Comprehensive Physiology Wiley Online Library

Head‐out Water Immersion: Animal Studies

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 The Gauer‐Henry Hypothesis
2 Ratio of Blood Flow to Metabolism in Water Immersion
3 Transcapillary Fluid Shift in Water Immersion
4 Water Immersion as a Model for Hypervolemia
4.1 Methods for Eliciting Hypervolemia
4.2 Methodological Considerations for Animal Studies
5 Cardiovascular Receptors: Circulatory, Renal, and Hormonal Influences
5.1 Cardiac Receptors
5.2 Arterial Baroreceptors
6 Cardiovascular Responses to Water Immersion
6.1 Central Hemodynamics
6.2 Transcapillary Fluid Shift
7 Regional Vascular Responses to Water Immersion
8 The Renal Response to Water Immersion
9 Hormonal Responses to Water Immersion
9.1 Methodological Considerations
9.2 Vasopressin
9.3 Renin‐Angiotensin II‐Aldosterone System
9.4 Atrial Natriuretic Peptide (ANP)
9.5 Renal Prostaglandins
9.6 Adrenergic System in Water Immersion
10 Conclusions
Figure 1. Figure 1.

Early version of the Gauer‐Henry hypothesis. Open arrows indicate an increase or stimulation of the variable, darkened arrows indicate a decrease or inhibition of the variable.

Figure 2. Figure 2.

Water immersion increases the ratio of blood flow (Q) to metabolism () at rest (left panel) where is constant. Autoregulation of blood flow occurs, but the level at which systemic flow is held constant over a range of perfusion pressures is shifted upward. As exercise raises the level (right panel), the level of systemic flow is elevated for any level during water immersion. [From Christie et al. 18 with permission.]

Figure 3. Figure 3.

While standing in air (left panel), right atrial pressure (Pra) is low, dependent veins are distended, and net filtration occurs in limb capillaries. During water immersion (right panel), central volume expansion occurs with increased Pra and cardiac output because (I) there is hydrostatic compression of dependent tissues and (II) capillary reabsorption or an autotransfusion occurs in dependent limbs.

Figure 4. Figure 4.

Sling frame assembly for the study of conscious animals during water immersion. PAO = aortic pressure; PLA, Pra = left and right atrial pressures, respectively; PPL = pleural pressure; QAO = aortic blood flow (electromagnetic flow transducer); PLV = left ventricular pressure (solid state pressure transducer).

Reprinted with permission of the American Physiological Society; from Hajduczok et al. 62
Figure 5. Figure 5.

Expanded version of the Gauer‐Henry hypothesis. Arrow symbols as in Figure 1.

Figure 6. Figure 6.

Resetting and change of sensitivity of heart rate limb of arterial baroreflex in an awake dog during water immersion. TSAP = transmural systolic arterial pressure; Saturation TSAP = point at which heart rate stopped changing as TSAP was elevated. Threshold TSAP could not be determined in the standing dog.

Reprinted with permission of the American Physiological Society, from Yoshino et al. 152
Figure 7. Figure 7.

Percent change of plasma volume (PV), pressure in an implanted Guyton capsule in subcutaneous tissue of dog forelimb (Pcapsule), calculated capillary hydrostatic pressure (Pcapillary) and plasma oncotic pressure (πP) in an awake animal undergoing water immersion at 37°C.

Reprinted with permission from the Best Publishing Company; from Krasney 84
Figure 8. Figure 8.

Changes in cephalic vein pressure (Pcephv); implanted Guyton capsule pressure (Pcps); and wick catheter pressure (Pwick) relative to the external hydrostatic reference pressure (Pref) during graded immersion in awake dogs.

[Reprinted with permission from the American Physiological Society; from Miki et al. 101
Figure 9. Figure 9.

Increase in extracellular fluid volume (Δ ECF) during water immersion commencing at time 0 in an anesthetized, splenectomized, bilaterally nephrectomized dog. ECF volume was estimated by the 125I‐iothalamate space.

Reprinted by permission of the American Physiological Society, from Miki et al. 102
Figure 10. Figure 10.

Plasma volume responses to immersion in anesthetized, nephrectomized dogs and in dogs with intact kidneys. The role of the kidney is to minimize hypervolemia during immersion.

Figure 11. Figure 11.

There are three major fluid shifts (Δ J) which occur during immersion; across the capillary (Jcap), across the cell wall (Jcell), and across the kidney (Ju). The fourth fluid shift in the lymphatics (JL is minor. ISF = interstitial fluid; ICF = intracellular fluid.

Figure 12. Figure 12.

a: If protein fails to move into the plasma compartment during immersion, the rise of interstitial protein concentration could cause cell water and perhaps ions to leave the cell osmotically. b: Graded hydrostatic compression could activate cell membrane mechanoreceptors and membrane pumps which would extrude ions and water from the cells (133A). c: Compliance differences between cell, interstitial fluid, and capillary could cause fluid to shift from cell to plasma in immersion.

Reprinted with permission from the Best Publishing Company; from Krasney 84
Figure 13. Figure 13.

As predicted by Guyton's analysis 61, the equilibrium condition for cardiac output (Q) and venous pressure (Pv) would move from the control state (A) to point B due to decreased venous capacity resulting from hydrostatic compression, and further to point C because of hypervolemia from autotransfusion. The net result is a higher cardiac output at a higher central venous pressure as predicted by the Frank‐Starling relationship.

Figure 14. Figure 14.

Percent changes (%Δ) in the distribution of regional blood flows () measured by radiolabeled microspheres during immersion in conscious dogs. Flow increases to certain tissues (skin, fat, respiratory muscles) can be accounted for while flow increases to abdominal viscera and skeletal muscle are not readily explained.

