterial CO2 and O2 Tensions
6 Concluding Remarks
Figure 1. Figure 1.

Two classes of respiratory stimuli. Feedforward: any or all of these factors may contribute to the prediction of the ventilation () required. Their actions are not necessarily additive nor are they mutually exclusive. Feedback: these factors tell the system how well it is actually performing. They have no predictive properties. When feedforward prediction is correct, feedback signal is ∼0.

Figure 2. Figure 2.

Relations between and and between and at two rates of and . A and B: metabolic hyperbolas; i.e., the effects of changing on and at two rates of and . Dashed horizontal lines are asymptotes when partial pressure of inspiratory gas is other than 0. In this figure, is the independent variable. C and D: controller relationships; i.e., effects of and on . Axes represent same variables as in A and B but are reversed to emphasize that partial pressures of alveolar gases are now the independent variables. These are controller relations. In C, hypoxia line is derived from Nielsen and Smith 339. In D, upper line is a hypercapnicisocapnic line after Cormack et al. 79; dotted line represents true asphyxia, i.e., rebreathing air (cf. Fig. 3, top trace). E and F: controller relationships of C and D superimposed on metabolic hyperbolas of A and B. Circles denote intersections of metabolic hyperbolas with appropriate controller relations: they are the points that uniquely satisfy both relations. Note steepness of CO2 controller line and shallowness of “aviators'” hypoxia line. In F, upper line is isocapnic hypoxic response line determined by Weil et al. 427 in mild exercise. It curves upward more steeply than “aviators'” line and is not quite an appropriate representation of the contribution of hypoxia to the controller system during exercise, but is the best available for the purpose.

Figure 3. Figure 3.

Rebreathing from a 6‐liter Krogh spirometer. Values beside traces are compositions of gas remaining in spirometer at ends of runs. A: spirometer initially filled with air; no CO2 absorber in circuit; asphyxial changes in gas composition. B: spirometer filled with air; CO2 absorber in circuit; progressive hypoxia with developing hypocapnia. C: spirometer filled with O2; no CO2 absorber in circuit; progressive hypercapnia without hypoxia. Note that 1) hypoxia with hypocapnia failed to stimulate breathing until experiment was well advanced and 2) from quite early in runs A and C, asphyxia stimulated progressively more than hypercapnia alone.

From Douglas and Priestley 132
Figure 4. Figure 4.

Ventilation () vs. and pHa at rest in physiologically neutral (o) and chronic metabolic acidemic (•) states. Numbers beside points are pHa in A and in B. Dashed arrows indicate pairs of points of equal pHa or and allow derivation of partial effects of ΔpHa and Δ (coefficients a and b of Eq. 6). C: unitary hypothesis; is shown as unique function of pH in vicinity of hypothetical receptors, which are more or less remote from blood. This sort of argument has been used in relation to intracranial chemosensitivity (e.g., ref. 348).

From Cunningham 92; based on data from Nielsen 338 and Gray 199
Figure 5. Figure 5.

Steady‐state effect of changing on : controller relation. From normal upward, : relation at a single is linear. At and below normal extrapolations of these lines downward converge to meet not far from horizontal axis; lowering increases slope (S) with little effect on intercept B. Relation between S and is described in Eqs. 7 and 8. Raising decreases S and shifts horizontal intercept leftward (BB′) as discussed in Hyperoxia, hypoxia, and “central depression,” p. 484. As a result of this dual effect, hyperoxic and euoxic lines cross at = 25–35 liters/min: hyperoxia appears to stimulate below the crossing point but to depress above it. At or below normal linearity breaks down and lines become nearly flat. Region labeled “zone of uncertainty” is discussed in relation to Fig. 13.

Adapted from Lambertsen et al. 270 and Cunningham et al. 108
Figure 6. Figure 6.

Scheme for considering interactions between feedback stimuli. More complex versions might include feedback links from Ic (input from central chemosensitive tissue) to Ip (input from peripheral chemoreceptors) or from Ig (output from brain stem pattern generator) to Ip, and a second central CO2‐H+ component, one available for multiplicative interaction with peripheral drive and the other not (see steady‐state studies, p. 487, dynamic studies, p. 488, and studies with physical separation of drives, p. 489).

Adapted from van Beek 31
Figure 7. Figure 7.

Peripheral (A) or central (B) multiplicative interaction. ‐H+ and Drhypox, drive from CO2‐H+ complex and hypoxia, respectively; superscripts p and c, peripheral and central influences, respectively.

Figure 8. Figure 8.

Carotid body afferent fibers in cat. Schematic representation of frequencies of discharge (drawn as if in single fibers) as functions of (left) and (right). Increasing CO2‐H+ increases responsiveness to hypoxia, and increasing hypoxia increases responsiveness to rise of . Note that hyperoxia depresses but does not extinguish the response to CO2. CO2 thresholds based on data in Fig. 10. Curves represent consensus from many authors.

Figure 9. Figure 9.

A. Artificial brain perfusion. Ventilation () as functions of peripheral () at several levels of constant peripheral (); central () was held constant. Measurements occupied 2 h. Regression lines are shown; Sp and K1 are parameters in Eq. 19. Note tendency for lines to flatten when > 2 liters/min.

Adapted from van Beek et al. 32.] B. Artificial brain perfusion. Ventilation () as functions of peripheral () at three levels of central (); and are constant. Note central hypercapnia displaces response line upward (expressed as increase of K1 of Eq. 19 but does not change its slope. [Adapted from van Beek et al. 32.] C. Artificial brain perfusion. i: as functions of central () during constant peripheral hypercapnia and at constant central (). Open symbols, peripheral () high; closed symbols, peripheral () low. Note that peripheral stimulation displaced central CO2 response line upward without appreciable change of S and that there was no flattening of lower end of response line even in deep hypocapnia (i.e., no “dogleg,” see hypocapnic range in conscious humans, p. 496). Breathing became irregular at lowest . [Adapted from Berkenbosch et al. 36.] ii: as functions of . Lowering displaced response line downward without change of S. [Adapted from van Beek 31.] iii: Diagram of factors influencing central response line. Constant peripheral stimulation of either kind displaced line upward. Central hypoxia displaced line downward: in Eq. 22, decreases in increased K, whereas Sc was independent of gaseous stimuli. D. Artificial brain perfusion. Ventilation () as function of peripheral (). Fitted curves: solid line, exponential function; dotted line, hyperbolic function. Horizontal line is reference value at euoxic , and double arrow shows effect of hyperoxia. [From van Beek 31.] E. Artificial brain perfusion. Ventilation () as function of central (). Lines and double arrow as in Fig. 9D. [From van Beek 31.] F. Brain not separately perfused. Change of from euoxic value as function of at fixed (gas pressures the same in central and peripheral arterial blood). Lines and double arrow as in Fig. 9D. From van Beek 31
Figure 10. Figure 10.

Anesthetized cat. Relations between and at threshold for carotid chemoreceptor response and at first inspiration after postoverventilation apnea.

From Lahiri et al. 267
Figure 11. Figure 11.

Artificial brain perfusion. Peripheral () at which apnea occurred as function of central (). Line with its 95% confidence limits (dotted lines) was calculated from separate determinations of parameters Sp, Sc, and K of Eq. 22 on same cat; its slope is Sc/Sp.

From de Goede et al. 448
Figure 12. Figure 12.

A: ventilation () as function of at steady of 37 (•), 47 (+), 110 (○), and 169 (×) Torr. Note: above and to right, response was linear and hypoxia affected mainly the slopes of lines. Below sharp inflection, was largely independent of (“dogleg”).

From Nielsen and Smith 339.] B: quasi‐steady‐state plot of against of normal subject. started at 36 Torr for 15 min (giving ∼ 47 Torr). was lowered by 2 Torr every 3rd min and was adjusted to hold as near as possible to 47 Torr; points are mean and over approximately each minute. Over an upper range, and fell linearly; over a lower range, was nearly constant with falling steadily, but the slope here was much less than over upper range. Inset: enlargement of zone of instability. Here, while continued to be lowered at regular intervals, remained at about the same value; i.e., difference increased. From Young 443
Figure 13. Figure 13.

Relations between steady‐state metabolic hyperbola for resting subjects and reported nonlinearities of euoxic CO2 controller lines with their doglegs.

Figure 14. Figure 14.

Diagram of time‐dependent responses of carotid chemoreceptor afferent units to up and down steps of stimulation. Overshoot of response to change of , if it exists at all, is much less than that to change of . The latter shows a deep trough at “off,” which may be more or less truncated by frequency reaching zero. This could give rise to overall asymmetry and rectification in response to repetitive alternate ups and downs. (Based on drawing by R. W. Torrance representing a consensus from several authors.)

Figure 15. Figure 15.

Ventilatory responses to step changes of inspiratory CO2, 0% → 5.3% → 0%, at vertical arrows. Alveolar CO2 shows overshoot, which was more pronounced after downstep.

From Padget 347
Figure 16. Figure 16.

Manipulation of to give steplike changes of . was simultaneously manipulated to hold constant (top trace) in face of changing ventilation.

From Swanson and Bellville 409
Figure 17. Figure 17.

Arterial pH oscillations in humans at transition from rest to exercise. From top to bottom: arterial pH; inspiratory Vt; at mouth. Slopes of pH downstrokes are proportional to slopes of preceding expiratory alveolar plateaus.

From Band et al. 23, reprinted by permission from Nature London 283: 84–85, © 1980 Macmillan Journals Limited
Figure 18. Figure 18.

Time dependence of reflex response to brief stimulation of carotid body with boluses of CO2‐equilibrated saline at times indicated by dashes on Vt traces. In traces 4 to 9, current inspiration was stimulated; in the other traces there was no effect. Lengthening of expiration can be seen in traces 1, 2, 11, and 12 but is more obvious in Nye et al. 340.

Adapted from Black and Torrance 47
Figure 19. Figure 19.

Lung‐to‐ear circulation time during mild‐to‐moderate exercise in one air‐breathing subject plotted against respiratory period: linear correlation coefficient, 0.89. Circulation time was not significantly correlated with either Vt or mean inspiratory flow.

Adapted from Coulter et al. 81
Figure 20. Figure 20.

Two of 3 relations between Vt and Tt. 1: Cigar‐shaped clusters around their means (•) show distributions of individual breaths under steady respiratory drive 371; their long axes point toward origin indicating that, at each level, Vt/Tt (i.e., single‐breath ventilation) is relatively constant in face of breath‐by‐breath scatter of Vt and Tt. With greater mean (resulting from increased drive), cigar‐shaped clusters slope more steeply around shorter Tt and larger Vt. 2: Curve describing mean steady‐state values (solid line) below break point is (Vt ‐ k) (Tt − 60/m) = constant = 60k/ m. This reduces to Eq. 24 224. Mean steady‐state relation is largely independent of the nature of the drive in awake humans. Third relation (not illustrated here) is observed during transitions between steady states (e.g., during rebreathing, step changes, etc.) and is illustrated in Fig. 24.

Figure 21. Figure 21.

Steady‐state pattern of breathing in conscious humans. Vt‐Ti‐Te relations incorporating variation of Te below breakpoint; Te is plotted leftward from origin following usage of Kay et al. 248]. See Fig. 20 for explanation of • and cigar‐shaped clusters. Breath‐by‐breath scatter occurs in both inspiratory and expiratory variables. In range 1, with increasing , nearly all shortening of Tt (Fig. 20) is due to shortening of Te. In range 2, increasing Vt is associated with shortening of both Ti and Te. Below breakpoint, therefore, Ti is correlated with Te only on the basis of individual breaths; means are not correlated. Above breakpoint, means of Ti and Te are also correlated. In anesthetized cats, “range 2” pattern is usually seen over the whole range of Vt. In unanesthetized cats, pattern is qualitatively like the human one 183.

Adapted from Clark and Euler 71 and Gardner 178
Figure 22. Figure 22.

Effects of partial and complete vagal blockade on pattern of breathing in anesthetized rabbits. Blockade of pulmonary stretch afferents by SO2 inhalation A: data from Davies et al. 114] and cooling to 8°C [B: data from Kiwull‐Schoene et al. 255] (control, C). Complete vagal blockade by vagotomy (A) and cooling vagi to 0°C (B). In both cases, upper high‐ventilation points were obtained by CO2 inhalation.

Reprinted by permission of the publisher from the chapter by Petersen in Modelling and Control of Breathing, p. 248–257. © 1983 by Elsevier Science Publishing Co., Inc
Figure 23. Figure 23.

Top: scatter in Vt, Ti, and Te in steady states of CO2 inhalation with (•) and without (○) hypoxia in normal subject at rest. Fitted relation (not shown) had breakpoint at Vt ∼1.5 liters. There was an unusually large amount of scatter, especially above breakpoint. Bottom: same Te data replotted after subtracting (0.7 × Ti) from each point. Coefficient 0.7 was obtained as described by Cunningham and Gardner 99. Scatter was substantially reduced, showing that most of it in Te was linked to scatter in Ti. Furthermore there was now no obvious breakpoint, suggesting that this, too, was primarily an inspiratory phenomenon.

From Gardner 178
Figure 24. Figure 24.

Relations between Vt and Te and between Vt and Ti during transitions between steady states (+). Top: isocapnic steps of between 85 and 50 Torr. Bottom: hyperoxic steps of (5–7 Torr). Seven to 12 runs of each kind averaged. •, Upward steps of drive; ○, downward steps of drive. Note different pathways followed with the two kinds of step.

From Gardner 179
Figure 25. Figure 25.

Average of 8 responses to intravenous injection of 0.045 mmol KCl in anesthetized cat. Ventilation shown as mean values ± 1 SD. Time zero is time at which [K+]a (measured with electrode positioned in abdominal aorta) started to rise. For the 8 injections, mean [K+]a was calculated at 0.2‐s intervals and line was drawn through these points. Mean discharge rate (impulses/s) recorded from chemoreceptor fiber was calculated at 0.2‐s intervals. •, Three‐point running average of these means.

From Linton and Band 287
Figure 26. Figure 26.

Cumulative plot (from papers of C. G. Douglas) of relationships between , and ambient barometric pressure (Pb) and between , and Pb in normal men acclimatized to a wide range of high altitudes. Data from FitzGerald (•; refs. 162,163) are supplemented by various U.S. expeditions to the Chilean Andes (x; ref. 123) and to Mount Everest [*; ref. 202 (G), 423 (W)] and by data from Rahn and Otis (Δ; ref. 374) and Houston and Riley (+; ref. 234). FitzGerald's , was calculated from measured , and an assumed R of 0.83. Houston and Riley's values were for men not fully acclimatized and were obtained in a chamber. Height (axis on right of figure) equivalent to Pb is found from curved line. Striking linearity of relations between gas tensions and Pb can be seen, at least from sea‐level pressure to approximately half this value.

Adapted from Cunningham and Drysdale 95
Figure 27. Figure 27.

