Comprehensive Physiology Wiley Online Library

Transport and Metabolism in the Hepatobiliary System

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Methodology
2 Factors Influencing Clearance of Drugs by The Liver
2.1 Chemical Structure
2.2 Protein Binding
2.3 Bile Flow
2.4 Adaptive Changes
2.5 Biotransformation, Detoxification, Toxification
2.6 Acinar Heterogeneity
3 Mechanisms Of Membrane Transport of Organic Compounds
3.1 General Considerations
3.2 Organic Anions
3.3 Organic Cations
3.4 Uncharged Compounds
4 Conclusion
Figure 1. Figure 1.

Ultrastructure of the liver. Scanning electron micrograph (x 5,000) showing the sinusoidal wall with large fenestrae and a plate of parenchymal cells (hepatocytes) with microvilli at the sinusoidal and canalicular poles of the cell representing sites for carrier‐mediated transport of drugs.

Figure 2. Figure 2.

Plasma disappearance and biliary excretion rate patterns after intravenous injection of 1,000 μg d‐tubocurarine (organic cation). Curve stripping of triexponential curves reveals almost identical slopes in plasma and bile, enabling calculation of transport rate constants for hepatic uptake and biliary excretion using compartmental models 40 as well as plasma and biliary clearance [cf. Fig. 4242].

Figure 3. Figure 3.

Relation between lipophilicity (measured by partition between octanol and Krebs buffer and expressed relative to the value of tetraethyl methylammonium) and carrier‐mediated clearance of 14 monovalent organic cations (drugs with a quaternary ammonium group) via biliary, intestinal, and renal routes in the rat. Clearance values are corrected for passive fluxes (e.g., glomerular filtration) and indicate carrier‐mediated transport in the organs. Between log P = 1 and log P = 2, biliary clearance increases ∼1,000 and intestinal clearance ∼100 times in contrast to renal clearance, which shows no such correlative pattern. At log P > 2.5, clearance is partly blood‐flow limited.

Figure 4. Figure 4.

Influence of albumin on clearance of dibromosulfophthalein (DBSP) in isolated perfused liver after single injection (A). Inverse relation is shown between albumin concentration and initial uptake rate. Lowering of albumin concentration increases unbound fraction and thereby the driving force for transport into the liver (hepatic storage) and liver to bile. B: influence of extracellular binding on hepatic storage of DBSP. Steady‐state kinetics by constant infusion of 800 nmol/min of DBSP in isolated rat liver perfused with 0.2% albumin containing Krebs solution. At t = 60 min, albumin was added to the perfusion medium to a concentration of 1.0%. Before addition, constant concentrations in bile, liver, and perfusate were attained. Addition of albumin results in disturbance of steady state and efflux of DBSP from the liver (C) to the perfusate plasma (B).

Figure 5. Figure 5.

Schematic representation of supposed mechanisms for organic anion transport at sinusoidal level. Net transport across the membrane is mediated by an undefined trans‐locator (carrier or ion‐selective channel protein) transporting the unbound substrate. At the plasma membrane surface, interaction of albumin may lead to facilitated dissociation of the organic anion (left). Alternatively, spontaneous dissociation by progressive removal of the unbound fraction may occur, in which dissociation from albumin may constitute the rate‐limiting step (right). Within the cell the substrate is associated with cytosolic‐binding proteins such as ligandin (glutathione transferase B) and Z protein (fatty acid–binding protein).

Adapted from Berk et al. 29
Figure 6. Figure 6.

Schematic representation of drug disposition by the liver. Hepatic uptake can occur passively or by carrier transport. Phase I and phase II biotransformation may produce polar conjugates that can be excreted into the general circulation or into bile, both via carrier‐mediated transport. Conjugates or polar drugs may also be excreted via tubular secretion in the urine or via intestinal secretion. In the gut, conjugates can be deconjugated and reabsorbed, undergoing enterohepatic cycling.

Figure 7. Figure 7.

Schematic representation of interrelation of phase I and phase II biotransformation reactions. Smooth endoplasmic reticulum (SER) membranes contain NADPH–cytochrome P‐450 reductase (Cyt. Red.) closely associated cytochrome P‐450, UDP‐glucuronosyltransferase (GIT), epoxide hydratase (EH), and a supposed permease (carrier, C) for UDPGA transport. Products of the monooxygenase are hydroxylated drug, drug epoxides, and reactive drug metabolites (radicals and electrophiles). The latter can undergo covalent binding to macromolecules in cell organelles, cytoplasm, and plasma membranes. Phase II synthetic reactions of, for example, phase I products include conjugation with glutathione (GSH) via the various glutathione S‐transferases (GST), sulfuric acid (SO3H) via the sulfotransferase (ST) using 3‐phosphoadenosine‐5'‐sulfate phosphate (PAPS), and glucuronic acid (GA) using UDPGA. Resulting polar conjugates are substrates for excretion mechanisms at sinusoidal and canalicular poles of the hepatocyte.

Figure 8. Figure 8.

Proposed scheme of the cytochrome P‐450 oxidation‐reduction cycle representing the monooxygenase, oxidase, and peroxygenase function. RH, xenobiotic compound; ROH, hydroxylated product. XOOH, formation of various peroxy compounds, including hydrogen peroxide.

Figure 9. Figure 9.