Reprinted with permission from the Best Publishing Company; from Krasney 84
Figure 15. Figure 15.

Renal responses to water immersion in volume replete (R) and nonreplete (NR) conscious dogs. Shaded and dashed areas represent responses during air‐timed control studies.

Figure 16. Figure 16.

Renal responses to water immersion in intact vs. cardiac‐denervated (CD) dogs. = urine flow, = sodium excretion, Cosm = osmotic clearance, = free water clearance. An identical increase in occurred in the CD dogs, but it was caused by a rise in instead of by the rise in Cosm and observed in intact dogs.

Reprinted with permission from the Best Publishing Company; from Krasney 84
Figure 17. Figure 17.

The role of the kidney in water immersion is to minimize the hypervolemia due to the shift of fluid out of the cell compartment.

Figure 18. Figure 18.

Summary of the circulatory, renal, hormonal, and neural responses to water immersion. Central volume expansion and the rise of cardiac output is caused by compression of dependent veins and by autotransfusion. The rise in cardiac output exceeds metabolic demand at rest and during exercise. Activation of cardiovascular mechanoreceptors and increased ANP secretion sets into motion neural and hormonal mechanisms which promote salt and fluid loss to minimize the hypervolemia and theoretically readjust systemic to the prevailing . The most powerful efferent mechanism affecting the kidney appears to be the sympathetic nerves. The associated hormonal responses appear to modulate the primary renal response. A large number of factors can modulate the basic renal neurohumoral response to immersion.



Figure 1.

Early version of the Gauer‐Henry hypothesis. Open arrows indicate an increase or stimulation of the variable, darkened arrows indicate a decrease or inhibition of the variable.



Figure 2.

Water immersion increases the ratio of blood flow (Q) to metabolism () at rest (left panel) where is constant. Autoregulation of blood flow occurs, but the level at which systemic flow is held constant over a range of perfusion pressures is shifted upward. As exercise raises the level (right panel), the level of systemic flow is elevated for any level during water immersion. [From Christie et al. 18 with permission.]



Figure 3.

While standing in air (left panel), right atrial pressure (Pra) is low, dependent veins are distended, and net filtration occurs in limb capillaries. During water immersion (right panel), central volume expansion occurs with increased Pra and cardiac output because (I) there is hydrostatic compression of dependent tissues and (II) capillary reabsorption or an autotransfusion occurs in dependent limbs.



Figure 4.

Sling frame assembly for the study of conscious animals during water immersion. PAO = aortic pressure; PLA, Pra = left and right atrial pressures, respectively; PPL = pleural pressure; QAO = aortic blood flow (electromagnetic flow transducer); PLV = left ventricular pressure (solid state pressure transducer).

Reprinted with permission of the American Physiological Society; from Hajduczok et al. 62


Figure 5.

Expanded version of the Gauer‐Henry hypothesis. Arrow symbols as in Figure 1.



Figure 6.

Resetting and change of sensitivity of heart rate limb of arterial baroreflex in an awake dog during water immersion. TSAP = transmural systolic arterial pressure; Saturation TSAP = point at which heart rate stopped changing as TSAP was elevated. Threshold TSAP could not be determined in the standing dog.

Reprinted with permission of the American Physiological Society, from Yoshino et al. 152


Figure 7.

Percent change of plasma volume (PV), pressure in an implanted Guyton capsule in subcutaneous tissue of dog forelimb (Pcapsule), calculated capillary hydrostatic pressure (Pcapillary) and plasma oncotic pressure (πP) in an awake animal undergoing water immersion at 37°C.

Reprinted with permission from the Best Publishing Company; from Krasney 84


Figure 8.

Changes in cephalic vein pressure (Pcephv); implanted Guyton capsule pressure (Pcps); and wick catheter pressure (Pwick) relative to the external hydrostatic reference pressure (Pref) during graded immersion in awake dogs.

[Reprinted with permission from the American Physiological Society; from Miki et al. 101


Figure 9.

Increase in extracellular fluid volume (Δ ECF) during water immersion commencing at time 0 in an anesthetized, splenectomized, bilaterally nephrectomized dog. ECF volume was estimated by the 125I‐iothalamate space.

Reprinted by permission of the American Physiological Society, from Miki et al. 102


Figure 10.

Plasma volume responses to immersion in anesthetized, nephrectomized dogs and in dogs with intact kidneys. The role of the kidney is to minimize hypervolemia during immersion.



Figure 11.

There are three major fluid shifts (Δ J) which occur during immersion; across the capillary (Jcap), across the cell wall (Jcell), and across the kidney (Ju). The fourth fluid shift in the lymphatics (JL is minor. ISF = interstitial fluid; ICF = intracellular fluid.



Figure 12.

a: If protein fails to move into the plasma compartment during immersion, the rise of interstitial protein concentration could cause cell water and perhaps ions to leave the cell osmotically. b: Graded hydrostatic compression could activate cell membrane mechanoreceptors and membrane pumps which would extrude ions and water from the cells (133A). c: Compliance differences between cell, interstitial fluid, and capillary could cause fluid to shift from cell to plasma in immersion.

Reprinted with permission from the Best Publishing Company; from Krasney 84


Figure 13.

As predicted by Guyton's analysis 61, the equilibrium condition for cardiac output (Q) and venous pressure (Pv) would move from the control state (A) to point B due to decreased venous capacity resulting from hydrostatic compression, and further to point C because of hypervolemia from autotransfusion. The net result is a higher cardiac output at a higher central venous pressure as predicted by the Frank‐Starling relationship.



Figure 14.

