Comprehensive Physiology Wiley Online Library

Sleep, Thermoregulation, and Circadian Rhythms

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Influences of Sleep on Thermoregulation
2 Influences of Temperature on Sleep
3 Interactions of Sleep, Thermoregulation, and the Chronobiological Environment
4 Interactive Systems in Torpor and Hibernation
5 Conclusions
Figure 1. Figure 1.

Temporal variation in the longest wake and sleep bout lengths in intact and SCN‐lesioned squirrel monkeys. Note the reduction in wake bout lengths during what would otherwise be the subjective day (circadian time 0‐12) in the SCN‐lesioned population. Data are shown as population means (solid lines) ± SEM (broken lines). N = 5 in each group.

Reprinted from reference 26
Figure 2. Figure 2.

(a) Relationship of metabolic responses to temperature manipulations of the spinal cord in a pigeon plotted as a function of light or dark phase of the daily cycle and for the dark phase, whether the bird was awake or asleep. Time of day accounted for about a 1°C shift in threshold. (b) Axillary and spinal temperature thresholds during the transition from light to dark phase of the daily cycle. In each case panting threshold was determined first during sleep. The bird was then awakened by acoustic stimulation, and panting threshold was again determined.

Reprinted from reference 40 with permission
Figure 3. Figure 3.

Body temperature (Tb) vs. time of a golden‐mantled ground squirrel during euthermia and Tb vs. time of a golden‐mantled ground squirrel during hibernation and periodic arousals under constant dim red light at 10°C ambient temperature (a = euthermia; b = hibernation and periodic arousals; c = within a hibernation bout).

Figure 4. Figure 4.

Hibernation bout length for golden‐mantled ground squirrels plotted as a function of the intrabout circadian period determined from autocorrelation analysis of telemetered body temperature records. Whereas the circadian periods vary greatly from bout to bout even in the same animal and for contiguous bouts of hibernation, bout length is always a whole integer multiple of the intrabout circadian period.

Reprinted from reference 42 with permission
Figure 5. Figure 5.

Plots of brain temperature and electroencephalogram (EEG) delta power (μ,V2/Hz) during arousal from hibernation, interbout euthermia, and reentry into hibernation for one animal following a long bout (4.25 days, A) and a short bout (1.5 days, B) of hibernation. Bold arrow in B indicates start of sensory stimulation that initiated the arousal from hibernation after 1.5 days. Arousal in A was spontaneous. For each 10 s epoch EEG delta power is depicted, and brain temperature curve connects averages of six consecutive 10 s epochs. Solid vertical bars at the bottom of each panel show NREM sleep.

Reprinted from reference 116 with permission


Figure 1.

Temporal variation in the longest wake and sleep bout lengths in intact and SCN‐lesioned squirrel monkeys. Note the reduction in wake bout lengths during what would otherwise be the subjective day (circadian time 0‐12) in the SCN‐lesioned population. Data are shown as population means (solid lines) ± SEM (broken lines). N = 5 in each group.

Reprinted from reference 26


Figure 2.

(a) Relationship of metabolic responses to temperature manipulations of the spinal cord in a pigeon plotted as a function of light or dark phase of the daily cycle and for the dark phase, whether the bird was awake or asleep. Time of day accounted for about a 1°C shift in threshold. (b) Axillary and spinal temperature thresholds during the transition from light to dark phase of the daily cycle. In each case panting threshold was determined first during sleep. The bird was then awakened by acoustic stimulation, and panting threshold was again determined.

Reprinted from reference 40 with permission


Figure 3.

Body temperature (Tb) vs. time of a golden‐mantled ground squirrel during euthermia and Tb vs. time of a golden‐mantled ground squirrel during hibernation and periodic arousals under constant dim red light at 10°C ambient temperature (a = euthermia; b = hibernation and periodic arousals; c = within a hibernation bout).



Figure 4.

Hibernation bout length for golden‐mantled ground squirrels plotted as a function of the intrabout circadian period determined from autocorrelation analysis of telemetered body temperature records. Whereas the circadian periods vary greatly from bout to bout even in the same animal and for contiguous bouts of hibernation, bout length is always a whole integer multiple of the intrabout circadian period.

Reprinted from reference 42 with permission


Figure 5.

