Comprehensive Physiology Wiley Online Library

Homeostatic Responses to Acute Cold Exposure: Thermogenic Responses in Birds and Mammals

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Nonshivering vs. Shivering Pathways
1.1 Definitions and Distribution
1.2 Neural Control and Intracellular Sites of Heat Production
1.3 Contributions of NST Effectors and Shivering to Cold‐Induced Thermogenesis in Mammals and Birds
2 Sympathetic Activation of Brown Adipose Tissue
2.1 Alpha‐Adrenergic and Beta‐Adrenergic Involvement
2.2 Cellular Events Associated with Cold‐Induced Activation of Brown Adipocytes
3 Cold‐Induced Modification of NST by Agents Other than Catecholamines
3.1 Direct Effects on Thermogenic Mechanisms
3.2 Altered Release of Norepinephrine
3.3 Altered Delivery of Substrate/Oxygen
4 Summary and Future Directions
Figure 1. Figure 1.

Beta‐adrenergic thermogenic pathway in brown adipocytes—known events. Upon exposure to cold, norepinephrine released from sympathetic nerves interacts with β receptors in the plasma membrane. The resulting complex binds to the β subunit of the stimulatory G protein (Gs), to which a molecule of GTP is attached (not shown in diagram). Gs undergoes a conformational change, GTP is released, GDP binds, and the β subunit separates from the α subunit. The latter then binds to adenylate cyclase, activating it and enhancing the rate at which cyclic AMP (cAMP) is synthesized from ATP. cAMP activates protein kinase A (PKA), which phosphorylates hormone‐sensitive lipase, thereby activating it (HSL*). HSL* catalyzes the hydrolysis of triacylglycerol molecules stored in the lipid vacuoles within the adipocyte. Resulting free fatty acids (FFA) undergo rapid β‐oxidation in the mitochondria; most of the energy of oxidation is released as heat, and this heat is then transferred to the interstitial fluid and subsequently to the circulation. The rapid rate of fatty acid oxidation occurs because norepinephrine activation of this β‐adrenergic pathway also results in uncoupling of substrate oxidation from ATP synthesis via oxidative phosphorylation. Fatty acids may be involved in signaling this uncoupling (see text). Although not depicted in this diagram, alpha‐adrenergic receptors also respond to norepinephrine and contribute to the cold‐induced thermogenic response. As noted in the text, the events associated with the alpha response are not completely known. (Diagram is modified from that in ref. 81.)

Figure 2. Figure 2.

Schematic representation of the uncoupling mechanism underlying the rapid rates of substrate oxidation in norepinephrine‐activated brown adipocytes. A. When the brown adipocyte is not stimulated by norepinephrine, ATP synthesis is coupled to substrate oxidation as is the case in mitochondria in all other cells. As a result, when the cofactors (SH2) reduced during fatty acid oxidation are reoxidized by the electron transport chain, protons are transferred out of the mitochondrial matrix and return via the ATP synthetase, thereby linking substrate oxidation (respiration) to ATP synthesis. In this unactivated state, the proton conductance channel (unique to brown fat mitochondria) is closed. Current evidence indicates that this channel is formed by a dimer of the uncoupling protein, each dimer having a tripartite structure (represented by cylinders in the diagram), with one molecule of purine nucleotide (PN) binding per dimer. The PN binding site is thought to be exposed to the intermembrane space (and thus cytosol) 121. B. Cold exposure and the release of norepinephrine results in the generation of a cytosol signal that alters the conformation of the uncoupling protein, opening the proton channel and allowing protons to return to the mitochondrial matrix independent of ATP synthetase. This dissociates substrate oxidation from the slower process of ATP synthesis, allows fatty acids to be oxidized more rapidly, and allows heat to be generated at a faster rate. As discussed in the text, the cytosol signal triggering channel opening is still uncertain, although several of those proposed would act by displacing PN from its binding site on the dimer (as depicted in this diagram modified from that in ref. 81).



Figure 1.

Beta‐adrenergic thermogenic pathway in brown adipocytes—known events. Upon exposure to cold, norepinephrine released from sympathetic nerves interacts with β receptors in the plasma membrane. The resulting complex binds to the β subunit of the stimulatory G protein (Gs), to which a molecule of GTP is attached (not shown in diagram). Gs undergoes a conformational change, GTP is released, GDP binds, and the β subunit separates from the α subunit. The latter then binds to adenylate cyclase, activating it and enhancing the rate at which cyclic AMP (cAMP) is synthesized from ATP. cAMP activates protein kinase A (PKA), which phosphorylates hormone‐sensitive lipase, thereby activating it (HSL*). HSL* catalyzes the hydrolysis of triacylglycerol molecules stored in the lipid vacuoles within the adipocyte. Resulting free fatty acids (FFA) undergo rapid β‐oxidation in the mitochondria; most of the energy of oxidation is released as heat, and this heat is then transferred to the interstitial fluid and subsequently to the circulation. The rapid rate of fatty acid oxidation occurs because norepinephrine activation of this β‐adrenergic pathway also results in uncoupling of substrate oxidation from ATP synthesis via oxidative phosphorylation. Fatty acids may be involved in signaling this uncoupling (see text). Although not depicted in this diagram, alpha‐adrenergic receptors also respond to norepinephrine and contribute to the cold‐induced thermogenic response. As noted in the text, the events associated with the alpha response are not completely known. (Diagram is modified from that in ref. 81.)



Figure 2.

Schematic representation of the uncoupling mechanism underlying the rapid rates of substrate oxidation in norepinephrine‐activated brown adipocytes. A. When the brown adipocyte is not stimulated by norepinephrine, ATP synthesis is coupled to substrate oxidation as is the case in mitochondria in all other cells. As a result, when the cofactors (SH2) reduced during fatty acid oxidation are reoxidized by the electron transport chain, protons are transferred out of the mitochondrial matrix and return via the ATP synthetase, thereby linking substrate oxidation (respiration) to ATP synthesis. In this unactivated state, the proton conductance channel (unique to brown fat mitochondria) is closed. Current evidence indicates that this channel is formed by a dimer of the uncoupling protein, each dimer having a tripartite structure (represented by cylinders in the diagram), with one molecule of purine nucleotide (PN) binding per dimer. The PN binding site is thought to be exposed to the intermembrane space (and thus cytosol) 121. B. Cold exposure and the release of norepinephrine results in the generation of a cytosol signal that alters the conformation of the uncoupling protein, opening the proton channel and allowing protons to return to the mitochondrial matrix independent of ATP synthetase. This dissociates substrate oxidation from the slower process of ATP synthesis, allows fatty acids to be oxidized more rapidly, and allows heat to be generated at a faster rate. As discussed in the text, the cytosol signal triggering channel opening is still uncertain, although several of those proposed would act by displacing PN from its binding site on the dimer (as depicted in this diagram modified from that in ref. 81).