Percent changes (%Δ) in the distribution of regional blood flows () measured by radiolabeled microspheres during immersion in conscious dogs. Flow increases to certain tissues (skin, fat, respiratory muscles) can be accounted for while flow increases to abdominal viscera and skeletal muscle are not readily explained.

Reprinted with permission from the Best Publishing Company; from Krasney 84


Figure 15.

Renal responses to water immersion in volume replete (R) and nonreplete (NR) conscious dogs. Shaded and dashed areas represent responses during air‐timed control studies.



Figure 16.

Renal responses to water immersion in intact vs. cardiac‐denervated (CD) dogs. = urine flow, = sodium excretion, Cosm = osmotic clearance, = free water clearance. An identical increase in occurred in the CD dogs, but it was caused by a rise in instead of by the rise in Cosm and observed in intact dogs.

Reprinted with permission from the Best Publishing Company; from Krasney 84


Figure 17.

The role of the kidney in water immersion is to minimize the hypervolemia due to the shift of fluid out of the cell compartment.



Figure 18.

Summary of the circulatory, renal, hormonal, and neural responses to water immersion. Central volume expansion and the rise of cardiac output is caused by compression of dependent veins and by autotransfusion. The rise in cardiac output exceeds metabolic demand at rest and during exercise. Activation of cardiovascular mechanoreceptors and increased ANP secretion sets into motion neural and hormonal mechanisms which promote salt and fluid loss to minimize the hypervolemia and theoretically readjust systemic to the prevailing . The most powerful efferent mechanism affecting the kidney appears to be the sympathetic nerves. The associated hormonal responses appear to modulate the primary renal response. A large number of factors can modulate the basic renal neurohumoral response to immersion.

