Comprehensive Physiology Wiley Online Library

Radiation in Microgravity

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Characteristics of the Space Radiation Environment
1.1 Composition and Distribution
2 Properties of Ionizing and Nonionizing Radiation
2.1 Unique Properties of Charged Particle Radiation
2.2 Risk Assessment
3 Radiobiological Experiments in Space
3.1 Exploratory Studies
3.2 Natural Radiation Exposures
3.3 Artificial Radiation Exposures
4 Possible Mechanisms for Microgravity and Radiation Interaction
5 Summary and Conclusions
References
 1. Antipov, V. V. Biological studies aboard the spacecraft “Vostok” and “Voskhod”. In: Problems of Space Biology, edited by N. M. Sisakyan. Moscow: Nauka, 1967, vol. VI, p. 67–83. (NASA TTF‐528).
 2. Antipov, V. V., B. I. Davydov, V. V. Verigo, and Yu. M. Svirezhev. Combined effect of flight factors. In: Foundations of Space Biology and Medicine, edited by M. Calvin and O. G. Gazenko. Washington, D.C.: National Aeronautics and Space Administration, 1975, p. 639–667.
 3. Antipov, V. V., N. L. Delone, M. D. Nikitin, G. P. Parfyonov, and P. P. Saxonov. Some results of the radiobiological studies performed on Cosmos‐110 biosatellite. Life Sciences and Space Research. 7: 207–209, 1969.
 4. Bender, M. A., P. C. Gooch, and S. Kondo. The Gemini‐3 S‐4 spaceflight‐radiation interaction experiment. Radiat. Res. 31: 91–111, 1967.
 5. Bender, M. A., P. C. Gooch, and S. Kondo. The Gemini XI S‐4 spaceflight‐radiation interaction experiment: The human blood experiment. Radiat. Res. 34: 228–238, 1968.
 6. Bender, M. A., F. J. De Serres, P. C. Gooch, I. R. Miller, D. B. Smith, and S. Kondo. Radiation and zero‐gravity effects on human leukocytes and Neurospora crassa. In: The Gemini Program Biomedical Science Experiments Summary. Washington, D.C.: National Aeronautics and Space Administration, 1971, p. 205–235. (TM‐X‐58074).
 7. De Groot, R. P., P. J. Rijken, J. Den Hertog, J. Boonstra, A. J. Verkleij, S. W. De Laat, and W. Kruijer. Microgravity decreases c‐fos induction and serum response element activity. J. Cell Sci. 97: 33–38, 1990.
 8. De Serres, F. J., I. R. Miller, D. B. Smith, S. Kondo, and M. A. Bender. The Gemini‐XI S‐4 spaceflight radiation interaction experiment II. Analysis of survival levels and forward‐mutation frequencies in Neurospora crassa. Radiat. Res. 39: 436–444, 1969.
 9. Friedberg, E. C. DNA Repair. New York: Freeman, 1985, pp. 1–77, 406–445, 479–497.
 10. Fry, R. J. M. Radiation protection guidelines for space missions. In: Terrestrial Space Radiation and Its Biological Effects, edited by P. D. McCormack, C. E. Swenberg, and H. Bücker. New York: Plenum, 1988, NATO ASI Series A, vol. 154, p. 715–728.
 11. Gaubin, Y., M. Delpoux, B. Pianezzi, G. Gasset, C. Heilmann, and H. Planel. Investigations of the effects of cosmic rays on Artemia cysts and tobacco seeds: Results of Exobloc II experiment, flown aboard Biocosmos 1887. Nucl. Tracks Radiat. Meas. 17: 133–143, 1990.
 12. Haymaker, W., B. C. Look, D. L. Winter, E. V. Benton, and M. R. Cruty. The effects of cosmic particle radiation on pocket mice aboard Apollo XVII: I. Project BIOCORE (M212), a biological cosmic ray experiment: Procedures, summary, and conclusions. Aviat. Space Environ. Med. 46: 467–481, 1975. [See also p. 482–654 for dosimetry, engineering, and biology.].
 13. Horneck, G. Cosmic ray HZE particle effects in biological systems: Results of experiments in space. In: Terrestrial Space Radiation and Its Biological Effects, edited by P. D. McCormack, C. E. Swenberg, and H. Bücker. New York: Plenum, 1988, NATO ASI Series A, vol. 154, p. 129–152.
 14. Horneck, G. Impact of spaceflight environment on radiation response. In: Terrestrial Space Radiation and Its Biological Effects, edited by P. D. McCormack, C. E. Swenberg, and H. Bücker. New York: Plenum, 1988, NATO ASI Series A, vol. 154, p. 707–714.
 15. Ijiri, K., and C. S. Potten. Circadian rhythms in the sensitivity to radiation in mouse intestinal epithelium. Int. J. Radiat. Biol. 53: 717–727, 1988.
