Comprehensive Physiology Wiley Online Library

Torpor and Hibernation in Mammals: Metabolic, Physiological, and Biochemical Adaptations

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Basic Patterns of Torpor and Hibernation
2 Physiological Manifestations in a Bout of Torpor
2.1 Entry into Torpor
2.2 The Torpor State
2.3 Arousal from Torpor
3 Energetics of Natural Hibernation
3.1 Energetics of Mammals Exhibiting Hibernation and Torpor
3.2 Current Theories on Why Animals Arouse Periodically
4 Physiological and Biochemical Adaptations: Organ Systems, Organs, and Tissues
4.1 Regulation of Heat Production in a Torpor Cycle
4.2 Cardiovascular Functions
4.3 Respiratory Functions
4.4 Reproductive Functions
4.5 Photoperiodism and Rhythmicity
5 Biochemical and Cellular Adaptations
5.1 Substrate Utilization in Hibernation
5.2 Ionic Regulation
5.3 Membrane Aspects
6 The “Hibernation Induction Trigger”: Fact or Fiction?
6.1 Historical Background and Recent Advances
6.2 An Evaluation
6.3 The Opioids
7 Summary and Perspective
Figure 1. Figure 1.

Upper panels: Typical dynamic changes of body temperature (via radiotelemetry) during torpor bout in the Richardson's ground squirrel under field (#33) and laboratory (#205) conditions. Note the relatively long duration of entry into torpor (more than 24 h) and the relatively short duration of arousal from torpor (less than 5 h). Lower panel: A complete hibernation season in a juvenile male Richardson's ground squirrel under field conditions. Note seasonal variations in duration and depth of torpor 140.

Figure 2. Figure 2.

(A) Maximal first postrest contraction (F1max) of electrically stimulated papillary muscle from active (open circle) and hibernating (closed circle) Richardson's ground squirrels in 0.1, 2.8, and 5 mM Ca2+ solutions at 37°, 20°, and 7°C. Note that the amplitude of F1max is always higher in the hibernating group at all tested temperatures 155. (B) Ca2+ dependence of ryanodine binding to Richardson's ground squirrel (closed square) and sheep (open square) cardiac SR. Note the rapid increase in ryanodine binding to ground squirrel cardiac SR after a tenfold increase in Ca2+ concentration from 10−7 to 10−6 M 102.

Figure 3. Figure 3.

(A) Time course of arterial acid‐base variables in two European hamsters (animal A: solid line and closed symbols; animal B: dotted line and open symbols) arousing from hibernation. Samples were taken every 15 min. Dashed line indicates buffer value of extracellular fluid. H: hibernation, N: normothermy. Note marked reduction of PCO2* from 100 to less than 50 torr within the first 15 min by hyperventilation 99. (B) Changes in shoulder muscle pH (solid circles) and imidazole dissociation ratio (αIm, solid triangles) with shoulder temperature (Tsh) of Columbian ground squirrels during arousal from hibernation. E denotes data from euthermic animals. Note the rapid increase in αIm during early arousal (at Tsh below 20°C), whereas the change in pH occurs only at Tsh above 20°C 90.

Figure 4. Figure 4.

Left: Arrhenius plots of H+ efflux, Ca2+ uptake, and O2 consumption in liver mitochondria from summer‐active Richardson's ground squirrels. Apparent energy of activation (Ea; in kcal/mol) was calculated only for upper linear portion of each plot. Right: Same parameters as those from the left panel, but the squirrels were sacrificed during hibernation. The Ea was calculated over entire temperature range examined (4°–37°C). Note the stoichiometric relationship between H/Ca and Ca/O remains constant at all temperatures despite the drastic increase in Ea in the summer‐active ground squirrel 120.

Figure 5. Figure 5.

Left: Representative conventional differential scanning calorimetry thermogram of (a) endothermic (heating) phase transition and (b) exothermic (cooling) phase transition in liver inner mitochondrial membranes from summer and from hibernating Richardson's ground squirrel. Scan rates were 10°C/min at a sensitivity of 0.2 mcal/s full scale. Right: Representative high‐sensitivity differential scanning calorimetry thermograms of freshly isolated inner mitochondrial membranes from summer and from hibernating Richardson's ground squirrels. Membranes were scanned from O° to 70°C at a scan rate of 20°C/h (a), cooled, and scanned again (b). Note, in both panels, no evidence of lipid phase transitions near 20°C even at highest possible instrumental sensitivity 118.

Figure 6. Figure 6.

Changes in met‐enkephalin immunoreactive elements in the septal area of (a) euthermic (Tb = 37°C), hypothermic (Tb = 7°C), and hibernating (Tb = 7°C) Columbian ground squirrels. NSL: lateral septal nucleus; NSM: medial septal nucleus; dashed line: border between lateral and medial septal nuclei. Note the significantly greater immunoreactivity during hibernation (45% greater than euthermia, p < 0.01 based on computerized image analysis) than in hypothermia and euthermia (no significant difference between the two), indicating the increased met‐enkephalin immunoreactivity during hibernation is state‐dependent rather than Tb‐dependent 113.



Figure 1.

Upper panels: Typical dynamic changes of body temperature (via radiotelemetry) during torpor bout in the Richardson's ground squirrel under field (#33) and laboratory (#205) conditions. Note the relatively long duration of entry into torpor (more than 24 h) and the relatively short duration of arousal from torpor (less than 5 h). Lower panel: A complete hibernation season in a juvenile male Richardson's ground squirrel under field conditions. Note seasonal variations in duration and depth of torpor 140.