Plots of brain temperature and electroencephalogram (EEG) delta power (μ,V2/Hz) during arousal from hibernation, interbout euthermia, and reentry into hibernation for one animal following a long bout (4.25 days, A) and a short bout (1.5 days, B) of hibernation. Bold arrow in B indicates start of sensory stimulation that initiated the arousal from hibernation after 1.5 days. Arousal in A was spontaneous. For each 10 s epoch EEG delta power is depicted, and brain temperature curve connects averages of six consecutive 10 s epochs. Solid vertical bars at the bottom of each panel show NREM sleep.

Reprinted from reference 116 with permission
References
 1. Benington, J. H., and H. C. Heller. Evidence that REM sleep propensity accumulates during non‐REM sleep rather than waking. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 35): R1992–R2000.
 2. Berger, R. J. Slow wave sleep, shallow torpor and hibernation: homologous states of diminished metabolism and body temperature. Biol. Psychol. 19: 305–326, 1984.
 3. Berger, R. J., J. W. Palca, J. M. Walker, and N. H. Phillips. Correlations between body temperatures, metabolic rate and slow wave sleep in humans. Neurosci. Lett. 86: 230–234, 1988.
 4. Borbély, A. A. A two‐process model of sleep regulation. Hum. Neurobiol. 1: 195–204, 1982.
 5. Borbély, A. A., P. Achermann, L. Trachsel, and I. Tobler. Sleep initiation and initial sleep intensity: interactions of homeostatic and circadian mechanisms. J. Biol. Rhythms 4: 149–160, 1989.
 6. Borbély, A. A., F. Baumann, D. Brandeis, I. Strauch, and D. Lehmann. Sleep deprivation: effect on sleep stages and EEG power density in man. EEG Clin. Neurophysiol. 51: 483–495, 1981.
 7. Borbély, A. A., and H. U. Neuhaus. Sleep‐deprivation: effects on sleep in the rat. J. Comp. Physiol. 133: 71–87, 1979.
 8. Buguet, A. G., S. D. Livingstone, and L. D. Reed. Skin temperature changes in paradoxical sleep in man in the cold. Aviat. Space Environ. Med. 50: 567–570, 1979.
 9. Buguet, A. G., S. D. Livingstone, L. D. Reed, and R. E. Limmer. EEG patterns and body temperatures in man during sleep in arctic winter nights. Int. J. Biometeorol. 20: 61–69, 1976.
 10. Bunnell, D. E., J. A. Agnew, S. M. Horvath, L. Jopson, and M. Wills. Passive body heating and sleep: influence of proximity to sleep. Sleep 11: 210–219, 1988.
 11. Bunnell, D. E., and S. M. Horvath. Effects of body heating during sleep interruption. Sleep 8: 274–282, 1985.
 12. Candas, V., J. P. Libert, and A. Muzet. Heating and cooling stimulations during SWS and REM sleep in man. J. Therm. Biol. 7: 155–158, 1982.
 13. Chase, M. H., and F. R. Morales. The control of motoneurons during sleep. In: Principles and Practice of Sleep Medicine, edited by M. H. Kryger, T. Roth, and W. C. Dement. Philadelphia: Saunders, 1989, p. 74–85.
 14. Clark, W. G. Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agents. Neurosci. Biobehav. Rev. 3: 179–231, 1979.
 15. Clark, W. G. Changes in body temperature after administration of antipyretics, LSD, delta 9‐THC and related agents: II. Neurosci. Biobehav. Rev. 11: 35–96, 1987.
 16. Clark, W. G., and Y. L. Clark. Changes in body temperature after administration of acetylcholine, histamine, morphine, prostaglandins and related agents. Neurosci. Biobehav. Rev. 4: 175–240, 1980.
 17. Clark, W. G., and Y. L. Clark. Changes in body temperature after administration of adrenergic and serotonergic agents and related drugs including antidepressants. Neurosci. Biobehav. Rev. 4: 281–375, 1980.
 18. Clark, W. G., and Y. L. Clark. Changes in body temperature after administration of antipyretics, LSD, delta 9‐THC, CNS depressants and stimulants, hormones, inorganic ions, gases, 2,4‐DNP and miscellaneous agents. Neurosci. Biobehav. Rev. 5: 1–136, 1981.