Each point represents and in a single patient with chronic asthma, stable for at least 1 wk. Least squares regression line ( = 0.23 + 16.6 mmHg) was not significantly different from that derived as likely from data of Fig. 26 ( = 0.269 + 14.3 mmHg) assuming alveolar‐arterial gradient for of 7 mmHg 437. This group of patients with intermittent obstructive airway disease seemed most likely to acclimatize normally because 4 such patients had been found to have virtually normal respiratory oscillations. They seem to adjust their eupneic to essentially the same value as would be expected from their had they been altitude dwellers. See ref. 73 for patients' details.

From Cochrane et al. 73


Figure 1.

Two classes of respiratory stimuli. Feedforward: any or all of these factors may contribute to the prediction of the ventilation () required. Their actions are not necessarily additive nor are they mutually exclusive. Feedback: these factors tell the system how well it is actually performing. They have no predictive properties. When feedforward prediction is correct, feedback signal is ∼0.



Figure 2.

Relations between and and between and at two rates of and . A and B: metabolic hyperbolas; i.e., the effects of changing on and at two rates of and . Dashed horizontal lines are asymptotes when partial pressure of inspiratory gas is other than 0. In this figure, is the independent variable. C and D: controller relationships; i.e., effects of and on . Axes represent same variables as in A and B but are reversed to emphasize that partial pressures of alveolar gases are now the independent variables. These are controller relations. In C, hypoxia line is derived from Nielsen and Smith 339. In D, upper line is a hypercapnicisocapnic line after Cormack et al. 79; dotted line represents true asphyxia, i.e., rebreathing air (cf. Fig. 3, top trace). E and F: controller relationships of C and D superimposed on metabolic hyperbolas of A and B. Circles denote intersections of metabolic hyperbolas with appropriate controller relations: they are the points that uniquely satisfy both relations. Note steepness of CO2 controller line and shallowness of “aviators'” hypoxia line. In F, upper line is isocapnic hypoxic response line determined by Weil et al. 427 in mild exercise. It curves upward more steeply than “aviators'” line and is not quite an appropriate representation of the contribution of hypoxia to the controller system during exercise, but is the best available for the purpose.



Figure 3.

Rebreathing from a 6‐liter Krogh spirometer. Values beside traces are compositions of gas remaining in spirometer at ends of runs. A: spirometer initially filled with air; no CO2 absorber in circuit; asphyxial changes in gas composition. B: spirometer filled with air; CO2 absorber in circuit; progressive hypoxia with developing hypocapnia. C: spirometer filled with O2; no CO2 absorber in circuit; progressive hypercapnia without hypoxia. Note that 1) hypoxia with hypocapnia failed to stimulate breathing until experiment was well advanced and 2) from quite early in runs A and C, asphyxia stimulated progressively more than hypercapnia alone.

From Douglas and Priestley 132


Figure 4.

Ventilation () vs. and pHa at rest in physiologically neutral (o) and chronic metabolic acidemic (•) states. Numbers beside points are pHa in A and in B. Dashed arrows indicate pairs of points of equal pHa or and allow derivation of partial effects of ΔpHa and Δ (coefficients a and b of Eq. 6). C: unitary hypothesis; is shown as unique function of pH in vicinity of hypothetical receptors, which are more or less remote from blood. This sort of argument has been used in relation to intracranial chemosensitivity (e.g., ref. 348).

From Cunningham 92; based on data from Nielsen 338 and Gray 199


Figure 5.

Steady‐state effect of changing on : controller relation. From normal upward, : relation at a single is linear. At and below normal extrapolations of these lines downward converge to meet not far from horizontal axis; lowering increases slope (S) with little effect on intercept B. Relation between S and is described in Eqs. 7 and 8. Raising decreases S and shifts horizontal intercept leftward (BB′) as discussed in Hyperoxia, hypoxia, and “central depression,” p. 484. As a result of this dual effect, hyperoxic and euoxic lines cross at = 25–35 liters/min: hyperoxia appears to stimulate below the crossing point but to depress above it. At or below normal linearity breaks down and lines become nearly flat. Region labeled “zone of uncertainty” is discussed in relation to Fig. 13.

Adapted from Lambertsen et al. 270 and Cunningham et al. 108


Figure 6.

Scheme for considering interactions between feedback stimuli. More complex versions might include feedback links from Ic (input from central chemosensitive tissue) to Ip (input from peripheral chemoreceptors) or from Ig (output from brain stem pattern generator) to Ip, and a second central CO2‐H+ component, one available for multiplicative interaction with peripheral drive and the other not (see steady‐state studies, p. 487, dynamic studies, p. 488, and studies with physical separation of drives, p. 489).

Adapted from van Beek 31


Figure 7.

Peripheral (A) or central (B) multiplicative interaction. ‐H+ and Drhypox, drive from CO2‐H+ complex and hypoxia, respectively; superscripts p and c, peripheral and central influences, respectively.



Figure 8.

Carotid body afferent fibers in cat. Schematic representation of frequencies of discharge (drawn as if in single fibers) as functions of (left) and (right). Increasing CO2‐H+ increases responsiveness to hypoxia, and increasing hypoxia increases responsiveness to rise of . Note that hyperoxia depresses but does not extinguish the response to CO2. CO2 thresholds based on data in Fig. 10. Curves represent consensus from many authors.



Figure 9.

A. Artificial brain perfusion. Ventilation () as functions of peripheral () at several levels of constant peripheral (); central () was held constant. Measurements occupied 2 h. Regression lines are shown; Sp and K1 are parameters in Eq. 19. Note tendency for lines to flatten when > 2 liters/min.

Adapted from van Beek et al. 32.] B. Artificial brain perfusion. Ventilation () as functions of peripheral () at three levels of central (); and are constant. Note central hypercapnia displaces response line upward (expressed as increase of K1 of Eq. 19 but does not change its slope. [Adapted from van Beek et al. 32.] C. Artificial brain perfusion. i: as functions of central () during constant peripheral hypercapnia and at constant central (). Open symbols, peripheral () high; closed symbols, peripheral () low. Note that peripheral stimulation displaced central CO2 response line upward without appreciable change of S and that there was no flattening of lower end of response line even in deep hypocapnia (i.e., no “dogleg,” see hypocapnic range in conscious humans, p. 496). Breathing became irregular at lowest . [Adapted from Berkenbosch et al. 36.] ii: as functions of . Lowering displaced response line downward without change of S. [Adapted from van Beek 31.] iii: Diagram of factors influencing central response line. Constant peripheral stimulation of either kind displaced line upward. Central hypoxia displaced line downward: in Eq. 22, decreases in increased K, whereas Sc was independent of gaseous stimuli. D. Artificial brain perfusion. Ventilation () as function of peripheral (). Fitted curves: solid line, exponential function; dotted line, hyperbolic function. Horizontal line is reference value at euoxic , and double arrow shows effect of hyperoxia. [From van Beek 31.] E. Artificial brain perfusion. Ventilation () as function of central (). Lines and double arrow as in Fig. 9D. [From van Beek 31.] F. Brain not separately perfused. Change of from euoxic value as function of at fixed (gas pressures the same in central and peripheral arterial blood). Lines and double arrow as in Fig. 9D. From van Beek 31


Figure 10.

Anesthetized cat. Relations between and at threshold for carotid chemoreceptor response and at first inspiration after postoverventilation apnea.

From Lahiri et al. 267


Figure 11.

Artificial brain perfusion. Peripheral () at which apnea occurred as function of central (). Line with its 95% confidence limits (dotted lines) was calculated from separate determinations of parameters Sp, Sc, and K of Eq. 22 on same cat; its slope is Sc/Sp.

From de Goede et al. 448


Figure 12.

A: ventilation () as function of at steady of 37 (•), 47 (+), 110 (○), and 169 (×) Torr. Note: above and to right, response was linear and hypoxia affected mainly the slopes of lines. Below sharp inflection, was largely independent of (“dogleg”).

From Nielsen and Smith 339.] B: quasi‐steady‐state plot of against of normal subject. started at 36 Torr for 15 min (giving ∼ 47 Torr). was lowered by 2 Torr every 3rd min and was adjusted to hold as near as possible to 47 Torr; points are mean and over approximately each minute. Over an upper range, and fell linearly; over a lower range, was nearly constant with falling steadily, but the slope here was much less than over upper range. Inset: enlargement of zone of instability. Here, while continued to be lowered at regular intervals, remained at about the same value; i.e., difference increased. From Young 443


Figure 13.

Relations between steady‐state metabolic hyperbola for resting subjects and reported nonlinearities of euoxic CO2 controller lines with their doglegs.



Figure 14.

Diagram of time‐dependent responses of carotid chemoreceptor afferent units to up and down steps of stimulation. Overshoot of response to change of , if it exists at all, is much less than that to change of . The latter shows a deep trough at “off,” which may be more or less truncated by frequency reaching zero. This could give rise to overall asymmetry and rectification in response to repetitive alternate ups and downs. (Based on drawing by R. W. Torrance representing a consensus from several authors.)



Figure 15.

Ventilatory responses to step changes of inspiratory CO2, 0% → 5.3% → 0%, at vertical arrows. Alveolar CO2 shows overshoot, which was more pronounced after downstep.

From Padget 347


Figure 16.

Manipulation of to give steplike changes of . was simultaneously manipulated to hold constant (top trace) in face of changing ventilation.

From Swanson and Bellville 409


Figure 17.

Arterial pH oscillations in humans at transition from rest to exercise. From top to bottom: arterial pH; inspiratory Vt; at mouth. Slopes of pH downstrokes are proportional to slopes of preceding expiratory alveolar plateaus.

From Band et al. 23, reprinted by permission from Nature London 283: 84–85, © 1980 Macmillan Journals Limited


Figure 18.

Time dependence of reflex response to brief stimulation of carotid body with boluses of CO2‐equilibrated saline at times indicated by dashes on Vt traces. In traces 4 to 9, current inspiration was stimulated; in the other traces there was no effect. Lengthening of expiration can be seen in traces 1, 2, 11, and 12 but is more obvious in Nye et al. 340.

Adapted from Black and Torrance 47


Figure 19.

Lung‐to‐ear circulation time during mild‐to‐moderate exercise in one air‐breathing subject plotted against respiratory period: linear correlation coefficient, 0.89. Circulation time was not significantly correlated with either Vt or mean inspiratory flow.

Adapted from Coulter et al. 81


Figure 20.

Two of 3 relations between Vt and Tt. 1: Cigar‐shaped clusters around their means (•) show distributions of individual breaths under steady respiratory drive 371; their long axes point toward origin indicating that, at each level, Vt/Tt (i.e., single‐breath ventilation) is relatively constant in face of breath‐by‐breath scatter of Vt and Tt. With greater mean (resulting from increased drive), cigar‐shaped clusters slope more steeply around shorter Tt and larger Vt. 2: Curve describing mean steady‐state values (solid line) below break point is (Vt ‐ k) (Tt − 60/m) = constant = 60k/ m. This reduces to Eq. 24 224. Mean steady‐state relation is largely independent of the nature of the drive in awake humans. Third relation (not illustrated here) is observed during transitions between steady states (e.g., during rebreathing, step changes, etc.) and is illustrated in Fig. 24.



Figure 21.

Steady‐state pattern of breathing in conscious humans. Vt‐Ti‐Te relations incorporating variation of Te below breakpoint; Te is plotted leftward from origin following usage of Kay et al. 248]. See Fig. 20 for explanation of • and cigar‐shaped clusters. Breath‐by‐breath scatter occurs in both inspiratory and expiratory variables. In range 1, with increasing , nearly all shortening of Tt (Fig. 20) is due to shortening of Te. In range 2, increasing Vt is associated with shortening of both Ti and Te. Below breakpoint, therefore, Ti is correlated with Te only on the basis of individual breaths; means are not correlated. Above breakpoint, means of Ti and Te are also correlated. In anesthetized cats, “range 2” pattern is usually seen over the whole range of Vt. In unanesthetized cats, pattern is qualitatively like the human one 183.

Adapted from Clark and Euler 71 and Gardner 178


Figure 22.

Effects of partial and complete vagal blockade on pattern of breathing in anesthetized rabbits. Blockade of pulmonary stretch afferents by SO2 inhalation A: data from Davies et al. 114] and cooling to 8°C [B: data from Kiwull‐Schoene et al. 255] (control, C). Complete vagal blockade by vagotomy (A) and cooling vagi to 0°C (B). In both cases, upper high‐ventilation points were obtained by CO2 inhalation.

Reprinted by permission of the publisher from the chapter by Petersen in Modelling and Control of Breathing, p. 248–257. © 1983 by Elsevier Science Publishing Co., Inc


Figure 23.

Top: scatter in Vt, Ti, and Te in steady states of CO2 inhalation with (•) and without (○) hypoxia in normal subject at rest. Fitted relation (not shown) had breakpoint at Vt ∼1.5 liters. There was an unusually large amount of scatter, especially above breakpoint. Bottom: same Te data replotted after subtracting (0.7 × Ti) from each point. Coefficient 0.7 was obtained as described by Cunningham and Gardner 99. Scatter was substantially reduced, showing that most of it in Te was linked to scatter in Ti. Furthermore there was now no obvious breakpoint, suggesting that this, too, was primarily an inspiratory phenomenon.

From Gardner 178


Figure 24.

Relations between Vt and Te and between Vt and Ti during transitions between steady states (+). Top: isocapnic steps of between 85 and 50 Torr. Bottom: hyperoxic steps of (5–7 Torr). Seven to 12 runs of each kind averaged. •, Upward steps of drive; ○, downward steps of drive. Note different pathways followed with the two kinds of step.

From Gardner 179


Figure 25.

Average of 8 responses to intravenous injection of 0.045 mmol KCl in anesthetized cat. Ventilation shown as mean values ± 1 SD. Time zero is time at which [K+]a (measured with electrode positioned in abdominal aorta) started to rise. For the 8 injections, mean [K+]a was calculated at 0.2‐s intervals and line was drawn through these points. Mean discharge rate (impulses/s) recorded from chemoreceptor fiber was calculated at 0.2‐s intervals. •, Three‐point running average of these means.

From Linton and Band 287


Figure 26.

Cumulative plot (from papers of C. G. Douglas) of relationships between , and ambient barometric pressure (Pb) and between , and Pb in normal men acclimatized to a wide range of high altitudes. Data from FitzGerald (•; refs. 162,163) are supplemented by various U.S. expeditions to the Chilean Andes (x; ref. 123) and to Mount Everest [*; ref. 202 (G), 423 (W)] and by data from Rahn and Otis (Δ; ref. 374) and Houston and Riley (+; ref. 234). FitzGerald's , was calculated from measured , and an assumed R of 0.83. Houston and Riley's values were for men not fully acclimatized and were obtained in a chamber. Height (axis on right of figure) equivalent to Pb is found from curved line. Striking linearity of relations between gas tensions and Pb can be seen, at least from sea‐level pressure to approximately half this value.

Adapted from Cunningham and Drysdale 95


Figure 27.