Figure 2.

(A) Maximal first postrest contraction (F1max) of electrically stimulated papillary muscle from active (open circle) and hibernating (closed circle) Richardson's ground squirrels in 0.1, 2.8, and 5 mM Ca2+ solutions at 37°, 20°, and 7°C. Note that the amplitude of F1max is always higher in the hibernating group at all tested temperatures 155. (B) Ca2+ dependence of ryanodine binding to Richardson's ground squirrel (closed square) and sheep (open square) cardiac SR. Note the rapid increase in ryanodine binding to ground squirrel cardiac SR after a tenfold increase in Ca2+ concentration from 10−7 to 10−6 M 102.



Figure 3.

(A) Time course of arterial acid‐base variables in two European hamsters (animal A: solid line and closed symbols; animal B: dotted line and open symbols) arousing from hibernation. Samples were taken every 15 min. Dashed line indicates buffer value of extracellular fluid. H: hibernation, N: normothermy. Note marked reduction of PCO2* from 100 to less than 50 torr within the first 15 min by hyperventilation 99. (B) Changes in shoulder muscle pH (solid circles) and imidazole dissociation ratio (αIm, solid triangles) with shoulder temperature (Tsh) of Columbian ground squirrels during arousal from hibernation. E denotes data from euthermic animals. Note the rapid increase in αIm during early arousal (at Tsh below 20°C), whereas the change in pH occurs only at Tsh above 20°C 90.



Figure 4.

Left: Arrhenius plots of H+ efflux, Ca2+ uptake, and O2 consumption in liver mitochondria from summer‐active Richardson's ground squirrels. Apparent energy of activation (Ea; in kcal/mol) was calculated only for upper linear portion of each plot. Right: Same parameters as those from the left panel, but the squirrels were sacrificed during hibernation. The Ea was calculated over entire temperature range examined (4°–37°C). Note the stoichiometric relationship between H/Ca and Ca/O remains constant at all temperatures despite the drastic increase in Ea in the summer‐active ground squirrel 120.



Figure 5.

Left: Representative conventional differential scanning calorimetry thermogram of (a) endothermic (heating) phase transition and (b) exothermic (cooling) phase transition in liver inner mitochondrial membranes from summer and from hibernating Richardson's ground squirrel. Scan rates were 10°C/min at a sensitivity of 0.2 mcal/s full scale. Right: Representative high‐sensitivity differential scanning calorimetry thermograms of freshly isolated inner mitochondrial membranes from summer and from hibernating Richardson's ground squirrels. Membranes were scanned from O° to 70°C at a scan rate of 20°C/h (a), cooled, and scanned again (b). Note, in both panels, no evidence of lipid phase transitions near 20°C even at highest possible instrumental sensitivity 118.



Figure 6.

Changes in met‐enkephalin immunoreactive elements in the septal area of (a) euthermic (Tb = 37°C), hypothermic (Tb = 7°C), and hibernating (Tb = 7°C) Columbian ground squirrels. NSL: lateral septal nucleus; NSM: medial septal nucleus; dashed line: border between lateral and medial septal nuclei. Note the significantly greater immunoreactivity during hibernation (45% greater than euthermia, p < 0.01 based on computerized image analysis) than in hypothermia and euthermia (no significant difference between the two), indicating the increased met‐enkephalin immunoreactivity during hibernation is state‐dependent rather than Tb‐dependent 113.