References
 1. Alexander, G., G. Thorburn, D. Nicol, and A. W. Bell. Survival, growth and the metabolic response to cold in prematurely delivered lambs. Biol. Neonate 20: 1–8, 1972.
 2. Amini‐Sereshki, L. Brainstem control of shivering in the cat. I. Inhibition. Am. J. Physiol. 232 (Regulatory Integrative Comp. Physiol. 3): R190–R197, 1977.
 3. Amini‐Sereshki, L. Brainstem control of shivering in the cat. II. Facilitation. Am. J. Physiol. 232 (Regulatory Integrative Comp. Physiol. 3): R198–R202, 1977.
 4. Amir, S. Intra‐ventromedial hypothalamic injection of gluta‐mate stimulates brown adipose tissue thermogenesis in rats. Brain Res. 511: 341–344, 1990.
 5. Amir, S. Stimulation of the paraventricular nucleus with gluta‐mate activates interscapular brown adipose tissue thermogenesis. Brain Res. 508: 152–155, 1990.
 6. Amir, S., and E. De Blasio. Activation of brown adipose tissue thermogenesis by chemical stimulation of the hypothalamic supraoptic nucleus. Brain Res. 563: 349–352, 1991.
 7. Amir, S., P. Shizgal, and P. O. Rompre. Glutamate injection into the suprachiasmatic nucleus stimulates brown fat thermogenesis in the rat. Brain Res. 498: 140–144, 1989.
 8. Arch, J. R. S., A. T. Ainsworth, M. A. Cawthorne, V. Piercy, M. V. Sennitt, V. E. Thody, C. Wilson, and S. Wilson. Atypical Padrenoceptor on brown adipocytes as target for anti‐obesity drugs. Nature 309: 163–165, 1984.
 9. Barre, H. Metabolic and insulative changes in winter‐ and summer‐acclimatized king penguin chicks. J. Comp. Physiol. B 154: 317–324, 1984.
 10. Barre, H., F. Cohen‐Adad, C. Duchamp, and J. L. Rouanet. Multilocular adipocytes from Muscovy ducklings differentiated in response to cold acclimation. J. Physiol. (Lond). 375: 27–38, 1986.
 11. Barre, H., and J.‐L. Rouanet. Calorigenic effect of glucagon and catecholamines in king penguin chicks. Am. J. Physiol. (Regulatory Integrative Comp. Physiol. 15) 244: R758–R763, 1983.
 12. Benzi, R., and L. Girardier. The response of adipose tissue blood flow to insulin‐induced hypoglycaemia in conscious dogs and rats. Pflügers Arch. 406: 37–44, 1986.
 13. Bertin, R., I. Mouroux, F. DeMarco, and R. Portet. Norepinephrine turnover in brown adipose tissue of young rats: effects of rearing temperature. Am. J. Physiol. 259: (Regulatory Integrative Comp. Physiol. 28): R90–R96, 1990.
 14. Bianco, A. C., and J. E. Silva. Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue. J. Clin. Invest. 79: 295–300, 1987.
 15. Bianco, A. C., and J. E. Silva. Optimal response of key enzymes and uncoupling protein to cold in BAT depends on local T3 generation. Am. J. Physiol. 253: (Endocrinol. Metab. 16): E255–E263, 1987.
 16. Bianco, A. C., and J. E. Silva. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors. Am. J. Physiol. 255 (Endocrinol. Metab. 18): E496–E503, 1988.
 17. Bianco, A. C., X. Sheng, and J. E. Silva. Triiodothyronine amplifies norepinephrine stimulation of uncoupling protein gene transcription by a mechanism not requiring protein synthesis. j. Biol. Chem. 263: 18168–18175, 1988.
 18. Billington, C. J., J. E. Briggs, J. G. Link, and A. S. Levine. Glucagon in physiological concentrations stimulates brown fat thermogenesis in vivo. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 30): R501–R507, 1991.
 19. Birzis, L., and A. Hemmingway. Efferent brain discharge during shivering. j. Neurophysiol. 20: 156–166, 1957.
 20. Booth, D. T. Thermoregulation in neonate mallee fowl Leipoa ocellata. Physiol. Zool. 57: 251–260, 1984.
 21. Bruck, K. Nonshivering thermogenesis and brown adipose tissue in relation to age, and their integration in the thermoregulatory system. In: Brown Adipose Tissue, edited by O. Lindberg. Amsterdam: Elsevier, 1970, p. 117–154.
 22. Bruck, K., and W. Wunnenberg. “Meshed” control of two efferent systems: nonshivering and shivering thermogenesis. In: Physiological and Behavioral Temperature Regulation, edited by J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk. Springfield, IL: Thomas, 1970, p. 562–580.
 23. Bukowiecki, L. Lipid metabolism in brown adipose tissue. In: Brown Adipose Tissue, edited by P. Trayhurn, and D. G. Nicholls. London: Edward Arnold, 1986, p. 105–121.
 24. Bukowiecki, L., N. Follea, A. Paradis, and A. Collet. Stereospecific stimulation of brown adipose tissue respiration by catecholamines via the beta1 adrenoreceptor. Am. J. Physiol. 238 (Endocrinol Metab. 9): E552–E563, 1980.
 25. Cannon, B., U. Sundin, and R. L. Romert. Palmitoyl coenzyme A: a possible physiological regulator of nucleotide binding to brown adipose tissue mitochondria. FEBS Lett. 74: 43–16, 1977.
 26. Cassis, L. A., and L. P. Dwoskin. Presynaptic modulation of neurotransmitter release by endogenous angiotensin II in brown adipose tissue. j. Neural Transmission, Suppl. 34: 129–137, 1991.
 27. Champigny, O., D. Ricquier, O. Blondel, R. M. Mayers, M. G. Briscoe, and B. R. Holloway. β3‐Adrenergic receptor stimulation restores message and expression of brown‐fat mitochondrial uncoupling protein in adult dogs. Proc. Natl. Acad. Sci., U.S.A. 88: 10774–10777, 1991.
 28. Chaudhry, A., and J. G. Granneman. Developmental changes in adenylyl cyclase and GTP binding proteins in brown fat. Am. J. Physiol. 261: (Regulatory Integrative Comp. Physiol. 30): R403–411, 1991.
 29. Chaudhry, A., and J. G. Granneman. Adrenergic regulation of neonatal brown fat adenylyl cylcase and Gsα activity. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 32): R34–38, 1992.
 30. Chinet, A., C. Friedli, J. Seydoux, and L. Girardier. Does cytoplasmic alkalinization trigger mitochondrial energy dissipation in the brown adipocyte? In: Effectors of Thermogenesis, Experientia Suppl. 32, edited by Girardier, L., and J. Seydoux. Basel: Birkhauser, 1978, p. 25–32.