Each point represents and in a single patient with chronic asthma, stable for at least 1 wk. Least squares regression line ( = 0.23 + 16.6 mmHg) was not significantly different from that derived as likely from data of Fig. 26 ( = 0.269 + 14.3 mmHg) assuming alveolar‐arterial gradient for of 7 mmHg 437. This group of patients with intermittent obstructive airway disease seemed most likely to acclimatize normally because 4 such patients had been found to have virtually normal respiratory oscillations. They seem to adjust their eupneic to essentially the same value as would be expected from their had they been altitude dwellers. See ref. 73 for patients' details.

From Cochrane et al. 73
References
 1. Adolph, E. F., F. D. Nance, and M. S. Shiling. The carbon dioxide capacity of the human body and the progressive effects of carbon dioxide upon the breathing. Am. J. Physiol. 87: 532–541, 1929.
 2. Ahmad, H. R., and H. H. Loeschcke. Fast bicarbonatechloride exchange between brain cells and brain extracellular fluid in respiratory acidosis. Pfluegers Arch. 395: 293–299, 1982.
 3. Ahmad, H. R., H. H. Loeschcke, and H. H. Woidtke. Three compartments model for the bicarbonate exchange of the brain extracellular fluid with blood and cells. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri New York: Plenum, 1978, p. 195–205.
 4. Aitken, R. S., and A. E. Clark‐Kennedy. On the fluctuation in the composition of the alveolar air during the respiratory cycle in muscular exercise. J. Physiol. London 65: 389–411, 1928.
 5. Anthonisen, N. R., and S. Dingra. Ventilatory response to low levels of CO2. Respir. Physiol. 32: 335–344, 1978.
 6. Asmussen, E., and M. Nielsen. Studies on the regulation of respiration in heavy work. Acta Physiol. Scand. 12: 171–188, 1946.
 7. Asmussen, E., and M. Nielsen. Studies on the initial changes in respiration at the transition from rest to work and from work to rest. Acta Physiol. Scand. 16: 270–285, 1948.
 8. Asmussen, E., and M. Nielsen. Ventilatory response to CO2 during work at normal and at low oxygen tensions. Acta Physiol. Scand. 39: 27–35, 1957.
 9. Asmussen, E., M. Nielsen, and G. Wieth‐Pedersen. Cortical or reflex control of respiration during muscular work? Acta Physiol. Scand. 6: 168–175, 1943.
 10. Aström, A. On the action of combined carbon dioxide excess and oxygen depression in the regulation of breathing. Acta Physiol. Scand. Suppl. 98: 1952.
 11. Bainton, C. R. Canine ventilation after acid‐base infusions, exercise, and carotid body denervation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 28–35, 1978.
 12. Bainton, C. R., and R. A. Mitchell. Posthyperventilation apnea in awake man. J. Appl. Physiol. 21: 411–415, 1966.
 13. Band, D. M., I. R. Cameron, and S. J. G. Semple. Oscillations in arterial pH with breathing in the cat. J. Appl. Physiol. 26: 261–267, 1969.
 14. Band, D. M., I. R. Cameron, and S. J. G. Semple. Effect of different methods of CO2 administration on oscillations of arterial pH in the cat. J. Appl. Physiol. 26: 268–273, 1969.
 15. Band, D. M., I. R. Cameron, and S. J. G. Semple. The effect on respiration of abrupt changes in carotid artery pH and Pco2 in the cat. J. Physiol. London 211: 479–494, 1970.
 16. Band, D. M., M. Lim, R. A. F. Linton, and C. B. Wolff. Changes in arterial plasma potassium during exercise (Abstract). J. Physiol London 328: 74P–75P, 1982.
 17. Band, D. M., and R. A. F. Linton. Plasma potassium and the carotid body chemoreceptor in the cat (Abstract). J. Physiol. London 345: 33P, 1983.
 18. Band, D. M., and R. A. F. Linton. The role of potassium in control of breathing during exercise (Abstract). Bull. Eur. Physiopathol. Respir. 19: 41P, 1983.
 19. Band, D. M., M. McClelland, D. L. Phillips, K. B. Saunders, and C. B. Wolff. Sensitivity of the carotid body to within‐breath changes in arterial Pco2. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 45: 768–777, 1978.
 20. Band, D. M., K. B. Saunders, and C. B. Wolff. The relation between chemoreceptor discharge and respiratory fluctuation of arterial pH in the anaesthetised cat (Abstract). J. Physiol. London 218: 73P–74P, 1971.
 21. Band, D. M., P. Willshaw, and C. B. Wolff. The speed of response of the carotid body chemoreceptor. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal New Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 197–208.
 22. Band, D. M., and C. B. Wolff. The effect of hypoxia on the respiratory fluctuations in chemoreceptor discharge in the cat (Abstract). J. Physiol. London 234: 71P–72P, 1973.
 23. Band, D. M., and C. B. Wolff. Respiratory oscillations in discharge frequency of chemoreceptor afferents in sinus nerve of anaesthetised cats at normal and low arterial oxygen tensions. J. Physiol. London 282: 1–6, 1978.
 24. Band, D. M., C. B. Wolff, J. Ward, G. M. Cochrane, and J. G. Prior. Respiratory oscillations in arterial carbon dioxide tension as a control signal in exercise. Nature London 283: 84–85, 1980.
 25. Bannister, R. G., and D. J. C. Cunningham. The effects on the respiration and performance during exercise of adding oxygen to the inspired air. J. Physiol. London 125: 118–137, 1954.
 26. Banzett, R. B., H. M. Coleridge, and J. C. G. Coleridge. Pulmonary‐CO2 ventilatory reflex in dogs: effective range of CO2 and results of vagal cooling. Respir. Physiol. 34: 121–134, 1978.
 27. Barcroft, H., V. Basnayake, O. Celander, A. F. Cobbold, D. J. C. Cunningham, M. G. M. Jukes, and I. M. Young. The effect of carbon dioxide on the respiratory response to noradrenaline in man. J. Physiol. London 137: 365–373, 1957.
 28. Barcroft, J., and R. Margaria. Some effects of carbonic acid on the character of human respiration. J. Physiol. London 72: 175–185, 1931.
 29. Barer, G. R., P. Howard, and J. W. Shaw. Stimulusresponse curves for the pulmonary vascular bed to hypoxia and hypercapnia. J. Physiol. London 211: 139–156, 1970.
 30. Bartoli, A., B. A. Cross, A. Guz, S. K. Jain, M. I. M. Noble, and D. W. Trenchard. The effect of carbon dioxide on the airways and alveoli on ventilation; a vagal reflex studied in the dog. J. Physiol. London 240: 91–109, 1974.
 31. Bechbache, R. R., H. H. K. Chow, J. Duffin, and E. C. Orsini. The effects of hypercapnia, hypoxia, exercise and anxiety on the pattern of breathing in man. J. Physiol. London 293: 285–300, 1979.
 32. Beek, J. H. G. M. van. Effects of Central and Peripheral Hypoxia on the Regulation of Breathing (a Study in the Anaesthetised Cat). Leiden, The Netherlands: Univ. of Leiden, 1983. Doctoral Thesis.
 33. Beek, J. H. G. M. van, A. Berkenbosch, J. de Goede, and C. N. Olievier. Influence of peripheral O2 tension on the ventilatory response to CO2 in cats. Respir. Physiol. 51: 379–390, 1983.
 34. Bellville, J. W., B. J. Whipp, R. D. Kaufman, G. D. Swanson, K. A. Aqleh, and D. M. Wiberg. Central and peripheral chemoreflex loop gain in normal and carotid body‐resected subjects. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46, 843–853, 1979.
 35. Benchetrit, G., and F. Bertrand. A short‐term memory in the respiratory centres: statistical analysis. Respir. Physiol. 23: 147–158, 1975.
 36. Bendixen, H. H., G. M. Smith, and J. Mead. Pattern of ventilation in young adults. J. Appl. Physiol. 19: 195–198, 1964.
 37. Berkenbosch, A., J. H. G. M. van Beek, C. N. Olievier, J. de Goede, and P. H. Quanjer. Central respiratory CO2 sensitivity at extreme hypocapnia. Respir. Physiol. 55: 95–102, 1984.
 38. Berkenbosch, A., J. van Dissel, C. N. Olievier, J. de Goede, and J. Heeringa. The contribution of the peripheral chemoreceptors to the ventilatory response to CO2 in anaesthetised cats during hyperoxia. Respir. Physiol. 37: 381–390, 1979.
 39. Berkenbosch, A., J. de Goede, C. N. Olievier, P. H. Quanjer, J. H. Perk, L. Philips, and M. M. Rancuret. Influence of the C.S.F. bicarbonate concentration on the ventilatory response to CO2 in relation to the location of central chemoreceptors. Respir. Physiol. 35: 215–236, 1978.
 40. Berkenbosch, A., J. Heeringa, C. N. Olievier, and E. W. Kruyt. Artificial perfusion of the ponto‐medullary region of cats. A method for separation of central and peripheral effects of chemical stimulation of ventilation. Respir. Physiol. 37: 347–364, 1979.
 41. Bernards, J. A., P. Dejours, and A. Lacaisse. Ventilatory effects in man of breathing successively CO2‐free, CO2‐enriched and CO2‐free gas mixtures with low, normal or high oxygen concentration. Respir. Physiol. 1: 390–397, 1966.
 42. Bernards, J. A., and J. F. Sistermans. Transient changes in lung ventilation by brief stimulation of the carotid bodies in the dog. Acta Physiol. Pharmacol. Neerl. 15: 28–29, 1969.
 43. Bhattacharya, J., D. J. C. Cunningham, M. G. Howson, M. J. R. Lee, and P. Sleight. The effects of mild hypoxia with constant PaCO2 and ventilation on the setting and sensitivity of the baroreceptor‐cardiac‐depressor reflex in man (Abstract). J. Physiol. London 234: 112P–114P, 1973.
 44. Bhattacharyya, N. K., D. J. C. Cunningham, R. C. Goode, M. G. Howson, and B. B. Lloyd. Hypoxia, ventilation, Pco2 and exercise. Respir. Physiol. 9: 329–347, 1970.
 45. Bingmann, D. Effects of temperature on steady‐state activity and dynamic responses of carotid baro‐ and chemoreceptors. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance Berlin: Springer‐Verlag, 1977, p. 277–281.
 46. Black, A. M. S., D. I. McCloskey, and R. W. Torrance. The responses of peripheral chemoreceptors to sudden changes of hypercapnic and hypoxic stimuli (Abstract). J. Physiol. London 185: 67P–68P, 1966.
 47. Black, A. M. S., D. I. McCloskey, and R. W. Torrance. The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir. Physiol. 13: 36–49, 1971.
 48. Black, A. M. S., and R. W. Torrance. Chemoreceptor effects in the respiratory cycle (Abstract). J. Physiol. London 189: 59P–61P, 1967.
 49. Black, A. M. S., and R. W. Torrance. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir. Physiol. 13: 221–237, 1971.
 50. Boher, C. Über die specifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Skand. Arch. Physiol. 22: 221–280, 1909.
 51. Boothby, W. M. Absence of apnoea after forced breathing. J. Physiol. London 45: 328–337, 1912.
 52. Boothby, W. M., W. R. Lovelace, O. O. Benson, and A. F. Strehler. Volume and partial pressures of respiratory gases at altitude. In: Handbook of Respiratory Physiology, edited by W. M. Boothby Randolph Field, TX: US Air Force School of Aviat. Med., 1954, chapt. 4, p. 39–49.
 53. Boushey, H. A., and P. S. Richardson. The reflex effects of intralaryngeal carbon dioxide on the pattern of breathing. J. Physiol. London 228: 181–192, 1973.
 54. Bouverot, P., and R. S. Fitzgerald. Role of the arterial chemoreceptors in controlling lung volume in the dog. Respir. Physiol. 7: 203–215, 1969.
 55. Bouverot, P., R. Flandrois, R. Puccinelli, and P. Dejours. Étude du rôle des chémorécepteurs artériels dans la régulation de la réspiration pulmonaire chez le chien éveillé. Arch. Int. Pharmacodyn. Ther. 157: 253–271, 1965.
 56. Bowes, G., S. M. Andrey, L. F. Kozar, and E. A. Phillipson. Role of the carotid chemoreceptors in regulation of inspiratory onset. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 863–868, 1982.
 57. Bowes, G., P. M. DuBois, J. Duffin, J. D. Cooper, and E. A. Phillipson. Ventilatory responses to intravenous and inhaled CO2 in awake sheep (Abstract). Federation Proc. 41: 1505, 1982.
 58. Boycott, A. E., and J. S. Haldane. The effects of low atmospheric pressures on respiration. J. Physiol. London 37: 355–377, 1908.
 59. Bradley, G. W., C. von Euler, I. Marttila, and B. Roos. Transient and steady‐state effects of CO2 on mechanisms determining rate and depth of breathing. Acta Physiol. Scand. 92: 341–350, 1974.
 60. Campbell, J. M. H., C. G. Douglas, and F. G. Hobson. The sensitiveness of the respiratory centre to carbonic acid, and the dead space during hyperpnoea. J. Physiol. London 48: 303–316, 1914.
 61. Cherniack, N. S., N. H. Edelman, and S. Lahiri. Hypoxia and hypercapnia as respiratory stimulants and depressants. Respir. Physiol. 11: 113–126, 1971.
 62. Cherniack, N. S., C. von Euler, I. Homma, and F. F. Kao. Animal models of Cheyne‐Stokes breathing. In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz Oxford, UK: Pergamon, 1979, p. 417–425.
 63. Cherniack, N. S., C. von Euler, I. Homma, and F. F. Kao. Graded changes in central chemoreceptor input by local temperature changes on the ventral surface of the medulla. J. Physiol. London 287: 191–211, 1979.
 64. Cherniack, N. S., S. G. Kelsen, and S. Lahiri. The effects of hypoxia and hypercapnia on central nervous system output. In: Respiratory Adaptations. Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar New Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 312–324.
 65. Cherniack, N. S., and G. S. Longobardo. Mathematical model of periodic breathing during sleep. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 361–368.
 66. Chiodi, H. Respiratory adaptations to chronic high altitude hypoxia. J. Appl. Physiol. 10: 81–87, 1957.
 67. Christiansen, J., and J. S. Haldane. The influence of distension of the lungs on human respiration. J. Physiol. London 48: 272–277, 1914.
 68. Clark, F. J., and C. von Euler. On the regulation of depth and rate of breathing. J. Physiol. London 222: 267–295, 1972.
 69. Cochrane, G. M., C. G. Newstead, R. V. Nowell, P. Openshaw, and C. B. Wolff. The rate of rise of alveolar carbon dioxide pressure during expiration in man. J. Physiol. London 333: 17–27, 1982.
