Comprehensive Physiology Wiley Online Library

Blood Oxygen Transport

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Anatomy of the Hemoglobin Molecule
2 Molecular Basis for Cooperative Oxygen Binding
3 Allosteric Modification of Oxygen Binding
3.1 Protons
3.2 Organic Phosphates
3.3 Interaction Between Hemoglobin and Carbon Dioxide
4 Oxygen‐Hemoglobin Equilibrium Curve
4.1 General Aspects
4.2 Methodological Aspects
5 Oxygen Transport of Hemoglobin During Development
5.1 Embryonic Period
5.2 Fetal Period
5.3 Postnatal Period
6 Effects of Hypoxic Hypoxia
6.1 Animals Residing at High Altitude
6.2 Natives at High Altitude
6.3 Sojourners at High Altitude
7 Kinetics of Oxygen Binding and Dissociation
7.1 Combination and Dissociation Velocity of the First and Last Oxygen‐Binding Step
7.2 Overall Rates of Oxygen Association and Dissociation in Hemoglobin Solutions
7.3 Comparison of Oxygen Combination and Dissociation Velocity in Hemoglobin Solutions and Red Blood Cells
8 Pathological Hemoglobins
8.1 Hemoglobins With Altered Oxygen Affinity
Figure 1. Figure 1.

Oxygen‐binding curves of human Mb 1 and Hb 2 under physiological conditions (whole blood, plasma pH = 7.4, 37°C).

Figure 2. Figure 2.

Scheme of RBC glycolysis. The 2,3‐diphosphoglycerate (2,3‐DPG) accumulates with an increased activity of phosphofructokinase (PFK) and bisphosphoglycerate mutase [diphosphoglycerate mutase (DPGM)] (solid arrows) and decreased activity of pyruvate kinase (PK) (broken arrow).

Adapted from Jelkmann and Bauer 137
Figure 3. Figure 3.

Binding site for 2,3‐DPG in human deoxygenated Hb.

From Arnone 6. Reprinted by permission from Nature, copyright 1972, Macmillan Journals Limited
Figure 4. Figure 4.

Comparison of intrinsic O2 affinity and effect of allosteric effectors on cat Hb A and human Hb. A: cat Hb. 10 mmol Cl, O2 half‐saturation pressure of Hb (P50) = 15.6 Torr; 100 mmol Cl, P50 = 29.2 Torr; partial pressure of CO2 (Pco2) = 40 Torr, P50 = 36.7 Torr. B: human Hb. 10 mmol Cl, P50 = 5.6 Torr; 100 mmol Cl, P50 = 11.5 Torr; 1 mol 2,3‐DPG/mol Hb, P50 = 24 Torr; Pco2 = 40 Torr, P50 = 27 Torr; human Mb. Experimental conditions for all data: pH 7.2 and 37°C.

Figure 5. Figure 5.

Relationship between P50 of whole blood (37°C, Pco2 = 40 Torr) and 2,3‐DPG concentration of human RBCs. Solid line, P50 determined at plasma pH (pHe) of 7.4. Broken line, P50 corrected to intracellular pH (pHi) of 7.2.

From Duhm 81
Figure 6. Figure 6.

Effect of Pco2 on Bohr effect of sheep Hb B at 37°C and ionic strength of 0.16.

From Baumann, Bauer, and Haller 35
Figure 7. Figure 7.

Change of P50 of RBCs (pH 7.4, 37°C) during development of rabbit and rat embryos and fetuses. Closed circles, P50 values of adult animals.

Adapted from Jelkmann and Bauer 135 and Gilman 104


Figure 1.

Oxygen‐binding curves of human Mb 1 and Hb 2 under physiological conditions (whole blood, plasma pH = 7.4, 37°C).



Figure 2.

Scheme of RBC glycolysis. The 2,3‐diphosphoglycerate (2,3‐DPG) accumulates with an increased activity of phosphofructokinase (PFK) and bisphosphoglycerate mutase [diphosphoglycerate mutase (DPGM)] (solid arrows) and decreased activity of pyruvate kinase (PK) (broken arrow).

Adapted from Jelkmann and Bauer 137


Figure 3.

Binding site for 2,3‐DPG in human deoxygenated Hb.

From Arnone 6. Reprinted by permission from Nature, copyright 1972, Macmillan Journals Limited


Figure 4.

Comparison of intrinsic O2 affinity and effect of allosteric effectors on cat Hb A and human Hb. A: cat Hb. 10 mmol Cl, O2 half‐saturation pressure of Hb (P50) = 15.6 Torr; 100 mmol Cl, P50 = 29.2 Torr; partial pressure of CO2 (Pco2) = 40 Torr, P50 = 36.7 Torr. B: human Hb. 10 mmol Cl, P50 = 5.6 Torr; 100 mmol Cl, P50 = 11.5 Torr; 1 mol 2,3‐DPG/mol Hb, P50 = 24 Torr; Pco2 = 40 Torr, P50 = 27 Torr; human Mb. Experimental conditions for all data: pH 7.2 and 37°C.



Figure 5.

Relationship between P50 of whole blood (37°C, Pco2 = 40 Torr) and 2,3‐DPG concentration of human RBCs. Solid line, P50 determined at plasma pH (pHe) of 7.4. Broken line, P50 corrected to intracellular pH (pHi) of 7.2.

From Duhm 81


Figure 6.

Effect of Pco2 on Bohr effect of sheep Hb B at 37°C and ionic strength of 0.16.

From Baumann, Bauer, and Haller 35


Figure 7.

Change of P50 of RBCs (pH 7.4, 37°C) during development of rabbit and rat embryos and fetuses. Closed circles, P50 values of adult animals.