 19. Clark, W. G., and J. M. Lipton. Changes in body temperature after administration of acetylcholine, histamine, morphine, prostaglandins and related agents: II. Neurosci. Biobehav. Rev. 9: 479–552, 1985.
 20. Clark, W. G., and J. M. Lipton. Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agents: II. Neurosci. Biobehav. Rev. 9: 299–371, 1985.
 21. Clark, W. G., and J. M. Lipton. Changes in body temperature after administration of adrenergic and serotonergic agents and related drugs including antidepressants: II. Neurosci. Biobehav. Rev. 10: 153–220, 1986.
 22. Daan, S., B. M. Barnes, and A. M. Strijkstra. Warming up for sleep?—Ground squirrels sleep during arousals from hibernation. Neurosci. Lett. 128: 265–268, 1991.
 23. Daan, S., D. G. M. Beersma, and A. A. Borbély. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R161–R178, 1984.
 24. Eastman, C. I., R. E. Mistleberger, and A. Rechtschaffen. Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol. Behav. 32: 357–368, 1984.
 25. Edgar, D. M. Circadian Timekeeping in the Squirrel Monkey: Neural and Photic Control of Sleep, Brain Temperature and Drinking. Riverside: University of California, 1986. Dissertation.
 26. Edgar, D. M., W. C. Dement, and C. A. Fuller. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep‐wake regulation. J. Neurosci. 13: 1065–1079, 1993.
 27. Edgar, D. M., M. R. Ralph, W. F. Seidel, L. K. Lee, and W. C. Dement. Fetal SCN‐transplants restore sleep‐wake and body temperature circadian rhythms in SCN‐lesioned rats. Sleep Res. 21: 371, 1992.
 28. Edgar, D. M., W. F. Seidel, and W. C. Dement. Triazolam‐induced sleep in the rat: influence of prior sleep, circadian time, and light/dark cycles. Psychopharmacology (Berl.) 105: 374–380, 1991.
 29. Edgar, D. M., W. F. Seidel, C. E. Martin, P. P. Sayeski, and W. C. Dement. Triazolam fails to induce sleep in suprachiasmatic nucleus‐lesioned rats. Neurosci. Lett. 125: 125–128, 1991.
 30. Edgar, D. M., L. Trachsel, W. F. Seidel, H. C. Heller, and W. C. Dement. The efficacy of triazolam is restored in sleep‐deprived SCN‐lesioned rats. Sleep Res. 19: 352, 1990.
 31. Florant, G. L., B. M. Turner, and H. C. Heller. Temperature regulation during wakefulness, sleep, and hibernation in marmots. Am. J. Physiol. 235 (Regulatory Integrative Comp. Physiol. 6): R82–R88, 1978.
 32. Franken, P., I. Tobler, and A. A. Borbély. Cortical temperature and EEG slow‐wave activity in the rat: analysis of vigilance state related changes. Eur. J. Physiol. 420: 500–507, 1992.
 33. Franken, P., I. Tobler, and A. A. Borbély. Sleep and waking have a major effect on the 24h rhythm of cortical temperature in the rat. J. Biol. Rhythms 7: 341–352, 1992.
 34. Franzini, C. The control of peripheral circulation during sleep. In: The Diencephalon and Sleep, edited by M. Mancia, and G. Marini. New York: Raven, 1990, p. 343–353.
 35. Franzini, C., T. Cianci, P. Lenzi, and P. L. Guidalotti. Neural control of vasomotion in rabbit ear is impaired during desyn‐chronized sleep. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 14): R142–R146, 1982.
 36. Glotzbach, S. F., and H. C. Heller. Central nervous regulation of body temperature during sleep. Science 94: 537–539, 1976.
 37. Glotzbach, S. F., and H. C. Heller. Changes in the thermal characteristics of hypothalamic neurons during sleep and wakefulness. Brain Res. 309: 17–26, 1984.
 38. Glotzbach, S. F., and H. C. Heller. Temperature regulation. In: Principles and Practice of Sleep Medicine (2nd ed.), edited by M. H. Kryger, T. Roth, and W. C. Dement. Philadelphia: Saunders, 1993, p. 260–275.
 39. Gould, S. J., and R. C. Lewontin. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205: 581–598, 1979.
 40. Graf, R. Diurnal changes of thermoregulatory functions in pigeons, I. Effector mechanisms. Pflugers Arch. 386: 173–179, 1980.