Graphic representation of the different forms of cytochrome P‐450 (circles) in the human with different, but probably overlapping, substrate and product selectivities. Arrows, single metabolic pathways. AM, aminopyrine; AP, antipyrine; BD, benzodiazepine; CF, caffeine; CMC, carboxymethylcysteine, DB, debrisoquine; ES, endogenous substrate; HB, hexobarbital; HP, heptabarbital; MB, methylphenobarbital; MP, mephenytoin; NF, nifedipine; NT, nortriptyline; PH, phenytoin; SP, sparteine; ST, steroid; TP, theophylline.

Figure 10. Figure 10.

Schematic representation of the microcirculatory unit of the liver: the hepatic acinus. An arbitrary division in 3 zones is indicated. BD, bile ductule; HA, hepatic artery; TPV, terminal portal venule.

Figure 11. Figure 11.

Light‐microscopic autoradiographs of rat liver 30 s after injection of [3H]taurocholate in rat liver perfused in normal direction (antegrade) and retrograde, using freeze autoradiography to prevent diffusion of the water‐soluble compound. Steep acinar gradients are observed in zone 1 and zone 3, respectively. Large black dots, material present in bile ducts at t = 30 s, which is only visible after antegrade perfusion. HV, hepatic venule; PV, portal venule.

Figure 12. Figure 12.

Taurocholate kinetics in isolated perfused livers after antegrade and retrograde perfusion. Plasma disappearance rate (distribution to the liver, left panel) is independent of direction of flow, whereas biliary excretion rate (right panel) is more rapid at normal direction of flow. Because distribution to zone 1 is predominant at normal flow (cf. Fig. 12, zone 1 cells may be better equipped for bile secretion of taurocholate than zone 3 cells.

Figure 13. Figure 13.

Chemical structure of cholephilic compounds for which separate transport processes have been proposed. However, indocyanine green (organic anion) contains also a cationic group. Cholic acid can be present as organic anion, as an undissociated carboxylic steroidal compound, or complexed with Ca2+ with a net positive charge. The steroid structure of ouabain (uncharged compound) resembles that of bile acids, and the organic cation d‐tubocurarine may form electroneutral ion pairs. These features enable multiple interactions and overlapping substrate specificity for transport systems.

Figure 14. Figure 14.

Calculated concentration gradients of unbound drug across sinusoidal and canalicular membranes for the organic anion dibromosulfophthalein (DBSP), the organic cation procaineamide ethobromide (PAEB), the uncharged compound ouabain (ouab), and the bile salt taurocholate (TCh). Concentrations of the unbound drugs were determined in ultrafiltrates of plasma and cytosol fraction of liver homogenates. Cytosol concentrations were corrected for contamination with plasma and bile.

Figure 15. Figure 15.

Coupling between gradients of inorganic ions with carrier‐mediated transport of organic anions (OA), bile acids (BA), organic cations (OC+), and uncharged compounds (UC) in the hepatocyte. Inorganic ion pumps include electrogenic NA+‐K+ exchange, Na+‐H+, OH‐SO4 antiport (sinusoidal), and Cl‐HCO3 antiport (canalicular). Na+‐coupled bile acid transport (1) and OH‐OA antiport (2) at the sinusoidal level and HCO3‐OA antiport at the canaliculi are anionic systems. Organic cations are taken up by system 1 and may share a transport system for uncharged compounds (2). In the latter system, ion‐pair formation may play a role; at the canalicular level antiport of organic cations with protons is tentatively assumed. Transport processes at sinusoidal level have more overlapping substrate specificity than the projected 4 canalicular carrier systems.

Adapted from Hugentobler and Meier 136
Figure 16. Figure 16.

Transport mechanisms for hepatobiliary transport of organic cations (OC+) within organelles and canaliculi is indicated by ☆. Uptake can occur by 2 systems. System 2 is inhibitable by cardiac glycosides that may share a carrier process transporting high‐molecular‐weight (bulky) lipophilic organic cations, possibly as ion pairs with inorganic counteranions. System 1 may preferentially serve monovalent cations and may operate by proton antiport. Lipophilic organic cations bind in plasma to α1‐acid glycoprotein (α1‐AGP) [orosomucoid (OR)] but are not coendocytosed with asialoforms of this glycoprotein (ASOR). Accumulation in lysosomes (L) may occur via aspecific fluid‐phase endocytosis at the plasma membrane or antiport with protons from the cytoplasm. Direct transport of drug from lysosomes to bile is not known. In addition to association with lysosomes, extensive binding can occur to mitochondria (M) and nuclei (N). Biliary excretion involves carrier‐mediated transport possibly by antiport with protons. Binding to mixed biliary micelles (Mi) may facilitate net transport into bile canaliculi. AGP‐rec., asialo‐glycoprotein receptor.



Figure 1.

Ultrastructure of the liver. Scanning electron micrograph (x 5,000) showing the sinusoidal wall with large fenestrae and a plate of parenchymal cells (hepatocytes) with microvilli at the sinusoidal and canalicular poles of the cell representing sites for carrier‐mediated transport of drugs.



Figure 2.

Plasma disappearance and biliary excretion rate patterns after intravenous injection of 1,000 μg d‐tubocurarine (organic cation). Curve stripping of triexponential curves reveals almost identical slopes in plasma and bile, enabling calculation of transport rate constants for hepatic uptake and biliary excretion using compartmental models 40 as well as plasma and biliary clearance [cf. Fig. 4242].