 31. Connolly, E., E. Nanberg, and J. Nedergaard. Na+‐dependent, alpha‐adrenergic mobilization of intracellular (mitochondrial) Ca2;+ in brown adipocytes. Eur. J. Biochem. 141: 187–193, 1984.
 32. Cottle, W. H. Role of thyroid secretion in cold‐acclimation. Federation Proc. 19, Suppl. 5: 59–63, 1960.
 33. Davis, T. R. A., D. R. Johnston, F. C. Bell, and B. J. Cremer. Regulation of shivering and nonshivering heat production during acclimation of rats. Am. J. Physiol. 198: 471–475, 1960.
 34. Depocas, F. Chemical thermogenesis in the functionally eviscerated cold‐acclimated rat. Can. J. Biochem. Physiol. 36: 691–699, 1958.
 35. Depocas, F. Calorigenesis from various organ systems in the whole animal. Federation Proc. 19, Suppl. 5: 19–24, 1960.
 36. Dominguez, M. J., M. Fernandez, K. Elliott, and M. Benito. Occurrence of α2‐adrenergic effects on adenylate cyclase activity and [3H]clonidine specific binding in brown adipose tissue from foetal rats. Biochem. Biophys. Res. Commun. 138: 1390–1394, 1986.
 37. Duchamp, C., H. Barré, D. Delage, J.‐L. Rouanet, F. Cohen‐Adad, and Y. Minaire. Nonshivering thermogenesis and adaptation to fasting in king penguin chicks. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R744–R751, 1989.
 38. Duchamp, C., F. Cohen‐Adad, J.‐L. Rouanet, and H. Barre. Histochemical arguments for muscular non‐shivering thermogenesis in Muscovy ducklings. j. Physiol. 457: 27–45, 1992.
 39. Dunn, E. H. Growth, body components and energy content of nestling double‐crested cormorants. The Condor 77: 431–438, 1975.
 40. Emorine, L. J., S. Marullo, M.‐M. Briend‐Sutren, G. Patey, K. Tate, C. Delavier‐Klutchko, and A. D. Strosberg. Molecular characterization of the human β3‐adrenergic receptor. Science 245: 1118–1121, 1989.
 41. Engel, B. T., A. Sato, and Y. Sato. Responses of sympathetic nerves innervating blood vessels in interscapular brown adipose tissue and skin during cold stimulation in anesthetized C57BL/ 6J mice. Jpn. J. Physiol. 42: 549–559, 1992.
 42. Eppley, Z. A. Development of thermoregulatory abilities in Xantus's murrelet chicks Synthlihoramphus hypoleucus. Physiol. Zool. 57: 307–317, 1984.
 43. Flaim, K. E., B. A. Horwitz, and J. M. Horowitz. Coupling of signals to brown fat: alpha‐ and beta‐adrenergic responses in intact rats. Am. J. Physiol. 232 (Regulatory Integrative Comp. Physiol. 3): R101–R109, 1977.
 44. Foster, D. O. Auxiliary role of alpha‐adrenoceptors in brown adipose tissue thermogenesis. In: Thermal Physiology, edited by J. R. S. Hales. New York: Raven Press, 1984, p. 201–204.
 45. Foster, D. O. Quantitative role of brown adipose tissue in thermogenesis. In: Brown Adipose Tissue, edited by P. Trayhurn, and D. G. Nicholls. London: Edward Arnold, 1986, p. 31–51.
 46. Foster, D. O., and M. L. Frydman. Comparison of microspheres and 86Rb+ as tracers of the distribution of cardiac output in rats indicates invalidity of 86Rb+‐based measurements. Can. J. Physiol. Pharmacol. 56: 97–109, 1978.
 47. Foster, D. O., and M. L. Frydman. Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can. j. Physiol. Pharmacol. 56: 110–122, 1978.
 48. Foster, D. O. and M. L. Frydman. Tissue distribution of cold‐induced thermogenesis in conscious warm‐ or cold‐acclimated rats reevaluated from changes in tissue blood flow. The dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can. J. Physiol. Pharmacol. 57: 257–270, 1979.
 49. Fredholm, B. B., and E. Lindgren. The effect of alkylxanthines and other phosphodiesterase inhibitors on adenosine‐receptor mediated decrease in lipolysis and cyclic AMP accumulation in rat fat cells. Acta Pharmacol. Toxicol. 54: 64–71, 1984.
 50. Freeman, B. M. The emergence of the homeothermic‐metabolic response in the fowl (Gallus domesticus). Comp. Biochem. Physiol. 13: 413–422, 1964.
 51. Freeman, B. M. The effects of cold, noradrenaline and adrenaline upon the oxygen consumption and carbohydrate metabolism of the young fowl (Gallus domesticus). Comp. Biochem. Physiol. 18: 369–382, 1966.
 52. Freeman, B. M. Thermoregulatory mechanisms of the neonate fowl. Comp. Biochem. Physiol. 33: 219–230, 1970.
 53. Fregly, M. J., O. Schechtman, P. van Bergen, C. Reeber, and P. E. Papanek. Changes in blood pressure and dipsogenic responsiveness to angiotensin II during chronic exposure of rats to cold. Pharmacol. Biochem. Behav. 38: 837–842, 1991.
 54. Fuller, C. A., J. M. Horowitz, and B. A. Horwitz. Spinal cord thermosensitivity and sorting of neural signals in cold‐exposed rats. J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 42: 154–158, 1977.
 55. Giovannini, P., J. Seydoux, and L. Girardier. Evidence for a modulating effect of Na+/H+ exchange on the metabolic response of rat brown adipose tissue. Pflugers Arch. 411: 273–277, 1988.
 56. Giralt, M., I. Martin, R. Iglesias, O. Vinas, F. Villarroya, and T. Mampel. Ontogeny and perinatal modulation of gene expression in rat brown adipose tissue. Unaltered iodothyronine 5'‐deiodinase activity is necessary for the response to environmental temperature at birth. Eur. J. Biochem. 193: 297–302, 1990.
 57. Girardier, L., and J. Seydoux. Neural control of brown adipose tissue. In: Brown Adipose Tissue, edited by P. Trayhurn, and D. G. Nicholls. London: Edward Arnold, 1986, p. 122–151.
 58. Granneman, J. G. Effects of agonist exposure on the coupling of beta1 and beta3 adrenergic receptors to adenylyl cyclase in isolated adipocytes. Pharmacol. Exp. Ther. 261: 638–642, 1992.
 59. Granneman, J. G., and K. N. Lahners. Differential adrenergic regulation of β1‐ and β3‐adrenoreceptor messenger ribonucleic acids in adipose tissues. Endocrinology 130: 109–114, 1992.
 60. Granneman, J. G., K. N. Lahners, and A. Chaudhry. Molecular cloning and expression of the rat β3‐adrenergic receptor. Mol. Pharmacol. 40: 895–899, 1991.