 16. Il'yin, Ye. A., and G. P. Parvenov. (1980) Biological studies on the Kosmos biosatellites. Moscow: Nauka, 1979, p. 1–210. (NASA TM‐75769).
 17. Johnson, N. L. Handbook of Soviet Manned Space Flight. American Astronautical Society Science and Technology Series. San Diego: Univelt, 1980, vol. 48, p. 63–71.
 18. Johnston, R. S., L. F. Deitlein, and C. A. Berry. Biomedical results of Apollo. Washington, D.C.: National Aeronautics and Space Administration, 1975, p. 105–113, 343–403. (NASA SP‐368).
 19. Kiefer, J. Biological Radiation Effects. New York: Springer‐Verlag, 1990, p. 1–87, 104–120, 137–156.
 20. Longdon, N. and V. David (editors). Biorack on Spacelab D1. Noordwijk: European Space Agency, 1988, pp. 3–26, 135–145. (ESA SP‐1091).
 21. Neidhardt, F. C., R. A. Vanbogelen, and V. Vaughn. The genetics and regulation of heat‐shock proteins. Ann. Rev. Genet. 18: 295–329, 1984.
 22. Nelson, G., W. Schubert, G. Kazarians, G. Richards, E. V. Benton, E. R. Benton, and R. P. Henke. Radiation effects in nematodes. Results from IML‐1 experiments. Adv. Space Res. 14 (10): 87–91, 1994.
 23. Nelson, G. A., W. W. Schubert, and T. M. Marshall. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation. Nucl. Tracks Radiat. Meas. 20: 227–232, 1992.
 24. Parfenov, G. P. Genetic investigations in outer space. Cosmic Res. 5: 121–133, 1967.
 25. Portugalov, V. V., E. A. Savina, A. S. Kaplansky, V. I. Yokoleva, G. N. Durnova, A. S. Pankova, V. N. Shvets, E. I. Alekseyev, and P. I. Katunyan. Discussion of the combined effect of weightlessness and ionizing radiation on the mammalian body: morphological data. Aviat. Space Environ. Med. 48: 33–36, 1977.
 26. Pross, H. D., M. Kost, and J. Kiefer. Repair of radiation induced genetic damage under microgravity. In: Proceedings of 5th European Symposium on Life Sciences Research in Space. Noordwijk: European Space Agency, 1994 p. 193–196. (ESA SP‐366).
 27. Reitz, G., H. Bücker, R. Facius, G. Horneck, E. H. Graul, H. Berger, W. Rüther, W. Heinrich, R. Beaujean, W. Enge, A. M. Altapov, I. A. Ushakov, Yu. A. Zachvatkin, and D. A. M. Mesland. Influence of cosmic radiation and/or microgravity on the development of Carausius morosus. Adv. Space Res. 9: 161–173, 1989.
 28. Reitz, G., H. Bücker, W. Rüther, E. H. Graul, R. Beaujean, W. Enge, W. Heinrich, D. A. M. Mesland, A. M. Altapov, I. A. Ushakov, and Yu. A. Zachvatkin. Effects on ontogenesis of Carausius morosus hit by cosmic heavy ions. Nucl. Tracks Radiat. Meas. 17: 145–153, 1990.
 29. Rosenzweig, S. A., and K. A. Souza (editors). Final Reports of U.S. Experiments Flown on the Soviet Satellite Cosmos 936. Moffett Field, CA: National Aeronautics and Space Administration, 1979, pp. 3–59, 185–273. (NASA TM‐78526).
 30. Saunders, J. F. The Experiments of Biosatellite II. Washington, D.C: National Aeronautics and Space Administration, 1971, pp. 1–351. (NASA SP–204).
 31. Stassinopoulos, E. G. The Earth's trapped and transient space radiation environment. In: Terrestrial Space Radiation and Its Biological Effects, edited by P. D. McCormack, C. E. Swenberg, and H. Bücker. New York: Plenum, 1988, NATO ASI Series A, vol. 154, p. 5–35.
 32. Tobias, C. A., and Yu. G. Grigor'yev. Ionizing radiation. In: Foundations of Space Biology and Medicine, edited by M. Calvin and O. G. Gazenko. Washington, D.C.: National Aeronautical and Space Administration, 1975, p. 473–531.
 33. Tobias, C. A., and P. Todd. Space Radiation Biology and Related Topics. New York: Academic, 1974, p. 1–100, 115–141, 313–475.
 34. Todd, P., and J. T. Walker. The microlesion concept in HZE particle dosimetry. Adv. Space Res. 4 (10): 187–197, 1984.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gregory A. Nelson. Radiation in Microgravity. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 785-798. First published in print 1996. doi: 10.1002/cphy.cp040234