References
 1. Aloia, R. C., M. L. Augee, G. R. Orr, and J. K. Raison. A critical role of membranes in hibernation. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 19–26.
 2. Aloia, R. C., and J. K. Raison. Membrane function in mammalian hibernation. Biochim. Biophys. Acta 988: 123–146, 1989.
 3. Barnes, B. M., Freeze avoidance in a mammal: body temperatures below 0°C in an Arctic hibernator. Science 244: 1593–1595, 1989.
 4. Barnes, B. M., M. Kretzmann, P. Light, and I. Zucker. Reproductive development in hibernating ground squirrels. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 245–251.
 5. Barnes, B. M., M. Kretzmann, I. Zucker, and P. Light. Plasma androgen and gonadotropin levels during hibernation and testicular maturation in golden‐mantled ground squirrels. Biol. Reprod. 38: 616–622, 1988.
 6. Bauman, W. A., Seasonal changes in pancreatic insulin and glucagon in the little brown bat (Myotis lucifugus). Pancreas 5: 342–346, 1990.
 7. Bauman, W. A., S. Meryn, and G. L. Florant. Pancreatic hormones in the nonhibernating and hibernating golden‐mantled ground squirrel. Comp. Biochem. Physiol. 86: 241–244, 1987.
 8. Baumber, J., and A. Denyes. Acetate‐1‐14C metabolism of white fat from hamsters in cold exposure and hibernation. Am. J. Physiol. 205: 905–908, 1963.
 9. Beckman, A. L., Functional aspects of brain opioid peptide systems in hibernation. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. New York: Elsevier, 1986, p. 225–234.
 10. Behrisch, H. W., Metabolic economy at the biochemical level: the hibernator. In: Strategies in Cold: Natural Torpidity and Thermogenesis, edited by L. C. H. Wang and J. W. Hudson. London: Academic Press, 1978, p. 461–479.
 11. Behrisch, H. W., D. H. Smullin, and G. A. Morse. Life at low and changing temperatures: molecular aspects. In: Survival in the Cold, edited by X. J. Musacchia and L. Jansky. Amsterdam: Elsevier, 1981, p. 191–205.
 12. Belke, D. D., R. E. Milner, and L. C. H. Wang. Seasonal variations in the rate and capacity of cardiac SR calcium accumulation in a hibernating species. Cryobiology 28: 354–363, 1991.
 13. Belke, D. D., D. J. Pehowich, and L. C. H. Wang. Seasonal variation in calcium uptake by cardiac sarcoplasmic reticulum in a hibernator, the Richardson's ground squirrel. J. Therm. Biol. 12: 53–56, 1987.
 14. Biglow, D. J., T. C. Squier, and D. D. Thomas. Temperature dependence of rotational dynamics of protein and lipid in sarcoplasmic reticulum membrane. Biochemistry 25: 194–202, 1986.
 15. Bintz, G. L., and C. E. Strand. Radioglucose metabolism by Richardson's ground squirrels in the natural environment. Physiol. Zool. 56: 639–647, 1983.
 16. Borgmann, A. I., and T. W. Moon. Enzymes of the normothermic and hibernating bat, Myotis lucifugus: temperature as a modulator of pyruvate kinase. J. Comp. Physiol. 107: 185–199, 1976.
 17. Brooks, S. P. J., and K. B. Storey. Mechanisms of glycolytic control during hibernation in the ground squirrel Spermophilus lateralis. J. Comp. Physiol. 162B: 23–28, 1992.
 18. Bruce, D. S., G. W. Cope, T. R. Elam, K. A. Ruit, P. R. Oeltgen, and T.‐P. Su. Opioids and hibernation. I. Effects of naloxone on bear HIT's depression of guinea pig ileum contractility and on induction of summer hibernation in the ground squirrel. Life Sci. 41: 2107–2113, 1987.
 19. Brustovetsky, N. N., Z. G. Amerkhanov, E. Y. Popova, and A. A. Konstantinov. Reversible inhibition of electron transfer in ubiquinol cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels. FEBS Lett. 263: 73–76, 1990.
 20. Burlington, R. F., M. S. Dean, and A. Darvish. Cardiovascular responses to low temperature in isolated hearts from rats and 13‐lined ground squirrels (Spermophilus tridecemlineatus). In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 549–556.
 21. Castex, Ch., and B. Ch. J. Sutter. Insulin binding and glucose oxidation in edible dormouse (Glis glis) adipose tissue: seasonal variations. Gen. Comp. Endocrinol. 45: 273–278, 1981.
 22. Castex, Ch., A. Tahri, R. Hoo‐Paris, and B. Ch. J. Sutter. Insulin secretion in the hibernating edible dormouse (Glis glis): in vivo and in vitro studies. Comp. Biochem. Physiol. 79A: 179–183, 1984.
 23. Charnock, J. S., W. F. Dryden, R. J. Marshall, and P. Lauzon. Dissociation of inotropic and toxic effects of the semisynthetic cardiac glycoside actodigin during hibernation in the ground squirrel. Comp. Biochem. Physiol. 67C: 1–7, 1980.
 24. Charnock, J. S., R. A. Gibson, E. J. McMurchie, and J. K. Raison. Changes in the fluidity of myocardial membranes during hibernation: relationship to myocardial adenosine triphosphatase activity. Mol. Pharmacol. 18: 476–482, 1980.
 25. Cossins, A. R., and J. A. C. Lee. The adaptation of membrane structure and lipid composition to cold. In: Circulation, Respiration and Metabolism, edited by R. Gilles. Berlin: Springer‐Verlag, 1985, p. 543–552.
 26. Cranford, J. A., Field and laboratory annual cycles of activity and hibernation in the Uinta Basin ground squirrel (Spermophilus armatus). In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 411–418.