Adapted from Jelkmann and Bauer 135 and Gilman 104
References
 1. Ackers, G. K., M. L. Johnson, F. C. Mills, R. Halvorsen, and S. Shapiro. The linkage between oxygenation and sub‐unit dissociation in human hemoglobin. Consequences for the analysis of oxygenation curves. Biochemistry 14: 5128–5134, 1975.
 2. Adair, G. S. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J. Biol. Chem. 63: 529–545, 1925.
 3. Adamson, J. W., J. T. Parer, and G. Stamatoyannopoulos. Erythrocytosis associated with hemoglobin Rainier: oxygen equilibria and marrow regulation. J. Clin. Invest. 48: 1376–1386, 1969.
 4. Antonini, E., and M. Brunori. Hemoglobin and Myoglobin in Their Reactions With Ligands. Amsterdam: North‐Holland, 1971.
 5. Antonini, E., T. M. Schuster, M. Brunori, and J. Wyman. The kinetics of the Bohr effect in the reaction of human hemoglobin with carbon monoxide. J. Biol. Chem. 240: 2262–2264, 1965.
 6. Arnone, A. X‐ray diffraction study of binding of 2,3‐diphosphoglycerate to human deoxyhaemoglobin. Nature Lond. 237: 146–149, 1972.
 7. Arnone, A. X‐ray studies of the interaction of CO2 with human deoxyhaemoglobin. Nature Lond. 247: 143–144, 1974.
 8. Arnone, A., R. E. Benesch, and R. Benesch. Structure of human deoxyhemoglobin specifically modified from pyridoxal compounds. J. Mol. Biol. 115: 627–642, 1977.
 9. Arnone, A., and M. F. Perutz. Structure of inositol hexa‐phosphate‐human deoxyhemoglobin complex. Nature Lond. 249: 34–36, 1974.
 10. Asakura, T., and P.‐W. Lau. Sequence of oxygen binding by hemoglobin. Proc. Natl. Acad. Sci. USA 75: 5462–5465, 1978.
 11. Astrup, P., K. Engel, J. W. Severinghaus, and E. Munson. The influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood. Scand. J. Clin. Lab. Invest. 17: 515–523, 1965.
 12. Atha, D. H., M. L. Johnson, and A. F. Riggs. The linkage between oxygenation and subunit association in human hemoglobin Kansas. Concentration dependence of the oxygen binding equilibria. J. Biol. Chem. 254: 12390–12398, 1979.
 13. Bailey, J. E., J. G. Beetlestone, and D. H. Irvine. Reactivity differences between hemoglobins. XVII. The variability of the Bohr effect between species and the effect of 2,3‐diphosphoglyceric acid on the Bohr effect. J. Chem. Soc. A 5: 756–762, 1970.
 14. Baldwin, J. M. Structure and function of haemoglobin. Prog. Biophys. Mol. Biol. 29: 225–320, 1975.
 15. Baldwin, J. M. The structure of human carbonmonoxy hemoglobin at 2.7 Å resolution. J. Mol. Biol. 136: 103–128, 1980.
 16. Baldwin, J. M., and C. Chothia. Hemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J. Mol. Biol. 129: 175–220, 1979.
 17. Banchero, N., and R. F. Grover. Effect of different levels of simulated altitude on O2 transport in Ilama and sheep. Am. J. Physiol. 222: 1239–1245, 1972.
 18. Bartels, H. Prenatal Respiration. Amsterdam: North‐Holland, 1970.
 19. Bartels, H., R. Bartels, R. Baumann, R. Fons, K.‐D. Jürgens, and P. Wright. Blood oxygen transport and organ weights of two shrew species (S. etruscus and C. russula). Am. J. Physiol. 236 (Regulatory Integrative Comp. Physiol. 5): R221–R224, 1979.
 20. Bartels, H., and H. Harms. Sauerstoffdissociationskurven des Blutes von Säugetieren. Pfluegers Arch. 268: 334–365, 1959.
 21. Bartels, H., P. Hilpert, K. Barbey, K. Betke, K. Riegel, E. M. Lang, and J. Metcalfe. Respiratory functions of blood of the yak, llama, camel, Dybowski deer, and African elephant. Am. J. Physiol. 205: 331–336, 1963.
 22. Bartlett, G. R. Phosphate compounds in red cells of reptiles, amphibians and fish. Comp. Biochem. Physiol. A Comp. Physiol. 55: 211–214, 1976.
 23. Battaglia, F. C., W. Bowes, H. R. McGaughey, E. L. Makowski, and G. Meschia. The effect of fetal exchange transfusions with adult blood upon fetal oxygenation. Pediatr. Res. 3: 60–65, 1969.
 24. Bauer, C. Reduction of the carbon dioxide affinity of human haemoglobin solutions by 2,3‐diphosphoglycerate. Respir. Physiol. 10: 10–19, 1970.
 25. Bauer, C., R. Baumann, U. Engels, and B. Pacyna. The carbon dioxide affinity of various human hemoglobins. J. Biol. Chem. 250: 2173–2176, 1975.
 26. Bauer, C., W. Jelkmann, and W. Moll. High oxygen affinity of maternal blood reduces fetal weight in rats. Respir. Physiol. 43: 169–178, 1981.
 27. Bauer, C., R. A. Klocke, D. Kamp, and R. E. Forster. Effect of 2,3‐diphosphoglycerate and H+ on the reaction of O2 and hemoglobin. Am. J. Physiol. 224: 838–847, 1973.
 28. Bauer, C., I. Ludwig, and M. Ludwig. Different effects of 2,3‐diphosphoglycerate and adenosine triphosphate on the oxygen affinity of adult and foetal haemoglobin. Life Sci. 7: 1339–1343, 1968.
 29. Bauer, C., H. S. Rollema, H. W. Till, and G. Braunitzer. Phosphate binding by llama and camel hemoglobin. J. Comp. Physiol. 136: 67–70, 1980.
 30. Bauer, C., R. Tamm, D. Petschow, R. Bartels, and H. Bartels. Oxygen affinity and allosteric effects of embryonic mouse haemoglobins. Nature Lond. 257: 333–334, 1975.
 31. Baumann, F. H., and R. Baumann. A comparative study of the respiratory properties of bird blood. Respir. Physiol. 31: 333–343, 1977.
 32. Baumann, R. Effect of CO2 binding to hemoglobin on the reactivity of the SH groups at position β93. Biochem. Biophys. Res. Commun. 61: 845–851, 1974.
 33. Baumann, R. Interaction between hemoglobins, CO2 and anions. In: Biophysics and Physiology of Carbon Dioxide, edited by C. Bauer, G. Gros, and H. Bartels. Berlin: Springer‐Verlag, 1980, p. 114–121.
 34. Baumann, R., C. Bauer, and H. Bartels. Influence of chronic and acute hypoxia on oxygen affinity and red cell 2,3‐diphosphoglycerate of rats and guinea pigs. Respir. Physiol. 11: 135–144, 1971.
 35. Baumann, R., C. Bauer, and E. A. Haller. Oxygen‐linked CO2 transport in sheep blood. Am. J. Physiol. 229: 334–339, 1975.
 36. Baumann, R., C. Bauer, and A. M. Rathschlag‐Schaefer. Causes of the postnatal decrease of blood oxygen affinity in lambs. Respir. Physiol. 15: 151–158, 1972.
 37. Baumann, R., and E. A. Haller. Cat hemoglobin A and B: differences in the interaction with C1‐, phosphate, and CO2. Biochem. Biophys. Res. Commun. 65: 220–227, 1975.
 38. Baumann, R., F. Teischel, R. Zoch, and H. Bartels. Changes in red cell 2,3‐diphosphoglycerate concentration as cause of the postnatal decrease of pig blood oxygen affinity. Respir. Physiol. 19: 153–161, 1973.
 39. Beer, R., E. Doll, and J. Wenner. Die Verschiebung der Sauerstoffdissoziationskurve des Blutes von Säuglingen wäh‐rend der ersten Lebensmonate. Pfluegers Arch. 265: 526–540, 1958.