Figure 3.

Relation between lipophilicity (measured by partition between octanol and Krebs buffer and expressed relative to the value of tetraethyl methylammonium) and carrier‐mediated clearance of 14 monovalent organic cations (drugs with a quaternary ammonium group) via biliary, intestinal, and renal routes in the rat. Clearance values are corrected for passive fluxes (e.g., glomerular filtration) and indicate carrier‐mediated transport in the organs. Between log P = 1 and log P = 2, biliary clearance increases ∼1,000 and intestinal clearance ∼100 times in contrast to renal clearance, which shows no such correlative pattern. At log P > 2.5, clearance is partly blood‐flow limited.



Figure 4.

Influence of albumin on clearance of dibromosulfophthalein (DBSP) in isolated perfused liver after single injection (A). Inverse relation is shown between albumin concentration and initial uptake rate. Lowering of albumin concentration increases unbound fraction and thereby the driving force for transport into the liver (hepatic storage) and liver to bile. B: influence of extracellular binding on hepatic storage of DBSP. Steady‐state kinetics by constant infusion of 800 nmol/min of DBSP in isolated rat liver perfused with 0.2% albumin containing Krebs solution. At t = 60 min, albumin was added to the perfusion medium to a concentration of 1.0%. Before addition, constant concentrations in bile, liver, and perfusate were attained. Addition of albumin results in disturbance of steady state and efflux of DBSP from the liver (C) to the perfusate plasma (B).



Figure 5.

Schematic representation of supposed mechanisms for organic anion transport at sinusoidal level. Net transport across the membrane is mediated by an undefined trans‐locator (carrier or ion‐selective channel protein) transporting the unbound substrate. At the plasma membrane surface, interaction of albumin may lead to facilitated dissociation of the organic anion (left). Alternatively, spontaneous dissociation by progressive removal of the unbound fraction may occur, in which dissociation from albumin may constitute the rate‐limiting step (right). Within the cell the substrate is associated with cytosolic‐binding proteins such as ligandin (glutathione transferase B) and Z protein (fatty acid–binding protein).

Adapted from Berk et al. 29


Figure 6.

Schematic representation of drug disposition by the liver. Hepatic uptake can occur passively or by carrier transport. Phase I and phase II biotransformation may produce polar conjugates that can be excreted into the general circulation or into bile, both via carrier‐mediated transport. Conjugates or polar drugs may also be excreted via tubular secretion in the urine or via intestinal secretion. In the gut, conjugates can be deconjugated and reabsorbed, undergoing enterohepatic cycling.



Figure 7.

Schematic representation of interrelation of phase I and phase II biotransformation reactions. Smooth endoplasmic reticulum (SER) membranes contain NADPH–cytochrome P‐450 reductase (Cyt. Red.) closely associated cytochrome P‐450, UDP‐glucuronosyltransferase (GIT), epoxide hydratase (EH), and a supposed permease (carrier, C) for UDPGA transport. Products of the monooxygenase are hydroxylated drug, drug epoxides, and reactive drug metabolites (radicals and electrophiles). The latter can undergo covalent binding to macromolecules in cell organelles, cytoplasm, and plasma membranes. Phase II synthetic reactions of, for example, phase I products include conjugation with glutathione (GSH) via the various glutathione S‐transferases (GST), sulfuric acid (SO3H) via the sulfotransferase (ST) using 3‐phosphoadenosine‐5'‐sulfate phosphate (PAPS), and glucuronic acid (GA) using UDPGA. Resulting polar conjugates are substrates for excretion mechanisms at sinusoidal and canalicular poles of the hepatocyte.



Figure 8.

Proposed scheme of the cytochrome P‐450 oxidation‐reduction cycle representing the monooxygenase, oxidase, and peroxygenase function. RH, xenobiotic compound; ROH, hydroxylated product. XOOH, formation of various peroxy compounds, including hydrogen peroxide.



Figure 9.

Graphic representation of the different forms of cytochrome P‐450 (circles) in the human with different, but probably overlapping, substrate and product selectivities. Arrows, single metabolic pathways. AM, aminopyrine; AP, antipyrine; BD, benzodiazepine; CF, caffeine; CMC, carboxymethylcysteine, DB, debrisoquine; ES, endogenous substrate; HB, hexobarbital; HP, heptabarbital; MB, methylphenobarbital; MP, mephenytoin; NF, nifedipine; NT, nortriptyline; PH, phenytoin; SP, sparteine; ST, steroid; TP, theophylline.



Figure 10.

Schematic representation of the microcirculatory unit of the liver: the hepatic acinus. An arbitrary division in 3 zones is indicated. BD, bile ductule; HA, hepatic artery; TPV, terminal portal venule.



Figure 11.

Light‐microscopic autoradiographs of rat liver 30 s after injection of [3H]taurocholate in rat liver perfused in normal direction (antegrade) and retrograde, using freeze autoradiography to prevent diffusion of the water‐soluble compound. Steep acinar gradients are observed in zone 1 and zone 3, respectively. Large black dots, material present in bile ducts at t = 30 s, which is only visible after antegrade perfusion. HV, hepatic venule; PV, portal venule.



Figure 12.