 27. Daan, S., B. M. Barnes, and A. M. Strijkstra. Warming up for sleep?—Ground squirrels sleep during arousals from hibernation. Neurosci. Lett. 128: 265–268, 1991.
 28. Dark, J., T. S. Kilduff, H. C. Heller, P. Light, and I. Zucker. Suprachiasmatic nuclei influence hibernation rhythms of golden‐mantled ground squirrels. Brain Res. 509: 111–118, 1990.
 29. Dark, J., G. E. Pickard, and I. Zucker. Persistence of circannual rhythms in ground squirrels with lesions of the suprachiasmatic nuclei. Brain Res. 332: 201–207, 1985.
 30. Darrow, J. M., M. J. Duncan, A. Bartke, A. Bona‐Gallo, and B. D. Goldman. Influence of photoperiod and gonadal steroids on hibernation in the European hamster. J. Comp. Physiol. 163A: 339–348, 1988.
 31. Dawe, A. R., Hibernation trigger research update. In: Strategies in the Cold: Natural Torpidity and Thermogenesis, edited by L. C. H. Wang and J. W. Hudson. London: Academic Press, 1978, p. 541–563.
 32. Dawe, A. R., and W. A. Spurrier. Hibernation induced in ground squirrels by blood transfusion. Science 163: 298–299, 1969.
 33. El‐Hachimi, Z., M. Tijane, G. Boissonnet, A. Benjouad, M. Desmadril, and J. M. Yon. Regulation of the skeletal muscle metabolism during hibernation of Jaculus orientalis. J. Comp. Biochem. Physiol. 96B: 457–459, 1990.
 34. Ellory, J. C., and A. C. Hall. Ca2+ transport in hibernator and non‐hibernator species' red cells at low temperature. J. Physiol. (Lond.) 334: 148, 1983.
 35. Ellory, J. C., and J. S. Willis. Kinetics of the sodium pump in red cells of different temperature sensitivity. J. Gen. Physiol. 79: 1115–1130, 1982.
 36. Fedotcheva, N. I., A. A. Sharyshev, G. D. Mironova, and M. N. Kondrashova. Inhibition of succinate oxidation and potassium transport in mitochondria during hibernation. Comp. Biochem. Physiol. 82B: 191–196, 1985.
 37. Feist, D., G. Florant, M. R. C. Greenwood, and C. Feist. Regulation of energy stores in arctic ground squirrels: brown fat thermogenic capacity, lipoprotein lipase and pancreatic hormones during fat deposition. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 281–285.
 38. Florant, G. L., R. Greenm, T. Abel, S. Hartzell, L. Tamarkin, and G. Brainard. Melatonin profile in marmots: The influence of catecholamines, hibernation, and light. J. Pineal Res. 7: 105–113, 1989.
 39. Florant, G. L., and M. R. C. Greenwood. Seasonal variations in pancreatic function in marmots: the role of pancreatic hormones and lipoprotein lipase in fat deposition. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 273–280.
 40. Florant, G. L., R. Hoo‐Paris, Ch. Castex, W. A. Bauman, and B. Ch. J. Sutter. Pancreatic alpha and beta cell stimulation in euthermic and hibernating marmots, Marmota flaviventris : effects of glucose and arginine administration. J. Comp. Physiol. 156B: 309–314, 1986.
 41. Florant, G. L., M. L. Rivera, A. K. Lawrence, and L. Tamarkin. Plasma melatonin concentration in hibernating marmots: absence of a plasma melatonin rhythm. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R1062–R1066, 1984.
 42. Florant, G. L., and L. Tamarkin. Plasma melatonin rhythms in euthermic marmot (Marmota flaviventris). Biol. Reprod. 30: 332–337, 1984.
 43. Florant, G. L., K. Tokuyama, and D. A. Rintoul. Carbohydrate and lipid utilization in hibernator. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Montrough: John Libbey Eurotext, 1989, p. 137–145.
 44. Fowler, P. A., Seasonal endocrine cycles in the European hedgehog, Erinaceus europaeus. J. Reprod. Fertil. 84: 259–272, 1988.
 45. French, A. R., Patterns of thermoregulation during hibernation. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 393–402.
 46. French, A. R., The impact of variations in energy availability on the time spent torpid during the hibernation season. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Montrough: John Libbey Eurotext, 1989, p. 129–136.
 47. Galster, W., and P. R. Morrison. Gluconeogenesis in arctic ground squirrels between periods of hibernation. Am. J. Physiol. 228: 325–330, 1975.
 48. Gehnrich, S. C., and J. R. Aprille. Hepatic gluconeogenesis and mitochondrial function during hibernation. Comp. Biochem. Physiol. 91B: 11–16, 1988.
 49. Geiser, F., Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J. Comp. Physiol. 158B: 25–37, 1988.
 50. Geiser, F., and R. V. Baudinette. The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J. Exp. Biol. 151: 349–360, 1990.
 51. Goldman, B. D., Effects of photoperiod on the hibernation cycle of the Turkish hamster. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Montrough: John Libbey Eurotext, 1989, p. 5–15.
 52. Goldman, B. D., and J. M. Darrow. Effects of photoperiod on hibernation in castrated Turkish hamster. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 22); R337–R343, 1987.
 53. Goldman, B. D., J. M. Darrow, M. J. Duncan, and L. Yogev. Photoperiod, reproductive hormones, and winter torpor in three hamster species. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 341–350.
 54. Green, C. J., S. P. E. Marley, and B. J. Fuller. Gluconeogenesis in stored kidneys from hibernating and non‐hibernating ground squirrels. Cryo. Lett. 6: 353–360, 1985.