 70. Cochrane, G. M., J. G. Prior, and C. B. Wolff. Chronic stable asthma and the normal arterial pressure of carbon dioxide in hypoxia. Br. Med. J. 281: 705–707, 1980.
 71. Cochrane, G. M., J. G. Prior, and C. B. Wolff. Control of breathing and respiratory Pco2 oscillations in patients with airways obstruction. Thorax 36: 708–709, 1981.
 72. Comline, R. S., I. A. Silver, and M. Silver. Factors responsible for the stimulation of the adrenal medulla during asphyxia in the foetal lamb. J. Physiol. London 178: 211–238, 1965.
 73. Comroe, J. H., Jr.. The location and function of the chemoreceptors of the aorta. Am. J. Physiol. 127: 176–191, 1939.
 74. Comroe, J. H., Jr., and C. F. Schmidt. The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog. Am. J. Physiol. 121: 75–97, 1938.
 75. Conway, M. A. Effects of beta‐adrenergic blockade on the ventilatory response to hypoxic and hyperoxic exercise in man (Abstract). J. Physiol. London 325: 18P, 1982.
 76. Cormack, R. S., D. J. C. Cunningham, and J. B. L. Gee. The effect of carbon dioxide on the respiratory response to want of oxygen in man. Q. J. Exp. Physiol. 42: 303–319, 1957.
 77. Cotes, J. E., G. R. Johnson, and A. McDonald. Breathing frequency and tidal volume: relationship to breathlessness. In: Hering‐Breuer Centenary Symposium: Breathing, edited by R. Porter London: Ciba Found., 1970, p. 297–309.
 78. Coulter, G. C., M. D. Fischer, P. A. Robbins, and D. C. Weir. The relation between the duration of respiratory cycles and the lung‐to‐carotid circulation time in exercise (Abstract). J. Physiol. London 307: 44P–45P, 1980.
 79. Cragg, P. A., and D. B. Drysdale. Interaction of hypoxia and hypercapnia on ventilation, tidal volume and respiratory frequency in the anaesthetized rat. J. Physiol. London 341: 477–493, 1983.
 80. Cropp, G. J. A., and J. H. Comroe, Jr. Role of mixed venous blood Pco2 in respiratory control. J. Appl. Physiol. 16: 1029–1033, 1961.
 81. Cross, B. A., A. Davey, A. Guz, P. G. Katona, M. MacLean, K. Murphy, S. J. G. Semple, and R. Stidwell. The role of spinal cord transmission in the ventilatory response to electrically induced exercise in the anaesthetised dog. J. Physiol. London 329: 37–55, 1982.
 82. Cross, B. A., A. Davey, A. Guz, P. G. Katona, M. MacLean, K. Murphy, S. J. G. Semple, and R. Stidwell. The pH oscillations in the arterial blood during exercise; a potential signal for the ventilatory response in the dog. J. Physiol. London 329: 57–73, 1982.
 83. Cross, B. A., B. J. B. Grant, A. Guz, P. W. Jones, S. J. G. Semple, and R. P. Stidwell. Dependence of phrenic motoneurone output on the oscillating component of arterial blood gas composition. J. Physiol. London 290: 163–184, 1979.
 84. Cross, B. A., P. W. Jones, K. D. Leaver, S. J. G. Semple, and R. P. Stidwell. The relationship between CO2 output, pulmonary ventilation and the rate of change of arterial pH of the downstroke of the oscillation in the cat (Abstract). J. Physiol. London 320: 100P–101P, 1981.
 85. Cunningham, D. J. C. Discussion on slopes of VD : PaCO2 curves in acid‐base disturbances. In: Cerebrospinal Fluid and the Regulation of Ventilation, edited by C. M. Brooks, F. F. Kao, and B. B. Lloyd Oxford, UK: Blackwell, 1965, p. 171–175.
 86. Cunningham, D. J. C. Regulation of breathing in exercise. Circ. Res. 20 and 21, Suppl. 1: 122–131, 1967.
 87. Cunningham, D. J. C. Time patterns of alveolar carbon dioxide and oxygen: the effects of various patterns of oscillations on breathing in man. In: The Scientific Basis of Medicine Annual Reviews, edited by I. Gilliland and J. Francis London: Athlone, 1972, chapt. 18, p. 333–362.
 88. Cunningham, D. J. C. The control system regulating breathing in man. Q. Rev. Biophys. 6: 433–483, 1974.
 89. Cunningham, D. J. C. Integrative aspects of the regulation of breathing: a personal view. In: Respiratory Physiology I, edited by J. G. Widdicombe London: Butterworths, 1974, p. 303–369. (MPT Int. Rev. Sci.).
 90. Cunningham, D. J. C. A model illustrating the importance of timing in the regulation of breathing. Nature London 253: 440–442, 1975.
 91. Cunningham, D. J. C. Introductory remarks. Some problems in respiratory physiology. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 3–19.
 92. Cunningham, D. J. C., and D. B. Drysdale. The role of human arterial chemoreceptors in normal respiratory regulation and some factors which may influence the responses to dynamic stimulation. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal New Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 209–228.
 93. Cunningham, D. J. C., D. B. Drysdale, W. N. Gardner, J. I. Jensen, E. S. Petersen, and B. J. Whipp. Very small, very short‐latency changes in human breathing induced by step changes of alveolar gas composition. J. Physiol. London 266: 411–421, 1977.
 94. Cunningham, D. J. C., D. H. Elliott, B. B. Lloyd, J. P. Miller, and J. M. Young. A comparison of the effects of oscillating and steady alveolar partial pressures of oxygen and carbon dioxide on the pulmonary ventilation. J. Physiol. London 179: 498–508, 1965.
 95. Cunningham, D. J. C., and W. N. Gardner. The relation between tidal volume and inspiratory and expiratory times during steady‐state CO2 inhalation in man (Abstract). J. Physiol. London 227: 50P–51P, 1972.
 96. Cunningham, D. J. C., and W. N. Gardner. A quantitative description of the pattern of breathing during steady‐state CO2 inhalation in man, with special emphasis on expiration. J. Physiol. London 272: 613–632, 1977.
 97. Cunningham, D. J. C., E. N. Hey, and B. B. Lloyd. The effect of intravenous infusion of noradrenaline on the respiratory response to carbon dioxide in man. Q. J. Exp. Physiol. 43: 394–399, 1958.
 98. Cunningham, D. J. C., E. N. Hey, J. M. Patrick, and B. B. Lloyd. The effect of noradrenaline infusion on the relation between pulmonary ventilation and the alveolar Po2 and Pco2 in man. Ann. NY Acad. Sci. 109: 756–770, 1963.
 99. Cunningham, D. J. C., M. G. Howson, and S. B. Pearson. The respiratory effects in man of altering the time profile of alveolar carbon dioxide and oxygen within each respiratory cycle. J. Physiol. London 234: 1–28, 1973.
 100. Cunningham, D. J. C., B. B. Lloyd, J. P. Miller, and J. M. Young. The time course of human ventilation after transient sient changes in Paco2 at two values of Pao2 (Abstract). J. Physiol. London 179: 68P–70P, 1965.
 101. Cunningham, D. J. C., B. B. Lloyd, and J. M. Patrick. The respiratory effect of infused noradrenaline at raised partial pressures of oxygen in man (Abstract). J. Physiol. London 165: 45P–46P, 1963.
 102. Cunningham, D. J. C., B. B. Lloyd, and D. Spurr. Doubts about the ‘anaerobic work substance’ as a stimulus to breathing in exercise (Abstract). J. Physiol. London 186: 110P–111P, 1966.
 103. Cunningham, D. J. C., E. F. Metias, M. G. Howson, and E. S. Petersen. Patterns of reflex responses to dynamic stimulation of the human respiratory system. In: Central Neurone Environment and the Control Systems of Breathing and Circulation, edited by M. E. Schlaefke, H. P. Koepchen, and W. R. See Heidelberg: Springer‐Verlag, 1983, p. 116–123.
 104. Cunningham, D. J. C., and J. L. H. O'Riordan. The effect of a rise in the temperature of the body on the respiratory response to carbon dioxide at rest. Q. J. Exp. Physiol. 42: 329–345, 1957.
 105. Cunningham, D. J. C., J. M. Patrick, and B. B. Lloyd. The respiratory response of man to hypoxia. In: Oxygen in the Animal Organism, edited by F. Dickens and E. Neil Oxford, UK: Pergamon, 1964, p. 277–291.
 106. Cunningham, D. J. C., and P. A. Robbins. The pattern of breathing in man in response to sine waves of alveolar carbon dioxide and hypoxia. J. Physiol. London 350: 475–486, 1984.
 107. Cunningham, D. J. C., D. G. Shaw, S. Lahiri, and B. B. Lloyd. The effect of maintained ammonium chloride acidosis on the relation between pulmonary ventilation and alveolar oxygen and carbon dioxide in man. Q. J. Exp. Physiol. 46: 323–334, 1961.
 108. Cunningham, D. J. C., D. Spurr, and B. B. Lloyd. Ventilatory drive in hypoxic exercise. In: Arterial Chemoreceptors, edited by R. W. Torrance Oxford, UK: Blackwell, 1968, p. 301–323.
 109. Daubenspeck, J. A. Frequency analysis of CO2 regulation: afferent influences on tidal volume control. J. Appl. Physiol. 35: 662–672, 1973.
 110. Dautrebande, L., and J. S. Haldane. The effects of respiration of oxygen on breathing and circulation. J. Physiol. London 55: 296–299, 1921.
 111. Davenport, H. W. The ABC of Acid‐Base Chemistry (6th ed.). Chicago, IL: Univ. of Chicago Press, 1974.
 112. Davies, A., M. Dixon, D. Callanan, A. Huszczuk, J. G. Widdicombe, and J. C. M. Wise. Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide. Respir. Physiol. 34: 83–101, 1978.
 113. Dawes, G. S., W. N. Gardner, B. M. Johnston, and D. W. Walker. Breathing in fetal lambs: the effect of brain stem section. J. Physiol. London 335: 535–553, 1983.
 114. De Castro, F. Sur la structure et l'innervation de la glande intercarotidienne (glomus caroticum) de l'homme et des mammifères, et sur un nouveau système d'innervation autonome du nerf glossopharyngien. Études anatomiques et expérimentales. Trab. Lab. Invest. Biol. Univ. Madrid 24: 365–432, 1926.
 115. De Castro, F. Sur la structure et l'innervation du sinus carotidien de l'homme et des mammifères. Nouveaux faits sur l'innervation et la fonction du glomus caroticum. Études anatomiques et physiologiques. Trab. Lab. Invest. Biol. Univ. Madrid 25: 331–380, 1928.
 116. De Goede, J., A. Berkenbosch, C. N. Olievier, and P. H. Quanjer. Ventilatory response to carbon dioxide and apnoeic thresholds. Respir. Physiol. 45: 185–199, 1981.
 117. De Goede, J., N. van der Hoeven, A. Berkenbosch, C. N. Olievier, and J. H. G. M. van Beek. Ventilatory responses to sudden isocapnic changes in end‐tidal O2 in cats. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 37–45.
 118. Dejours, P. Intérêt méthodologique de l'étude d'un organisme vivant à la phase initiale de rupture d'un équilibre physiologique. C. R. Acad. Sci. Paris 245: 1946–1948, 1957.
 119. Dejours, P. Chemoreflexes in breathing. Physiol. Rev. 42: 335–358, 1962.
 120. Dejours, P. Control of respiration in muscular exercise. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. 1, chapt. 25 p. 631–648.
 121. Dejours, P., Y. Labrousse, and J. Teychenné. Activité des centres respiratoires et hypocapnie. J. Physiol. Paris 46: 329–334, 1954.
 122. Delpierre, S., Y. Jammes, and N. Mei. Effects of hypercapnia, hypoxia and increase in tidal volume on vagal bronchopulmonary C fibres in cat (Abstract). J. Physiol. London 298: 48P–49P, 1980.
 123. Dempsey, J. A., and H. V. Forster. Mediation of ventilatory adaptations. Physiol. Rev. 62: 262–346, 1982.
 124. Denison, D. High altitudes and hypoxia. In: The Principles and Practice of Human Physiology, edited by O. G. Edholm and J. S. Weiner New York: Academic, 1981, chapt. 5, p. 111–190.
 125. Dill, D. B., E. H. Christensen, and H. T. Edwards. Gas equilibria in the lungs at high altitudes. Am. J. Physiol. 115: 530–538, 1936.
 126. Doekel, R. C., C. W. Zwillich, C. H. Scoggin, M. Kryger, and J. V. Weil. Clinical semi‐starvation: depression of hypoxic ventilatory response. N. Engl. J. Med. 295: 358–361, 1976.
 127. Domizi, D. B., J. F. Perkins, Jr., and J. S. Byrne. Ventilatory response to fixed acid evaluated by ‘iso‐Pco2’ technique. J. Appl. Physiol. 14: 557–561, 1959.
 128. Döring, G. K., and H. H. Loeschcke. Atmung und Säure‐Basengleichgewicht in der Schwangerschaft. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 249: 437–451, 1947.
 129. Douglas, C. G. A method for determining the total respiratory exchange in man. J. Physiol. London 42: XVII–XVIII, 1911.
 130. Douglas, C. G., and J. S. Haldane. The causes of periodic or Cheyne‐Stokes breathing. J. Physiol. London 38: 401–419, 1909.
 131. Douglas, C. G., and J. S. Haldane. The regulation of normal breathing. J. Physiol. London 38: 420–440, 1909.
 132. Douglas, C. G., J. S. Haldane, Y. Henderson, and E. C. Schneider. Physiological observations made on Pike's Peak, Colorado, with special reference to low barometric pressures. Philos. Trans. R. Soc. Lond. Ser. B 203: 185–318, 1913.
 133. Douglas, C. G., and R. E. Havard. The changes in the CO2 pressure and hydrogen ion concentration of the arterial blood of man which are associated with hyperpnoea due to CO2. J. Physiol. London 74: 471–489, 1932.
 134. Douglas, C. G., and J. G. Priestley. Human Physiology, 3rd ed. Oxford, UK: Clarendon, 1948.
 135. Downes, J. J., and C. J. Lambertsen. Dynamic characteristics of ventilatory depression in man on abrupt administration of O2. J. Appl. Physiol. 21: 447–453, 1966.
 136. Dripps, R. D., and J. H. Comroe, Jr. The respiratory and circulatory response of normal man to inhalation of 7.6 and 10.4 per cent CO2 with a comparison of the maximal ventilation produced by severe muscular exercise, inhalation of CO2 and maximal voluntary hyperventilation. Am. J. Physiol. 149: 43–51, 1947.
 137. Drysdale, D. B., J. I. Jensen, and D. J. C. Cunningham. The short‐latency respiratory response to sudden withdrawal of hypercapnia and hypoxia in man. Q. J. Exp. Physiol. 66: 203–210, 1981.
 138. DuBois, A. B., R. C. Fowler, A. Soffer, and W. O. Fenn. Alveolar CO2 measured by expiration into the rapid infrared gas analyzer. J. Appl. Physiol. 4: 526–534, 1952.
 139. Duffin, J. A mathematical model of the chemoreflex control of ventilation. Respir. Physiol. 15: 277–301, 1972.