References
 1. Arborelius, M. J., U. I. Balldin, B. Lilja, and C. E. G. Lundgren. Hemodynamic changes in man during immersion with head above water. Aerosp. Med. 43: 592–598, 1972.
 2. Balldin, U. I., C. E. G. Lundgren, J. Lundvall, and S. Mellander. Changes in the elimination of 133‐xenon from the anterior tibial muscle in man induced by immersion in water and shifts in body position. Aerosp. Med. 42: 489–493, 1971.
 3. Bazett, H. C. Studies on the effects of baths on man. I. Relationship between the effects produced and the temperature of the bath. Am. J. Physiol. 70: 412–429, 1924.
 4. Bazett, H. C., S. Thurlow, C. Corwell, and W. Stewart. Studies on the effect of baths on man. II. The diuresis caused by warm baths, together with some observations on urinary tides. Am. J. Physiol. 70: 430–452, 1924.
 5. Bedford, T. G., and C. M. Tipton. Exercise training and the arterial baroreflex. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 1926–1932, 1987.
 6. Begin, R., M. Epstein, M. A. Sackner, R. Levinson, R. Dougherty, and D. Duncan. Effects of water immersion to the neck on pulmonary circulation and tissue volume in man. J. Appl. Physiol. 40: 293–299, 1976.
 7. Behn, C., O. H. Gauer, K. Kirsch, and P. Eckert. Effects of sustained intrathoracic vascular distension on body fluid distribution and renal excretion in man. Pflugers Arch. 313: 123–135, 1969.
 8. Benjamin, B. A., L. C. Keil, M. S. Shapiro, M. A. Kirschenbaum, N. S. Bricker, and H. Sandler. Physiologic response to water immersion in the Rhesus monkey. Physiologist 26: A‐11, 1983.
 9. Bezold, A. Von, L. Hirt. Über die physiologischen Wirkungen des essigsauren Veratrins. Unter Physiol. Lab. Wurzburg 1: 75–156, 1867.
 10. Bichet, D. G., V. J. Van Patten, and R. W. Schrier. Potential role of increased sympathetic activity in impaired sodium and water excretion in cirrhosis. N. Engl. J. Med. 307: 1552–1557, 1982.
 11. Bie, P., M. Mumksdorf, and J. Warburg. Renal effects of overhydration during vasopressin infusion in conscious dogs. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 18): F103–F109, 1984.
 12. Bie, P., B. C. Wang, R. J. Leadley, Jr., and K. L. Goetz. Hemodynamic and renal effects of low‐dose infusions of atrial peptide in conscious dogs. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 25): R161–R169, 1988.
 13. Billman, G. E., M. J. Keyl, D. T. Dickey, D. C. Kem, L. C. Keil, and H. L. Stone. Hormonal and renal response to plasma volume expansion in the primate Macaca Mulatto. Am. J. Physiol. 244 (Heart Circ. Physiol. 13): H201–H205, 1983.
 14. Bishop, V. S., A. Malliani, and P. Thoren. Cardiac mechanoreceptors. In: Handbook of Physiology. The Cardiovascular System, edited by J. T. Shepherd and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983 sect. 2, vol. III, chapt. 15, p. 497–556.
 15. Blomqvist, C. G., and H. L. Stone. Cardiovascular adjustments to gravitational stress. In: Handbook of Physiology. The Cardiovascular System, edited by J. T. Shepherd and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 2, vol. III, chapt. 28, p. 1025–1063.
 16. Boettcher, D. H., S. F. Vatner, G. R. Heyndrickx, E. Braunwald. Extent of utilization of the Frank‐Starling mechanism in conscious dogs. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H338–H345, 1978.
 17. Choukroun, M. L., and P. Varene. Adjustments in oxygen transport during head‐out immersion in water at different temperatures. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 68: 1475–1480, 1990.
 18. Christie, J. L., L. M. Sheldahl, F. E. Tristani, L. S. Wann, K. B. Sagar, S. G. Levandoski, M. J. Ptacin, K. A. Sobocinski, and R. D. Morris. Cardiovascular regulation during head‐out water immersion exercise. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 69: 657–664, 1990.
 19. Churchill, S. E., D. M. Pollock, M. E. Natale, and M. C. MooreEde. Renal response to 7 days of lower body positive pressure in squirrel monkeys. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 29): R724–R732, 1991.
 20. Clark, J. H., D. R. Hooker, and L. H. Weed. The hydrostatic factor in venous pressure measurements. Am. J. Physiol. 109: 166–177, 1934.
 21. Claybaugh, J. R., D. R. Pendergast, J. E. Davis, C. Akiba, M. Pazik, and S. K. Hong. The effect of training on hormonal and urinary responses to supine posture and immersion. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 61: 7–15, 1986.
 22. Cornish, K. G., T. McCulloch, and J. P. Gilmore. Sinoaortic baro‐receptors and the control of blood volume in the nonhuman primate. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F539–F542, 1984.
 23. Coruzzi, P., A. Biaggi, L. Musicri, C. Ravanetti, P. F. Vescovi, and A. Novarini. Dopamine blockade and natriuresis during water immersion in normal man. Clin. Sci. 70: 523–526, 1986.
 24. Craig, A. B., Jr., and M. Dvorak. Thermal regulation during water immersion. J. Appl. Physiol. 21: 1577–1585, 1966.
 25. Craig, A. B., Jr., and M. Dvorak. Expiratory reserve volume and vital capacity of the lungs during immersion in water. J. Appl. Physiol. 38: 5–9, 1975.
 26. Crane, M. G., and J. J. Harris. Suppression of plasma aldosterone by partial immersion. Metabolism 23: 359–368, 1974.
 27. Curran‐Everett, D. C., J. R. Claybaugh, S. K. Hong, and J. A. Krasney. Hormonal and electrolyte responses of conscious sheep to 96 hours of normobaric hypoxia. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R274–R283, 1988.
 28. Curran‐Everett, D. C., K. McAndrews, and J. A. Krasney. Regional pulmonary blood flow responses to 96 hours of hypoxia in conscious sheep. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 61: 2136–2143, 1986.
 29. Davis, J. T., and A. B. DuBois. Immersion diuresis in dogs. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 42: 915–922, 1977.
 30. De Torrente, A., G. L. Robertson, K. M. McDonald, and R. W. Schrier. Mechanism of diuretic response to increased left atrial pressure in anesthetized dog. Kidney Int. 8: 355–361, 1975.