 40. Bellingham, A. J. The physiological significance of the Hill parameter “n.” Scand. J. Haematol. 9: 552–556, 1972.
 41. Bellingham, A. J. Haemoglobins with altered oxygen affinity. Br. Med. Bull. 32: 234–238, 1976.
 42. Benesch, R., and R. E. Benesch. The effect of organic phosphates from the human erythrocyte on the allosteric properties of human hemoglobin. Biochem. Biophys. Res. Commun. 26: 162–167, 1967.
 43. Benesch, R., R. E. Benesch, and C. I. Yu. Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc. Natl. Acad. Sci. USA 59: 526–532, 1968.
 44. Benesch, R., G. MacDuff, and R. E. Benesch. Determination of oxygen equilibria with a versatile new tonometer. Anal. Biochem. 11: 81–87, 1965.
 45. Benesch, R. E., R. Benesch, R. D. Renthal, and N. Maeda. Affinity labeling of the polyphosphate binding site of hemoglobin. Biochemistry 11: 3576–3582, 1972.
 46. Benesch, R. E., R. Benesch, and C. I. Yu. The oxygenation of hemoglobin in the presence of 2,3‐diphosphoglycerate. Effect of temperature, pH, ionic strength, and hemoglobin concentration. Biochemistry 8: 2567–2571, 1969.
 47. Benesch, R. E., R. Edalji, and R. Benesch. Reciprocal interaction of hemoglobin with oxygen and protons. The influence of allosteric polyanions. Biochemistry 16: 2594–2597, 1977.
 48. Benesch, R. E., and H. Rubin. Interaction of hemoglobin with three ligands: organic phosphates and the Bohr effect. Proc. Natl. Acad. Sci. USA 72: 2465–2467, 1975.
 49. Black, C. P., and S. M. Tenney. Oxygen transport during progressive hypoxia in high‐altitude and sea‐level waterfowl. Respir. Physiol. 39: 217–239, 1980.
 50. Black, J. A., and P. A. Mueggler. Molecular changes which contribute to canine postnatal anemia. Acta Biol. Med. Ger. 40: 645–651, 1981.
 51. Blunt, M. H., J. L. Kitchens, S. M. Mayson, and T. H. Huisman. Red cell 2,3‐diphosphoglycerate and oxygen affinity in newborn goats and sheep. Proc. Soc. Exp. Biol. Med. 138: 800–803, 1971.
 52. Bohr, C. Theoretische Behandlung der quantitativen Verhältnisse bei der Sauerstoffaufnahme der Hemoglobins. Zentralbl. Physiol. 17: 682–691, 1903.
 53. Bohr, C., K. Hasselbalch, and A. Krogh. Über einen in biologischer Beziehung wichtigen Einfluβ, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffspannung ausübt. Scand. Arch. Physiol. 16: 402–412, 1904.
 54. Bonaventura, C., and J. Bonaventura. Competition in oxygen‐linked anion binding to normal and variant human hemoglobins. Hemoglobin 4: 275–289, 1980.
 55. Bonaventura, J., C. Bonaventura, G. Amiconi, L. Tentori, M. Brunori, and E. Antonini. Allosteric interactions in non‐alpha chains isolated from normal human hemoglobin, fetal hemoglobin, and hemoglobin Abbruzzo. J. Biol. Chem. 250: 6278–6281, 1975.
 56. Bonaventura, J., C. Bonaventura, B. Sullivan, G. Ferruzzi, P. R. McCurdy, J. Fox, and W. F. Moo‐Penn. Hemoglobin Providence. Functional consequences of two alterations of the 2,3‐diphosphoglycerate binding site at position β82. J. Biol. Chem. 251: 7563–7571, 1976.
 57. Bonaventura, J., and A. Riggs. Hemoglobin Kansas, a human hemoglobin with a neutral amino acid substitution and an abnormal oxygen equilibrium. J. Biol. Chem. 243: 980–981, 1968.
 58. Briehl, R., and J. F. Hobbs. Ultraviolet difference spectra in hemoglobin. I. Difference spectra in hemoglobin A and their relation to the function of hemoglobin. J. Biol. Chem. 245: 544–554, 1970.
 59. Brunori, M., and E. Antonini. Kinetics of the reaction with oxygen of mixtures of oxy‐ and carbon monoxide hemoglobin. J. Biol. Chem. 247: 4305–4308, 1972.
 60. Brygier, J., S. H. De Bruin, M. K. B. Peter, and H. S. Rollema. The interaction of organic phosphates with human and chicken hemoglobin. Eur. J. Biochem. 60: 379–383, 1975.
 61. Bunn, H. F. Differences in the interaction of 2,3‐diphosphoglycerate with certain mammalian hemoglobins. Science Wash. DC 172: 1049–1050, 1971.
 62. Bunn, H. F., T. B. Bradley, W. E. Davis, J. W. Drysdale, J. F. Burke, W. S. Beck, and M. B. Laver. Structural and functional studies on hemoglobin Bethesda (α2β2145His), a variant associated with compensatory erythrocytosis. J. Clin. Invest. 51: 2299–2309, 1972.
 63. Bunn, H. F., and R. W. Briehl. The interaction of 2,3‐diphosphoglycerate with various human hemoglobins. J. Clin. Invest. 49: 1088–1095, 1970.
 64. Bunn, H. F., B. G. Forget, and H. M. Ranney. Human Hemoglobins. Philadelphia, PA: Saunders, 1977.
 65. Bunn, H. F., and H. Kitchen. Hemoglobin function in the horse: the role of 2,3‐diphosphoglycerate in modifying the oxygen affinity of maternal and fetal blood. Blood 42: 471–479, 1973.
 66. Bursaux, E., A. Freminet, and C. Poyart. Effects of CO2 and diphosphoglycerate on foetal blood affinity for oxygen. Respir. Physiol. 20: 181–189, 1974.
 67. Chanutin, A., and R. R. Curnish. Effect of organic and inorganic phosphate on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys. 121: 96–102, 1967.
 68. Charache, S., and E. A. Murphy. Is placental oxygen transport normal in carriers of high affinity hemoglobins? In: Molecular Interactions of Hemoglobin, edited by D. Labie, C. Poyart, and J. Rosa. Paris: INSERM, 1978, p. 285–294.
 69. Chassin, S. L., W. C. Kruckeberg, and G. J. Brewer. Thermal inactivation differences of phosphofructokinase in erythrocytes from genetically selected high and low DPG rat strains. Biochem. Biophys. Res. Commun. 83: 1306–1311, 1978.
 70. Chiancone, E., J.‐E. Norne, S. Forsen, J. Bonaventura, M. Brunori, E. Antonini, and J. Wyman. Identification of chloride‐binding sites in hemoglobin by nuclear‐magnetic‐resonance quadrupole‐relaxation studies of hemoglobin digests. Eur. J. Biochem. 55: 385–390, 1975.
 71. Chiancone, E., J.‐E. Norne, S. Forsen, A. Mansouri, and K. H. Winterhalter. Anion binding to proteins. NMR quadrupole relaxation study of chloride binding to various human hemoglobins. FEBS Lett. 63: 309–312, 1976.
 72. Christiansen, J., C. G. Douglas, and J. S. Haldane. The absorption and dissociation of carbon dioxide by human blood. J. Physiol. Lond. 48: 244–271, 1914.
 73. Coin, J. T., and J. S. Olson. The rate of oxygen uptake by human red blood cells. J. Biol. Chem. 254: 1178–1190, 1979.
 74. Dahms, T., S. M. Horvath, M. Luzzana, L. Rossi‐Bernardi, F. J. W. Roughton, and G. Stella. The regulation of oxygen affinity of human haemoglobin (Abstract). J. Physiol. Lond. 223: 29P–31P, 1972.