 61. Grillner, S., and P. Wallen. Central pattern generators for locomotion, with special reference to vertebrates. Annu. Rev. Neurosci. 8: 233–261, 1985.
 62. Grubb, B. and G. E. Folk, Jr. Effects of cold acclimation on norepinephrine stimulated oxygen consumption in muscle. j. Comp. Physiol. 110: 217–226, 1976.
 63. Gulick, A. The development of temperature control in infant rats. Am. J. Physiol. 119: 322, 1937.
 64. Gunn, T. R., K. T. Ball, and P. D. Gluckman. Withdrawal of placental prostaglandins permits thermogenic responses in fetal sheep brown adipose tissue. j. Appl. Physiol. 74: 998–1004, 1993
 65. Hahn, P., and L. Kirby. The effects of catecholamines, glucagon, and diet on enzyme activities in brown fat and liver of the rat. Can. J. Biochem. 52: 739–743, 1974.
 66. Heath, J. E. The origins of thermoregulation. In: Evolution and Environment, edited by E. T. Drake. New Haven: Yale University Press, 1968, p. 259–278.
 67. von Heerden, M., and W. Oelofsen. A comparison of norepinephrine‐ and ACTH‐stimulated lipolysis in white and brown adipocytes of female rats. Comp. Biochem. Physiol. 93C: 275–279 1989.
 68. Heim, T., and D. Hull. The blood flow and oxygen consumption of brown adipose tissue in the new‐born rabbit. j. Physiol. (Lond.) 186: 42–55, 1966.
 69. Heim, T., and D. Hull. The effect of propranolol on the calorigenic response in brown adipose tissue of new‐born rabbits to catecholamines, glucagon, corticotrophin and cold exposure. j. Physiol. (Lond.) 187: 271–283, 1966.
 70. Hettinger, D. R., and B. A. Horwitz. Kinetic characteristics of hamster (Mesocricetus auratus) brown fat (Na+/K+)‐ATPase. Effects of catecholamines. Comp. Biochem. Physiol. 74C: 355–360 1983.
 71. Himms‐Hagen, J. Cellular thermogenesis. Annu. Rev. Physiol. 38: 315–351, 1976.
 72. Himms‐Hagen, J. Neural control of brown adipose tissue thermogenesis, hypertrophy, and atrophy. Front. Neuroendocrinal. 12: 38–93, 1991.
 73. Himms‐Hagen, J. Neural and hormonal responses to prolonged cold exposure. In: Handbook of Physiology: Environmental Physiology, edited by M. J. Fregly, and C. M. Blatteis, New York: Oxford University Press for the Am. Physiol. Soc., 1995, Sect. 4, ch. 20, p. 439–180.
 74. Hinckel, P., and W. T. Perschel. Influence of cold and warm acclimation on neuronal responses in the lower brain stem. Can. J. Physiol. Pharmacol. 65: 1281–1289, 1987.
 75. Hissa, R. Controlling mechanisms in avian temperature regulation: a review. Acta Physiol. Scand. Suppl. 567: 1–148, 1988.
 76. Hissa, R., E. D. Stevens, and J. C. George. Propranolol inhibits shivering in birds. Comp. Biochem. Physiol. 66C: 169–174 1980.
 77. Hohtola, E. Shivering thermogenesis in birds. Acta Univ. Ouluensis 17A: 1–33 1982.
 78. Holloway, B. R., R. Howe, B. S. Rao, D. Stribling, R. M. Mayers, M. G. Briscoe, and J. M. Jackson. ICI D7114 a novel selective β‐adrenoceptor agonist selectively stimulates brown fat and increases whole‐body oxygen consumption. Br. J. Pharmacol. 104: 97–104, 1991.
 79. Horwitz, B. A. Adrenergic receptor involvement in brown adipose tissue activation. In: Drugs, Biogenic Amines and Body Temperature, edited by K. E. Cooper, P. Lomax, and E. Schönbaum. Basel: Karger, 1977, p. 160–166.
 80. Horwitz, B. A. Cellular events underlying catecholamine‐induced thermogenesis: cation transport in brown adipocytes. federation Proc. 38: 2170–2176, 1979.
 81. Horwitz, B. A. Biochemical mechanisms and control of cold‐induced cellular thermogenesis in placental mammals. In: Advances in Comparative and Environmental Physiology, vol. 4, edited by L. C. H. Wang. Berlin: Springer‐Verlag, 1989, p. 83–116.
 82. Horwitz, B. A., and J. Hamilton. Alpha‐adrenergic‐induced changes in hamster (Mesocricetus) brown adipocyte respiration and membrane potential. Comp. Biochem. Physiol. 78C: 99–104 1984.
 83. Horwitz, B. A., and J. Hamilton. Plasma membrane proton transport and hamster brown adipocyte thermogenesis. In: Life in the Cold III: Ecological, Physiological, and Molecular Mechanisms, edited by C. Carey, G. Florant, B. A. Wunder, and B. A. Horwitz. Boulder, CO: Westview, 1993, p. 217–224.
 84. Horwitz, B., J. S. Hamilton, M. T. Lucero, and P. A. Pappone. Catecholamine‐induced changes in activated brown adipocytes. In: Living in the Cold II, edited by A. Malan, and B. Canguilhem. Paris: Libbey, 1989, p. 377–386.
 85. Houstek, J., J. Kopecky, M. Baudysova, D. Janikova, S. Pavelka, and P. Klement. Differentiation of brown adipose tissue and biogenesis of thermogenic mitochondria in situ and in cell culture. Biochim. Biophys. Acta 1018: 243–247, 1990.
 86. Howland, R. J. and K. D. Bond. Modulation by insulin and glucagon of noradrenaline‐induced activation of isolated brown adipocytes from the rat. Eur. J. Biochem. 169: 155–166, 1987.
 87. Hsieh, A. C. L., and L. D. Carlson. Role of the thyroid in metabolic response to low temperature. Am. J. Physiol. 188: 40–44, 1957.
 88. Hsieh, A. C. L., L. D. Carlson, and G. Gray. Role of the sympathetic nervous system in the control of chemical regulation of heat production. Am. J. Physiol. 190: 247–251, 1957.
 89. Imai‐Matsumura, K., K. Matsumura, and T. Nakayama. Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn. J. Physiol. 34: 939–943, 1984.
 90. Imai‐Matsumura, K., and T. Nakayama. The central efferent mechanism of brown adipose tissue thermogenesis induced by preoptic cooling. Can. J. Physiol. Pharmacol. 65: 1299–1303, 1987.
 91. Jacobsson, A., U. Stadler, M. A. Glotzer, and L. P. Kozak. Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. j. Biol. Chem. 260: 16250–16254, 1985.