 31. Dibona, G. F. The functions of renal nerves. Rev. Physiol. Biochem. Pharmacol. 94: 75–181, 1982.
 32. Dibona, G. F. Neural regulation of renal tubular sodium reabsorption and renin secretion. Federation Proc. 44: 2816–2822, 1985.
 33. Doba, N., and D. J. Reis. Cerebellum: role in reflex cardiovascular adjustment to posture. Brain Res. 39: 495–500, 1972.
 34. Doniec‐Ulman, I., F. Ko Kox, G. Wambach, and M. Drab. Water immersion‐induced endocrine alterations in women with EPH gestosis. Clin. Nephrol. 28: 51–55, 1987.
 35. Echt, M., L. Lange, and O. H. Gauer. Changes of peripheral venous tone and central transmural venous pressure during immersion in a thermo‐neutral bath. Pflugers Arch. 352: 211–217, 1974.
 36. Epstein, M. Renal effects of head‐out water immersion in man: implications for an understanding of volume homeostasis. Physiol. Rev. 58: 529–581, 1978.
 37. Epstein, M. Renal sodium handing in liver disease. In: The Kidney in Liver Disease (3rd ed.), edited by M. Epstein. Baltimore, MD: Williams and Wilkins, 1988, chapt. 1, p. 3–29.
 38. Epstein, M. Renal, endocrine, and hemodynamic effects of water immersion in humans. In: Handbook of Physiology. Environmental Physiology, edited by M. J. Fregly. New York: Oxford University Press, chapt. 37 (in press), 1995.
 39. Epstein, M., A. G. DeNunzio, and R. D. Loutzenhiser. Effects of vasopressin administration on diuresis of water immersion in normal humans. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 51: 1384–1387, 1981.
 40. Epstein, M., G. Johnson, and A. G. DeNunzio. Effects of water immersion on plasma catecholamines in normal humans. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 54: 244–248, 1983.
 41. Epstein, M., J. L. Katsikas, and D. C. Duncan. Role of mineralocorticoids in the natriuresis of water immersion in normal man. Circ. Res. 32: 228–236, 1973.
 42. Epstein, M., R. Levinson, and R. Loutzenhiser. Effects of water immersion on renal hemodynamics in normal man. J. Appl. Physiol. 41: 230–233, 1976.
 43. Epstein, M., D. S. Pins, R. Arrington, A. G. DeNunzio, and R. Engstrom. Comparison of water immersion and saline infusion as a means of inducing volume expansion in man. J. Appl. Physiol. 39: 60–70, 1975.
 44. Epstein, M., and T. Saruta. Effects of water immersion on renin‐ aldosterone and renal sodium handling in normal man. J. Appl. Physiol. 31: 369–374, 1971.
 45. Farhi, L. E., and D. Linnarsson. Cardiopulmonary readjustments during graded immersion in water at 35°C. Respir. Physiol. 30: 35–50, 1977.
 46. Fater, D. C., H. D. Schultz, W. D. Sundet, J. S. Mapes, and K. L. Goetz. Effects of left atrial stretch in cardiac‐denervated and intact conscious dogs. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H1056–H1064, 1982.
 47. Firth, J. D., A. E. G. Raine, and J. G. G. Ledingham. The mechanism of pressure natriuresis. J. Hypertens. 8: 97–103, 1990.
 48. Gauer, O. H., and J. P. Henry. Neurohumoral control of plasma volume. In: Cardiovascular Physiology II, edited by A. C. Guyton and A. W. Cowley. Baltimore, MD: University Park Press, vol. 9, p. 145–189, 1976.
 49. Gilmore, J. P. Neural control of extracellular volume in the human and non‐human primate. In: Handbook of Physiology. The Cardiovascular System, edited by J. T. Shepherd and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 2, vol. III, p. 885–915.
 50. Gilmore, J. P., K. G. Cornish, and M. Barazanji. Pentobarbital potentiates natriuretic response to acute volume expansion in monkeys. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R727–R734, 1988.
 51. Gilmore, J. P., and I. H. Zucker. Contribution of vagal pathways to the renal responses to head‐out immersion in the non‐human primate. Circ. Res. 42: 263–267, 1978.
 52. Godley, J. A., J. Waryers, and D. A. Rosenbaum. Cardiovascular and renal function during continuous negative pressure breathing in dogs. J. Appl. Physiol. 22: 568–572, 1967.
 53. Goetz, K. L. Physiology and pathophysiology of atrial peptides. Am. J. Physiol. 254 (Endocrinol. Metab. 17): E1–E15, 1988.
 54. Goetz, K. L., and B. C. Wang. Canine renal responses to atrial stretch or intravenous saline are not attenuated at night. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R638–645, 1986.
 55. Goetz, K. L., B. C. Wang, P. Bie, R. J. Lendley, Jr., and P. S. Geer. Natriuresis during atrial distention and a concurrent decline in atriopeptin. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R259–R267, 1988.
 56. Goetz, K. L., B. C. Wang, P. G. Geer, R. J. Leadley, Jr., and H. W. Reinhardt. Atrial stretch increases sodium excretion independently of release of atrial peptides. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R946–R950, 1986.
 57. Greenleaf, J. E., J. T. Morese, P. R. Baines, J. Silver, and L. C. Keil. Hypervolemia and plasma vasopressin response during water immersion in man. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 55: 1688–1693, 1983.
 58. Greenleaf, J. E., E. Schvartz, and L. C. Keil. Hemodilution, vasopressin suppression, and diuresis during water immersion in man. Aviat. Space Environ. Med. 52: 329–336, 1981.
 59. Greenleaf, J. E., E. Schvartz, S. Kravik, and L. C. Keil. Fluid shifts and endocrine responses during chair rest and water immersion in man. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 48: 79–88, 1980.
 60. Guyton, A. C., and T. G. Coleman. Quantitative analysis of the pathophysiology of hypertension. Circ. Res. 24: 1–12, 1980.
 61. Guyton, A. C., C. E. Jones, and T. G. Coleman. Circulatory Physiology: Cardiac Output and its Regulation. Philadelphia, PA: Saunders, 1973.
 62. Hajduczok, G., S. K. Hong, J. R. Claybaugh, and J. A. Krasney. The role of cardiac nerves in the hemodynamic and renal responses to head‐out water immersion in conscious dogs. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 22): R242–R253, 1987.
 63. Hajduczok, G., K. Miki, J. R. Claybaugh, S. K. Hong, and J. A. Krasney. Regional circulatory responses to head‐out water immersion in conscious dogs. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 22): R254–R263, 1987.