 75. Dawson, T. J., and J. V. Evans. Effect of hypoxia on oxygen transport in sheep with different hemoglobin types. Am. J. Physiol. 210: 1021–1025, 1966.
 76. Dayhoff, M. O. Atlas of Protein Sequence and Structure. Washington, DC: Natl. Biomed. Res. Found., 1975.
 77. De Bruin, S. H., and L. H. M. Janssen. The interaction of 2,3‐diphosphoglycerate with human hemoglobin. Effects on the alkaline and acid Bohr effect. J. Biol. Chem. 248: 2774–2777, 1973.
 78. Delivoria‐Papadopoulos, M., N. P. Roncevic, and F. A. Oski. Postnatal changes in oxygen transport of term, premature and sick infants. The role of red cell 2,3‐diphosphoglycerate and adult hemoglobin. Pediatr. Res. 5: 235–245, 1971.
 79. Dhindsa, D. S., A. S. Hoversland, and J. W. Templeton. Postnatal changes in oxygen affinity and concentrations of 2,3‐diphosphoglycerate in dog blood. Biol. Neonat. 20: 226–235, 1972.
 80. Dolman, D., and S. J. Gill. Membrane‐covered thin‐layer optical cell for gas‐reaction studies of hemoglobin. Anal. Biochem. 87: 127–134, 1978.
 81. Duhm, J. Effects of 2,3‐diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pfluegers Arch. 326: 341–356, 1971.
 82. Duhm, J., and E. Gerlach. On the mechanisms of the hypoxia‐induced increase of 2,3‐diphosphoglycerate in erythrocytes. Studies on rat erythrocytes in vivo and on human erythrocytes in vitro. Pfluegers Arch. 326: 254–269, 1971.
 83. Duhm, J., and H. D. Kim. Effect of the rapid postnatal increase of 2,3‐diphosphoglycerate concentration in erythrocytes on the oxygen affinity of pig blood. In: Erythrocytes, Thrombocytes, Leukocytes. Recent Advances in Membrane and Metabolic Research, edited by E. Gerlach, K. Moser, E. Deutsch, and W. Williams. Stuttgart, FRG: Thieme, 1973, p. 164–167. (2nd Int. Symp., Vienna.)
 84. Duvelleroy, M. A., R. G. Buckles, S. Rosenkaimer, C. Tung, and M. B. Laver. An oxyhemoglobin dissociation analyzer. J. Appl. Physiol. 28: 227–233, 1970.
 85. Eaton, J. W., T. D. Skelton, and E. Berger. Survival at extreme altitude: protective effect of increased hemoglobin‐oxygen affinity. Science Wash. DC 183: 743–744, 1974.
 86. Edalji, R., R. E. Benesch, and R. Benesch. Binding of inositol hexaphosphate to deoxyhemoglobin. J. Biol. Chem. 251: 7720–7721, 1976.
 87. Edwards, M. J., and R. J. Martin. Mixing technique for the oxygen‐hemoglobin equilibrium and Bohr effect. J. Appl. Physiol. 21: 1898–1902, 1966.
 88. Fantoni, A., A. Bank, and P. A. Marks. Globin composition and synthesis of hemoglobins in developing fetal mice erythroid cells. Science Wash. DC 157: 1327–1329, 1967.
 89. Fantoni, A., M. G. Farace, and R. Gambari. Embryonic hemoglobins in man and other mammals. Blood 57: 623–633, 1981.
 90. Fermi, G. Three‐dimensional fourier synthesis of human deoxyhaemoglobin at 2–5 Å resolution: refinement of the atomic model. J. Mol. Biol. 97: 237–256, 1975.
 91. Festa, R. S., and T. Asakura. The use of an oxygen dissociation curve analyzer in transfusion therapy. Transfusion Phila. 19: 107–113, 1979.
 92. Forster, R. E. Rate of gas uptake by red cells. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc, 1964, sect. 3, vol. I, chapt. 32, p. 827–837.
 93. Frier, J. A., and M. F. Perutz. Structure of human foetal deoxyhaemoglobin. J. Mol. Biol. 112: 97–112, 1977.
 94. Fritsch, E. F., R. M. Lawn, and T. Maniatis. Molecular cloning and characterization of the human β‐like globin gene cluster. Cell 19: 959–972, 1980.
 95. Funder, J., and J. O. Wieth. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol. Scand. 68: 234–245, 1966.
 96. Gad‐El‐Hak, M., J. B. Morton, and H. Kutchai. Turbulent flow of red cells in dilute suspensions. Biophys. J. 18: 289–300, 1977.
 97. Gale, R. E., J. B. Clegg, and E. R. Huehns. Human embryonic haemoglobin Gower 1 and Gower 2. Nature Lond. 280: 162–164, 1979.
 98. Garner, M. H., R. A. Bogardt, Jr., and F. R. N. Gurd. Determination of the pK values for the α‐amino groups of human hemoglobin. J. Biol. Chem. 250: 4398–4404, 1975.
 99. Gelin, B. R., and M. Karplus. Mechanism of tertiary structural change in hemoglobin. Proc. Natl. Acad. Sci. USA 74: 801–805, 1977.
 100. Gerber, G., H. Berger, G. R. JÅnig, and S. M. Rapoport. Interaction of haemoglobin with ions. Quantitative description of the state of magnesium adenosine‐5′‐triphosphate, 2,3‐bisphosphoglycerate, and human haemoglobin under simulated intracellular conditions. Eur. J. Biochem. 38: 563–571, 1973.
 101. Gibson, Q. H. The reaction of oxygen with hemoglobin and the kinetic basis of the effect of salt on binding of oxygen. J. Biol. Chem. 245: 3285–3288, 1970.
 102. Gibson, Q. H. The contribution of the α‐ and β‐chains to the kinetics of oxygen binding to and dissociation from hemoglobin. Proc. Natl. Acad. Sci. USA 70: 1–4, 1973.
 103. Gibson, Q. H., F. Kreuzer, E. Meda, and F. J. W. Roughton. The kinetics of human haemoglobin in solution and the red cell at 37°C. J. Physiol. Lond. 129: 65–89, 1955.
 104. Gilman, J. G. Rat embryonic and foetal erythrocytes. Biochem. J. 192: 355–359, 1980.
 105. Gilman, J. G. Red cells of newborn rats have low bisphosphoglyceromutase and high pyruvate kinase activities in association with low 2,3‐bisphosphoglycerate. Biochem. Biophys. Res. Commun. 98: 1057–1062, 1981.
 106. Goodman, M., G. W. Moore, and G. Matsuda. Darwinian evolution in the genealogy of haemoglobin. Nature Lond. 253: 603–608, 1975.
 107. Gray, R. D. The kinetics of the alkaline Bohr effect of human hemoglobin. J. Biol. Chem. 245: 2914–2921, 1970.
 108. Greenwald, I. New type of phosphoric acid isolated from blood; effect of substitution on rotation of α‐glyceric acid. J. Biol. Chem. 63: 339–349, 1925.
 109. Gros, G., H. S. Rollema, and R. E. Forster. The carbamate equilibrium of α‐ and ε‐amino groups of human hemoglobin at 37°C. J. Biol. Chem. 256: 5471–5480, 1981.
 110. Gros, G., H. S. Rollema, W. Jelkmann, H. Gros, C. Bauer, and W. Moll. Net charge and oxygen affinity of human hemoglobin are independent of hemoglobin concentratin. J. Gen. Physiol. 72: 765–773, 1978.
 111. Haab, P. E., J. Piiper, and H. Rahn. Simple method for rapid determination of an O2 dissociation curve of the blood. J. Appl. Physiol. 15: 1148–1149, 1960.
 112. Hall, F. G. Minimal utilizable oxygen and the oxygen dissociation curve of rodents. J. Appl. Physiol. 21: 375–378, 1966.
 113. Hall, F. G., D. B. Dill, and I. S. Guzman Barron. Comparative physiology in high altitudes. J. Cell. Comp. Physiol. 8: 301–313, 1936.