 55. Hall, A. C., and J. S. Willis. Differential effects of temperature on three components of passive permeability to potassium in rodent red cells. J. Physiol. (Lond.) 348: 629–643, 1984.
 56. Hall, A. C., M. W. Wolowyk, L. C. H. Wang, and J. C. Ellory. The effects of temperature on Ca++ transport in red cells from a hibernator (Spermophilus richardsonii). J. Therm. Biol. 12: 61–64, 1987.
 57. Hall, V., and B. Goldman. Effect of gonadal steroid hormones on hibernation in the Turkish hamster (Mesocricetus brandti). J. Comp. Physiol. 135: 107–114, 1980.
 58. Hand, S. C., and G. N. Somero. Phosphofructokinase of the hibernator Citellus beecheyi: temperature and pH regulation of activity via influences on the tetramer‐dimer equilibrium. Physiol. Zool. 56: 380–388, 1983.
 59. Harlow, H. J., J. A. Phillips, and C. L. Ralph. The effect of pinealectomy on hibernation in two species of seasonal hiber‐nators, Citellus lateralis and C. richardsonii. J. Exp. Zool. 213: 301–303, 1980.
 60. Hayward, J. S., The magnitude of noradrenaline‐induced ther‐mogenesis in the bat (Myotis lucifugus) and its relation to arousal from hibernation. Can. J. Physiol. Pharmacol. 46: 713–718, 1968.
 61. Hayward, J. S. and C. P. Lyman. Non‐shivering heat production during arousal from hibernation and evidence for the contribution of brown fat. In: Mammalian Hibernation III, edited by K. C. Fisher, A. R. Dawe, C. P. Lyman, E. Schonbaum, and F. E. South. Edinburgh: Oliver & Boyd, 1967, p. 346–355.
 62. Heller, H. C., Hibernation: neural aspects. Annu. Rev. Physiol. 41: 305–321, 1979.
 63. Heller, H. C., B. L. Krilowicz, and T. S. Kilduff. Neural mechanisms controlling hibernation. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Montrough: John Libbey Eurotext, 1989, p. 447–459.
 64. Heller, H. C., J. Walker, G. Florant, S. F. Glotzbach, and R. J. Berger. Sleep and hibernation: electrophysiological and thermoregulatory homologies. In: Strategies in Cold: Natural Torpidity and Thermogenesis, edited by L. C. H. Wang and J. W. Hudson, London: Academic Press, 1978, p. 225–266.
 65. Hochachka, P. W., Defense strategies against hypoxia and hypothermia. Science 231: 234–241, 1986.
 66. Hoo‐Paris, R., E. Aina, Ch. Castex, and B. Sutter. In vitro β cell response to glucose in the hibernating hedgehog: comparison with the homeothermic hedgehog and the rat. Comp. Biochem. Physiol. 78A: 559–563, 1984.
 67. Hoo‐Paris, R., Ch. Castex, M. Hamsany, A. Thari, and B. Sutter. Glucagon secretion in the hibernating edible dormouse (Glis glis). Comp. Biochem. Physiol. 81A: 277–281, 1985.
 68. Hoo‐Paris, R., M. Hamsany, B. Ch. J. Sutter, R. Assan, and J. Biollol. Plasma glucose and glucagon concentrations in the hibernating hedgehog. Gen. Comp. Endocrinol. 46: 246–254, 1982.
 69. Hoo‐Paris, R., and B. Ch. J. Sutter. Blood glucose control by insulin in the lethargic and arousing hedgehog (Erinaceus euro‐paeus). Comp. Biochem. Physiol. 66A: 141–143, 1980.
 70. Horwitz, B. A., K. S. Kott, J. S. Hamilton, and B. J. Moore. Regulation of brown fat thermogenesis in hibernators. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. New York: Elsevier, 1986, p. 101–108.
 71. Hudson, J. W. Torpidity in mammals, In: Comparative Physiology of Thermoregulation, vol. 3, edited by G. C. Whittow. London: Academic Press, 1973, p. 97–165.
 72. Hudson, J. W., Shallow, daily torpor: a thermoregulatory adaptation. In: Strategies in Cold: Natural Torpidity and Thermogenesis, edited by L. C. H. Wang and J. W. Hudson. London: Academic Press, 1978, p. 67–108.
 73. Jansky, L. Pineal, gonads and hibernation. In: Pineal Research Review, vol. 4, edited by R. J. Reiter. New York: Alan R. Liss, 1986, p. 141–182.
 74. Kenagy, G. J., Strategies and mechanisms for timing of reproduction and hibernation in ground squirrel. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 383–392.
 75. Kenagy, G. J., Daily and seasonal uses of energy stores in torpor and hibernation. In: Living in the Cold II, edited by A. Malan, and B. Canguilhem. Montrough: John Libbey Eurotext, 1989, p. 17–24.
 76. Kilduff, T. S., and H. C. Heller. Neurochemical studies of hibernation. In: Living in the Cold II, edited by A. Malan, and B. Canguilhem. Montrough: John Libbey Eurotext, 1989, p. 467–475.
 77. Kondo, N., and S. Shibata. Calcium source for excitation‐coupling in myocardium of nonhibernating and hibernating chipmunks. Science 225: 641–643, 1984.
 78. Krilowicz, B. L., Ketone body metabolism in a ground squirrel during hibernation and fasting. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 18): R462–R470, 1985.
 79. Lee, T. F., Nürnberger, F., Jourdan, M. L., and Wang, L. C. H., Possible involvement of septum in seasonal changes in thermoregulatory responses to met‐enkephalinamide in ground squirrels. In: Thermoregulation: Research and Clinical Application, edited by P. Lomax and E. Schonbaum. Basel: Karger, 1989, p. 200–203.
 80. Lee, T. M., K. Pelz, P. Light, and I. Zucker. Testosterone influences hibernation in golden‐mantled ground squirrels. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 28): R760–R767, 1990.