 64. Hakumaki, M. O. K. Seventy years of the Bainbridge Reflex. Acta Physiol. Scand. 130: 177–185, 1987.
 65. Hargens, A. R. Introduction and historical perspectives. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams and Wilkins, 1987, p. 1–9.
 66. Hartshorne, H. Water versus Hydro Therapy or an Essay on Water and its True Relations to Medicine. Philadelphia, PA: Lloyd P. Smith, p. 28, 1847.
 67. Hong, S. K., P. Ceretelli, J. C. Cruz, and H. Rahn. Mechanisms of respiration during submersion in water. J. Appl. Physiol. 27: 535–538, 1969.
 68. Hong, S. K., and J. R. Claybaugh. Hormonal and renal responses to hyperbaria. In: Hormonal Regulation of Fluid and Electrolytes: Environmental Effects. New York, NY: Plenum, 1989, chapt. 4, p. 117–142.
 69. Huxley, V. H., V. L. Tucker, K. M. Verburg, and R. H. Freeman. Increased capillary hydraulic conductivity induced by atrial natriuretic peptide. Circ. Res. 60: 304–307, 1987.
 70. Iaffaldano, R., J. Eye, J. P. Gilmore, and K. G. Cornish. The effects of dopamine blockade on the renal response to volume expansion in the primate. Federation Proc. 44: 1751, 1985.
 71. Imaizumi, T., A. Takeshita, H. Higoshi, and M. Nakamura. ANP alters reflex control of lumbar and renal sympathetic nerve activity and heart rate. Am. J. Physiol. 253 (Heart, Circ. Physiol. 22): H1136–H1140, 1987.
 72. Johansen, L. B., N. Foldager, C. Stadeager, M. S. Kristensen, P. Bie, J. Warberg, M. Kamegai, and P. Norsk. Plasma volume, fluid shifts, and renal responses in humans during 12 h of head‐out water immersion. J. Appl. Physiol. 73: 539–544, 1992.
 73. Kaczmarczyk, G. A., W. Christe, R. Mohnhaupt, and H. W. Reinhardt. An attempt to quantitate the contribution of antidiuretic hormone to the diuresis of left atrial distension in conscious dogs. Pflugers Arch. 396: 101–105, 1983.
 74. Kaczmarczyk, G. A., A. Krake, R. Eisele, R. Mohnhaupt, M. I. M. Noble, B. Singer, J. Stubbs, and H. W. Reinhardt. The role of cardiac nerves in the regulation of sodium excretion in conscious dogs. Pflugers Arch. 390: 125–130, 1981.
 75. Kaczmarczyk, G. A., V. Unger, R. Mohnhaupt, and H. W. Reinhardt. Left atrial distension and intrarenal blood flow distribution in conscious dogs. Pflugers Arch. 390: 44–48, 1981.
 76. Kappagoda, C. T., R. J. Linden, and H. M. Snow. A reflex increase in heart rate from distension of the junction between the superior vena cava and the right atrium. J. Physiol. 220: 177–197, 1972.
 77. Kappagoda, C. T., R. J. Linden, H. M. Snow, and E. M. Whitaker. Left atrial receptors and the antidiuretic hormone. J. Physiol. 237: 663–683, 1974.
 78. Katsube, N., D. Schwartz, and P. Needleman. Release of atriopeptin in the rate by vasoconstrictors or water immersion correlates with changes in right atrial pressure. Biochem. Biophys. Res. Commun. 133: 937–944, 1985.
 79. Kass, D. A., F. M. Sulzman, C. A. Fuller, and M. C. Moore‐Ede. Renal responses to central vascular expansion are suppressed at night in conscious primates. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F343–F351, 1980.
 80. Khosla, S. S., and A. B. Dubois. Fluid shifts during initial phase of immersion diuresis in man. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 46: 703–708, 1979.
 81. Khosla, S. S., and A. B. Dubois. Osmoregulation and interstitial fluid pressure changes in humans during water immersion. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 51: 686–692, 1981.
 82. Khraibi, A. A., and F. G. Knox. Renal interstitial hydrostatic pressure during pressure natriuresis in hypertension. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R756–R759, 1988.
 83. Knight, D. R. and S. M. Horvath. Urinary responses to cold temperature during water immersion. Am. J. Physiol. 248 (Regulatory Integrative Comp. Physiol. 17): R560–R566, 1985.
 84. Koubenec, H. J., W. D. Risch, and O. H. Gauer. Effective compliance of the total vascular system of man sitting in air and immersed in a bath. Pflugers Arch. 355 (Suppl. 1): R24, 1975.
 85. Krasney, J. A. Physiological responses to head‐out water immersion. In: Man in the Sea, edited by Y. C. Lin and K. K. Shida. San Pedro, CA: Best Publishing, 1990, chapt. 1, p. 1–32.
 86. Krasney, J. A., M. Carroll, E. Krasney, J. Iwamoto, J. R. Claybaugh, and S. K. Hong. Renal, hormonal, and fluid shift responses to ANP during head‐out water immersion in awake dogs. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 30): R188–R197, 1991.
 87. Krasney, J. A., G. Hajduczok, C. Akiba, B. W. McDonald, D. R. Pendergast, and S. K. Hong. Cardiovascular and renal responses to head‐out water immersion in canine model. Undersea Biomed. Res. 11: 169–183, 1984.
 88. Krasney, J. A., G. Hajduczok, K. Miki, J. R. Claybaugh, J. L. Sondeen, D. R. Pendergast, and S. K. Hong. Head‐out water immersion: a critical evaluation of the Gauer‐Henry hypothesis. In: Hormonal Regulation of Fluid and Electrolytes, edited by J. R. Claybaugh and C. E. Wade. New York: Plenum, 1989, chapt. 5, p. 147–185.
 89. Krasney, J. A., D. R. Pendergast, E. Powell, B. W. McDonald, and J. L. Plewes. Regional circulatory responses to head‐out water immersion in the anesthetized dog. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 1625–1633, 1982.
 90. Kravik, S. E., L. C. Keil, J. E. Silver, N. Wong, W. A. Spaul, and J. E. Greenleaf. Immersion diuresis without the expected suppression of vasopressin. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 57: 123–128, 1984.
 91. Krishna, G. G., and G. M. Danovitch. Renal response to central volume expansion in humans is attenuated at night. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 13): R481–R486, 1983.
 92. Krishna, G. G., G. M. Danovitch, F. W. J. Beck, and J. R. Sowers. Dopaminergic mediation of the natriuretic response to volume expansion. J. Lab. Clin. Med. 105: 214–220, 1983.