 114. Harkness, D. R., J. Ponce, and V. Grayson. A comparative study on the phosphoglyceric acid cycle in mammalian erythrocytes. Comp. Biochem. Physiol. 28: 129–138, 1969.
 115. Hartridge, H., and F. J. W. Roughton. The kinetics of haemoglobin. II. The velocity with which oxygen dissociates from its combination with haemoglobin. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 104: 395–430, 1923.
 116. Hartridge, H., and F. J. W. Roughton. The kinetics of haemoglobin. III. The velocity with which oxygen combines with reduced haemoglobin. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 107: 654–683, 1925.
 117. Hayashi, A., T. Suzuki, and M. Shin. An enzymatic reduction system for metmyoglobin and methemoglobin, and its application to functional studies. Biochim, Biophys. Acta 310: 309–316, 1973.
 118. Hebbel, R. P., E. M. Berger, and J. W. Eaton. Effect of increased maternal hemoglobin oxygen affinity on fetal growth in the rat. Blood 55: 969–974, 1980.
 119. Hebbel, R. P., J. W. Eaton, R. S. Kronenberg, E. D. Zanjani, L. G. Moore, and E. M. Berger. Human Ilamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity. J. Clin. Invest. 62: 593–600, 1978.
 120. Heidner, E. J., R. C. Ladner, and M. F. Perutz. Structure of horse carbonmonoxyhaemoglobin. J. Mol. Biol. 104: 707–722, 1976.
 121. Henriques, O. M. Über Carbhämoglobin. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 28: 625–689, 1929.
 122. Hill, A. V. The possible effects of aggregation of the molecules of haemoglobin on its dissociation curve. J. Physiol. Lond. 40: iv–vii, 1910.
 123. Hilpert, P., R. G. Fleischmann, D. Kempe, and H. Bartels. The Bohr effect related to blood and erythrocyte pH. Am. J. Physiol. 205: 337–340, 1963.
 124. Holaday, D. A., and M. Verosky. Improved micromanometric methods for the analysis of respiratory gases in plasma and whole blood. J. Lab. Clin. Med. 47: 634–644, 1956.
 125. Huehns, E. R., N. Dance, G. H. Beaven, J. V. Keil, F. Hecht, and A. G. Motulsky. Human embryonic haemoglobins. Nature Lond. 201: 1095–1097, 1964.
 126. Huehns, E. R., and A. M. Farooqui. Oxygen dissociation properties of human embryonic red cells. Nature Lond. 254: 335–337, 1975.
 127. Huestis, W. H., and M. A. Raftery. 19F‐NMR studies of oxygen binding to hemoglobin. Biochem. Biophys. Res. Commun. 49: 1358–1365, 1972.
 128. Hutchison, V. H., H. B. Haines, and G. Engbretson. Aquatic life at high altitude: respiratory adaptations in the Lake Titicaca frog, Telematobius culeus. Respir. Physiol. 27: 115–129, 1976.
 129. Ilgenfritz, G., and T. M. Schuster. Kinetics of oxygen binding to human hemoglobin. Temperature jump relaxation studies. J. Biol. Chem. 249: 2959–2973, 1974.
 130. Imai, K. Analyses of oxygen equilibria of native and chemically modified human adult hemoglobin on the basis of Adair's stepwise oxygenation theory and the allosteric model of Monod, Wyman, and Changeux. Biochemistry 12: 798–807, 1973.
 131. Imai, K., H. Morimoto, M. Kotani, H. Watari, W. Hirata, and M. Kuroda. Studies on the function of abnormal hemoglobins. I. An improved method for automatic measurement of the oxygen equilibrium curve of hemoglobin. Biochim. Biophys. Acta 200: 189–196, 1970.
 132. Imai, K., and T. Yonetani. pH dependence of the Adair constants of human hemoglobin. Nonuniform contribution of successive oxygen bindings to the alkaline Bohr effect. J. Biol. Chem. 250: 2227–2231, 1975.
 133. Jacobasch, G., S. Minakami, and S. M. Rapoport. Glycolysis of the erythrocyte. In: Cellular and Molecular Biology of Erythrocytes, edited by H. Yoshikawa and S. M. Rapoport. Munich, FRG: Urban & Schwarzenberg, 1974.
 134. Jelkmann, W., and C. Bauer. What is the best method to remove 2,3‐diphosphoglycerate from hemoglobin? Anal. Biochem. 75: 382–388, 1976.
 135. Jelkmann, W., and C. Bauer. Oxygen affinity and phosphate compounds of red cells during intrauterine development of rabbits. Pfluegers Arch. 372: 149–156, 1977.
 136. Jelkmann, W., and C. Bauer. Embryonic hemoglobins: dependency of functional characteristics on tetramer composition. Pfluegers Arch. 377: 75–80, 1978.
 137. Jelkmann, W., and C. Bauer. High pyruvate kinase activity causes low concentration of 2,3‐diphosphoglycerate in fetal rabbit red cells. Pfluegers Arch. 375: 189–195, 1978.
 138. Jelkmann, W., and C. Bauer. 2,3‐DPG levels in relation to red cell enzyme activities in rat fetuses and hypoxic newborns. Pfluegers Arch. 389: 61–68, 1980.
 139. Jensen, M., F. A. Oski, D. G. Nathan, and H. F. Bunn. Hemoglobin Syracuse (α2 β2‐143(H21)His → Pro), a new high‐affinity variant detected by special electrophoretic methods. Observations on the auto‐oxidation of normal and variant hemoglobins. J. Clin. Invest: 55: 469–477, 1975.
 140. Johnson, M. E., and C. Ho. Effects of ligands and organic phosphates on functional properties of human adult hemoglobin. Biochemistry 13: 3655–3661, 1974.
 141. Jones, R. T., and T. B. Shih. Hemoglobin variants with altered oxygen affinity. Hemoglobin 4: 243–261, 1980.
 142. Kellett, G. L. Dissociation of haemoglobin into subunits. Ligand‐linked dissociation at neutral pH. J. Mol. Biol. 59: 401–424, 1971.
 143. Kellett, G. L., and H. Gutfreund. Reactions of haemoglobin dimers after ligand dissociation. Nature Lond. 227: 921–926, 1970.
 144. Kiesow, L. A., J. B. Shelton, and J. W. Bless. The determination of O2‐dissociation curves in hemoglobin solutions with a liquid fluorocarbon O2‐transport system. Anal. Biochem. 58: 14–24, 1974.
 145. Kilmartin, J. V., J. J. Breen, G. C. K. Roberts, and C. Ho. Direct measurement of the pK values of an alkaline Bohr group in human hemoglobin. Proc. Natl. Acad. Sci. USA 70: 1246–1249, 1973.
 146. Kilmartin, J. V., J. Fogg, M. Luzzana, and L. Rossi‐Bernardi. Role of the α‐amino groups of the α‐ and β‐chains of human hemoglobin in oxygen‐linked binding of carbon dioxide. J. Biol. Chem. 248: 7039–7043, 1973.
 147. Kilmartin, J. V., and L. Rossi‐Bernardi. Inhibition of CO2 combination and reduction of the Bohr effect in haemoglobin chemically modified at its α‐amino groups. Nature Lond. 222: 1243–1246, 1969.
 148. Kitchen, H., and I. Brett. Embryonic and fetal hemoglobin in animals. Ann. NY Acad. Sci. 241: 653–671, 1974.
 149. Kreuzer, F., and W. Z. Yahr. Influence of red cell membrane on diffusion of oxygen. J. Appl. Physiol. 15: 1117–1122, 1960.