 81. Liu, B., P. Arlock, B. Wohlfart, and B. W. Johansson. Temperature effects on the Na and Ca currents in rat and hedgehog ventricular muscle. Cryobiology 28: 96–104, 1991.
 82. Liu, B., L. C. H. Wang, and D. D. Belke. Effects of temperature and pH on cardiac myofilament Ca2+ sensitivity in rat and ground squirrel. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 33): R104–R108, 1993.
 83. Liu, B., B. Wohlfart, and B. W. Johansson. Effects of low temperature on contraction in papillary muscles from rabbit, rat, and hedgehog. Cryobiology 27: 539–546, 1990.
 84. Lyman, C. P., Who is who among the hibernators. In: Hibernation and Torpor in Mammalians and Birds, edited by C. P. Lyman, J. S. Willis, A. Malan, and L. C. H. Wang. London: Academic Press, 1982, p. 12–36.
 85. Lyman, C. P., Pharmacological aspects of mammalian hibernation. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schönbaum and P. Lomax. New York: Pergamon Press, 1990, p. 415–436.
 86. Lyman, C. P., and E. H. Leduc. Changes in blood sugar and tissue glycogen in the hamster during arousal from hibernation. J. Cell Comp. Physiol. 41: 471–492, 1953.
 87. Lyman, C. P. and R. C. O'Brien. Is brown fat necessary?. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 109–116.
 88. Lyman, C. P., J. S. Willis, A. Malan, and L. C. H. Wang. Hibernation and Torpor in Mammals and Birds. London: Academic Press, 1982.
 89. Lynch, G. R., J. K. Sullivan and S. L. Gendler. Temperature regulation in the mouse, Peromyscus leucopus: effects of various photoperiods, pinealectomy and melatonin administration. Int. J. Biometeor. 24: 49–55, 1980.
 90. McArthur, M. D., C. C. Hanstock, A. Malan, L. C. H. Wang, and P. S. Allen. Skeletal muscle pH dynamics during arousal from hibernation measured by 31P NMR spectroscopy. J. Comp. Physiol. 160: 339–348, 1990.
 91. McArthur, M. D., M. L. Jourdan, and L. C. H. Wang. Prolonged stable hypothermia: Effect on blood gases and pH in rats and ground squirrels. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 31): R190–R197, 1992.
 92. McArthur, M. D., and W. K. Milsom. Changes in ventilation and respiratory sensitivity associated with hibernation in Columbian (Spermophilus columbianus) and golden‐mantled (Spermophilus lateralis) ground squirrels. Physiol. Zool. 64: 940–959, 1991.
 93. McElhaney, R. N., and L. C. H. Wang. Further studies of lipid thermotropic phase behavior in liver inner mitochondrial membranes of hibernating ground squirrels. Cryobiology 27: 664–665, 1990.
 94. McKee, G. and J. F. Andrews. Brown adipose tissue lipid is the main source of energy during arousal of the golden hamster (Mesocricetus auratus). Comp. Biochem. Physiol. 96A: 485–488, 1990.
 95. Malan, A., Respiration and acid‐base state in hibernation. In: Hibernation and Torpor in Mammals and Birds, edited by C. P. Lyman, J. S. Willis, A. Malan, and L. C. H. Wang. London: Academic Press, 1982, p. 237–282.
 96. Malan, A., pH as a control factor in hibernation. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 61–70.
 97. Malan, A., pH as a control factor of cell function in hibernation: the case of brown adipose tissue thermogenesis. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Montrough: John Libbey Eurotext, 1989, p. 333–341.
 98. Malan, A., and E. Mioskowski. pH‐temperature interactions on protein function and hibernation: GDP binding to brown adipose tissue mitochondria. J. Comp. Physiol. 158B: 487–493, 1988.
 99. Malan, A., E. Mioskowski, and C. Calgari. Time‐course of blood acid‐base state during arousal from hibernation in European hamster. J. Comp. Physiol. 158B: 495–500, 1988.
 100. Martins, R., C. Atgie, L. Gineste, M. Nibbelink, L. Ambid, and D. Ricquier. Increased GDP binding and thermogenic activity in brown adipose tissue mitochondria during arousal of the hibernating garden dormouse (Eliomys quercinus L.). Comp. Biochem. Physiol. 98A: 311–316, 1991.
 101. Melnyk, R. B., and J. M. Martin. Insulin and central regulation of spontaneous fattening and weight loss. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 18): R203–R208, 1985.
 102. Milner, R. E., M. Michalak, and L. C. H. Wang. Altered properties of calsequestrin and the ryanodine receptor in the cardiac sarcoplasmic reticulum of hibernating mammals. Biochem. Biophys. Acta 1063: 120–128, 1991.
 103. Milner, R. E., L. C. H. Wang, and P. Trayhurn. Brown fat thermogenesis during hibernation and arousal in Richardson's ground squirrel. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R42–R48, 1989.
 104. Milsom, W. K., Intermittent breathing in vertebrates. Annu. Rev. Physiol. 53: 87–105, 1991.
 105. Milsom, W. K., M. D. McArthur, and C. L. Webb. Control of breathing in hibernating ground squirrels. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 469–475.
 106. Moreau‐Hamsany, C., C. Castex, R. Hoo‐Paris, N. Kacemi, And B. Sutter. Hormonal control of lipolysis from the white adipose tissue of hibernating jerboa (Jaculus orientalis). Comp. Biochem. Physiol. 91A: 665–669, 1988.