 93. Lange, L., S. Lange, M. Echt, and O. H. Gauer. Heart volume in relation to body posture and immersion in a thermo‐neutral bath. Pflugers Arch. 352: 219–226, 1974.
 94. Ledsome, J. R., and R. J. Linden. The role of left atrial receptors in the diuretic response to left atrial distension. J. Physiol. 198: 487–503, 1968.
 95. Ledsome, J. R., R. J. Linden, and W. J. O'Connor. The mechanisms by which distension of the left atrium produces diuresis in anesthetized dogs. J. Physiol. 159: 87–100, 1961.
 96. Ledsome, J. R., J. Ngsee, and N. Wilson. Plasma vasopressin concentrations in the anesthetized dog before, during, and after atrial distension. J. Physiol. 338: 413–421, 1983.
 97. Lin, Y. C. Circulatory functions during immersion and breath‐hold dives in humans. Undersea Biomed. Res. 11: 123–138, 1984.
 98. Lundvall, J., and T. Lanne. Large capacity in man for effective plasma volume control in hypovoloemia via fluid transfer from tissue to blood. Acta Physiol. Scand. 137: 513–520, 1989.
 99. Lydtin, H., and W. F. Hamilton. Effect of acute changes in left atrial pressure on urine flow in unanesthetized dogs. Am. J. Physiol. 207: 530–536, 1964.
 100. Mellander, S. Comparative studies on the adrenergic neurohormonal control of resistance and capacitance blood vessels in the cat. Acta Physiol. Scand. 50 (Suppl.): 176, 1960.
 101. Metzler, C. J., and D. J. Ramsay. Atrial peptide potentiates renal responses to volume expansion in conscious dogs. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R284–R289, 1989.
 102. Miki, K., G. Hajduczok, S. K. Hong, and J. A. Krasney. Plasma volume changes during head‐out water immersion in the conscious dog. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R582–R590, 1986.
 103. Miki, K., G. Hajduczok, S. K. Hong, and J. A. Krasney. Extracellular fluid and plasma volumes during water immersion in nephrectomized dogs. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R972–R978, 1987.
 104. Miki, K., G. Hajduczok, M. K. Klocke, J. A. Kraney, S. K. Hong, and A. J. Debold. Atrial natriuretic factor and renal function during head‐out water immersion in conscious dogs. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R1000–R1008, 1986.
 105. Miki, K., Y. Hayashida, S. Sagawa, and K. Shiraki. Renal sympathetic nerve activity and natriuresis during water immersion in conscious dogs. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R299–R305, 1989.
 106. Miki, K., Y. Hayashida, F. Tajima, J. Iwamoto, and K. Shiraki. Renal sympathetic nerve activity and renal responses during head‐up tilt in conscious dogs. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R358–R364, 1989.
 107. Miki, K., M. R. Klocke, S. K. Hong, and J. A. Krasney. Interstitial and intravascular pressures in conscious dogs during head‐out water immersion. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 26): R358–R364, 1989.
 108. Miki, K., M. Pazik, E. Krasney, S. K. Hong, and J. A. Krasney. Thoracic duct lymph flow during head‐out water immersion in conscious dogs. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R782–R785, 1987.
 109. Miki, K., K. Shiraki, S. Sagawa, A. J. Debold, and S. K. Hong. Atrial natriuretic factor during head‐out immersion at night. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R235–R241, 1988.
 110. Mills, E., and S. C. Wang. Liberation of antidiuretic hormone: location of ascending pathways. Am. J. Physiol. 207: 1399–1404, 1964.
 111. Myers, J. W., and J. A. Godley. Cardiovascular and renal function during total body water immersion of dogs. J. Appl. Physiol. 22: 573–579, 1967.
 112. Norsk, P., and M. Epstein. Effects of water immersion on arginine vasopressin release in humans. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 64: 1–10, 1988.
 113. Norsk, P., F. Bonde Peterson, and N. J. Christensen. Catecholamines, circulation and the kidney during head‐out water immersion in humans. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 69: 479–484, 1990.
 114. Park, Y. S., D. R. Pendergast, and D. W. Rennie. Decrease in body insulation with exercise in cool water. Undersea Biomed. Res. 11: 159–168, 1984.
 115. Pendergast, D. R., A. J. Debold, M. Pazik, and S. K. Hong. Effect of head‐out immersion on plasma atrial natriuretic factor in man. Proc. Soc. Exp. Biol. Med. 184: 429, 435, 1987.
 116. Pendergast, D. R., A. J. Olszowka, M. A. Rokitka, and L. E. Farhi. Gravitational force and the cardiovascular system. In: Comparative Physiology of Environmental Adaptations, edited by P. Dejours. Basel: Karger, 1986, p. 15–26.
 117. Peters, J. P. Body Water: The Exchange of Fluids in Man. Springfield, IL: Thomas, p. 287, 1935.
 118. Peterson, T. V. Cardiac reflexes and control of renal function in primates. In: Reflex Control of the Circulation, edited by I. H. Zucker and J. P. Gilmore. Boca Raton: CRC Press, 1991, p. 313–358.
 119. Peterson, T. V., B. A. Benjamin, and N. L. Hurst. Effect of vagotomy and thoracic sympathectomy on responses of the monkey to water immersion. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 2476–2481, 1987.
 120. Peterson, T. V., B. A. Benjamin, and N. L. Hurst. Renal nerves and renal responses to volume expansion in conscious monkeys. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R388–R394, 1988.
 121. Peterson, T. V., N. L. Chase, and D. K. Gray. Head‐up tilt in the non‐human primate. Effects of renal denervation. Renal Physiol. Biochem. 7: 265–270, 1984.
 122. Peterson, T. V., J. P. Gilmore, and I. H. Zucker. Renal responses of the recumbent nonhuman primate to total body immersion. Proc. Soc. Exp. Biol. Med. 161: 260–265, 1979.
 123. Peterson, T. V., J. P. Gilmore, and I. H. Zucker. Initial renal responses of nonhuman primate to immersion and intravascular volume expansion. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 48: 243–248, 1980.
 124. Peterson, T. V., N. L. Hurst, and J. A. Richardson. Renal nerves and renal responses to head‐up tilt in dogs. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R979–R986, 1987.