 150. Kusumi, F., W. C. Butts, and W. L. Ruff. Superior analytical performance by electrolytic cell analysis of blood oxygen content. J. Appl. Physiol. 35: 299–300, 1973.
 151. Lau, P. W., and T. Asakura. Comparative study of oxygen and carbon monoxide binding by hemoglobin. J. Biol. Chem. 255: 1617–1622, 1980.
 152. Lauer, J., C.‐K. Shen, and T. Maniatis. The chromosomal arrangement of human α‐like globin genes: sequence homology and α‐globin gene deletions. Cell 20: 119–130, 1980.
 153. Lawson, W. H., Jr., R. A. B. Holland, and R. E. Forster. Effect of temperature on deoxygenation rate of human red cells. J. Appl. Physiol. 20: 912–918, 1965.
 154. Lenfant, C., and K. Johansen. Gas transport by hemocyanin‐containing blood of the Cephalopod Octopus dofleini. Am. J. Physiol. 209: 991–998, 1965.
 155. Lenfant, C., J. D. Torrance, E. English, C. A. Finch, C. Reynafarje, J. Ramos, and J. Faura. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. Clin. Invest. 47: 2652–2656, 1968.
 156. Lenfant, C., J. D. Torrance, and C. Reynafarje. Shift of the O2‐Hb dissociation curve at altitude: mechanism and effect. J. Appl. Physiol. 30: 625–631, 1971.
 157. Lenfant, C., P. Ways, C. Aucutt, and J. Cruz. Effect of chronic hypoxia on the O2‐Hb dissociation curve and respiratory gas transport in man. Respir. Physiol. 7: 7–29, 1969.
 158. Maniatis, T., E. F. Fritsch, J. Lauer, and R. M. Lawn. The molecular genetics of human hemoglobin. Annu. Rev. Genet. 14: 145–178, 1980.
 159. Matthew, J. B., J. S. Morrow, R. J. Wittebort, and F. R. N. Gurd. Quantitative determination of carbamino adducts of α‐ and β‐chains in human adult hemoglobin in presence and absence of carbon monoxide and 2,3‐diphosphoglycerate. J. Biol. Chem. 252: 2234–2244, 1977.
 160. McCray, J. A. Oxygen recombination kinetics following laser photolysis of oxyhemoglobin. Biochem. Biophys. Res. Commun. 47: 187–193, 1972.
 161. McDonald, M. J., and R. W. Noble. The effect of pH on the rates of ligand replacement reactions of human adult and fetal hemoglobins and their subunits. J. Biol. Chem. 247: 4282–4287, 1972.
 162. Melderis, H., G. Steinheider, and W. Ostertag. Evidence for a unique kind of α‐type globin chain in early mammalian embryos. Nature Lond. 250: 774–776, 1974.
 163. Meyer, M., J. P. Holle, and P. Scheid. Respiratory and metabolic Bohr effect in duck blood (Abstract). Pfluegers Arch. 365: R18, 1976.
 164. Miyamoto, Y., and W. Moll. Measurements of dimensions and pathway of red cells in rapidly frozen lungs in situ. Respir. Physiol. 12: 141–156, 1971.
 165. Moll, W. The influence of hemoglobin diffusion on oxygen uptake and release by red cells. Respir. Physiol. 6: 1–15, 1968.
 166. Monod, J., J. Wyman, and J. P. Changeux. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12: 88–118, 1965.
 167. Morpurgo, G., P. Arese, A. Bosia, G. P. Pescarmona, M. Luzana, G. Modiano, and S. Krishna Ranjit. Sherpas living permanently at high altitude: a new pattern of adaptation. Proc. Natl. Acad. Sci. USA 73: 747–751, 1976.
 168. Mueggler, P. A., G. Jones, J. S. Peterson, J. M. Bissonnette, R. D. Koler, J. Metcalfe, R. T. Jones, and J. A. Black. Postnatal regulation of canine oxygen delivery: erythrocyte components affecting Hb function. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H73–H79, 1980.
 169. Muirhead, H., and J. Greer. Three‐dimensional Fourier synthesis of human deoxyhaemoglobin at 3.5 Å units. Nature Lond. 228: 516–519, 1970.
 170. Mulhausen, R. O., P. Astrup, and K. Mellemgaard. Oxygen affinity and acid‐base status of human blood during exposure to hypoxia and carbon monoxide. Scand. J. Clin. Lab. Invest. Suppl. 103: 9–15, 1968.
 171. Natelson, S. Routine use of ultra micro methods on the clinical laboratory. Am. J. Clin. Pathol. 21: 1153–1172, 1951.
 172. Nicolson, P., and F. J. W. Roughton. A theoretical study on the influence of diffusion and chemical reaction velocity on the rate of exchange of carbon monoxide and oxygen between the red blood corpuscle and surrounding fluid. Proc. R. Soc. Lond. B Biol. Sci. 138: 241–264, 1951.
 173. Nienhuis, A. W., and G. Stamatoyannopoulos. Hemoglobin switching. Cell 15: 307–315, 1978.
 174. Niesel, W., and G. Thews. Ein neues Verfahren zur schnellen und genauen Aufnahme der Sauerstoffbindungskurve des Blutes und konzentrierter Hämoproteinlösungen. Pfluegers Arch. 273: 380–395, 1961.
 175. Nigen, A. M., B. D. Bass, and J. M. Manning. Reactivity of cyanate with valine‐1 (α) of hemoglobin. A probe of conformational change and anion binding. J. Biol. Chem. 251: 7638–7643, 1976.
 176. Nigen, A. M., and J. M. Manning. The interaction of anions with hemoglobin carbamylated on specific NH2‐terminal residues. J. Biol. Chem. 250: 8248–8250, 1975.
 177. Nigen, A. M., J. M. Manning, and J. O. Alben. Oxygen‐linked binding sites for inorganic anions to hemoglobin. J. Biol. Chem. 255: 5525–5529, 1980.
 178. Nishikura, K. Identification of histidine‐122α in human haemoglobin as one of the unknown alkaline Bohr groups by hydrogen‐tritium exchange. Biochem. J. 173: 651–657, 1978.
 179. Novy, M. J. Alterations in blood oxygen affinity during fetal and neonatal life. In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, edited by M. Rørth and P. Astrup. Copenhagen: Munksgaard, 1972, p. 696–712. (Alfred Benzon Symp., 4th, 1971.)
 180. Novy, M. J., M. J. Edwards, and J. Metcalfe. Hemoglobin Yakima. II. High blood oxygen affinity associated with compensatory erythrocytosis and normal hemodynamics. J. Clin. Invest. 46: 1848–1854, 1967.
 181. O'Donnell, S., R. Mandaro, T. M. Schuster, and A. Arnone. X‐ray diffraction and solution studies of specifically carbamylated human hemoglobin A. Evidence for the location of a proton‐ and oxygen‐linked chloride binding site at valine 1α. J. Biol. Chem. 254: 12204–12208, 1979.
 182. Ohe, M., and A. Kajita. Changes in pKa values of individual histidine residues of human hemoglobin upon reaction with carbon monoxide. Biochemistry 19: 4443–4450, 1980.
 183. Olson, J. S., M. E. Andersen, and Q. H. Gibson. The dissociation of the first oxygen molecule from some mammalian oxyhemoglobins. J. Biol. Chem. 246: 5919–5923, 1971.
 184. Parer, J. T., A. S. Hoversland, and J. Metcalfe. Some respiratory characteristics of the blood of the adult and young African pygmy goat. J. Appl. Physiol. 22: 756–759, 1967.
 185. Penney, D., and M. Thomas. Hematological alterations and response to acute hypobaric stress. J. Appl. Physiol. 39: 1034–1037, 1975.