Taurocholate kinetics in isolated perfused livers after antegrade and retrograde perfusion. Plasma disappearance rate (distribution to the liver, left panel) is independent of direction of flow, whereas biliary excretion rate (right panel) is more rapid at normal direction of flow. Because distribution to zone 1 is predominant at normal flow (cf. Fig. 12, zone 1 cells may be better equipped for bile secretion of taurocholate than zone 3 cells.



Figure 13.

Chemical structure of cholephilic compounds for which separate transport processes have been proposed. However, indocyanine green (organic anion) contains also a cationic group. Cholic acid can be present as organic anion, as an undissociated carboxylic steroidal compound, or complexed with Ca2+ with a net positive charge. The steroid structure of ouabain (uncharged compound) resembles that of bile acids, and the organic cation d‐tubocurarine may form electroneutral ion pairs. These features enable multiple interactions and overlapping substrate specificity for transport systems.



Figure 14.

Calculated concentration gradients of unbound drug across sinusoidal and canalicular membranes for the organic anion dibromosulfophthalein (DBSP), the organic cation procaineamide ethobromide (PAEB), the uncharged compound ouabain (ouab), and the bile salt taurocholate (TCh). Concentrations of the unbound drugs were determined in ultrafiltrates of plasma and cytosol fraction of liver homogenates. Cytosol concentrations were corrected for contamination with plasma and bile.



Figure 15.

Coupling between gradients of inorganic ions with carrier‐mediated transport of organic anions (OA), bile acids (BA), organic cations (OC+), and uncharged compounds (UC) in the hepatocyte. Inorganic ion pumps include electrogenic NA+‐K+ exchange, Na+‐H+, OH‐SO4 antiport (sinusoidal), and Cl‐HCO3 antiport (canalicular). Na+‐coupled bile acid transport (1) and OH‐OA antiport (2) at the sinusoidal level and HCO3‐OA antiport at the canaliculi are anionic systems. Organic cations are taken up by system 1 and may share a transport system for uncharged compounds (2). In the latter system, ion‐pair formation may play a role; at the canalicular level antiport of organic cations with protons is tentatively assumed. Transport processes at sinusoidal level have more overlapping substrate specificity than the projected 4 canalicular carrier systems.

Adapted from Hugentobler and Meier 136


Figure 16.

Transport mechanisms for hepatobiliary transport of organic cations (OC+) within organelles and canaliculi is indicated by ☆. Uptake can occur by 2 systems. System 2 is inhibitable by cardiac glycosides that may share a carrier process transporting high‐molecular‐weight (bulky) lipophilic organic cations, possibly as ion pairs with inorganic counteranions. System 1 may preferentially serve monovalent cations and may operate by proton antiport. Lipophilic organic cations bind in plasma to α1‐acid glycoprotein (α1‐AGP) [orosomucoid (OR)] but are not coendocytosed with asialoforms of this glycoprotein (ASOR). Accumulation in lysosomes (L) may occur via aspecific fluid‐phase endocytosis at the plasma membrane or antiport with protons from the cytoplasm. Direct transport of drug from lysosomes to bile is not known. In addition to association with lysosomes, extensive binding can occur to mitochondria (M) and nuclei (N). Biliary excretion involves carrier‐mediated transport possibly by antiport with protons. Binding to mixed biliary micelles (Mi) may facilitate net transport into bile canaliculi. AGP‐rec., asialo‐glycoprotein receptor.