 107. Mrosovsky, N., Circannual cycles in hibernators. In: Strategies in Cold: Natural Torpidity and Thermogenesis, edited by L. C. H. Wang and J. W. Hudson. London: Academic Press, 1978, p. 21–65.
 108. Mrosovsky, N., Thermal effects on the periodicity, phasing, and the persistence of circannual cycle. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 403–410.
 109. Musacchia, X. J., and D. R. Deavers. The regulation of carbohydrate metabolism in hibernators. In: Survival in the Cold, edited by X. J. Musacchia and L. Jansky. Amsterdam: Elsevier, 1981, p. 55–75.
 110. Nedergaard, J., and B. Cannon. Preferential utilization of brown adipose tissue lipids during arousal from hibernation in hamsters. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R506–R512, 1984.
 111. Nedergaard, J., C. Carneheim, S. Alexson, J. Mitchell, A. Jacobsson, and B. Cannon. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Montrough: John Libbey Euro‐text, 1989, p. 387–398.
 112. Nestler, J. R., Relationships between respiratory quotient and metabolic rate during entry to and arousal from daily torpor in deer mice, Peromyscus maniculatus. Physiol. Zool. 63: 504–515, 1990.
 113. Nürnberger, F., T. F. Lee, M. L. Jourdan, and L. C. H. Wang. Seasonal changes in methionine‐enkephalin immunoreactivity in the brain of a hibernator, Spermophilus columbianus. Brain Res. 547: 115–121, 1991.
 114. Oeltgen, P. R., S. P. Nilekani, P. A. Nuchols, W. A. Spurrier, and T.‐P. Su. Further studies on opioids and hibernation: Delta opioid receptor ligand selectively induced hibernation in summer‐active ground squirrels. Life Sci. 43: 1565–1574, 1988.
 115. Oeltgen, P. R., and W. A. Spurrier. Characterization of a hibernation induction trigger. In: Survival in the Cold, edited by X. J. Musacchia and L. Jansky. Amsterdam: Elsevier, 1981, p. 139–157.
 116. Oeltgen, P. R., J. W. Walsh, S. R. Hamann, D. C. Randall, W. A. Spurrier, and R. D. Myers. Hibernation “trigger”: opioid‐like inhibitory action on brain function of monkey. Pharmac. Biochem. Behav. 17: 1271–1274, 1982.
 117. Olsson, S. O. R., Dehydrogenases (LDH, MDH, G‐6–DPH, and α‐GPDH) in the heart, liver, white and brown fat. Acta Physiol. Scand. Suppl. 380: 62–95, 1972.
 118. Pehowich, D. J., P. M. MacDonald, R. N. McElhaney, A. R. Cossins, and L. C. H. Wang. Differential scanning calorimetry 19Fluorine‐NMR and DPH fluorescence polarization analysis of the thermotropic behavior of liver inner mitochondria membranes from a mammalian hibernator. Biochemistry 27: 4632–4638, 1988.
 119. Pehowich, D. J., and L. C. H. Wang. Seasonal changes in mitochondrial succinate dehydrogenase activity in a hibernator, Spermophilus richardsonii. J. Comp. Physiol. 154B: 495–501, 1984.
 120. Pehowich, D. J., and L. C. H. Wang. Stoichiometry of H+ efflux to respiration‐dependent Ca2+ uptake and oxygen consumption in liver mitochondria from a hibernator. Physiol. Zool. 60: 114–120, 1987.
 121. Petrovic, V. M., O. Rajcic, and V. Janic‐Sibalic. Accelerated gluconeogenic processes in the ground squirrel (Citellus citellus) during the arousal from hibernation. Comp. Biochem. Physiol. 80A: 477–480, 1985.
 122. Pevet, P., M. Masson‐Pevet, M. L. H. J. Hermes, R. M. Buijs, and B. Canguilhem. Photoperiod, pineal gland, vasopressinergic innervation and timing of hibernation. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Montrough: John Libbey Eurotext, 1989, p. 43–51.
 123. Phillips, J. A., and H. J. Harlow. Long‐term effects of pinea‐lectomy on the annual cycle of golden‐mantled ground squirrel, Spermophilus lateralis. J. Comp. Physiol. 146B: 501–505, 1982.
 124. Raison, J. K., and J. M. Lyons. Hibernation: alteration of mitochondrial membranes as a requisite for metabolism at low temperature. Proc. Natl. Acad. Sci. USA 68: 2092–2094, 1971.
 125. Raison, J. K., E. J. McMurchie, J. S. Charnock, and R. A. Gibson. Differences in the thermal behavior of myocardial membranes relative to hibernation. Comp. Biochem. Physiol. 69: 169–174, 1981.
 126. Ralph, C. L., B. T. Firth, W. A. Gern, and D. W. Owens. The pineal complex and thermoregulation. Biol. Rev. 54: 41–72, 1979.
 127. Ralph, C. L., H. J. Harlow, and J. A. Phillips. Delayed effect of pinealectomy on hibernation in the golden‐mantled ground squirrel. Int. J. Biometeorol. 26: 311–328, 1982.
 128. Ruf, T., S. Steinlechner, and G. Heldmaier. Rhythmicity of body temperature and torpor in the Djungarian hamster, Phodopus sungorus. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Montrough: John Libbey Eurotext, 1989, p. 53–61.
 129. Saboureau, M., Hibernation in the hedgehog: influence of external and internal factors. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 253–263.
 130. Sinnamon, W. B., and E. B. Pivorun. Effects of pinealectomy, melatonin injections and melatonin antibody production on the mean duration of individual hibernation bouts of Spermophilus tridecemlineatus. J. Thermal Biol. 7: 243–249, 1982.
 131. Sjoquist, P.O., G. Duker, B. W. Johansson. Effects of induced hypothermia on organ blood flow in a hibernator and a nonhi‐bernator. Cryobiology 23: 440–446, 1986.