 140. Dutton, R. E., R. S. Fitzgerald, and N. Gross. Ventilatory response to square‐wave forcing of carbon dioxide at the carotid bodies. Respir. Physiol. 4: 101–108, 1968.
 141. Dutton, R. E., W. A. Hodson, D. G. Davies, and V. Cherniack. Ventilatory adaptation to a step change in Pco2 at the carotid bodies. J. Appl. Physiol. 23: 195–202, 1967.
 142. Dutton, R. E., W. A. Hodson, D. G. Davies, and A. Fenner. Effect of the rate of rise of carotid body Pco2 on the time course of ventilation. Respir. Physiol. 3: 367–379, 1967.
 143. Dutton, R. E., E. J. Smith, P. K. Ghatak, and D. G. Davies. Dynamics of the respiratory controller during carotid body hypoxia. J. Appl. Physiol. 35: 844–850, 1973.
 144. Edelman, N. H., P. Epstein, S. Lahiri, and N. S. Cherniack. Ventilatory responses to transient hypoxia and hypercapnia in man. Respir. Physiol. 17: 302–314, 1973.
 145. Effros, R. M., R. S. Y. Chang, and P. Silverman. Carbonic anhydrase activity of the pulmonary vasculature. Science 199: 427–429, 1978.
 146. Eger, E. I., II, R. H. Kellogg, A. H. Mines, M. Lima‐Ostos, C. G. Morrill, and D. W. Kent. Influence of CO2 on ventilatory acclimatization to altitude. J. Appl. Physiol. 24: 607–615, 1968.
 147. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid sinus nerve stimulation. J. Physiol. London 222: 297–318, 1972.
 148. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid body chemoreceptor stimulation. J. Physiol. London 222: 319–333, 1972.
 149. Eldridge, F. L. Posthyperventilation breathing: different effects of active and passive hyperventilation. J. Appl. Physiol. 34: 422–430, 1973.
 150. Eldridge, F. L. Central neural respiratory stimulatory effect of active respiration. J. Appl. Physiol. 37: 723–735, 1974.
 151. Eldridge, F. L. Expiratory effects of brief carotid sinus nerve and carotid body stimulations. Respir. Physiol. 26: 395–410, 1976.
 152. Eldridge, F. L., P. Gill‐Kumar, and D. E. Millhorn. Input‐output relationships of central neural circuits involved in respiration in cats. J. Physiol. London 311: 81–95, 1981.
 153. Euler, C. von, and U. Söderberg. Slow potentials in the respiratory centres. J. Physiol. London 118: 555–564, 1952.
 154. Eyzaguirre, C., and J. Lewin. Chemoreceptor activity of the carotid body of the cat. J. Physiol. London 159: 222–237, 1961.
 155. Falchuk, K. H., T. W. Lamb, and S. M. Tenney. Ventilatory response to hypoxia and CO2 following CO2 exposure and NaHCO3 ingestion. J. Appl. Physiol. 21: 393–398, 1966.
 156. Farhi, L. E., and H. Rahn. Dynamics of changes in carbon dioxide stores. Anesthesiology 21: 606–614, 1960.
 157. Fenn, W. O., and A. B. Craig, Jr. Effect of CO2 on respiration using a new method of administering CO2. J. Appl. Physiol. 18: 1023–1024, 1963.
 158. Fenner, A., E. H. Jansson, and M. E. Avery. Enhancement of the ventilatory response to carbon dioxide by tube breathing. Respir. Physiol. 4: 91–100, 1968.
 159. Feustel, P. J., G. G. Vurek, and J. W. Severinghaus. Medullary respiratory chemoreceptor blood flow and Pco2. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 29–36.
 160. Fick, A. Über die Messung des Blutquantums in den Herzventrickeln. Sitzungsber. Phys. Med. Gesamte Wurzburg: 36, 1870.
 161. Filley, G. F., and F. G. Heineken. A blood gas disequilibrium theory. Br. J. Dis. Chest 70: 223–245, 1976.
 162. Fink, B. R., E. C. Hanks, S. H. Ngai, and E. M. Papper. Central regulation of respiration during anesthesia and wakefulness. Ann. NY Acad. Sci. 109: 892–899, 1963.
 163. FitzGerald, M. P. The changes in the breathing and the blood at various high altitudes. Philos. Trans. R. Soc. London Ser. B 203: 351–371, 1913.
 164. FitzGerald, M. P. Further observations on the changes in breathing and the blood at various high altitudes. Proc. R. Soc. London Ser. B 88: 248–258, 1914‐15.
 165. FitzGerald, M. P., and J. S. Haldane. The normal alveolar carbonic acid pressure in man. J. Physiol. London 32: 486–494, 1905.
 166. Fitzgerald, R. S. Single fibre chemoreceptor responses of carotid and aortic bodies. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal New Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 27–35.
 167. Fitzgerald, R. S., L.‐M. Leitner, and M.‐J. Liaubet. Carotid chemoreceptor response to intermittent or sustained stimulation in the cat. Respir. Physiol. 6: 395–402, 1969.
 168. Fitzgerald, R. S., and D. C. Parks. Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir. Physiol. 12: 218–229, 1971.
 169. Florentin, E. Étude théorique et analogique de la composition du gaz alvéolaire en régime périodique. Application au problème de la régulation chimique de la respiration. J. Physiol. Paris 56, Suppl. 9: 1–60, 1964.
 170. Folgering, H. T., J. A. Bernards, J. H. Biesta, and F. Smolders. Mathematical analysis of the response of lung ventilation to CO2 in normoxia and hyperoxia. Pfluegers Arch. 347: 341–350, 1974.
 171. Folgering, H., J. Ponte, and T. Sadig. Adrenergic mechanisms and chemoreception in the carotid body of the cat and rabbit. J. Physiol. London 325: 1–21, 1982.
 172. Fordyce, W. E., and F. S. Grodins. Ventilatory responses to intravenous and airway CO2 administration in anesthetized dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 337–346, 1980.
 173. Forster, H. V., J. A. Dempsey, and L. W. Chosy. Incomplete compensation of CSF [H+] in man during acclimatization to high altitude (4,300 m). J. Appl. Physiol. 38: 1067–1072, 1975.
 174. Forster, H. V., J. P. Klein, L. H. Hamilton, and J. P. Kampine. Regulation of Paco2 and ventilation in humans inspiring low levels of CO2. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 287–294, 1982.
 175. Forster, R. E., and E. D. Crandall. Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J. Appl. Physiol. 38: 710–718, 1975.
 176. Frédéricq, L. Sur la cause de l'apnée. Arch. Biol. Liège 17: 561–576, 1901.
 177. Gabel, R. A., R. S. Kronenberg, and J. W. Severinghaus. Vital capacity breaths of 5% or 15% CO2 in N2 or O2 to test carotid sensitivity. Respir. Physiol. 17: 195–208, 1973.
 178. Gabel, R. A., and R. B. Weiskopf. Ventilatory interaction between hypoxia and [H+] at chemoreceptors of man. J. Appl. Physiol. 39: 292–296, 1975.
 179. Gardner, W. N. The pattern of breathing following step changes of alveolar Pco2 in man (Abstract). J. Physiol. London 242: 75P–76P, 1974.
 180. Gardner, W. N. The relation between tidal volume and inspiratory and expiratory times during steady‐state carbon dioxide inhalation in man. J. Physiol. London 272: 591–611, 1977.
 181. Gardner, W. N. The pattern of breathing following step changes of alveolar partial pressures of carbon dioxide and oxygen in man. J. Physiol. London 300: 55–73, 1980.
 182. Garfinkel, F., and R. Fitzgerald. The effect of hyperoxia, hypoxia and hypercapnia on FRC and occlusion pressure in human subjects. Respir. Physiol. 33: 241–250, 1978.
 183. Garrard, C. S., and D. J. Lane. The pattern of stimulated breathing in man during non‐elastic expiratory loading. J. Physiol. London 279: 17–29, 1978.
 184. Gautier, H. Effects of hypoxia or hypercapnia on ventilatory pattern of chronic cats before and after vagotomy. Bull. Eur. Physiopathol. Respir. 11: 89–90, 1975.
 185. Gautier, H. Pattern of breathing during hypoxia or hypercapnia of the awake or anesthetized cat. Respir. Physiol. 27: 193–206, 1976.
 186. Gautier, H. Respiratory pattern of human subjects during hypoxia, hypercapnia or changes in the level of wakefulness. In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz Oxford, UK: Pergamon, 1979, p. 407–413.
 187. Gautier, H., and M. Bonora. Effects of carotid body denervation on respiratory pattern of awake cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 1127–1131, 1979.
 188. Gautier, H., J. E. Remmers, and D. Bartlett, Jr. Control of the duration of expiration. Respir. Physiol. 18: 205–221, 1973.
 189. Gelfand, R., and C. J. Lambertsen. Dynamic respiratory response to abrupt change of inspired CO2 at normal and high Po2. J. Appl. Physiol. 35: 903–913, 1973.
 190. Gelfand, R., and C. J. Lambertsen. CO2‐related ventilatory response dynamics: how many components? In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 301–308.
 191. Gesell, R. On the chemical regulation of respiration. I. The regulation of respiration with special reference to the metabolism of the respiratory center and the coordination of the dual function of hemoglobin. Am. J. Physiol. 66: 5–49, 1923.
 192. Gesell, R., J. Lapides, and M. Levin. The interaction of central and peripheral chemical control of breathing. Am. J. Physiol. 130: 155–170, 1940.
 193. Gilbert, R., J. H. Auchincloss, G. Baule, D. Peppi, and D. Long. Breathing pattern during CO2 inhalation obtained from motion of the chest and abdomen. Respir. Physiol. 13: 238–252, 1971.
 194. Goode, R. C., E. B. Brown, Jr., M. G. Howson, and D. J. C. Cunningham. Respiratory effects of breathing down a tube. Respir. Physiol. 6: 343–359, 1969.
 195. Goodman, N. W., B. S. Nail, and R. W. Torrance. Oscillations in the discharge of single carotid chemoreceptor fibres of the cat. Respir. Physiol. 20: 251–269, 1974.
 196. Grant, B. J. B., and S. J. G. Semple. Comparison of the ventilatory response to carbon dioxide administration by inhalation and by intravenous infusion in the cat (Abstract). J. Physiol. London 258: 110P–111P, 1976.
 197. Grant, B. J. B., R. P. Stidwell, B. A. Cross, and S. J. G. Semple. Ventilatory response to inhaled and infused CO2: relationship to the oscillating signal. Respir. Physiol. 44: 365–380, 1981.
 198. Gray, J. S. The multiple factor theory of the control of respiratory ventilation. Science 103: 739–744, 1946.
 199. Gray, J. S. Pulmonary Ventilation and Its Physiological Regulation (1st ed.). Springfield, IL: Thomas, 1950.
 200. Greco, E. C., Jr., W. E. Fordyce, F. Gonzalez, Jr., P. Reischl, and F. S. Grodins. Respiratory responses to intravenous and intrapulmonary CO2 in awake dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 109–114, 1978.
 201. Green, J. F., and M. I. Sheldon. Ventilatory changes associated with changes in pulmonary blood flow in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 997–1002, 1983.
 202. Greene, R. Observations on the composition of alveolar air on Everest, 1933. J. Physiol. London 82: 481–485, 1934.
 203. Grodins, F. S. Analysis of factors concerned in regulation of breathing in exercise. Physiol. Rev. 30: 220–239, 1950.
 204. Grodins, F. S., J. S. Gray, K. R. Schroeder, A. L. Norins, and R. W. Jones. Respiratory responses to CO2 inhalation. A theoretical study of a nonlinear biological regulator. J. Appl. Physiol. 7: 283–308, 1954.
 205. Grodins, F. S., and S. M. Yamashiro. What is the pattern of breathing regulated for? In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz Oxford, UK: Pergamon, 1979, p. 169–175.
 206. Grunstein, M. M., M. Younes, and J. Milic‐Emili. Control of tidal volume and respiratory frequency in anesthetized cats. J. Appl. Physiol. 35: 463–476, 1973.
 207. Gurtner, G. H., S. H. Song, and L. E. Farhi. Alveolar to mixed venous PCO2 difference under conditions of no gas exchange. Respir. Physiol. 7: 173–187, 1969.
 208. Haldane, J. B. S., G. C. Linder, R. Hilton, and F. R. Fraser. The arterial blood in ammonium chloride acidosis. J. Physiol. London 65: 413–421, 1928.
 209. Haldane, J. S., J. C. Meakins, and J. G. Priestley. The respiratory response to anoxaemia. J. Physiol. London 52: 420–432, 1919.
 210. Haldane, J. S., and J. G. Priestley. The regulation of the lung‐ventilation. J. Physiol. London 32: 225–266, 1905.
 211. Hall, F. G. Carbon dioxide and respiratory regulation at altitude. J. Appl. Physiol. 5: 603–606, 1953.
 212. Hämäläinen, R. P., and A. A. Viljanen. A hierarchical goal‐seeking model of the control of breathing. Biol. Cybern. 29: 151–158, 1978.
 213. Hammouda, M., and W. H. Wilson. The vagus influences giving rise to the phenomena accompanying expansion and collapse of the lungs. J. Physiol. London 74: 81–114, 1932.
 214. Hanson, M. A. The Movements of Carbon Dioxide in Tissues Including Chemoreceptors. Oxford, UK: Oxford Univ., 1980. D. Phil. Thesis.
 215. Hanson, M. A., P. C. G. Nye, and R. W. Torrance. Alteration of respiratory timing by abrupt decreases in carotid body activity (Abstract). J. Physiol. London 278: 17P, 1978.
 216. Hanson, M. A., P. C. G. Nye, and R. W. Torrance. The location of carbonic anhydrase in relation to the blood‐brain barrier at the medullary chemoreceptors of the cat. J. Physiol. London 320: 113–125, 1981.
 217. Hasselbalch, K. A., and J. Lindhard. Analyse des Höhenklimas in seinen Wirkungen auf die Respiration. Skand. Arch. Physiol. 25: 361–408, 1911.
 218. Hathorn, M. K. S. Analysis of periodic changes in ventilation in new‐born infants. J. Physiol. London 285: 85–99, 1978.
 219. Hayes, M. W., B. K. Maini, and R. W. Torrance. Reduction of the responses of carotid chemoreceptors by acetazolamide. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal New Dehli: Vallabhbhai Patel Chest Inst., 1976, p. 36–47.
 220. Heeringa, J., A. Berkenbosch, J. de Goede, and C. N. Olievier. Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia. Respir. Physiol. 37: 365–379, 1979.
 221. Heistad, D. D., R. C. Wheeler, A. L. Mark, P. G. Schmid, and F. M. Abboud. Effects of adrenergic stimulation on ventilation in man. J. Clin. Invest. 51: 1469–1475, 1972.
 222. Hesser, C. M. Central and chemoreflex components in the respiratory activity during acid‐base displacements in the blood. Acta Physiol. Scand. Suppl. 64: 1–69, 1949.