 92. Jansky, L. Non‐shivering thermogenesis and its thermoregulatory significance. Biol. Rev. 48: 85–132, 1973.
 93. Jansky, L., and J. S. Hart. Participation of skeletal muscle and kidney during non‐shivering thermogenesis in cold‐acclimated rats. Can. J. Biochem. Physiol. 41: 953–964, 1963.
 94. Jansky, L. and J. S. Hart. Cardiac output and organ blood flow in warm‐and cold‐acclimated rats exposed to cold. Can. J. Biochem. Physiol. 46: 653–659, 1968.
 95. Jessen, C., J. R. S. Hales, and G. S. Molyneux. Hypothalamic thermosensitivity in an emu, Dromaius novae‐hollandiae. Pflügers Arch. 393: 278–280, 1982.
 96. Jezek, P., and K. D. Garlid. New substrates and competitive inhibitors of the Cl− translocating pathway of the uncoupling protein of brown adipose tissue mitochondria. j. Biol. Chem. 265: 19303–19311, 1990.
 97. Joel, C. D. Stimulation of metabolism of rat brown adipose tissue by addition of lipolytic hormones in vitro. j. Biol. Chem. 241: 814–821, 1966.
 98. Kanosue, K., K.‐I. Niwa, P. D. Andrew, H. Yasuda, M. Yanase, H. Tanaka, and K. Matsumura. Lateral distribution of hypothalamic signals controlling thermoregulatory vasomotor activity and shivering in rats. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 29): R486–R493, 1991.
 99. Kikuchi, K., S. Okano, T. Nozu, T. Yahata, and A. Kuroshima. Effects of chronic administration of noradrenaline and glucagon on in vitro brown adipose tissue thermogenesis. Jpn. J. Physiol. 42: 165–170, 1992.
 100. Klaus, S., L. Casteilla, F. Bouillaud, and D. Ricquier. The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int. J. Biochem. 23: 791–801, 1991.
 101. Klingenberg, M. Characteristics of the uncoupling protein from brown‐fat mitochondria. Biochem. Soc. Trans. 12: 390–393, 1984.
 102. Klingenberg, M. Mechanism and evolution of the uncoupling protein of brown adipose tissue. Trends Biochem. Sci. 15: 108–112, 1990.
 103. Klingenberg, M. Nucleotide binding to uncoupling protein. Mechanism of control by protonation. Biochemistry 27: 781–791, 1988.
 104. Krief, S., F. Lonnqvist, S. Raimbault, B. Baude, A. V. Spronsen, P. Arner, A. D. Strosberg, D. Ricquier, and L. J. Emorine. Tissue distribution of β3‐adrenergic receptor mRNA in man. j. Clin. Invest. 91: 344–349, 1993.
 105. Kuroshima, A., and T. Yahata. Thermogenic responses of brown adipocytes to noradrenaline and glucagon in heat‐acclimated and cold‐acclimated rats. Jpn. J. Physiol. 29: 683–690, 1979.
 106. Kuroshima, A., T. Yahata, and T. Ohno. Changes in plasma glucagon levels to stressful environmental temperatures. Jpn. J. Physiol. 31: 43–52, 1981.
 107. Lafontan, M., and M. Berlan. Fat cell adrenergic receptors and the control of white and brown fat cell function. j. Lipid Res. 34: 1057–1091, 1993
 108. Landsberg, L., M. E. Saville, and J. B. Young. Sympathoadrenal system and regulation of thermogenesis. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E181–E189, 1984.
 109. LaNoue, K. F., C. D. Koch, and R. B. Meditz. Mechanism of action of norepinephrine in hamster brown adipocytes. j. Biol. Chem. 257: 13740–13748, 1982.
 110. LaNoue, K. F., C. Koch, D. Strzelecka, and T. P. Kobylski. Regulation of Na+ transport in brown adipose tissue. Biochem. J. 235: 545–552, 1986.
 111. Lee, R. G., and R. B. Stein. Resetting of tremor by mechanical perturbations: a comparison of essential tremor and Parkinsonian tremor. Ann. Neurol. 10: 523–531, 1981.
 112. Lee, S. C., J. Hamilton, T. Trammell, B. A. Horwitz, and P. A. Pappone. Adrenergic modulation of intracellular pH in isolated brown fat cells from hamster and rat. Am. J. Physiol. 267 (Cell Physiol. 36): C349–C356, 1994.
 113. Levin, B. E., and A. C. Sullivan. Beta‐1 receptor is the predominant beta‐adrenoceptor on rat brown adipose tissue. j. Pharmacol. Exp. Ther. 236: 681–688, 1986.
 114. Lin, C. S., and M. Klingenberg. Characteristics of the isolated purine nucleotide binding protein from brown fat mitochondria. Biochemistry 21: 2950–2956, 1982
 115. Lin, M. T., P. S. Wang, J. Chuang, L. J. Fan, S. J. Won. Cold stress or a pyrogenic substance elevates thyrotropin‐releasing hormone levels in the rat hypothalamus and induces thermogenic reactions. Neuroendocrinology 50: 177–181, 1989.
 116. Marette, A., and L. J. Bukowiecki. Stimulation of glucose transport by insulin and norepinephrine in isolated rat brown adipocytes. Am. J. Physiol. 257 (Cell Physiol. 26): C714–C721, 1989.
 117. Marette, A., and L. J. Bukowiecki. Mechanism of norepinephrine stimulation of glucose transport in isolated brown adipocytes. Int. J. Obesity 14: 857–867, 1990.
 118. Marsh, R. L. Development of endothermy in nestling bank swallows (Riparia riparia). Physiol. Zool. 52: 340–353, 1979.
 119. Maxwell, G., S. Crompton, and C. Smyth. The effect of dopamine upon oxidative metabolism of brown fat adipocytes. Eur. J. Pharmacol. 116: 293–297, 1985.
 120. Maxwell, G., S. Crompton, and C. Smyth. The action of dopamine upon glycerol and fatty acid release by rat brown adipose tissue. Arch. Int. Pharmacodyn. 287: 169–176, 1987.
 121. Mayinger, P., and M. Klingenberg. Labeling of two different regions of the nucleotide binding site of the uncoupling protein from brown adipose tissue mitochondria with two ATP analogs. Biochemistry 31: 10536–10543, 1992.
 122. McDonald, R. B., C. Day, K. Carlson, J. S. Stern, and B. A. Horwitz. Effect of age and gender on thermoregulation. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R700–R704, 1989.
 123. McDonald, R. B., J. S. Hamilton, and B. A. Horwitz. Influence of age and gender on brown adipose tissue norepinephrine turnover. Proc. Soc. Exp. Biol. Med. 204: 117–121, 1993.
 124. McDonald, R. B., B. A. Horwitz, J. S. Hamilton, and J. S. Stern. Cold‐ and norepinephrine‐induced thermogenesis in younger and older Fischer 344 rats. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R457–R462, 1988.