References
 1. Abou‐El‐Makarem, M. M., P. Millburn, and R. L. Smith. Biliary excretion of [14C]‐succinylsulphathiazole in rat and rabbit. Biochem. J. 105: 1295–1299, 1967.
 2. Acocella, G., F. B. Nicolis, and L. T. Tenconi. The effect of an intravenous infusion of rifamycin SV on the excretion of bilirubin, bromsulphalein and indocyanine green in man. Gastroenterology 49: 521–525, 1965.
 3. Adler, R. D., F. J. Wannagat, and R. K. Ockner. Bile secretion in selective biliary obstruction: adaptation of taurocholate transport maximum to increased secretory load in the rat. Gastroenterology 73: 129–136, 1977.
 4. Alpert, S., M. Mosher, A. Shanske, and I. M. Arias. Multiplicity of hepatic excretory mechanisms for organic anions. J. Gen. Physiol. 53: 238–247, 1969.
 5. Alvares, A. P. Oxidative biotransformation of drugs. In: The Liver: Biology and Pathobiology, edited by I. Arias, H. Popper, D. Schachter, and D. A. Shafritz. New York: Raven, 1982, p. 265–280.
 6. An, T. Y., and D. P. Jones. Intracellular inhibition of UDP‐glucose dehydrogenase during ethanol oxidation. Chem.‐Biol. Interact. 43: 283–288, 1983.
 7. Anderson, J. H., R. C. Anderson, and L. S. Iben. Hepatic uptake of propranolol. J. Pharmacol. Exp. Ther. 206: 172–180, 1978.
 8. Anwer, M. S. Biliary secretion of diisothiocyanostilbene disulfonate (DIDS) involves DIDS/HCO3‐(OH‐) exchange (Abstract). Hepatology Baltimore 6: 1213, 1986.
 9. Anwer, M. S., and D. Hegner. Interaction of fusidates with bile acid uptake by isolated rat hepatocytes. Naunyn‐Schmiedeberg's Arch. Pharmacol. 382: 329–332, 1978.
 10. Anwer, M. S., and D. Hegner. Effect of Na+ on bile acid uptake by isolated rat hepatocytes. Hoppe‐Seyler's Z. Physiol. Chem. 359: 181–192, 1978.
 11. Anwer, M. S., and D. Hegner. Effect of organic anions on bile acid uptake by isolated rat hepatocytes. Hoppe‐Seyler's Z. Physiol. Chem. 359: 1027–1030, 1978.
 12. Anwer, M. S., R. Kroker, and D. Hegner. Inhibition of hepatic uptake of bile acids by rifamycins. Naunyn‐Schmiedeberg's Arch. Pharmacol. 302: 19–24, 1978.
 13. Anwer, M. S., E. R. L. O'Maille, A. F. Hofmann, R. A. DiPietro, and E. Michelotti. Influence of side‐chain charge on hepatic transport of bile acids and bile acid analogues. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G479–G488, 1985.
 14. Arias, I. M., G. Fleischner, I. Listowsky, M. Bhagava, K. Kamisaka, and Z. Gatmaitan. Ligandin: structure and function. In: Liver and Bile, edited by L. Bianchi. Lancaster, UK: MTP, 1976, p. 157. (Falk Symp. 25.).
 15. Askin, J. R., D. I. Lyon, S. D. Shull, C. I. Wagner, and R. D. Soloway. Factors affecting delivery of bile to the duodenum in man. Gastroenterology 74: 560–565, 1978.
 16. Avner, D. L., and M. M. Berenson. Effect of choleretics on canalicular transport of protoporphyrin in the rat liver. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G347–G353, 1982.
 17. Axelrod, J. The discovery of the microsomal drug‐metabolizing enzymes. In: Drug Metabolism and Distribution, edited by J. W. Lamble. Amsterdam: Elsevier, 1983, p. 1–11. (Curr. Rev. Biomed. Ser. 3.).
 18. Baber, N., L. Halliday, R. Sibeon, T. Littler, and M. L. Orme. The interaction between indomethacin and probenecid. A clinical and pharmacokinetic study. Clin. Pharmacol. Ther. 24: 298–307, 1978.
 19. Bailey, D. G., and G. S. Johnson. Multiple excretory mechanisms for organic anions. A study with succinylsulphathiazole and taurocholate in the rat. Can. J. Physiol. Pharmacol. 53: 97–103, 1975.
 20. Baker, K. J., and S. E. Bradley. Binding of sulfobromophthalein (BSP) sodium by plasma albumin. Its role in hepatic BSP extraction. J. Clin. Invest. 45: 281–287, 1966.
 21. Barnhart, J. L., and R. Clarenburg. Factors determining clearance of bilirubin in perfused rat liver. Am. J. Physiol. 225: 497–507, 1973.
 22. Barnhart, J. L., R. R. Gronwall, and B. Combes. Biliary excretion of sulfobromophthalein compounds in normal and mutant Corriedale sheep. Evidence for disproportionate transport defect for conjugated sulfobromophthalein. Hepatology Baltimore 1: 441–447, 1981.
 23. Barnhart, J. L., B. L. Witt, W. G. Hardison, and R. N. Berk. Uptake of iopanoic acid by isolated rat hepatocytes in primary culture. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G630–G636, 1983.
 24. Bass, N. M. Function and regulation of hepatic and intestinal fatty acid binding proteins. Chem. Phys. Lipids 38: 95–114, 1985.
 25. Bass, N. M., M. E. Barker, and A. L. Jones. Zonal expression of fatty acid binding protein (FABP) corresponds with fatty acid uptake by zones 1 and 2 of the hepatic acinus (Abstract). Hepatology Baltimore 5: 1011, 1985.
 26. Bencini, A. F., M. C. Houwertjes, and S. Agoston. Effects of hepatic uptake of vecuronium bromide and its putative metabolites on their neuromuscular blocking actions in the cat. Br. J. Anaesth. 57: 789–795, 1985.