 186. Perella, M., G. Guglielmo, and A. Mosca. Determination of the equilibrium constants for oxygen‐linked CO2 binding to human hemoglobin. FEBS Lett. 78: 287–290, 1977.
 187. Perella, M., J. V. Kilmartin, J. Fogg, and L. Rossi‐Bernardi. Identification of the high and low affinity CO2 binding sites of human haemoglobin. Nature Lond. 256: 759–761, 1975.
 188. Perutz, M. F. Stereochemistry of cooperative effects in haemoglobin. Nature Lond. 228: 726–739, 1970.
 189. Perutz, M. F. Nature of haem‐haem interaction. Nature Lond. 237: 495–499, 1972.
 190. Perutz, M. F., and K. Imai. Regulation of oxygen affinity of mammalian haemoglobins. J. Mol. Biol. 136: 183–191, 1980.
 191. Perutz, M. F., and H. Lehmann. Molecular pathology of human haemoglobin. Nature Lond. 219: 902–909, 1968.
 192. Perutz, M. F., and L. Mazzarella. A preliminary X‐ray analysis of haemoglobin H. Nature Lond. 199: 639, 1963.
 193. Perutz, M. F., H. Muirhead, J. M. Cox, and L. C. G. Goaman. Three‐dimensional Fourier synthesis of horse oxyhaemoglobin at 2.89 Å resolution: the atomic model. Nature Lond. 219: 131–139, 1968.
 194. Peters, J. P., and D. D. Van Slyke. Quantitative Clinical Chemistry. Baltimore, MD: Williams & Wilkins, 1932, Vol. 2, p. 981. (Reprinted 1958.)
 195. Peterson, L. L. Red cell diphosphoglycerate mutase. Immunochemical studies in vertebrate cells, including a human variant lacking 2,3‐DPG. Blood 52: 953–958, 1978.
 196. Petschow, D., I. Wurdinger, R. Baumann, J. Duhm, G. Braunitzer, and C. Bauer. Causes of high blood O2 affinity of animals living at high altitude. J. Appl. Physiol. 42: 139–143, 1977.
 197. Petschow, R., D. Petschow, R. Bartels, R. Baumann, and H. Bartels. Regulation of oxygen affinity in blood of fetal, newborn and adult mouse. Respir. Physiol. 35: 271–282, 1978.
 198. Popp, R. A., C. L. Marsh, and L. C. Skow. Expression of embryonic hemoglobin genes in mice heterozygous for α‐thalassemia or β‐duplication traits and in mice heterozygous for both traits. Dev. Biol. 85: 123–128, 1981.
 199. Proudfoot, N. J., M. H. M. Shander, J. L. Manley, M. L. Gefter, and T. Maniatis. Structure and in vitro transcription of human globin genes. Science Wash. DC 209: 1329–1336, 1980.
 200. Rapoport, S., and G. M. Guest. The role of diphosphoglyceric acid in the electrolyte equilibrium of blood cells. Studies of pyloric obstruction in dogs. J. Biol. Chem. 131: 675–689, 1939.
 201. Rapoport, S., and G. M. Guest. Distribution of acid soluble phosphorus in the blood cells of various species. J. Biol. Chem. 138: 269–282, 1941.
 202. Rapoport, S., and J. Luebering. The formation of 2,3‐diphosphoglycerate in rabbit erythrocytes: the existence of diphosphoglycerate mutase. J. Biol. Chem. 183: 507–516, 1950.
 203. Reeves, R. B. A rapid micro method for obtaining oxygen equilibrium curves on whole blood. Respir. Physiol. 42: 299–315, 1980.
 204. Reissman, K. R., W. E. Ruth, and T. Namara. A human hemoglobin with lowered oxygen affinity and impaired hemeheme interactions. J. Clin. Invest. 40: 1826–1833, 1971.
 205. Rice, S. A. Hydrodynamic and diffusion considerations of rapid‐mix experiments with red blood cells. Biophys. J. 29: 65–77, 1980.
 206. Riggs, A. The binding of N‐ethyl maleimide by human hemoglobin and its effect upon the oxygen equilibrium. J. Biol. Chem. 236: 1948–1954, 1961.
 207. Riggs, A. Mechanism of the enhancement of the Bohr effect in mammalian hemoglobins by diphosphoglycerate. Proc. Natl. Acad. Sci. USA 68: 2062–2065, 1971.
 208. Riggs, A. Factors in the evolution of hemoglobin function. Federation Proc. 35: 2115–2118, 1976.
 209. Rollema, H. S., and C. Bauer. The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. J. Biol. Chem. 254: 12038–12043, 1979.
 210. Rollema, H. S., S. H. De Bruin, L. H. M. Janssen, and G. A. J. van Os. The effect of potassium chloride on the Bohr effect of human hemoglobin. J. Biol. Chem. 250: 1333–1339, 1975.
 211. Rollema, H., J. Weingarten, C. Bauer, and P. Scheid. Interactions among H+, CO2, and inositolhexaphosphate in binding to chicken hemoglobin (Abstract). Pfluegers Arch. 373: R44, 1978.
 212. Rørth, M., S. F. Nygaard, and H. H. Parving. Red cell metabolism and oxygen affinity of healthy individuals during exposure to high altitude. Adv. Exp. Med. Biol. 28: 361–372, 1972.
 213. Rosa, R., M.‐O. Prehu, Y. Beuzard, and J. Rosa. The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes. J. Clin. Invest. 62: 907–915, 1978.
 214. Rossi‐Bernardi, L., M. Luzzana, M. Samaja, M. Davi, D. Dariva‐Ricci, J. Minoli, B. Seaton, and R. L. Berger. Continuous determination of the oxygen dissociation curve for whole blood. Clin. Chem. 21: 1747–1753, 1975.
 215. Rossi‐Bernardi, L., and F. J. W. Roughton. The specific influence of carbon dioxide and carbamate compounds on the buffer power and Bohr effects in human haemoglobin solutions. J. Physiol. Lond. 189: 1–29, 1967.
 216. Roughton, F. J. W. Diffusion and simultaneous chemical reaction velocity in haemoglobin solutions and red cell suspensions. Prog. Biophys. Biophys. Chem. 9: 56–104, 1959.
 217. Roughton, F. J. W., E. C. Deland, J. C. Kernohan, and J. W. Severinghaus. Some recent studies of the oxyhemoglobin dissociation curve of human blood under physiological conditions and the fitting of the Adair equation to the standard curve. In: Oxygen Affinity of Hemoglobin and Red Cell Acid‐Base Status, edited by M. Rørth and P. Astrup. Copenhagen: Munksgaard, 1972, p. 73–82. (Alfred Benzon Symp., 4th, 1971.)
 218. Roughton, F. J. W., and P. F. Scholander. Micro gasometric estimation of the blood gases. I. Oxygen. J. Biol. Chem. 148: 541–550, 1943.
 219. Salhany, J. M., D. H. Mathers, and R. S. Eliot. The deoxygenation kinetics of hemoglobin partially saturated with carbon monoxide. Effect of 2,3‐diphosphoglycerate. J. Biol. Chem. 247: 6985–6990, 1972.
 220. Samaja, M., A. Veicsteinas, and P. Cerretelli. Oxygen affinity of blood in altitude Sherpas. J. Appl. Physiol. 47: 337–341, 1979.
 221. Scheid, P., and M. Meyer. Mixing technique for study of oxygen‐hemoglobin equilibrium: a critical evaluation. J. Appl. Physiol. 45: 818–822, 1978.
 222. Scott, A. F., H. F. Bunn, and A. H. Brush. Functional aspects of hemoglobin evolution in mammals. J. Mol. Evol. 8: 311–316, 1976.
 223. Scott, A. F., H. F. Bunn, and A. H. Brush. The phylogenetic distribution of red cell 2,3‐diphosphoglycerate and its interaction with mammalian hemoglobins. J. Exp. Zool. 201: 269–288, 1977.