 125. McDonald, R. B., C. M. Murtagh, and B. A. Horwitz. Age and gender effects on glucose utilization in skeletal muscle and brown adipose tissue of cold‐exposed rats. Proc. Soc. Exp. Biol. Med. 207: 102–108, 1994.
 126. Mercer, J. B. and E. Simon. Appropriate and inappropriate hypothalamic cold thermosensitivity in willow ptarmigan. Acta Physiol. Scand. 131: 73–80, 1987.
 127. Misson, B. H. The relationships between age, mass, body temperature and metabolic rate in the neonatal fowl (Gallus domesticus). J. Therm. Biol. 2: 107–110, 1977.
 128. Mohell, N., and A. Dicker. The β‐adrenergic radioligand [3H]CGP‐12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem. J. 261: 401–405, 1989.
 129. Mohell, N., M. Wallace, and J. N. Fain. Alpha‐1 adrenergic stimulation of phosphatidylinositol turnover and respiration of brown fat cells. Mol. Pharmacol. 25: 64–69, 1984.
 130. Morton, M. L., and C. Carey. Growth and the development of endothermy in the mountain white‐crowned sparrow (Zonotrichia leucophrys oriantha). Physiol. Zool. 44: 177–189, 1971.
 131. Mouroux, I., R. Bertin, and R. Portet. Thermogenic capacity of the brown adipose tissue of developing rats; effects of rearing temperature. J. Dev. Physiol. 14: 337–342, 1990.
 132. Mukherjee, S., J. D. Lever, D. Norman, D. Symons, T. L. B. Spriggs, and R. T. Jung. A comparison of the effects of 6‐hydroxydopamine and reserpine on noradrenergic and peptidergic nerves in rat brown adipose tissue. J. Anat. 167: 189–193, 1989.
 133. Muzzin, P., J.‐P. Revelli, C. M. Fraser, and J.‐P. Giacobino. Radioligand binding studies of the atypical β3‐adrenergic receptor in rat brown adipose tissue using [3H]CGP 12177. FEBS Lett. 298: 162–164, 1992.
 134. Muzzin, P., J.‐P. Revelli, F. Kuhne, J. D. Gocayne, W. R. McCombie, J. C. Venter, J.‐P. Giacobino, and C. M. Fraser. An adipose tissue‐specific β‐adrenergic receptor. Molecular cloning and down‐regulation in obesity. j. Biol. Chem. 266: 24053–24058, 1991.
 135. Nahmias, C., N. Blin, J.‐M. Elalouf, M. G. Mattei, A. D. Strosberg, and L. J. Emorine. Molecular characterization of the mouse β3‐adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J. 10: 3721–3727, 1991.
 136. Nanberg, E., and J. Nedergaard. Alpha1‐adrenergic inositol trisphosphate production in brown adipocytes is Na+ dependent. Biochim. Biophys. Acta 930: 438–445, 1987.
 137. Nanberg, E., and J. W. Putney, Jr. Alpha1‐adrenergic activation of brown adipocytes leads to an increased formation of inositol polyphosphates. FEBS Lett. 195: 319–322, 1986.
 138. Nash, R. F., and G. G. Gallup, Jr. Habituation and tonic immobility in domestic chickens. j. Comp. Physiol. Psychol. 90: 870–876, 1976.
 139. Nechad, M. Structure and development of brown adipose tissue. In: Brown Adipose Tissue, edited by P. Trayhurn, and D. G. Nicholls. London: Edward Arnold, 1986, p. 1–30.
 140. Necker, R. Temperature‐sensitive ascending neurons in the spinal cord of pigeons. Pflügers Arch. 353: 275–286, 1975.
 141. Necker, R., and W. Rautenberg. Effect of spinal deafferentation on temperature regulation and spinal thermosensitivity in pigeons. Pflügers Arch. 360: 287–299, 1975.
 142. Nedergaard, J., and B. Cannon. [3H]GDP binding and thermogenin amount in brown adipose tissue mitochondria from cold‐exposed rats. Am. J. Physiol. 248 (Cell Physiol. 17): C365–C371, 1985.
 143. Nedergaard, J., and B. Cannon. The uncoupling protein thermogenin and mitochondrial thermogenesis. In: New Comprehensive Biochemistry, vol. 23, Molecular Mechanisms in Bio‐energetics, edited by L. Ernster. London: Elsevier, 1992, p. 385–420.
 144. Nedergaard, J., E. Connolly, and B. Cannon. Brown adipose tissue in the mammalian neonate. In: Brown Adipose Tissue, edited by P. Trayhurn, and D. G. Nicholls. London: Edward Arnold, 1986, p. 152–213.
 145. Nicholls, D. G. Hamster brown‐adipose‐tissue mitochondria. The control of respiration and the proton electrochemical potential by possible physiological effectors of the proton conductance of the inner membrane. Eur. j. Biochem. 49: 573–583, 1974.
 146. Nicholls, D. G. Hamster brown‐adipose‐tissue mitochondria. Purine nucleotide control of the ion conductance of the inner membrane, the nature of the nucleotide‐bindingsite. Eur. J. Biochem. 62: 223–228, 1976.
 147. Nicholls, D. G. The effective proton conductances of the inner membrane of mitochondria from brown adipose tissue. Dependency on proton electrochemical gradient. Eur. J. Biochem. 77: 349–356, 1977.
 148. Nicholls, D. G., S. A. Cunningham, and E. Rial. The bioenergetic mechanisms of brown adipose tissue thermogenesis. In: Brown Adipose Tissue, edited by P. Trayhurn, and D. G. Nicholls. London: Edward Arnold, 1986, p. 52–85.
 149. Niijima, A., F. Rohner‐Jeanrenaud, and B. Jeanrenaud. Role of ventromedial hypothalamus on sympathetic efferents of brown adipose tissue. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R650–R654, 1984.
 150. Nisoli, E., C. Tonello, M. Memo, and M. O. Carruba. Biochemical and functional identification of a novel dopamine receptor subtype in rat brown adipose tissue. Its role in modulating sympathetic stimulation‐induced thermogenesis. J. Pharmacol. Exp. Ther. 263: 823–829, 1992.
 151. Obregon, M. J., A. Jacobsson, T. Kirchgessner, M. C. Schotz, B. Cannon, and J. Nedergaard. Postnatal recruitment of brown adipose tissue is induced by the cold stress experienced by the pups. Biochem. J. 259: 341–346, 1989.
 152. Obregon, M.‐J., R. Pitamber, A. Jacobsson, J. Nedergaard, and B. Cannon. Euthyroid status is essential for the perinatal increase in thermogenin mRNA in brown adipose tissue of rat pups. Biochem. Biophys. Res. Commun. 148: 9–14, 1987.