 223. Hey, E. N. Factors Affecting Respiration in Man. Oxford, UK: Oxford Univ., 1959. D. Phil. thesis.
 224. Hey, E. N., B. B. Lloyd, D. J. C. Cunningham, M. G. M. Jukes, and D. P. G. Bolton. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir. Physiol. 1: 193–205, 1966.
 225. Heymans, J. F., J.‐J. Bouckaert, and L. Dautrebande. Sinus carotidien et réflexes respiratoires. II. Influence respiratoire réflexes de l'acidose, de l'alcalose, de l'anhidride carbonique, de l'ion hydrogène et de l'anoxémie. Sinus carotidiens et échanges respiratoires dans les poumons et au‐delà des poumons. Arch. Int. Pharmacodyn. Ther. 39: 400–448, 1930.
 226. Heymans, J.‐F., and C. Heymans. Sur les modifications directes et sur la régulation réflexe de l'activité du centre respiratoire de la tête isolée du chien. Arch. Int. Pharmacodyn. Ther. 33: 273–372, 1927.
 227. Hill, E. P., G. G. Power, and L. D. Longo. Mathematical simulation of pulmonary O2 and CO2 exchange. Am. J. Physiol. 224: 904–917, 1973.
 228. Hitzig, B. M. Temperature‐induced changes in turtle CSF pH and central control of ventilation. Respir. Physiol. 49: 205–222, 1982.
 229. Honda, Y., T. Natsui, N. Hasumura, and K. Nakamura. Threshold PCO2 for respiratory system in acute hypoxia of dogs. J. Appl. Physiol. 18: 1053–1056, 1963.
 230. Honda, Y., and M. Ueda. Fluctuations of arterial pH with the respiratory cycle in dogs. Jpn. J. Physiol. 11: 223–228, 1961.
 231. Honda, Y., S. Wanatabe, S. Hasegawa, S. Myojo, T. Takizawa, T. Sugita, K. Kimura, T. Hasegawa, T. Kuriyama, Y. Saito, H. Katsuki, and J. W. Severinghaus. Breathing without carotid chemoreceptors in man. In: Acid‐Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System, edited by H. H. Loeschcke Stuttgart, West Germany: Thieme, 1976, p. 88–94.
 232. Hornbein, T. F., Z. J. Griffo, and A. Roos. Quantitation of chemoreceptor activity: interrelation of hypoxia and hypercapnia. J. Neurophysiol. 24: 561–568, 1961.
 233. Hornbein, T. F., and A. Roos. Specificity of H ion concentration as a carotid chemoreceptor stimulus. J. Appl. Physiol. 18: 580–584, 1963.
 234. Houston, C. S., and R. L. Riley. Respiratory and circulatory changes during acclimatization to high altitude. Am. J. Physiol. 149: 565–588, 1947.
 235. Huratado, A. Natural acclimatization to high altitudes. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd Oxford, UK: Blackwell, 1963, p. 71–82.
 236. Huszczuk, A., P. W. Jones, A. Oren, E. C. Shors, L. E. Nery, B. J. Whipp, and K. Wasserman. Venous return and ventilatory control. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 78–85.
 237. Jain, S. K., S. Subramanian, D. B. Julka, and A. Guz. Search for evidence of lung chemoreflexes in man: study of respiratory and circulatory effects of phenyldiguanide and lobeline. Clin. Sci. 42: 163–177, 1972.
 238. Jarisch, A., S. Landgren, E. Neil, and Y. Zotterman. Impulse activity in the carotid sinus nerve following intracarotid injection of potassium chloride, veratrine, sodium citrate, adenosine‐triphosphate and α‐dinitrophenol. Acta Physiol. Scand. 25: 195–221, 1952.
 239. Javaheri, S., L. Herrera, and H. Kazemi. Ventilatory drive in acute metabolic acidosis. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 913–918, 1979.
 240. Jennett, S., F. C. McKay, and V. A. Moss. The human ventilatory response to stimulation by transient hypoxia. J. Physiol. London 315: 339–351, 1981.
 241. Jennett, S., J. Russell, and K. A. Warnock. The duration of inspiration during changing states of ventilation in man (Abstract). J. Physiol. London 238: 54P–55P, 1974.
 242. Jensen, J. I., S. Lyager, and O. F. Pedersen. The relationship between maximal ventilation, breathing pattern and mechanical limitation of ventilation. J. Physiol. London 309: 521–532, 1980.
 243. Joels, N., and H. White. The contribution of the arterial chemoreceptors to the stimulation of respiration by adrenaline and noradrenaline in the cat. J. Physiol. London 197: 1–24, 1968.
 244. Kaehny, W. D., and J. T. Jackson. Respiratory response to HCl acidosis in dogs after carotid body denervation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 1138–1142, 1979.
 245. Kagawa, S., M. J. Stafford, T. B. Waggener, and J. W. Severinghaus. No effect of naloxone on hypoxia‐induced ventilatory depression in adults. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1030–1034, 1982.
 246. Kao, F. F. An experimental study of the pathways involved in exercise hyperpnoea employing cross‐circulation techniques. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd Oxford, UK: Blackwell, 1963, p. 461–502.
 247. Kao, F. F., S. Lahari, C. Wang, and S. S. Mei. Ventilation and cardiac output in exercise; interaction of chemical and work stimuli. Circ. Res. 20 and 21, Suppl. 1: 179–191, 1967.
 248. Kao, F. F., and S. S. Mei. The central multiplicative interaction of PO2 and PCO2 on ventilation. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri New York: Plenum, 1978, p. 403–414.
 249. Katsaros, B. Die Rolle der Chemoreceptoren des Carotisgebiets der narkotisierten Katze für die Antwort der Atmung auf isolierte Änderung der Wasserstoffionen‐Konzentration und des CO2‐Drucks des Blutes. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 282: 157–178, 1965.
 250. Kay, J. D. S., E. S. Petersen, and H. Vejby‐Christensen. Mean and breath‐by‐breath pattern of breathing in man during steady‐state exercise. J. Physiol. London 251: 657–669, 1975.
 251. Kellogg, R. H. The role of CO2 in altitude acclimatization. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd Oxford, UK: Blackwell, 1963, p. 379–395.
 252. Kellogg, R. H. Altitude acclimatization, a historical introduction emphasizing the regulation of breathing. Physiologist 11: 37–57, 1968.
 253. Kellogg, R. H., and A. H. Mines. Acute hypoxia fails to affect FRC in man (Abstract). Physiologist 18: 275, 1975.
 254. Kellogg, R. H., N. Pace, E. R. Archibald, and B. E. Vaughan. Respiratory response to inspired CO2 during acclimatization to an altitude of 12,470 feet. J. Appl. Physiol. 11: 65–71, 1957.
 255. Kelman, G. R., and A. W. S. Watson. Effect of added deadspace on pulmonary ventilation during sub‐maximal, steady‐state exercise. Q. J. Exp. Physiol. 58: 305–313, 1973.
 256. Kiwull, P., H. Kiwull‐Schoene, and W. Klatt. Interaction of central and peripheral respiratory drives: differentiation between the role of stimuli and afferents. In: Acid‐Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System, edited by H. H. Loeschcke Stuttgart, West Germany: Thieme, 1976, p. 146–155.
 257. Kiwull‐Schoene, H., S. A. Ward, and P. Kiwull. The involvement of expiratory termination in the vagally mediated facilitation of ventilatory CO2 responsiveness during hyperoxia. Pfluegers Arch. 390: 63–69, 1981.
 258. Kjällquist, A., M. Nardini, and B. K. Siesjö. The relation of extra‐ and intracellular acid‐base parameters in the cat during hyper‐ and hypocapnia. Acta Physiol. Scand. 76: 485–494, 1969.
 259. Knox, C. K. Characteristics of inflation and deflation reflexes during expiration in the cat. J. Neurophysiol. 36: 284–295, 1973.
 260. Krogh, A., and J. Lindhard. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. London 47: 112–136, 1913.
 261. Krogh, A., and J. Lindhard. On the average composition of the alveolar air and its variations during the respiratory cycle. J. Physiol. London 47: 431–445, 1913.
 262. Kronauer, R., P. Brusil, P. Gulesian, Jr., and T. Waggener. An altitude induced respiratory oscillator—occurences and general description (Abstract). Physiologist 19: 259, 1976.
 263. Kronenberg, R., F. N. Hamilton, R. Gabel, R. Hickey, D. J. C. Read, and J. W. Severinghaus. Comparison of three methods for quantitating response to hypoxia in man. Respir. Physiol. 16: 109–124, 1972.
 264. Kumar, P., and P. C. G. Nye. Chemoreceptor discharge in alternate breath tube‐ antitube‐breathing cats (Abstract). J. Physiol. London 341: 48P, 1983.
 265. Kumar, P., P. C. G. Nye, and R. W. Torrance. Reflex responses to dynamic stimulation of the feline respiratory system (Abstract). J. Physiol. London 345: 174P, 1983.
 266. Lahiri, S. Depressant effect of acute and chronic hypoxia on ventilation. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal New Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 138–145.
 267. Lahiri, S., and R. G. Delaney. Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir. Physiol. 24: 249–266, 1975.
 268. Lahiri, S., and R. G. Delaney. Relationship between carotid chemoreceptor activity and ventilation in the cat. Respir. Physiol. 24: 267–286, 1975.
 269. Lahiri, S., A. Mokashi, R. G. Delaney, and A. P. Fishman. Arterial PO2 and PCO2 stimulus threshold for carotid chemo receptors and breathing. Respir. Physiol. 34: 359–375, 1978.
 270. Lamb, T. W. Ventilatory responses to intravenous and inspired carbon dioxide in anaesthetised cats. Respir. Physiol. 2: 99–104, 1966.
 271. Lambertsen, C. J., R. Gelfand, and R. A. Kemp. Dynamic response characteristics of several CO2 reactive components of the respiratory control system. In: Cerebrospinal Fluid and the Regulation of Ventilation, edited by C. M. Brooks, F. F. Kao, and B. B. Lloyd Oxford, UK: Blackwell, 1965, p. 211–240.
 272. Lambertsen, C. J., P. Hall, H. Wollman, and M. W. Goodman. Quantitative interactions of increased PO2 and PCO2 upon respiration in man. Ann. NY Acad. Sci. 109: 731–741, 1963.
 273. Lambertsen, C. J., R. H. Kough, D. Y. Cooper, G. L. Emmel, H. H. Loeschcke, and C. F. Schmidt. Comparison of relationship of respiratory minute volume to pCO2 and pH of arterial and internal jugular blood in normal man during hyperventilation produced by low concentrations of CO2 at 1 atmosphere and by O2 at 3.0 atmospheres. J. Appl. Physiol. 5: 803–813, 1953.
 274. Lambertsen, C. J., S. J. G. Semple, M. S. Smyth, and R. Gelfand. H+ and pCO2 as chemical factors in respiratory and cerebral circulatory control. J. Appl. Physiol. 16: 473–484, 1961.
 275. Lavoisier, A. L. Oeuvres de Lavoisier. Paris: Imprimerie Imériale, 1862‐1893, vol. 1‐6.
 276. Lee, L.‐Y., and H. T. Milhorn. Central ventilatory responses to O2 and CO2 at three levels of carotid chemoreceptor stimulation. Respir. Physiol. 25: 319–333, 1975.
 277. Lefrançois, R., and P. Dejours. Étude des relations entre stimulus ventilatoire gaz carbonique et stimulus ventilatoires neurogéniques de l'exercice musculaire chez l'homme. Rev. Fr. Etud. Clin. Biol. 9: 498–505, 1964.
 278. Leigh, J. Evaluation of a two‐breath CO2 test as a measure of arterial chemoreflex sensitivity to CO2 in man (Abstract). J. Physiol. London 224: 28P, 1972.
 279. Leitner, L.‐M., B. Pagès, R. Puccinelli, and P. Dejours. Étude simultanée de la ventilation et des déscharges des chémorécepteurs du glomus carotidien chez le chat. II. Au cours d'inhalations brèves d'anhydride carbonique. Arch. Int. Pharmacodyn. Ther. 154: 427–433, 1965.
 280. Lerche, D., B. Katsaros, G. Lerche, and H. H. Loeschcke. Vergleich der Wirkung verschiedener Acidösen (NH4Cl, CaCl2, Acetazolamid) auf die Lungenbelüftung beim Menschen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 270: 450–460, 1960.
 281. Leusen, I. pH sanguin, pH du liquide céphalo‐rachidien et fonction respiratoire. Arch. Int. Physiol. 58: 115–116, 1950.
 282. Leusen, I. R. Influence du pH du liquide céphalo‐rachidien sur la respiration. Experientia 6: 272–274, 1950.
 283. Leusen, I. R. Chemosensitivity of the respiratory center. Influence of CO2 in the cerebral ventricles on respiration. Am. J. Physiol. 176: 39–44, 1954.
 284. Leusen, I. R. Chemosensitivity of the respiratory center. Influence of changes in the H+ and total buffer concentrations in the cerebral ventricles on respiration. Am. J. Physiol. 176: 45–51, 1954.
 285. Leusen, I. R., and J. Weyne. Metabolic processes in the brain during respiratory and non‐respiratory alkalosis and acidosis. In: Acid‐Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System, edited by H. H. Loeschcke Stuttgart, West Germany: Thieme, 1976, p. 27–42.
 286. Lewis, S. M. Awake baboon's ventilatory response to venous and inhaled CO2 loading. J. Appl. Physiol. 39: 417–422, 1975.
 287. Lim, M., R. A. F. Linton, and D. M. Band. Continuous intravascular monitoring of epinephrine‐induced changes in plasma potassium. Anesthesiology 57: 272–278, 1982.
 288. Lim, M., R. A. F. Linton, C. B. Wolff, and D. M. Band. Propranolol, exercise, and arterial plasma potassium. Lancet 2: 591, 1981.
 289. Linton, R. A. F., and D. M. Band. The effect of potassium on carotid chemoreceptor activity and ventilation in the cat. Respir. Physiol. 59: 65–70, 1985.
 290. Linton, R. A. F., R. Miller, and I. R. Cameron. Ventilatory response to CO2 inhalation and intravenous infusion of hypercapnic blood. Respir. Physiol. 26: 383–394, 1976.
 291. Linton, R. A. F., R. Miller, and I. R. Cameron. Role of PCO2 oscillations and chemoreceptors in ventilatory response to inhaled and infused CO2. Respir. Physiol. 29: 201–210, 1977.
 292. Linton, R. A. F., P. A. Poole‐Wilson, R. J. Davies, and I. R. Cameron. A comparison of the ventilatory response to carbon dioxide by steady‐state and rebreathing methods during metabolic acidosis and alkalosis. Clin. Sci. Mol. Med. 45: 239–249, 1973.
 293. Lloyd, B. B. The interactions between hypoxia and other ventilatory stimuli. In: Proc. Int. Symp. Cardiovasc. Resp., Effects of Hypoxia, edited by J. D. Hatcher and D. B. Jennings Basel, Switzerland: Karger, 1966, p. 146–165.