 27. Bencini, A. F., A. H. J. Scaf, Y. J. Sohn, U. W. Kersten‐Kleef, and S. Agoston. Hepatobiliary disposition of vecuronium bromide in man. Anesthesiology 58: 988–995, 1986.
 28. Benz, R. P., P. Lauger, and K. Janko. Transport kinetics of hydrophobic ions in lipid bilayer membranes: charge‐pulse relaxation studies. Biochim. Biophys. Acta 455: 701–720, 1976.
 29. Berk, P. D., B. J. Potter, and W. Stremmel. Role of plasma membrane ligand‐binding proteins in the hepatocellular uptake of albumin‐bound organic anions. Hepatology Baltimore 7: 165–176, 1987.
 30. Berk, P. D., and W. Stremmel. Hepatocellular uptake of organic anions. Prog. Liver Dis. 8: 125–144, 1986.
 31. Berk, R. N., J. L. Barnhart, and L. E. Goldberger. The enhancement of iopanoate excretion by taurocholate. Invest. Radiol. 15: S116–S121, 1980.
 32. Berk, R. N., P. M. Loeb, A. Cobo‐Frenkel, and J. L. Barnhart. The biliary and urinary excretion of sodium tyropanoate and sodium ipodate in dogs: pharmacokinetics, influence of bile salts and choleretic effects with comparison to iopanoic acid. Invest. Radiol. 12: 85–95, 1977.
 33. Berry, M. N., and D. S. Friend. High yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J. Cell Biol. 43: 506–520, 1969.
 34. Berthelot, P., and B. H. Billing. Effect of bunamiodyl on hepatic uptake of sulfobromophthalein in the rat. Am. J. Physiol. 211: 395–399, 1966.
 35. Blaschke, T. F. Protein binding and kinetics of drugs in liver diseases. Clin. Pharmacokinet. 2: 32–44, 1977.
 36. Blitzer, B. L., and J. L. Boyer. Cellular mechanisms of bile formation. Gastroenterology 82: 346–357, 1982.
 37. Blitzer, B. L., and C. B. Donovan. A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation, and bile acid transport studies. J. Biol. Chem. 259: 9295–9301, 1984.
 38. Blitzer, B. L., and L. Lyons. Enhancement of Na+‐dependent bile acid uptake by albumin: direct demonstration in rat basolateral liver plasma membrane vesicles. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G34–G38, 1985.
 39. Blitzer, B. L., S. L. Ratoosh, C. B. Donovan, and J. L. Boyer. Effects of inhibitors of Na+‐coupled ion transport on bile acid uptake by isolated rat hepatocytes. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G48–G53, 1982.
 40. Blom, A., K. Keulemans, and D. K. F. Meijer. Transport of dibromosulphthalein by isolated rat hepatocytes. Biochem. Pharmacol. 30: 1809–1816, 1981.
 41. Blom, A., A. H. J. Scaf, and D. K. F. Meijer. Hepatic drug transport in the rat. A comparison between isolated hepatocytes, the isolated perfused liver and the liver in vivo. Biochem. Pharmacol. 31: 1553–1565, 1982.
 42. Bloomer, J. R., P. D. Berk, J. Vergalla, and N. I. Berlin. Influence of albumin on the hepatic uptake of unconjugated bilirubin. Clin. Sci. Mol. Med. 45: 505–516, 1973.
 43. Boyer, J. L. New concepts of mechanisms of hepatocyte bile formation. Physiol. Rev. 60: 303–326, 1980.
 44. Boyer, J. L. Mechanisms of bile secretion and hepatic transport. In: Physiology of Membrane Disorders (2nd ed.), edited by T. E. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schultz. New York: Plenum, 1986, p. 609–636.
 45. Boyer, J. L., E. Elias, and T. J. Layden. The paracellular pathway and bile formation. Yale J. Biol. Med. 52: 61–67, 1979.
 46. Brauer, R. W., G. F. Leong, and R. J. Holloway. Mechanics of bile secretion: effect of perfusion pressure and temperature on bile flow and bile secretion pressure. Am. J. Physiol. 177: 103–112, 1954.
 47. Brauer, R. W., R. L. Pessotti, and P. Pizzolato. Isolated rat liver preparation. Bile production and other basic properties. Proc. Soc. Exp. Biol. Med. 78: 174–181, 1951.
 48. Breimer, D. D., N. P. E. Vermeulen, M. Danhof, M. W. E. Teunissen, R. P. Joeres, and M. Van der Graaff. Assessment and prediction of in vivo oxidative drug metabolism activity. In: Pharmacokinetics: A Modern View, edited by L. Z. Benet, G. Levy, and B. L. Ferraiolo. New York: Plenum, 1984, p. 191–216.
 49. Brock, W. J., S. Durham, and M. Vore. Characterization of the interaction between estrogen metabolites and taurocholate for uptake into isolated hepatocytes. Lack of correlation between cholestasis and inhibition of taurocholate uptake. J. Steroid Biochem. 20: 1181–1185, 1984.
 50. Brock, W. J., and M. Vore. Characterization of uptake of steroid glucuronides into isolated male and female rat hepatocytes. J. Pharmacol. Exp. Ther. 229: 175–181, 1984.
 51. Buscher, H. P., G. Fricker, W. Gerok, W. Kramer, G. Kurz, M. Muller, and S. Schneider. Membrane transport of amphiphilic compounds by hepatocytes. In: Receptor‐Mediated Uptake in the Liver, edited by H. Greten, E. Windler, and U. Beisiegel. Heidelberg, FRG: Springer‐Verlag, 1986, p. 189–199.