 125. Prefaut, C., F. Dubois, C. Roussos, R. Amaral‐Marques, P. T. Macklem, and F. Ruff. Influence of immersion to the neck in water on airway closure and distribution of perfusion in man. Respir. Physiol. 37: 313–323, 1979.
 126. Prosnitz, E. H., and G. F. Dibona. Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F557–F563, 1978.
 127. Rabelink, T. J., H. A. Koomans, W. H. Boer, H. J. Van Riju, and E. J. Dorhout Mees. Lithium clearance increases in waterimmersion‐induced natriuresis in humans. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 66: 1744–1748, 1989.
 128. Rabischong, P., C. Clay, J. Vignaud, and R. Polierae. Approche hemohynamique de la signification fonctionelle due sinus cavernuex. Neurochirurgie 18, n‐7: 613–622, 1972.
 129. Randall, W. C., M. P. Kaye, J. X. Thomas, Jr., and M. J. Barber. Intrapericardial denervation of the heart. J. Surg. Res. 29: 101–109, 1980.
 130. Rascher, W., T. Tulassay, H. W. Seyberth, H. Humbert, U. Lang, and K. Scharer. Diuretic and hormonal responses to head‐out water immersion in nephrotic syndrome. J. Pediatr. 109: 609–614, 1986.
 131. Rennie, D. W., P. D. Prampero, and P. Ceretelli. Effects of water immersion on cardiac output, heart rate and stroke volume of man at rest and during exercise. Med. Dello Sport 24: 223–228, 1971.
 132. Rowell, L. B. Human Circulation Regulation during Physical Stress. New York: Oxford University Press, 1986.
 133. Rushmer, R. F. Cardiovascular Dynamics (3rd ed.). Philadelphia, PA: Saunders, 1970, p. 238.
 134. Rutlen, D. L., G. Christensen, K. G. Helgesen, and A. Ilebekk. Influence of atrial natriuretic factor on intravascular volume displacement in pigs. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H1595–H1600, 1990.
 135. Sachs, F. Mechanical transduction in biological systems. CRC Crit. Rev. Biomed. Eng. 16: 141–169, 1988.
 136. Schultz, H. D., D. G. Gardner, C. F. Deschepper, H. M. Coleridge, and J. C. G. Coleridge. Vagal c‐fiber blockade abolishes sympathetic inhibition by atrial natriuretic factor. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R6–R13, 1988.
 137. Share, L. Effects of carotid occlusion and left atrial distention on plasma vasopressin titer. Am. J. Physiol. 208: 219–223, 1965.
 138. Share, L., M. N. Levy. Carotid sinus pulse pressure, a determinant of plasma antidiuretic hormone concentration. Am. J. Physiol. 211: 721–724, 1966.
 139. Shiraki, K., N. Konda, S. Sagawa, J. R. Claybaugh, and S. K. Hong. Cardiorenal‐endocrine responses to head‐out immersion at night. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 60: 176–183, 1986.
 140. Sit, S. P., H. Morita, and S. F. Vatner. Responses of renal hemodynamics and functions to acute volume expansion in the conscious dog. Circ. Res. 54: 185–194, 1984.
 141. Sondeen, J. L., J. R. Claybaugh, S. K. Hong, and J. A. Krasney. Splenectomy does not alter the natriuretic response to head‐out water immersion. Physiologist 34 (4): 260, 1991.
 142. Sondeen, J. L., S. K. Hong, J. R. Claybaugh, and J. A. Krasney. Effect of hydration state on renal responses to head‐out water immersion in conscious dogs. Undersea Biomed. Res. 17: 395–411, 1990.
 143. Stahl, W. M. Renal hemodynamics: The effect of gravity on sodium and water excretion. Aerospace Med. 36: 917–922, 1965.
 144. Thames, M. D. Contribution of cardiopulmonary baroreceptors to the control of the kidney. Federation Proc. 37: 1209–1213, 1978.
 145. Thames, M. D., M. Jarecki, and D. E. Donald. Neural control of renin secretion in anesthetized dogs: Interactions of cardiopulmonary and carotid baroreceptors. Circ. Res. 42: 237–245, 1978.
 146. Thames, M. D., Miller, B. D., and F. M. Abboud. Baroreflex regulation of renal nerve activity during volume expansion. Am. J. Physiol. 243 (Heart Circ. Physiol. 12) H810–H814, 1982.
 147. Thoren, P., A. L. Mark, D. A. Morgan, T. P. O'Neill, P. Needleman, and M. J. Brody. Activation of vagal depressor reflexes by atriopeptins inhibits renal sympathetic nerve activity. Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H1252–H1259, 1986.
 148. Vatner, S. F., and E. Braunwald. Cardiovascular control mechanisms in the conscious state. N. Engl. J. Med. 293: 970–976, 1975.
 149. Vatner, S. F., W. T. Manders, and D. R. Knight. Vagally mediated regulation of renal function in conscious primates. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H546–H549, 1986.
 150. Von Ameln, H., M. Laniado, L. Rocker, and K. A. Kirsch. Effects of dehydration on the vasopressin response to immersion. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 58: 114–120, 1985.
 151. Von Diringshofen, H. Die Wirkungen des hydrostatischen Druckes des Wasserbades auf den Blutdruck in den Kapillaren und die Bindegewebsentwasserung. 7. Kreislaufforsch. 37: 382–390, 1948.
 152. Wang, B. C., G. Flora‐Ginter, R. J. Leadley, Jr., and K. L. Goetz. Ventricular receptors stimulate vasopressin release during hemorrhage. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R204–R211, 1988.
 153. Weston, C. F., J. P. O'Hare, J. M. Evans, and R. J. M. Corroll. Haemodynamic changes in man during immersion in water at different temperatures. Clin. Sci. Loud. 73: 613–615, 1987.
 154. Yoshino, H., D. C. Curran‐Everett, S. K. Hong, and J. A. Krasney. Altered heart rate‐arterial pressure relation during head‐out water immersion in the conscious dog. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23) R595–R601, 1988.
 155. Zucker, I. H., and J. P. Gilmore. Responsiveness of type B atrial receptors in the monkey. Brain Res. 95: 159–165, 1975.
 156. Zucker, I. H., and J. P. Gilmore. Contribution of peripheral pooling to the renal response to water immersion in the dog. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 45: 786–790, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John A. Krasney. Head‐out Water Immersion: Animal Studies. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 855-887. First published in print 1996. doi: 10.1002/cphy.cp040238