 153. Okano, S., K. Kikuchi, and A. Kuroshima. Alterations of insulin content and insulin binding to plasma membranes in rat brown adipose tissue during cold exposure and cold acclimation. Jpn. J. Physiol. 43: 51–65, 1993.
 154. Omatsu‐Kanbe, M., and H. Kitasato. Insulin and noradrenaline independently stimulate the translocation of glucose transporters from intracellular stores to the plasma membrane in mouse brown adipocytes. FEBS Lett. 314: 246–250, 1992.
 155. Parker, G. H., and J. C. George. Effects of intense exercise on intracellular glycogen and fat in pigeon pectoralis. Acta Anat. 96: 568–573, 1976.
 156. Poczopko, P., and M. Uliasz. Hormonal regulation of thermogenesis in goslings. Possible role of the thyroid gland. Acta Physiol. Pol. 26: 241–248, 1975.
 157. Porras, A., M. Penas, M. Fernandez, and M. Benito. Development of the uncoupling protein in rat brown‐adipose tissue during the perinatal period. Its relationship with the mitochondrial GDP‐binding and GDP‐sensitive ion permeabilities and respiration. Eur. J. Biochem. 187: 671–675, 1990.
 158. Power, C. G., T. R. Gunn, B. M. Johnston, and P. D. Gluckman. Oxygen supply and the placenta limit thermogenic responses in fetal sheep. j. Appl. Physiol. 63: 1896–1901, 1987
 159. Raasmaja, A. α1‐ and β‐adrenergic receptors in brown adipose tissue and the adrenergic regulation of thyroxine 5'‐deiodinase. Acta Physiol. Scand. 139, Suppl. 590: 5–61, 1990.
 160. Raasmaja, A. and P. R. Larsen. α1‐ and β‐adrenergic agents cause synergistic stimulation of the iodothyronine deiodinase in rat brown adipocytes. Endocrinology 125: 2502–2509, 1989.
 161. Randall, W. C. Factors influencing the temperature regulation of birds. Am. J. Physiol. 139: 56–63, 1943.
 162. Rautenberg, W., R. Necker, and B. May. Thermoregulatory responses of the pigeon to changes of the brain and the spinal cord temperatures. Pflügers Arch. 338: 31–42, 1972.
 163. Rehnmark, S., A. C. Bianco, J. D. Kieffer, and J. E. Silva. Transcriptional and posttranscriptional mechanisms in uncoupling protein mRNA response to cold. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E58–E67, 1992.
 164. Rial, E., A. Poustie, and D. G. Nicholls. Brown‐adipose‐tissue mitochondria: the regulation of the 32000‐Mr uncoupling protein by fatty acids and purine nucleotides. Eur. J. Biochem. 173: 197–203, 1983.
 165. Ricquier, D., F. Bouillaud, P. Toumelin, B. Mory, R. Bazin, J. Arch, and L. Penicaud. Expression of uncoupling protein mRNA in thermogenic or weakly thermogenic brown adipose tissue. Evidence for a rapid β‐adrenoreceptor‐mediated and transcriptionally regulated step during activation of thermogenesis. j. Biol. Chem. 261: 13905–13910, 1986.
 166. Roberts, J. Thermogenic responses to prolonged cold exposure: birds and mammals. In: Handbook of Physiology: Environmental Physiology, edited by M. J. Fregly, and C. M. Blatteis, New York: Oxford University Press for the Am. Physiol. Soc., 1995, Sect. 4, ch. 18, p. 399–418.
 167. Rondeel, J. M. M., W. J. de Greef, W. C. J. Hop, D. L. Rowland, T. J. Visser. Effect of cold exposure on the hypothalamic release of thyrotropin‐releasing hormone and catecholamines. Neuro‐endocrinology 54: 477–481, 1991.
 168. Rothwell, N. J., M. J. Stock, and D. K. Sudera. Beta‐adrenore‐ceptors in rat brown adipose tissue: proportions of beta1‐ and beta2‐subtypes. Am. J. Physiol. 248 (Endocrinol. Metab. 11): E397–E402, 1985.
 169. Rothwell, N. J., M. J. Stock, and R. S. Tyzbir. Mechanisms of thermogenesis induced by low protein diets. Metabolism 32: 257–261, 1983.
 170. Saarela, S., R. Hissa, A. Pyornila, R. Harjula, M. Ojanen, and M. Orell. Do birds possess brown adipose tissue? Comp. Biochem. Physiol. 92A: 219–228 1989.
 171. Saarela, S., J. S. Keith, E. Hohtola, and P. Trayhurn. Is the “mammalian” brown fat‐specific mitochondrial uncoupling protein present in adipose tissues of birds? Comp. Biochem. Physiol. 100B: 45–49 1991.
 172. Sakellaris, P. C. and J. Vernikos‐Danellis. Increased rate of response of the pituitary‐adrenal system in rats adapted to chronic stress. Endocrinology 97: 597–602, 1975.
 173. Satinoff, E. Neural organization and evolution of thermal regulation in mammals. Science 201: 16–22, 1978.
 174. Sawa, R., H. Asakura, and G. G. Power. Changes in plasma adenosine during simulated birth of fetal sheep. j. Appl. Physiol. 70: 1524–1528, 1991.
 175. Scarpace, P., and M. Matheny. Adenylate cyclase agonist properties of CGP‐12177A in brown fat: evidence for atypical β‐adrenergic receptors. Am. J. Physiol. 260: (Endocrinol. Metab. 23): E226–E231, 1991.
 176. Scarpace, P., M. Matheny, and S. E. Borst. Thermogenesis and mitochondrial GDP binding with age in response to the novel agonist CGP‐12177A. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E185–E190, 1992.
 177. Shik, M. L., and G. N. Orlovsky. Neurophysiology of locomotor automatism. Physiol. Rev. 56: 465–501, 1976.
 178. Schimmel, R. J., M. E. Elliot, and V. C. Dehmel. Interactions between adenosine and α1‐adrenergic agonists in regulation of respiration in hamster brown adipocytes. Mol. Pharmacol. 32: 26–33, 1987.
 179. Schimmel, R. J., and L. McCarthy. Effects of insulin, adenosine, and prostaglandin on α‐adrenergic‐stimulated respiration in brown adipocytes. Am. J. Physiol. 250 (Cell Physiol. 19): C738–C743, 1986.
 180. Schimmel, R. J., L. McCarthy, and K. K. McMahon. Alpha, ‐adrenergic stimulation of hamster brown adipocyte respiration. Am. J. Physiol. 244 (Cell Physiol. 15): C362–C368, 1983.
 181. Shimizu, Y., H. Nikami, and M. Saito. Sympathetic activation of glucose utilization in brown adipose tissue in rats. j. Biochem. 110: 688–692, 1991.
 182. Shimizu, Y., H. Nikami, K. Tsukazaki, U. F. Machado, H. Yano, Y. Seino, and M. Saito. Increased expression of glucose transporter GLUT‐4 in brown adipose tissue of fasted rats after cold exposure. Am. J. Physiol. 264: (Endocrinol. Metab. 27): E890–E895, 1993.