 52. Caldwell, J. Conjugation reactions in the metabolism of xenobiotics. In: The Liver: Biology and Pathobiology, edited by I. Arias, H. Popper, D. Schachter, and D. A. Shafritz. New York: Raven, 1982, p. 281–296.
 53. Carson, E. R., and E. A. Jones. Use of kinetic analysis and mathematical modelling in the study of metabolic pathways in vivo. Application to hepatic organic anion metabolism. N. Engl. J. Med. 300: 1016–1027, 1979.
 54. Chen, E. H., J. J. Gumucio, N. H. Ho, and D. L. Gumucio. Hepatocytes of zones 1 and 3 conjugate sulfobromophthalein with glutathione. Hepatology Baltimore 4: 467–476, 1984.
 55. Chen, H. G., and J. F. Gross. Pharmacokinetics of drugs subject to enterohepatic circulation. J. Pharm. Sci. 68: 792–799, 1979.
 56. Cheng, S., and D. Levy. Characterization of the anion transport system in hepatocyte plasma membrane. J. Biol. Chem. 255: 2637–2640, 1980.
 57. Chipman, J. K. Bile as a source of potential reactive metabolites. Toxicology 25: 99–111, 1982.
 58. Christensson, P. I., and G. Eriksson. Effects of six anaesthetic agents on UDP‐glucuronic acid and other nucleotides in rat liver. Acta Anaesthesiol. Scand. 29: 629–631, 1985.
 59. Cohen, E. N., B. H. Winstow, and D. Smith. The metabolism and elimination of d‐tubocurarine‐3H. Anesthesiology 28: 309–317, 1967.
 60. Delage, Y., S. Erlinger, M. Duval, and J. P. Benhamou. Influence of dehydrocholate and taurocholate on bromosulphthalein uptake, storage, and excretion in the dog. Gut 16: 105–108, 1976.
 61. Despopoulos, A. Congruence of renal and hepatic excretory functions: sulfonic acid dyes. Am. J. Physiol. 220: 1755–1758, 1971.
 62. De Vries, M. H., G. M. M. Groothuis, G. J. Mulder, H. Nguyen, and D. K. F. Meijer. Secretion of the organic anion harmol sulfate from liver into blood. Evidence for a carrier‐mediated mechanism. Biochem. Pharmacol. 34: 2129–2135, 1985.
 63. Dietmaier, A., R. Gasser, J. Graf, and M. Peterlik. Investigations on the sodium dependence of bile acid fluxes in the isolated perfused rat liver. Biochim. Biophys. Acta 443: 81–91, 1976.
 64. Dills, R. L., and C. D. Klaassen. Decreased glucuronidation of bilirubin by diethyl ether anesthesia. Biochem. Pharmacol. 33: 2813–2814, 1984.
 65. Duffy, M., B. L. Blitzer, and J. L. Boyer. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J. Clin. Invest. 72: 1470–1481, 1983.
 66. Duggan, D. E., and K. C. Kwan. Enterohepatic recirculation of drugs as a determinant of therapeutic ratio. Drug Metab. Rev. 9: 21–41, 1979.
 67. Dujovne, C. A., J. H. Gustafson, and R. A. Dickey. Quantification of biliary excretion of drugs in man. Clin. Pharmacol. Ther. 31: 187–194, 1982.
 68. Dutton, G. J.: Glucuronidation of Drugs and Other Compounds. Boca Raton, FL: CRC, 1980.
 69. Eaton, D. L., and C. D. Klaassen. Carrier‐mediated transport of ouabain in isolated hepatocytes. J. Pharmacol. Exp. Ther. 205: 480–488, 1975.
 70. Eaton, D. L., and C. D. Klaassen. Carrier‐mediated transport of the organic cation procaine amide ethobromide by isolated rat liver parenchymal cells. J. Pharmacol. Exp. Ther. 206: 595–606, 1978.
 71. Eaton, D. L., and C. D. Klaassen. Effects of microsomal enzyme inducers on carrier‐mediated transport systems in isolated rat hepatocytes. J. Pharmacol. Exp. Ther. 208: 381–385, 1979.
 72. Eaton, D. L., and J. A. Richards. Kinetic evaluation of carrier‐mediated transport of ouabain and taurocholic acid in isolated hepatocytes. Evidence for independent transport system. Biochem. Pharmacol. 35: 2721–2725, 1986.
 73. Echigoya, Y., Y. Matsumoto, Y. Nakagawa, T. Suga, and S. Niinobe. Metabolism of quaternary ammonium compound. I. Binding of tropane alkaloids to rat liver lysosomes. Biochem. Pharmacol. 21: 477–484, 1972.
 74. Edmondson, J. W., B. A. Miller, and L. Lumeng. Effect of glucagon on hepatic taurocholate uptake: relationship to membrane potential. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G427–G433, 1985.
 75. Engelkind, L. R., R. Gronwall, and M. S. Anwer. Effect of dehydrocholic, chenodeoxycholic and taurocholic acids on the excretion of bilirubin. Am. J. Vet. Res. 41: 355–361, 1980.
 76. Erlinger, S. Hepatocyte bile secretion: current views and controversies. Hepatology Baltimore 1: 352–360, 1981.
 77. Erlinger, S. What is cholestasis in 1985? J. Hepatol. 1: 687–693, 1985.
 78. Erlinger, S. Bile flow. In: The Liver: Biology and Pathobiology (2nd ed.), edited by I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafritz. New York: Raven, 1988, p. 643–662.
 79. Erlinger, S., and D. Dhumeaux. Mechanisms and control of secretion of bile water and electrolytes. Gastroenterology 66: 281–304, 1974.
 80. Ertmann, R. R., and K. H. Damm. Influence on bile flow, theophylline and some organic anions on the biliary excretion of 3H‐ouabain in rats. Arch. Int. Pharmacodyn. Ther. 218: 290–298, 1975.