 132. Snapp, B. D., and H. C. Heller. Suppression of metabolism during hibernation in ground squirrels (Citellus lateralis). Physiol. Zool. 54: 297–307, 1981.
 133. South, F. E., and J. K. Jacobs. Contraction kinetics of ventricular muscle from hibernating and non‐hibernating mammals. Am. J. Physiol. 225: 444–449, 1973.
 134. Stanton, T. L., C. M. Craft, and R. J. Reiter. Evidence for the involvement of pineal melatonin in the control of hibernation cycle in Spermophilus lateralis. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 309–316.
 135. Storey, K. B., and J. M. Storey. Metabolic rate depression and biochemical adaptation in anaerobiosis hibernation and aestivation. Q. Rev. Biol. 65: 145–174, 1990.
 136. Tashima, L. S., S. J. Adelstein, and C. P. Lyman. Radioglucose utilization by active, hibernating, and arousing ground squirrels. Am. J. Physiol. 218: 303–309, 1970.
 137. Trachsel, L., D. M. Edgar, and H. C. Heller. Are ground squirrels sleep deprived during hibernation? Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 29): R1123–R1129, 1991.
 138. Vanecek, J., L. Jansky, L. H. Illnervoa, and K. Hoffmann. Pineal melatonin in hibernating and aroused golden hamsters (Mesocricetus auratus). Comp. Biochem. Physiol. 77A: 759–762, 1984.
 139. Vanecek, J., L. Jansky, H. Illnervoa, and K. Hoffmann. Arrest of the circadian pacemaker driving the pineal melatonin rhythm in hibernating golden hamsters, Mesocricetus auratus. Comp. Biochem. Physiol. 80A: 21–23, 1985.
 140. Wang, L. C. H., Energetics and field aspects of mammalian torpor: the Richardson's ground squirrel. In: Strategies in Cold: Natural Torpidity and Thermogenesis, edited by L. C. H. Wang and J. W. Hudson. New York: Academic Press, 1978, p. 109–145.
 141. Wang, L. C. H., Time patterns and metabolic rates of natural torpor in the Richardson's ground squirrel. Can. J. Zool. 57: 149–155, 1979.
 142. Wang, L. C. H., Hibernation and the endocrine. In: Hibernation and Torpor in Mammals and Birds, edited by C. P. Lyman, J. S. Willis, A. Malan, and L. C. H. Wang. New York: Academic Press, 1982, p. 206–236.
 143. Wang, L. C. H., Mammalian hibernation: An escape from the cold. In: Advances in Comparative and Environmental Physiology, vol. 2, edited by R. Gilles. Berlin: Springer‐Verlag, 1988, p. 1–45.
 144. Wang, L. C. H., Ecological, physiological, and biochemical aspects of torpor in mammals and birds. In: Advances in Comparative and Environmental Physiology, vol. 4, edited by L. C. H. Wang. Berlin: Springer‐Verlag, 1989, p. 361–401.
 145. Wang, L. C. H., and B. Abbott. Maximum thermogenesis in hibernators: magnitudes and seasonal variations. In: Survival in the Cold, edited by X. J. Musacchia and L. Jansky. Amsterdam: Elsevier, 1981, p. 77–97.
 146. Wang, L. C. H., D. Belke, M. L. Jourdan, T. F. Lee, J. Westly, and F. Nürnberger. The “hibernation induction trigger”: specificity and validity of bioassay using the 13–lined ground squirrel. Cryobiology 25: 355–362, 1988.
 147. Willis, J. S., Membrane transport at low temperature in hibernators and nonhibernators. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 27–34.
 148. Willis, J. S., J. C. Ellory, and M. W. Wolowyk. Temperature sensitivity of the sodium pump in red cells from various hibernators and nonhibernator species. J. Comp. Physiol. 138: 43–47, 1980.
 149. Wilson, B. E., S. Deeb, and G. L. Florant. Seasonal changes in hormone‐sensitive and lipoprotein lipase mRNA concentrations in marmot white adipose tissue. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 31): R177–R181, 1992.
 150. Wimsatt, W. A., Some interrelationship of reproduction and hibernation in mammals. Symp. Soc. Exp. Biol. 23: 511–559, 1969.
 151. Yacoe, M. E., Adjustments of metabolic pathways in the pectoralis muscle of the bat, Eptesicus fuscus, related to carbohydrate sparing during hibernation. Physiol. Zool. 56: 648–658, 1983.
 152. Yacoe, M. E., Protein metabolism in the pectoralis muscle and liver of hibernating bats, Eptesicus fuscus. J. Comp. Physiol. 152B: 137–144, 1983.
 153. Zhao, Z. Q., and J. S. Willis. Differential effects of cooling in hibernator and nonhibernator cells: Na permeation. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R49–R55, 1989.
 154. Zhou, Z. Q., W. F. Dryden, and L. C. H. Wang. Seasonal and temperature dependent differences in the staircase phenomenon of heart tissues from Richardson's ground squirrel. J. Therm. Biol. 12: 167–169, 1987.
 155. Zhou, Z.‐Q., B. Liu, W. F. Dryden, and L. C. H. Wang. Cardiac mechanical restitution in active and hibernating Richardson's ground squirrel. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 29): R353–R358, 1991.
 156. Zucker, I., and J. Dark. Neuroendocrine substrates of circannual rhythms in ground squirrels. In: Living in the Cold, edited by H. C. Heller, X. J. Musacchia, and L. C. H. Wang. Amsterdam: Elsevier, 1986, p. 351–358.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Lawrence C. H. Wang, T. F. Lee. Torpor and Hibernation in Mammals: Metabolic, Physiological, and Biochemical Adaptations. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 507-532. First published in print 1996. doi: 10.1002/cphy.cp040122