 294. Lloyd, B. B. An aspect of the system analysis of the respiratory system. In: Acid‐Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System, edited by H. H. Loeschcke Stuttgart, West Germany: Thieme, 1976, p. 186–190.
 295. Lloyd, B. B., and D. J. C. Cunningham. Quantitative approach to the regulation of human respiration. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd Oxford, UK: Blackwell, 1963, p. 331–349.
 296. Lloyd, B. B., M. G. M. Jukes, and D. J. C. Cunningham. The relation between alveolar oxygen pressure and the respiratory response to carbon dioxide in man. Q. J. Exp. Physiol. 43: 214–227, 1958.
 297. Loeschcke, H. H. Homoiostase des arteriellen CO2‐Druckes und Anpassung der Lungenventilation an der Stoffwechsel als Leistungen eines Regelsystems. Klin. Wochenschr. 38: 366–376, 1960.
 298. Loeschcke, H. H. Review Lecture: central chemosensitivity and the reaction theory. J. Physiol. London 332: 1–24, 1982.
 299. Loeschcke, H. H., and K. H. Gertz. Einfluss des O2‐Druckes in der Einatmungsluft auf die Atemtätigkeit des Menschen, geprüft unter Konstanthaltung des alveolaren CO2‐Druckes. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 267: 460–477, 1958.
 300. Loeschcke, H. H., B. Katsaros, C. Albers, and C. C. Michel. Über den zeitlichen Verlauf von Atemzugvolumen, Atem‐Periodendauer, Atemminutenvolumen und endexspiratorischem CO2‐Druck bei Einatmung von Gasgemischen mit erhöhtem CO2‐Druck. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 277: 671–683, 1963.
 301. Loeschcke, H. H., and H.‐P. Koepchen. Über das Verhalten der Atmung und des arteriellen Drucks bei Einbringen von Veratridin, Lobelin und Cyanid in den Liquor cerebrospinalis. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 266: 586–610, 1958.
 302. Loeschcke, H. H., and H.‐P. Koepchen. Beeinflussung von Atmung und Vasomotorik durch Einbringen von Novocain in die Liquorräume. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 266: 611–627, 1958.
 303. Loeschcke, H. H., and H.‐P. Koepchen. Versuch zur Lokalisation des Angriffsortes der Atmungs‐ und Kreislauf‐wirkung von Novocain im Liquor cerebrospinalis. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 266: 628–641, 1958.
 304. Loeschcke, H. H., H.‐P. Koepchen, and K. H. Gertz. Über den Einfluss von Wasserstoffionenkonzentration und CO2‐Druck im Liquor cerebrospinalis auf die Atmung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 266: 569–585, 1958.
 305. Loeschcke, H. H., and R. A. Mitchell. Properties and localisation of intracranial chemosensitivity. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd Oxford, UK: Blackwell, 1963, p. 243–256.
 306. Loeschcke, H. H., and K. Sugioka. Über die Natur der Ammoniumchlorid‐Acidose. Schweiz. Med. Wochenschr. 93: 1030–1049, 1963.
 307. Loeschcke, H. H., A. Sweel, R. H. Kough, and C. J. Lambertsen. The effect of morphine and meperidine (Dolantin, Demerol) upon the respiratory response of normal men to low concentrations of inspired carbon dioxide. J. Pharmacol. Exp. Ther. 108: 376–383, 1953.
 308. Lugliani, R., B. J. Whipp, C. Seard, and K. Wasserman. Effects of bilateral carotid body resection on ventilatory control at rest and during exercise in man. N. Engl. J. Med. 285: 1105–1111, 1971.
 309. Luijendijk, S. C. M. A model approach to the role of stratification in the regulation of breathing (Abstract). J. Physiol. London 330: 79P–80P, 1982.
 310. Majcherczyk, S., J. C. G. Coleridge, H. M. Coleridge, M. P. Kaufman, and M. P. Baker. Carotid sinus efferents: properties and physiological significance. Federation Proc. 39: 2662–2667, 1980.
 311. Majcherczyk, S., and P. Willshaw. Inhibition of peripheral chemoreceptor activity during superfusion with an alkaline csf of the ventral brainstem surface of the cat (Abstract). J. Physiol. London 231: 26P‐27P, 1973.
 312. Marsh, J. Some factors affecting respiration. Oxford, UK: Oxford Univ., 1982. D. Phil, thesis.
 313. Marsh, J., and P. C. G. Nye. Waveform of chemoreceptor discharge in tube‐breathing cats (Abstract). J. Physiol. London 316: 26P, 1981.
 314. Marsh, J., and P. C. G. Nye. The reflex respiratory effects on cats of breathing through a tube. J. Physiol. London 325: 353–362, 1982.
 315. Marsh, R. H. K., K. R. Lyen, G. A. D. McPherson, S. B. Pearson, and D. J. C. Cunningham. Breath‐by‐breath effects of imposed alternate‐breath oscillations of alveolar CO2. Respir. Physiol. 18: 80–91, 1973.
 316. Masson, R. G., and S. Lahiri. Chemical control of ventilation during hypoxic exercise. Respir. Physiol. 22: 241–262, 1974.
 317. McCloskey, D. I. Carbon dioxide and the carotid body. In: Arterial Chemoreceptors, edited by R. W. Torrance Oxford, UK: Blackwell, 1968, p. 279–292.
 318. Mead, J. Control of respiratory frequency. J. Appl. Physiol. 15: 325–336, 1960.
 319. Metias, E. F., D. J. C. Cunningham, M. G. Howson, E. S. Petersen, and C. B. Wolff. Reflex effects on human breathing of breath‐by‐breath changes of the time profile of alveolar PCO2 during steady hypoxia. Pfluegers Arch. 389: 243–250, 1981.
 320. Michel, C. C. C.s.f. (HCO3) during respiratory acid‐base disturbance (Abstract). J. Physiol. London 170: 66P–67P, 1964.
 321. Michel, C. C., and J. S. Milledge. Respiratory regulation in man during acclimatization to high altitude. J. Physiol. London 168: 631–643, 1963.
 322. Middendorf, T., and H. H. Loeschcke. Analysis of the respiratory control system. In: Acid‐Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System, edited by H. H. Loeschcke Stuttgart, West Germany: Thieme, 1976, p. 190–202.
 323. Miescher‐Rüsch, F. Bemerkungen zur Lehre von den Athembewegungen. Arch. Anat. Physiol. Liepzig 6: 355–380, 1885.
 324. Milhorn, H. T., Jr., and A. C. Guyton. An analog computer analysis of Cheyne‐Stokes breathing. J. Appl. Physiol. 20: 328–333, 1965.
 325. Milhorn, H. T., and W. J. Reynolds. “Exponential peeling” of ventilatory transients following inhalation of 5, 6 and 7% CO2. Respir. Physiol. 28: 75–87, 1976.
 326. Milic‐Emili, J., and F. Cajani. La frequenza dei respiri in funzione della ventilazione, pulmonare durante il ristoro. Boll. Soc. Ital. Biol. Sper. 33: 821–825, 1957.
 327. Milic‐Emili, J., and W. A. Zin. Relationship between neuromuscular respiratory drive and ventilatory output. In: Handbook of Physiology. The Respiratory System. Mechanics of Breathing, edited by P. T. Macklem and J. Mead Bethesda, MD: Am. Physiol. Soc., in press.
 328. Miller, J. P., D. J. C. Cunningham, B. B. Lloyd, and J. M. Young. The transient respiratory effects in man of sudden changes in alveolar CO2 in hypoxia and in high oxygen. Respir. Physiol. 20: 17–31, 1974.
 329. Millhorn, D. E., F. L. Eldridge, and T. G. Waldrop. Effects of medullary area I(s) cooling on respiratory response to muscle stimulation. Respir. Physiol. 49: 41–48, 1982.
 330. Mills, E., and F. F. Jöbsis. Simultaneous measurement of cytochrome a3 reduction and chemoreceptor afferent activity in the carotid body. Nature London 225: 1147–1149, 1970.
 331. Mills, J. N. Hyperpnoea induced by forced breathing. J. Physiol. London 105: 95–116, 1946.
 332. Mitchell, R. A. The regulation of respiration in metabolic acidosis and alkalosis. In: Cerebrospinal Fluid and the Regulation of Ventilation, edited by C. M. Brooks, F. F. Kao, and B. B. Lloyd Oxford, UK: Blackwell, 1965, p. 109–131.
 333. Mitchell, R. A., C. R. Bainton, and G. Edelist. Posthy‐perventilation apnea in awake dogs during metabolic acidosis and hypoxia. J. Appl. Physiol. 21: 1363–1367, 1966.
 334. Mitchell, R. A., and A. J. Berger. Neural regulation of respiration. In: Regulation of Breathing, edited by T. F. Hornbein Basel, Switzerland: Dekker, 1981, p. 541–618.
 335. Mitchell, R. A., C. T. Carman, J. W. Severinghaus, B. W. Richardson, M. M. Singer, and S. Shnider. Stability of cerebrospinal fluid pH in chronic acid‐base disturbances in blood. J. Appl. Physiol. 20: 443–452, 1965.
 336. Mitchell, R. A., H. H. Loeschcke, W. H. Massion, and J. W. Severinghaus. Respiratory responses mediated through superficial chemosensitive areas on the medulla. J. Appl. Physiol. 18: 523–533, 1963.
 337. Mitchell, R. A., and M. M. Singer. Respiration and cerebrospinal fluid pH in metabolic acidosis and alkalosis. J. Appl. Physiol. 20: 905–911, 1965.
 338. Neil, E. Discussion. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd Oxford, UK: Blackwell, 1963, p. 201.
 339. Neil, E., and N. Joels. The carotid glomus sensory mechanism. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd Oxford, UK: Blackwell, 1963, p. 163–171.
 340. Newsom Davis, J., and D. T. Stagg. Interrelationships of the volume and time components of individual breaths in resting man. J. Physiol. London 245: 481–498, 1975.
 341. Nielsen, M. Untersuchungen über die Atemregulation beim Menschen, besonders mit Hinblick auf die Art des chemischen Reizes. Skand. Arch. Physiol. 74, Suppl. 10: 87–208, 1936.
 342. Nielsen, M., and H. Smith. Studies on the regulation of respiration in acute hypoxia. Acta Physiol. Scand. 24: 293–313, 1952.
 343. Nye, P. C. G., M. A. Hanson, and R. W. Torrance. The effect on breathing of abruptly stopping carotid body discharge. Respir. Physiol. 46: 309–326, 1981.
 344. Nye, P. C. G., and J. Marsh. Ventilation and carotid chemoreceptor discharge during venous CO2 loading via the gut. Respir. Physiol. 50: 335–350, 1982.
 345. Olievier, C. N., A. Berkenbosch, J. H. G. M. van Beek, J. de Goede, and P. H. Quanjer. Hypoxia, cerebrospinal fluid PCO2 and central depression of ventilation. Bull. Eur. Physio‐pathol. Respir. 18, Suppl. 4: 165–172, 1982.
 346. Olievier, C. N., A. Berkenbosch, and J. de Goede. Effect of temperature on the ventilatory response curve to carbon dioxide in anaesthetized cats. Respir. Physiol. 47: 365–377, 1982.
 347. Otey, E. S., and A. B. Otis. Hypocapnia as a stimulus to breathing during hypoxia (Abstract). Federation Proc. 21: 448, 1962.
 348. Otis, A. B., W. O. Fenn, and H. Rahn. Mechanics of breathing in man. J. Appl. Physiol. 2: 592–607, 1950.
 349. Ou, L. C., and S. M. Tenney. The role of brief hypocapnia in the ventilatory response to CO2 with hypoxia. Respir. Physiol. 28: 333–346, 1976.
 350. Padget, P. The respiratory response to carbon dioxide. Am. J. Physiol. 83: 384–394, 1928.
 351. Pappenheimer, J. R., V. Fencl, S. R. Heisey, and D. Held. Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am. J. Physiol. 208: 436–450, 1965.
 352. Parker, T. K., P. G. C. Nye, P. J. Stoll, and R. E. Burger. Respiratory response of intact Gallus domesticus to sinusoidally varying inhaled carbon dioxide. Comput. Programs Biomed. 6: 101–107, 1976.
 353. Patrick, J. M., and A. Howard. The influence of age, sex, body size and lung size on the control and pattern of breathing during CO2 inhalation in Caucasians. Respir. Physiol. 16: 337–350, 1972.
 354. Patrick, J. M., and S. B. Pearson. β‐Adrenoceptor blockade and ventilation in man. Br. J. Clin. Pharmacol. 10: 624–625, 1980.
 355. Pearson, S. B., and D. J. C. Cunningham. Some observations on the relation between ventilation tidal volume and frequency in man in various steady and transient states. Acta Neurobiol. Exp. 33: 177–188, 1973.
 356. Pearson, S. B., and J. R. Heath. The effects of sustained lung inflation on the pattern of breathing in man. Clin. Sci. 60: 667–674, 1981.
 357. Perkins, J. F., A. Buchthal, D. B. Domizi, J. Schafer, and S. Shapiro. Lack of influence of changes in arterial PCO2 on ventilatory response to a constant stimulus at the carotid bodies (Abstract). Federation Proc. 25: 389, 1966.
 358. Perret, C. Hyperoxie et régulation de la ventilation durant l'exercice musculaire. Helv. Physiol. Pharmacol. Acta 18: 72–97, 1960.
 359. Petersen, E. S. Studies of the pattern of breathing—mainly in man. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 248–257.
 360. Petersen, E. S., and H. Vejby‐Christensen. Effects of body temperature on ventilatory response to hypoxia and breathing pattern in man. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 492–500, 1977.
 361. Petersen, E. S., B. J. Whipp, D. B. Drysdale, and D. J. C. Cunningham. Carotid arterial blood‐gas oscillations and the phase of the respiratory cycle during exercise in man: testing a model. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri New York: Plenum, 1978, p. 335–342.
 362. Pflüger, E. Ueber die Ursache der Athembewegungen, sowie der Dyspnoë und Apnoë. Pfluegers Arch. Gesamte Physiol. Meschen Tiere 1: 61–106, 1868.
 363. Phillipson, E. A., G. Bowes, E. R. Townsend, J. Duffin, and J. D. Cooper. Carotid chemoreceptors in ventilatory responses to changes in venous CO2 load. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1398–1403, 1981.
 364. Phillipson, E. A., G. Bowes, E. R. Townsend, J. Duffin, and J. D. Cooper. Role of metabolic CO2 production in ventilatory response to steady‐state exercise. J. Clin. Invest. 68: 768–774, 1981.
 365. Phillipson, E. A., J. Duffin, and J. D. Cooper. Critical dependence of respiratory rhythmicity on metabolic CO2 load. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 45–54, 1981.
 366. Pingree, B. J. W. Acid‐base and respiratory changes after prolonged exposure to 1% carbon dioxide. Clin. Sci. Mol. Med. 52: 67–74, 1977.
 367. Plaas‐Link, A. Die Wirkung von arteriellen PCO2 Oszillationen auf die Atmung. Bochum, West Germany: Ruhr Universität, 1980. Doctoral thesis.
 368. Plaas‐Link, A., and H. H. Loeschcke. The response characteristic of the glomus receptors to small variations in PCO2. Pfluegers Arch. 389: R53, 1981.