 183. Silva, J. E. Full expression of uncoupling protein gene requires the concurrence of norepinephrine and triiodothyronine. Mol. Endocrinol. 2: 706–713, 1988.
 184. Silva, J. E., and P. R. Larsen. Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature 305: 712–713, 1983.
 185. Silva, J. E., and P. R. Larsen. Hormonal regulation of iodothyronine 5'‐deiodinase in rat brown adipose tissue. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E639–E643, 1986.
 186. Skala, J. P., and P. Hahn. Changes in interscapular brown adipose tissue of the rat during perinatal and early postnatal development and after cold acclimation. VI. Effect of hormones and ambient temperature. Int. J. Biochem. 5: 95–106, 1974.
 187. Smith, O. L. K. Insulin response in rats acutely exposed to cold. Can. J. Physiol. Pharmacol. 62: 924–927, 1984.
 188. Smith, O. L. K., and S. B. Davidson. Shivering thermogenesis and glucose uptake by muscles of normal or diabetic rats. Am. J. Physiol. 242 (Regulatory Integrative Comp. Physiol. 11): R109–R115, 1982.
 189. Smith, R. E., and D. J. Hoijer. Metabolism and cellular function in cold acclimation. Physiol. Rev. 42: 60–142, 1962.
 190. Smith, R. E., and B. A. Horwitz. Brown fat and thermogenesis. Physiol. Rev. 49: 330–425, 1969.
 191. Steffens, A., A. Scheurink, P. Luiten, and B. Bohus. Hypothalamic food intake regulating areas are involved in the homeostasis of blood glucose and plasma FFA levels. Physiol. Behav. 44: 581–589, 1988.
 192. Steiner, G., and S. Evans. Effect of serotonin on brown adipose tissue and on its sympathetic neurons. Am. J. Physiol. 231: 34–39, 1976.
 193. Stevens, E. D., J. Ferguson, V. G. Thomas, and E. Hohtola. Contribution of shivering in leg muscles to heat production in Japanese quail. Can. J. Zool. 64: 889–892, 1986.
 194. Stuart, D. G., E. Eldred, A. Hemmingway, and Y. Kawamura. Neural regulation of the rhythm of shivering. In: Temperature—Its Measurement and Control in Science and Industry, vol. 3, part 3, edited by C. M. Herzfeld, and J. D. Hardy. New York: Reinhold, 1963, p. 545–557.
 195. Stuart, D., K. Ott, K. Ishikawa, and E. Eldred. The rhythm of shivering: I. General sensory contributions. Am. J. Phys. Med. 45: 61–74, 1966.
 196. Stuart, D., K. Ott, K. Ishikawa, and E. Eldred. The rhythm of shivering: II. Passive proprioceptive contributions. Am. J. Phys. Med. 45: 75–90, 1966.
 197. Stuart, D., K. Ott, K. Ishikawa, and E. Eldred. The rhythm of shivering: III. Central contributions. Am. J. Phys. Med. 45: 91–104, 1966.
 198. Sundin, U., and J. N. Fain. Alpha2‐adrenergic inhibition of lipolysis and respiration in rat brown adipocytes. Biochem. Pharmacol. 32: 3117–3120, 1983.
 199. Szillat, D., and L. J. Bukowiecki. Control of brown adipose tissue lipolysis and respiration by adenosine. Am. J. Physiol. 245 (Endocrinol. Metab. 8): E555–E559, 1983.
 200. Thompson, M. P., and K. A. Strait. Effect of thyroid hormone status on the expression of the mRNAs of components of the lipolytic regulatory cascade in brown adipose tissue. Int. J. Biochem. 24: 1093–1100, 1992.
 201. Thureson‐Klein, A., H. Lagercrantz, and T. Barnard. Chemical sympathectomy of interscapular brown adipose tissue. Acta Physiol. Scand. 98: 8–18, 1976.
 202. Uchida, Y., and T. Nomoto. Intravenously infused adenosine increases the blood flow to brown adipose tissue in rats. Eur. J. Pharmacol. 184: 223–231, 1990.
 203. Vallerand, A. L., F. Perusse, and L. J. Bukowiecki. Cold exposure potentiates the effect of insulin on in vivo glucose uptake. Am. J. Physiol. 253 (Endocrinol. Metab. 16): E179–E186, 1987.
 204. Vallerand, A. L., F. Perusse, and L. J. Bukowiecki. Stimulatory effects of cold exposure and cold acclimation on glucose uptake in rat peripheral tissues. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 27): R1043–R1049, 1990.
 205. Vannucci, S. J., C. M. Klim, L. F. Martin, and K. F. LaNoue. A1‐adenosine receptor‐mediated inhibition of adipocyte adenylate cyclase and lipolysis in Zucker rats. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E871–878, 1989.
 206. Wang, L. C. H., and T. F. Lee. Enhancement of maximal ther‐mogenesis by reducing endogenous adenosine activity in the rat. J. Appl. Physiol. 68: 580–585, 1990.
 207. Wekstein, D. R., and J. F. Zolman. Sympathetic control of homeothermy in the young chick. Am. J. Physiol. 214: 908–912, 1968.
 208. Wickler, S. J., and B. A. Horwitz. Blood flow in normal and dystrophic hamsters during nonshivering thermogenesis. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R189–195, 1984.
 209. Wickler, S. J., B. A. Horwitz, S. F. Flaim, and K. F. LaNoue. Isoproterenol‐induced blood flow in rats acclimated to room temperature and cold. Am. J. Physiol. 246: (Regulatory Integrative Comp. Physiol. 15): R747–R752, 1984.
 210. Wickler, S. J., J. S. Stern, Z. Glick, and B. A. Horwitz. Thermogenic capacity and brown fat in rats exercise‐trained by running. Metabolism 36: 76–81, 1987.
 211. Wilcke, M., and J. Nedergaard. α1‐ and β‐adrenergic regulation of intracellular Ca2+ levels in brown adipocytes. Biochem. Biophys. Res. Commun. 163: 292–300, 1989.
 212. Winkler, E., and M. Klingenberg. An improved procedure for reconstitution of the uncoupling protein and in‐depth analysis of H+/OH− transport. Eur. J. Biochem. 207: 135–145, 1992.
 213. Woodward, J. A., and E. D. Saggerson. Effect of adenosine deaminase, N6‐phenylisopropyladenosine and hypothyroidism on the responsiveness of rat brown adipocytes to noradrenaline. Biochem. J. 238: 395–403, 1986.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

B. A. Horwitz. Homeostatic Responses to Acute Cold Exposure: Thermogenic Responses in Birds and Mammals. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 359-377. First published in print 1996. doi: 10.1002/cphy.cp040116