 41. Grahn, D. A., and H. C. Heller. Activity of most rostral ventromedial medulla neurons reflect EEG/EMG pattern changes. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 28): R1496–R1505, 1989.
 42. Grahn, D. A., J. D. Miller, V. S. Houng, and H. C. Heller. Persistence of circadian rhythmicity in hibernating ground squirrels. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 35): R1251–R1258, 1994.
 43. Grahn, D. A., C. M. Radeke, and H. C. Heller. Arousal state vs. temperature effects on neuronal activity in the subcoeruleus area. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 27): R840–R849, 1989.
 44. Green, D. J., and M. Gillete. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic slice. Brain Res. 245: 198–200, 1982.
 45. Haskell, E. H., J. W. Palca, J. M. Walker, R. J. Berger, and H. C. Heller. The effects of high and low ambient temperatures on human sleep stages. EEG Clin. Neurophysiol. 51: 494–501, 1981.
 46. Haskell, E. H., J. M. Walker, and R. J. Berger. Effects of cold stress on sleep of an hibernator, the golden‐mantled ground squirrel (C. lateralis). Physiol. Behav. 23: 1119–1121, 1979.
 47. Heller, H. C. Sleep and hypometabolism. Can. J. Zool. 66: 61–69, 1988.
 48. Heller, H. C., and S. F. Glotzbach. Thermoregulation and sleep. In: Heat Transfer in Medicine and Biology—Analysis and Applications, edited by A. Shitzer and R. C. Eberhart. New York: Plenum, 1985, p. 107–134.
 49. Heller, H. C., R. Graf, and W. Rautenberg. Circadian and arousal state influences on thermoregulation in the pigeon. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 16): R321–328, 1983.
 50. Heller, H. C., B. L. Krilowicz, and T. S. Kilduff. Neural mechanisms controlling hibernation. In: Living in the Cold II, Colloques INSERM, edited by A. Malan and B. Canguilhem. London: Libbey, 1989, vol. 193, p. 447–458.
 51. Heller, H. C., J. M. Walker, G. L. Florant, S. F. Glotzbach, and R. J. Berger. Sleep and hibernation: electrophysiological and thermoregulatory homologies. In: Strategies in Cold: Natural Torpidity and Thermogenesis, edited by L. C. H. Wang and J. W. Hudson. New York: Academic, 1978, p. 225–265.
 52. Henane, R., A. Buguet, B. Roussel, and J. Bittel. Variations in evaporation and body temperatures during sleep in man. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 42: 50–55, 1977.
 53. Hendricks, J. C. Absence of shivering in the cat during paradoxical sleep without atonia. Exp. Neurol. 75: 700–710, 1982.
 54. Heusner, A. Mise en évidence d'une variation nycthémérale de la calorification indépendante di cycle de l'activité chez le rat. C. R. Soc. Biol. (Paris) 150: 1246, 1957.
 55. Horne, J. A. Aspirin and nonfebrile waking oral temperature in healthy men and women: links with SWS changes? Sleep 12: 516–521, 1989.
 56. Horne, J. A. Human slow wave sleep: a review and appraisal of recent findings, with implications for sleep functions, and psychiatric illness. Experientia 48: 941–954, 1992.
 57. Horne, J. A., and V. J. Moore. Sleep EEG effects of exercise with and without additional body cooling. EEG Clin. Neurophysiol. 60: 33–38, 1985.
 58. Horne, J. A., J. E. Percival, and J. R. Traynor. Aspirin and human sleep. EEG Clin. Neurophysiol. 49: 409–413, 1980.
 59. Horne, J. A., and B. S. Shackell. Slow wave sleep elevations after body heating: proximity to sleep and effects of aspirin. Sleep 10: 383–392, 1987.
 60. Horne, J. A., and L. H. Staff. Exercise and sleep: body‐heating effects. Sleep 6: 36–46, 1983.
 61. Jordan, J., I. Montgomery, and J. Trinder. The effect of afternoon body heating on body temperature and slow wave sleep. Psychophysiology 27: 560–566, 1990.
 62. Karacan, I., J. I. Thornby, A. M. Anch, R. L. Williams, and H. M. Perkins. Effects of high ambient temperature on sleep in young men. Aviat. Space Environ. Med. 49: 855–860, 1978.
 63. Kent, S., M. Price, and E. Satinoff. Fever alters characteristics of sleep in rats. Physiol. Behav. 44: 709–715, 1988.