 369. Plaas‐Link, A., and H. H. Loeschcke. The response characteristic of the peripheral chemoreceptors and their physiological relevance. In: Central Neurone Environment and the Control Systems of Breathing and Circulation, edited by M. E. Schlaefke, H. P. Koepchen, and W. R. Koepchen See. Heidelberg: Springer‐Verlag, 1983, p. 96–101.
 370. Plum, F., and H. W. Brown. Hypoxic‐hypercapnic interaction in subjects with bilateral cerebral dysfunction. J. Appl. Physiol. 18: 1139–1145, 1963.
 371. Pokorski, M., and S. Lahiri. Contribution of peripheral and central chemosensory mechanisms to ventilatory effects of metabolic acid‐base changes in the cat. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 99–114.
 372. Pontén, U., and B. K. Siesjö. Gradients of CO2 tension in the brain. Acta Physiol. Scand. 67: 129–140, 1966.
 373. Priban, I. P. An analysis of some short‐term patterns of breathing in man at rest. J. Physiol. London 166: 425–434, 1963.
 374. Pugh, L. G. C. E. Resting ventilation and alveolar air on Mount Everest: with remarks on the relation of barometric pressure to altitude in mountains. J. Physiol. London 135: 590–612, 1957.
 375. Rahn, H., and W. O. Fenn. A Graphical Analysis of the Respiratory Gas Exchange. The O2‐CO2 Diagram. Washington, DC: Am. Physiol. Soc., 1955.
 376. Rahn, H., and A. B. Otis. Man's respiratory response during and after acclimatization to high altitude. Am. J. Physiol. 157: 445–462, 1949.
 377. Read, D. J. C., and J. Leigh. Blood‐brain tissue PCO2 relationships and ventilation during rebreathing. J. Appl. Physiol. 23: 53–70, 1967.
 378. Rebuck, A. S., J. R. A. Rigg, and N. A. Saunders. Respiratory frequency response to progressive isocapnic hypoxia. J. Physiol. London 258: 19–31, 1976.
 379. Rebuck, A. S., A. S. Slutsky, and C. K. Mahutte. A mathematical expression to describe the ventilatory response to hypoxia and hypercapnia. Respir. Physiol. 31: 107–116, 1977.
 380. Reeves, R. B. An imidazole alphastat hypothesis for vertebrate acid‐base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir. Physiol. 14: 219–236, 1972.
 381. Reischl, P., and D. M. Stavert. Arterial CO2 response to low levels of inspired CO2 in awake beagle dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 672–676, 1982.
 382. Remmers, J. E., and D. Bartlett, Jr. Reflex control of expiratory airflow and duration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 80–87, 1977.
 383. Reynolds, W. J., and H. T. Milhorn, Jr. Transient ventilatory response to hypoxia with and without controlled alveolar PCO2. J. Appl. Physiol. 35: 187–196, 1973.
 384. Reynolds, W. J., H. T. Milhorn, Jr., and G. H. Holloman, Jr. Transient ventilatory response to graded hypercapnia in man. J. Appl. Physiol. 33: 47–54, 1972.
 385. Riedstra, J. W. Influence of central and peripheral PCO2 (pH) on the ventilatory response to hypoxic chemoreceptor stimulation. Acta Physiol. Pharmacol. Neerl. 12: 407–452, 1963.
 386. Robbins, P. A. Sinusoidal forcing of the alveolar gases: investigation of the regulation of respiration in man. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 322–329.
 387. Robbins, P. A. The ventilatory response of the human respiratory system to sine waves of alveolar carbon dioxide and hypoxia. J. Physiol. London 350: 461–474, 1984.
 388. Robbins, P. A., G. D. Swanson, and M. G. Howson. A prediction‐correction scheme for forcing alveolar gases along certain time courses. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1353–1357, 1982.
 389. Robbins, P. A., G. D. Swanson, A. J. Micco, and W. P. Schubert. A fast gas‐mixing system for breath‐to‐breath respiratory control studies. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1358–1362, 1982.
 390. Saito, K., Y. Honda, and N. Hasumura. Evaluation of respiratory response to changes in PCO2 and hyrogen ion concentration of arterial blood in rabbits and dogs. Jpn. J. Physiol. 110: 634–645, 1960.
 391. Saunders, K. B. Oscillations of arterial CO2 tension in a respiratory model: some implications for the control of breathing in exercise. J. Theor. Biol. 84: 163–179, 1980.
 392. Saunders, K. B., H. N. Bali, and E. R. Carson. A breathing model of the respiratory system: the controlled system. J. Theor. Biol. 84: 135–161, 1980.
 393. Saunders, K. B., M. R. Partridge, and A. C. Watson. Inhalation of CO2 by a constant‐inflow technique at rest and during exercise. In: Exercise Bioenergetics and Gas Exchange, edited by P. Cerretelli and B. J. Whipp Amsterdam: Elsevier/North‐Holland, 1980, p. 223–234.
 394. Saunders, N. A., M. F. Betts, L. D. Pengelly, and A. S. Rebuck. Changes in lung mechanics induced by acute isocapnic hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 413–419, 1977.
 395. Scheid, P., and J. Piiper. Blood/gas equilibrium of carbon dioxide in lungs. A critical review. Respir. Physiol. 39: 1–31, 1980.
 396. Schlaefke, M. E., W. R. See, A. Herker‐See, and H. H. Loeschcke. Respiratory response to hypoxia and hypercapnia after elimination of central chemosensitivity. Pfluegers Arch. 381: 241–248, 1979.
 397. Sears, T. A., A. J. Berger, and E. A. Phillipson. Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives. Nature London 299: 728–730, 1982.
 398. Severinghaus, J. W. Proposed standard determination of ventilatory responses to hypoxia and hypercapnia in man. Chest 70 Suppl.: 129–131, 1976.
 399. Severinghaus, J. W., R. A. Mitchell, B. W. Richardson, and M. M. Singer. Respiratory control at high altitude suggesting active transport regulation of CSF pH. J. Appl. Physiol. 18: 1155–1166, 1963.
 400. Sheldon, M. I., and J. F. Green. Evidence for pulmonary CO2 chemosensitivity: effects on ventilation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1192–1197, 1982.
 401. Sherrington, C. S. The Integrative Action of the Nervous System. 2nd Ed. London: Cambridge Univ. Press, 1947.
 402. Smith, A. C., J. M. K. Spalding, and W. E. Watson. Ventilation volume as a stimulus to spontaneous ventilation after prolonged artificial ventilation. J. Physiol. London 160: 22–31, 1962.
 403. Smith, C. A., and R. H. Kellogg. Ventilatory responses of goats to transient changes in CO2 and O2 during acute hypoxia. Respir. Physiol. 24: 163–172, 1975.
 404. Sørensen, S. C., and J. C. Cruz. Ventilatory response to a single breath of CO2 in O2 in normal man at sea level and high altitude. J. Appl. Physiol. 27: 186–190, 1969.
 405. Stafford, M. J., P. J. Feustel, and J. W. Severinghaus. PCO2 difference between arterial blood and ventral medullary surface chemoreceptors (Abstract). Physiologist 26: A38, 1983.
 406. Steinbrook, R. A., S. Javaheri, R. A. Gabel, J. C. Donovan, D. E. Leith, and V. Fencl. Respiration of chemodenervated goats in acute metabolic acidosis. Respir. Physiol. 56: 51–60, 1984.
 407. Stewart, G. N. Researches on the circulation time and on the influences which affect it. IV. The output of the heart. J. Physiol. London 22: 159–183, 1897.
 408. Stoll, P. J. Respiratory system analysis based on sinusoidal variations of CO2 in inspired air. J. Appl. Physiol. 27: 389–399, 1969.
 409. Stremel, R. W., D. J. Huntsman, R. Casaburi, B. J. Whipp, and K. Wasserman. Control of ventilation during intravenous CO2 loading in the awake dog. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 311–316, 1978.
 410. Swanson, A. G., and H. Rosengren. Cerebrospinal fluid buffering during acute experimental respiratory acidosis. J. Appl. Physiol. 17: 812–814, 1962.
 411. Swanson, G. D. Dynamic Forcing in the Study of the Human Respiratory System. Stanford, CA: Stanford Univ. Press, 1972. PhD thesis.
 412. Swanson, G. D., and J. W. Bellville. Hypoxic‐hypercapnic interaction in human respiratory control. J. Appl. Physiol. 36: 480–487, 1974.
 413. Swanson, G. D., and J. W. Bellville. Step changes in endtidal CO2: methods and implications. J. Appl. Physiol. 39: 377–385, 1975.
 414. Tenney, S. M., and J. G. Brooks III. Carotid bodies, stimulus interaction, and ventilatory control in unanesthetized goats. Respir. Physiol. 1: 211–224, 1966.
 415. Tenney, S. M., and L. C. Ou. Ventilatory response of decorticate and decerebrate cats to hypoxia and CO2. Respir. Physiol. 29: 81–92, 1977.
 416. Tenney, S. M., J. E. Remmers, and J. C. Mithoefer. Interaction of CO2 and hypoxic stimuli on ventilation at high altitude. Q. J. Exp. Physiol. 48: 192–201, 1963.
 417. Tenney, S. M., P. Scotto, L. C. Ou, D. Bartlett, Jr., and J. E. Remmers. Suprapontine influences on hypoxic ventilatory control. In: High Altitude Physiology: Cardiac and Respiratory Aspects, edited by R. Porter and J. Knight Edinburgh: Churchill Livingstone, 1971, p. 89–98. (CIBA Found. Symp.).
 418. Thompson, J. P. Analysis of Respiratory Control Using Sinusoidally Varying Inspired Carbon Dioxide. Seattle, WA: Univ. of Washington, 1962. Masters thesis.
 419. Torrance, R. W. Prolegomena. In: Arterial Chemoreceptors, edited by R. W. Torrance Oxford, UK: Blackwell, 1968, p. 1–40.
 420. Wade, J. G., C. D. Larson, Jr., R. F. Hickey, W. K. Ehrenfeld, and J. W. Severinghaus. Effect of carotid endarterectomy on carotid chemoreceptor and baroreceptor function in man. N. Engl. J. Med. 282: 823–829, 1970.
 421. Walter, F. Untersuchungen über die Wirkung der Säuren auf den thierischen Organismus. Arch. Exp. Pathol. Pharmacol. 7: 148–178, 1877.
 422. Ward, S. A. Some factors affecting respiration in man. Oxford, UK: Oxford Univ., 1974. D. Phil. thesis.
 423. Ward, S. A. The effects of sudden airway hypercapnia on the initiation of exercise hyperpnoea in man. J. Physiol. London 296: 203–214, 1979.
 424. Ward, S. A., and D. J. C. Cunningham. The relation between hypoxia and CO2‐induced reflex alternation of breathing in man. Respir. Physiol. 29: 363–378, 1977.
 425. Ward, S. A., and D. J. C. Cunningham. Separation of the inspiratory and expiratory reflex effects of alternate‐breath oscillation of PaCO2 during hypoxia. Respir. Physiol. 29: 379–390, 1977.
 426. Ward, S. A., D. B. Drysdale, D. J. C. Cunningham, and E. S. Petersen. Inspiratory‐expiratory responses to alternate‐breath oscillation of PaCO2 and PaO2. Respir. Physiol. 36: 311–325, 1979.
 427. Warren, C. B. M. Alveolar air on Mount Everest (Abstract). J. Physiol. London 96: 34P–35P, 1939.
 428. Wasserman, K., B. J. Whipp, R. Casaburi, D. J. Huntsman, J. Castagna, and R. Lugliani. Regulation of arterial PCO2 during intravenous CO2 loading. J. Appl. Physiol. 38: 651–656, 1975.
 429. Weil, J. V., E. Byrn‐Quinn, I. E. Sodal, J. S. Kline, R. E. McCullough, and G. F. Filley. Augmentation of chemosensitivity during mild exercise in normal man. J. Appl. Physiol. 33: 813–819, 1972.
 430. Weissman, M. L., B. J. Whipp, D. J. Huntsman, and K. Wasserman. Role of neural afferents from working limbs in exercise hyperpnea. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 49: 239–248, 1980.
 431. West, J. B., P. H. Hackett, K. H. Maret, J. S. Milledge, R. M. Peters, Jr., C. J. Pizzo, and R. M. Winslow. Pulmonary gas exchange on the summit of Mount Everest. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 678–687, 1983.
 432. Whipp, B. J. Ventilatory control during exercise in humans. Ann. Rev. Physiol. 45: 393–413, 1983.
 433. Wichser, J., and H. Kazemi. CSF bicarbonate regulation in respiratory acidosis and alkalosis. J. Appl. Physiol. 38: 504–512, 1975.
 434. Widdicombe, J. G., and A. Winning. Effects of hypoxia, hypercapnia and changes in body temperature on the pattern of breathing in cats. Respir. Physiol. 21: 203–221, 1974.
 435. Wiemer, W., H. Winterstein, P. Kiwull, and N. Ott. Interaction of intracranial and extracranial respiratory mechanisms. In: Cerebrospinal Fluid and the Regulation of Ventilation, edited by C. M. Brooks, F. F. Kao, and B. B. Lloyd Oxford, UK: Blackwell, 1965, p. 303–321.
 436. Winterstein, H. Die Regulierung der Atmung durch das Blut. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 138: 167–184, 1911.
 437. Winterstein, H. Die Reaktionstheorie der Atmungsregulation. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 187: 293–298, 1921.
 438. Wolff, C. B. The effects on breathing of alternate breaths of air and a carbon dioxide rich gas mixture in anaesthetised cats. J. Physiol. London 268: 483–491, 1977.
 439. Wolff, C. B. Normal ventilation in chronic hypoxia (Abstract). J. Physiol. London 308: 118P–119P, 1980.
 440. Wolff, C. B. Respiratory oscillations in health and disease. In: Control of Respiration, edited by D. J. Pallot Beckenham, UK: Croom Helm, 1983, chapt. 7, p. 222–275.
 441. Yamamoto, W. S. Mathematical analysis of the time course of alveolar CO2. J. Appl. Physiol. 15: 215–219, 1960.
 442. Yamamoto, W. S., and M. W. Edwards, Jr. Homeostasis of carbon dioxide during intravenous infusion of carbon dioxide. J. Appl. Physiol. 15: 807–818, 1960.
 443. Yamashiro, S. M., and F. S. Grodins. Respiratory cycle optimization in exercise. J. Appl. Physiol. 35: 522–525, 1973.
 444. Yokota, H., and F. Kreuzer. Alveolar to arterial transmission of oxygen fluctuations due to respiration in anesthetized dogs. Pfluegers Arch. 340: 291–306, 1973.
 445. Young, J. M. Some factors affecting respiration in man. Oxford, UK: Oxford Univ., 1970. D. Phil. thesis.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

D. J. C. Cunningham, P. A. Robbins, C. B. Wolff. Integration of Respiratory Responses to Changes in Alveolar Partial Pressures of CO2 and O2 and in Arterial pH. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 475-528. First published in print 1986. doi: 10.1002/cphy.cp030215