 224. Selman, B. J., Y. S. White, and A. R. Tait. An evaluation of the Lex‐O2‐Con oxygen analyser. Anaesthesia 30: 206–211, 1975.
 225. Sick, H., and K. Gersonde. Methods for continuous registration of O2‐binding curves of hemoproteins by means of a diffusion chamber. Anal. Biochem. 32: 362–376, 1969.
 226. Sidwell, A. E., R. H. Munch, E. S. Guzman‐Barron, and T. R. Hogness. The salt effect on the hemoglobin‐oxygen equilibrium. J. Biol. Chem. 123: 335–350, 1938.
 227. Siggaard‐Andersen, O. Oxygen‐linked hydrogen binding of human hemoglobin. Effects of carbon dioxide and 2,3‐diphosphoglycerate. I. Studies on erythrolysate. Scand. Clin. Lab. Invest. 27: 351–360, 1971.
 228. Sirs, J. A., and F. J. W. Roughton. Stopped‐flow measurements of CO and O2 uptake by hemoglobin in sheep erythrocytes. J. Appl. Physiol. 18: 158–165, 1963.
 229. Smith, R. C., G. J. Garbutt, R. E. Isaacks, and D. R. Harkness. Oxygen binding of fetal and adult bovine hemoglobin in the presence of organic phosphate and uric acid riboside. Hemoglobin 3: 47–55, 1979.
 230. Stamatoyannopoulos, G., J. T. Parer, and C. A. Finch. Physiological implications of a hemoglobin with decreased oxygen affinity (Hemoglobin Seattle). N. Engl. J. Med. 281: 916–919, 1969.
 231. Steinheider, G., H. Melderis, and W. Ostertag. Embryonic ε‐chains of mice and rabbits. Nature Lond. 257: 714–716, 1975.
 232. Szabo, A., and M. Karplus. Analysis of the interaction of organic phosphates with hemoglobin. Biochemistry 15: 2869–2877, 1976.
 233. Takenaka, O., and H. Morimoto. Oxygen equilibrium characteristics of adult and fetal hemoglobin of Japanese monkey (Macaca fuscata). Biochim. Biophys. Acta 446: 457–462, 1976.
 234. Taketa, F. Organic phosphates and hemoglobin structure‐function relationships in the feline. Ann. NY Acad. Sci. 241: 524–537, 1974.
 235. Thews, G. Untersuchung der Sauerstoffaufnahme und ‐abgabe sehr dünner Blutlamellen. Pfluegers Arch. 268: 308–317, 1959.
 236. Thomson, J. M., J. A. Dempsey, L. W. Chosy, N. T. Shahidi, and W. G. Reddan. Oxygen transport and oxyhemoglobin dissociation during prolonged muscular work. J. Appl. Physiol. 37: 658–664, 1974.
 237. Torrance, J. D., and C. Lenfant. Methods for determination of O2 dissociation curves, including Bohr effect. Respir. Physiol. 8: 127–136, 1969.
 238. Torrance, J. D., C. Lenfant, J. Cruz, and E. Marticorena. Oxygen transport mechanisms in residents at high altitude. Respir. Physiol. 11: 1–15, 1970/71.
 239. Tuchinda, S., K. Nagai, and H. Lehmann. Oxygen dissociation curve of haemoglobin Portland. FEBS Lett. 49: 390–391, 1975.
 240. Turek, Z., F. Kreuzer, and B. E. M. Ringnalda. Blood gases at several levels of oxygenation in rats with a left‐shifted blood oxygen dissociation curve. Pfluegers Arch. 376: 7–13, 1978.
 241. Turek, Z., F. Kreuzer, M. Turek‐Maischneider, and B. E. M. Ringnalda. Blood O2 content, cardiac output, and flow to organs at several levels of oxygenation in rats with a left‐shifted blood oxygen dissociation curve. Pfluegers Arch. 376: 201–207, 1978.
 242. Tyuma, I., and K. Shimizu. Different response to organic phosphates of human fetal and adult hemoglobins. Arch. Biochem. Biophys. 129: 404–405, 1969.
 243. Van Beek, G. G. M., and S. H. De Bruin. The pH dependence of the binding of D‐glycerate 2,3‐bisphosphate to deoxy‐hemoglobin and oxyhemoglobin. Eur. J. Biochem. 100: 497–502, 1979.
 244. Van Beek, G. G. M., and S. H. De Bruin. Identification of the residues involved in the oxygen‐linked chloride‐ion binding sites in human deoxyhemoglobin and oxyhemoglobin. Eur. J. Biochem. 105: 353–360, 1980.
 245. Van Beek, G. G. M., E. R. P. Zuiderweg, and S. H. De Bruin. The binding of chloride ions to ligated and unligated human hemoglobin and its influence on the Bohr effect. Eur. J. Biochem. 99: 379–383, 1979.
 246. Van Slyke, D. D., and J. Plazin. Micrometric Analyses. Baltimore, MD: Williams & Wilkins, 1961.
 247. Van Slyke, D. D., H. Wu, and F. L. McLean. Studies of gas and electrolyte equilibria in the blood. V. Factors controlling the electrolyte and water distribution in the blood. J. Biol. Chem. 56: 765–849, 1923.
 248. Viggiano, G., and C. Ho. Proton nuclear magnetic resonance investigation of structural changes associated with cooperative oxygenation of human adult hemoglobin. Proc. Natl. Acad. Sci. USA 76: 3673–3677, 1979.
 249. Weatherall, D. J., and J. B. Clegg. Recent developments in the molecular genetics of human hemoglobin. Cell 16: 467–479, 1979.
 250. Weiskopf, R. B., and J. W. Severinghaus. Lack of effect of high altitude on hemoglobin oxygen affinity. J. Appl. Physiol. 33: 276–277, 1972.
 251. Wells, R. M. G. Hemoglobin oxygen affinity in developing embryonic erythroid cells of the mouse. J. Comp. Physiol. 129: 333–338, 1979.
 252. Wood, W. G., and R. W. Jones. Erythropoiesis and hemoglobin production: a unifying model involving sequential gene activation. In: Hemoglobins in Development and Differentiation, edited by G. Stamatoyannopoulos and A. W. Nienhuis. New York: Liss, 1981.
 253. Wood, W. G., J. Nash, D. J. Weatherall, J. S. Robinson, and F. A. Harrison. The sheep as an animal model for the switch from fetal to adult hemoglobins. In: Cellular and Molecular Regulation of Hemoglobin Switching, edited by G. Stamatoyannopoulos and A. W. Nienhuis. New York: Grune & Stratton, 1979, p. 153–165.
 254. Wood, W. G., and D. J. Weatherall. Haemoglobin synthesis during human foetal development. Nature Lond. 244: 162–165, 1973.
 255. Wranne, B., R. D. Woodson, and J. C. Detter. Bohr effect: interaction between H+, CO2, and 2,3‐DPG in fresh and stored blood. J. Appl. Physiol. 32: 749–754, 1972.
 256. Wyman, J. Heme proteins. Adv. Protein Chem. 4: 407–531, 1948.
 257. Zuiderweg, E. R. P.; L. F. Hamers, S. H. De Bruin, and C. W. Hilbers. Equilibrium aspects of the binding of myoinositol hexakisphosphate to human hemoglobin as studied by 31P NMR and pH‐stat techniques. Eur. J. Biochem. 118: 85–94, 1981.
 258. Zürcher, C. J., A. Loos, and H. K. Prins. Hereditary high ATP content of human erythrocytes. Bibl. Haematol. 23: 549–556, 1965.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Rosemarie Baumann, Heinz Bartels, Christian Bauer. Blood Oxygen Transport. Compr Physiol 2011, Supplement 13: Handbook of Physiology, The Respiratory System, Gas Exchange: 147-172. First published in print 1987. doi: 10.1002/cphy.cp030409