 64. Kent, S., and E. Satinoff. Influence of ambient temperature on sleep and body temperature after phentolamine in rats. Brain Res. 511: 227–233, 1990.
 65. Kleitman, N. Studies of the physiology of sleep. I. The effects of prolonged sleeplessness on man. Am. J. Physiol. 66: 67–72, 1923.
 66. Kleitman, N. Sleep and Wakefulness (2nd ed.). Chicago: University of Chicago Press, 1963.
 67. Kreider, M. B. Effects of sleep deprivation on body temperature. Federation Proc. 20: 214, 1961.
 68. Krilowicz, B. L., S. F. Glotzbach, and H. C. Heller. Neuronal activity during sleep and complete bouts of hibernation. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R1008–R1019, 1988.
 69. Krueger, J. M., and M. L. Karnovsky. Sleep and the immune response. Ann. N. Y. Acad. Sci. 496: 510–516, 1987.
 70. Krueger, J. M., S. Kubillus, S. Shoham, and D. Davenne. Enhancement of slow‐wave sleep by endotoxin and lipid A. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 22): R591–R597, 1986.
 71. Krueger, J. M., and J. A. Majde. Sleep as a host defense: its regulation by microbial products and cytokines. Clin. Immunol. Immunopathol. 57: 188–199, 1990.
 72. Krueger, J. M., J. Walter, C. A. Dinarello, S. M. Wolff, and L. Chedid. Sleep‐promoting effects of endogenous pyrogen (interleukin‐1). Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R994–R999, 1984.
 73. Kubota, A, S. T. Inouye, and H. Kawamura. Reversal of multiunit activity within and outside the suprachiasmatic nucleus in the rat. Neurosci. Lett. 27: 303–308, 1981.
 74. Lenzi, P., J. P. Libert, T. Cianci, and C. Franzini. Comparative aspects of the interaction between sleep and thermoregulation. In: Sleep '90, edited by J. Horne. Bochum, Germany: Pontenagel, 1990, p. 388–390.
 75. Libert, J. P., N. J. Di, H. Fukuda, A. Muzet, J. Ehrhart, and C. Amoros. Effect of continuous heat exposure on sleep stages in humans. Sleep 11: 195–209, 1988.
 76. McGinty, D., and R. Szymusiak. Keeping cool: a hypothesis about the mechanisms and functions of slow‐wave sleep. Trends Neurosci. 13: 480–487, 1990.
 77. Meijer, J. H., and W. J. Reitveld. Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol. Rev. 69: 671–707, 1989.
 78. Mistlberger, R. E., B. M. Bergmann, W. Waldenar, and A. Rechtschaffen. Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei‐lesioned rats. Sleep 6: 217–233, 1983.
 79. Moore, R. Y., and V. B. Eichler. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42: 201–206, 1972.
 80. Morrison, P. Modification of body temperature by activity in Brazilian hummingbirds. Condor 64: 315, 1962.
 81. Newman, G. C., and F. E. Hospod. Rhythm of suprachiasmatic nucleus 2‐deoxyglucose uptake in vitro. Brain Res. 381: 345–350, 1986.
 82. Obal, F. J., G. Rubicsek, P. Alfoldi, G. Sary, and F. Obal. Changes in the brain and core temperatures in relation to the various arousal states in rats in the light and dark periods of the day. Pflugers Arch. 404: 73–79, 1985.
 83. Ogawa, T., T. Satoh, and K. Takagi. Sweating during night sleep. Jpn. J. Physiol. 17: 135–148, 1967.
 84. Onoe, H., R. Ueno, I. Fujita, H. Nishino, Y. Oomura, and O. Hayaishi. Prostaglandin D2, a cerebral sleep‐inducing substance in monkeys. Proc. Natl. Acad. Sci. USA 85: 4082–4086, 1988.
 85. Opp, M., F. J. Obal, A. B. Cady, L. Johannsen, and J. M. Krueger. Interleukin‐6 is pyrogenic but not somnogenic. Physiol. Behav. 45: 1069–1072, 1989.
 86. Opp, M. R., F. J. Obal, and J. M. Krueger. Interleukin 1 alters rat sleep: temporal and dose‐related effects. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 31): R52–R58, 1991.
 87. Palca, J. W., J. M. Walker, and R. J. Berger. Thermoregulation, metabolism, and stages of sleep in cold‐exposed men. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 61: 940–947, 1986.
 88. Parmeggiani, P. L. Temperature regulation during sleep: a study in homeostasis. In: Physiology in Sleep, edited by J. Orem and C. D. Barnes. New York: Academic, 1980, p. 97–143.
 89. Parmeggiani, P. L., A. Azzaroni, D. Devolani, and G. Ferrari. Polygraphic study of anterior hypothalamic‐preoptic neuron thermosensitivity during sleep. EEG Clin. Neurophysiol. 63: 289–295, 1986.
 90. Parmeggiani, P. L., D. Cevolani, A. Azzaroni, and G. Ferrari. Thermosensitivity of anterior hypothalamic‐preoptic neurons during the waking‐sleeping cycle: a study in brain functional states. Brain Res. 415: 79–89, 1987.
 91. Parmeggiani, P. L., C. Franzini, and P. Lenzi. Respiratory frequency as a function of preoptic temperature during sleep. Brain Res. 111: 253–260, 1976.
 92. Parmeggiani, P. L., and C. Rabini. Shivering and panting during sleep. Brain Res. 6: 789–791, 1967.
 93. Parmeggiani, P. L., and C. Rabini. Sleep and environmental temperature. Arch. Ital. Biol. 108: 369–387, 1970.
 94. Parmeggiani, P. L., C. Rabini, and M. Cattalani. Sleep phases at low environmental temperature. Arch. Sci. Biol. (Bologna) 53: 277–290, 1969.
 95. Parmeggiani, P. L., G. Zamboni, T. Cianci, and M. Calasso. Absence of thermoregulatory vasomotor responses during fast wave sleep in cats. EEG Clin. Neurophysiol. 42: 372–380, 1977.
 96. Parmeggiani, P. L., G. Zamboni, E. Perez, and P. Lenzi. Hypothalamic temperature during desynchronized sleep. Exp. Brain Res. 54: 315–320, 1984.
 97. Ralph, M. M., R. D. Foster, F. C. Davis, and M. Menaker. Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975–978, 1990.
 98. Sakaguchi, S., S. F. Glotzbach, and H. C. Heller. Influence of hypothalamic and ambient temperatures on sleep in kangaroo rats. Am. J. Physiol. 237 (Regulatory Integrative Comp. Physiol. 8): R80–R88, 1979.
 99. Satinoff, E., and R. A. Prosser. Suprachiasmatic nuclear lesions eliminate circadian rhythms of drinking and activity, but not of body temperature in rats. J. Biol. Rhythms 3: 1–22, 1988.
 100. Sato, T., and H. Kawamura. Circadian rhythms in multiple unit activity inside and outside the suprachiasmatic nucleus in the diurnal chipmunk (Eutamias sibiricus). Neurosci. Res. 1: 45–52, 1984.
 101. Satoh, T., T. Ogawa, and K. Takagi. Sweating during daytime sleep. Jpn. J. Physiol. 15: 523–531, 1965.
 102. Schmidek, W. R., K. Hoshino, M. Schmidek, and C. Timo‐Iaria. Influence of environmental temperature on the sleep‐wakefulness cycle in the rat. Physiol. Behav. 8: 363–371, 1972.
 103. Schwartz, W. J., and H. Gainer. Suprachiasmatic nucleus: use of 14C‐labeled deoxyglucose uptake as a functional marker. Science 197: 1089–1091, 1977.
 104. Sewitch, D. E. Slow wave sleep deficiency insomnia: a problem in thermo‐downregulation at sleep onset. Psychophysiology 24: 200–215, 1987.
 105. Sewitch, D. E., E. M. Kittrell, D. J. Kupfer, and C. Reynolds. Body temperature and sleep architecture in response to a mild cold stress in women. Physiol. Behav. 36: 951–957, 1986.
 106. Shapiro, C. M., A. T. Moore, D. Mitchell, and M. L. Yodaiken. How well does man thermoregulate during sleep? Experientia 30: 1279–1281, 1974.
 107. Sichieri, R., and W. R. Schmidek. Influence of ambient temperature on the sleep‐wakefulness cycle in the golden hamster. Physiol. Behav. 33: 871–877, 1984.
 108. Stephan, F. K., and I. Zucker. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69: 1583–1586, 1972.
 109. Steriade, M. Brain electrical activity and sensory processing during waking and sleep states. In: Principles and Practice of Sleep Medicine, edited by M. H. Kryger, T. Roth, and W. C. Dement. Philadelphia: Saunders, 1989, p. 86–103.
 110. Szymusiak, R., and E. Satinoff. Maximal REM sleep time defines a narrower thermoneutral zone than does minimal metabolic rate. Physiol. Behav. 26: 687–690, 1981.
 111. Szymusiak, R., E. Satinoff, T. Schallert, and I. Q. Whishaw. Brief skin temperature changes towards thermoneutrality trigger REM sleep in rats. Physiol. Behav. 25: 305–311, 1980.
 112. Takagi, K. Sweating during sleep. In: Physiological and Behavioral Temperature Regulation, edited by J. D. Hardy, A. P. Gaggeand, and J. A. J. Stolwijk. Springfield, IL: Thomas, 1970, p. 669–675.
 113. Timbal, J., J. Colin, C. Boutelier, and J. D. Guieu. Bilan thermique en ambience controlee pendent 24 heures. Pflugers Arch. 335: 97–108, 1972.
 114. Tobler, I., A. A. Borbély, and G. Groos. The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neurosci. Lett. 42: 49–54, 1983.
 115. Tobler, I., P. Franken, and K. Jaggi. Vigilance states, EEG spectra, and cortical temperature in the guinea pig. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 35): R1119–R1132, 1993.
 116. Trachsel, L., D. M. Edgar, and H. C. Heller. Are ground squirrels sleep deprived during hibernation? Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 29): R1123–R1129, 1991.
 117. Twente, J. W., and J. A. Twente. Regulation of hibernating periods by temperature. Proc. Natl. Acad. Sci. USA 54: 1058–1061, 1965.
 118. Valatx, J. L., B. Roussel, and M. Cure. Sleep and cerebral temperature in rat during chronic heat exposure. Brain Res. 55: 107–122, 1973.
 119. Walker, J. M., and R. J. Berger. The ontogenesis of sleep states, thermogenesis, and thermoregulation in the Virginia opossum. Dev. Psychobiol. 13: 443–454, 1980.
 120. Walker, J. M., A. Garber, R. J. Berger, and H. C. Heller. Sleep and estivation (shallow torpor): continuous processes of energy conservation. Science 204: 1098–1100, 1979.
 121. Walker, J. M., S. F. Glotzbach, R. J. Berger, and H. C. Heller. Sleep and hibernation in ground squirrels (Citellus spp): electrophysiological observations. Am. J. Physiol. 233 (Regulatory Integrative Comp. Physiol. 4): R213–R221, 1977.
 122. Walker, J. M., E. H. Haskell, R. J. Berger, and H. C. Heller. Hibernation and circannual rhythms of sleep. Physiol. Zool. 53: 8–11, 1980.
 123. Walker, J. M., E. H. Haskell, R. J. Berger, and H. C. Heller. Hibernation at moderate temperatures: a continuation of slow wave sleep. Experientia 37: 726–728, 1981.
 124. Walker, J. M., L. E. Walker, D. V. Harris, and R. J. Berger. Cessation of thermoregulation during REM sleep in the pocket mouse. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 15): R114–R118, 1983.
 125. Walter, J., D. Davenne, S. Shoham, C. A. Dinarello, and J. M. Krueger. Brain temperature changes coupled to sleep states persist during interleukin 1‐enhanced sleep. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R96–R103, 1986.
 126. Walter, J. S., P. Meyers, and J. M. Krueger. Microinjection of interleukin‐1 into brain: separation of sleep and fever responses. Physiol. Behav. 45: 169–176, 1989.
 127. Wehr, T. A. A brain‐warming function for REM sleep. Neurosci. Biobehav. Rev. 16: 379–397, 1992.
 128. Wenger, C. B., M. F. Roberts, J. A. J. Stolwijk, and E. R. Nadel. Nocturnal lowering of thresholds for sweating and vasodilation. J. Appl. Physiol. 41: 15–19, 1976.
 129. Wunnenberg, W., G. Merker, and E. Speulda. Thermosensitivity of preoptic neurones in a hibernator (golden hamster) and a nonhibernator (guinea pig). Pflugers Arch. 363: 113–123, 1976.
 130. Zanchetti, A., G. Baccelli, and G. Mancia. Cardiovascular regulation during sleep. Arch. Ital. Biol. 120: 120–137, 1982.
 131. Zepplin, H. Mammalian sleep. In: Principles and Practice of Sleep Medicine, edited by M. H. Kryger, T. Roth, and W. C. Dement. Philadelphia: Saunders, 1989, p. 86–103.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

H. Craig Heller, Dale M. Edgar, Dennis A. Grahn, Steven F. Glotzbach. Sleep, Thermoregulation, and Circadian Rhythms. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 1361-1374. First published in print 1996. doi: 10.1002/cphy.cp040259