 81. Evans, W. H. A biochemical dissection of the functional polarity of the plasma membrane of the hepatocyte. Biochim. Biophys. Acta 604: 27–64, 1980.
 82. Evans, W. H. Membrane traffic at the hepatocytes sinusoidal and canalicular surface domains. Hepatology Baltimore 5: 452–458, 1981.
 83. Falany, C. M., and T. R. Tephly. Separation, purification and characterization of three isoenzymes of UDP‐glucuronyl‐transferase from rat liver microsomes. Arch. Biochem. Biophys. 227: 248–258, 1983.
 84. Fischer, E., and F. Varga. Effect of pretreatment with exogenous organic anions on biliary excretion in rats. Arch. Int. Pharmacodyn. Ther. 264: 135–143, 1983.
 85. Fitz, J. G., and B. F. Scharschmidt. Regulation of transmembrane electrical potential (Em) of rat hepatocytes in situ (Abstract). Hepatology Baltimore 5: 1011, 1985.
 86. Fleck, C., and H. Braunlich. Methods in testing interrelationships between excretion of drugs via urine and bile. Pharmacol. Ther. 25: 1–22, 1984.
 87. Fleischer, G., D. K. F. Meijer, W. G. Levine, Z. Gatmaitan, and I. M. Arias. Effect of hypolipidemic drugs nafenopin and clofibrate on the concentration of ligandin and Z‐protein in rat liver. Biochem. Biophys. Res. Commun. 67: 1401–1407, 1975.
 88. Forker, E. L. Mechanisms of hepatic bile formation. Annu. Rev. Physiol. 39: 323–347, 1977.
 89. Forker, E. L., and G. Gibson. Interaction between sulfobromophthalein (BSP) and taurocholate. The kinetics of transport from liver cells to bile in rats. In: The Liver: Quantitative Aspects of Structure and Function, edited by G. Paumgartner and R. Preisig. Basel: Karger, 1973, p. 326–336.
 90. Forker, E. L., and B. A. Luxon. Albumin helps mediate removal of taurocholate by rat liver. J. Clin. Invest. 67: 1517–1522, 1981.
 91. Forker, E. L., and B. A. Luxon. Analyzing tracer disappearance curves to study hepatic transport kinetics. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G573–G577, 1983.
 92. Forker, E. L., and B. Luxon. Lumpers vs. distributors. Hepatology Baltimore 5: 1236–1237, 1985.
 93. Frimmer, M. Organotropism by carrier‐mediated transport. Trends Pharmacol. Sci. 3: 395–397, 1982.
 94. Fuhrman‐Lane, C., and J. M. Fujimoto. Trans‐stilbene oxide administration increased hepatic glucuronidation of morphine but decreased biliary excretion of morphine glucuronide in rats. J. Pharmacol. Exp. Ther. 222: 526–533, 1982.
 95. Fujimoto, J. M. Some in vivo methods for studying sites of toxicant action in relation to bile formation. In: Toxicology of the Liver, edited by G. Plaa and W. R. Hewitt. New York: Raven, 1982, p. 121–145.
 96. Galeazzi, R., I. Lorenzini, and F. Orlandi. Rifampicin‐induced elevation of serum bile acids in man. Dig. Dis. Sci. 25: 108–112, 1980.
 97. Gebhardt, R. Use of cultured hepatocytes in studies on bile formation. In: Research in Isolated and Cultured Hepatocytes, edited by A. Guillouzo and C. Guguen‐Guillouzo. Paris: INSERM, 1986, p. 353–376.
 98. Gerolami, A., and J. C. Sarles. Biliary secretion and motility. In: Gastrointestinal Physiology II, edited by R. K. Crane. Baltimore, MD: University Park, 1977, vol. 12, p. 224–256. (Int. Rev. Physiol. Ser.).
 99. Goetzee, A. E., T. G. Richards, and V. R. Tindall. Experimental changes in liver function induced by probenecid. Clin. Sci. 19: 63–78, 1960.
 100. Goresky, C. A. Initial distribution and rate of uptake of sulfobromophthalein in the liver. Am. J. Physiol. 207: 13–26, 1964.
 101. Goresky, C. A. The processes of cellular uptake and exchange in the liver. Federation Proc. 41: 3033–3039, 1982.
 102. Goresky, C. A., H. H. Haddad, W. S. Kluger, B. E. Nadeau, and G. G. Bach. The enhancement of maximal bilirubin excretion with taurocholate‐induced increments in bile flow. Can. J. Physiol. Pharmacol. 52: 389–403, 1974.
 103. Götz, R., L. R. Schwarz, and H. Greim. Effect of penta‐chlorophenol and 2,4,6‐trichlorophenol on the disposition of sulfobromophthalein and respiration of isolated liver cells. Arch. Toxicol. 44: 147–155, 1980.
 104. Graf, J. Canalicular bile salt‐independent bile formation: concepts and clues from electrolyte transport in rat liver. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G233–G246, 1983.
 105. Graf, J., A. Gautam, and J. L. Boyer. Isolated rat hepatocyte couplets: a primary secretory unit for electrophysiologic studies of bile secretory function. Proc. Natl. Acad. Sci. USA 81: 6516–6520, 1984.
 106. Graf, J., and M. Peterlik. Ouabain‐mediated sodium uptake and bile formation by isolated perfused rat liver. Am. J. Physiol. 230: 876–885, 1976.
 107. Grausz, H., and R. Schmid. Reciprocal relation between plasma albumin level and hepatic sulfobromophthalein removal. N. Engl. J. Med. 284: 1403–1406, 1971.
 108. Gregus, Z., and C. D. Klaassen. Enterohepatic circulation of toxicants. In: Gastrointestinal Toxicology, edited by K. Roxman and O. Hanninen. Amsterdam: Elsevier, 1986, p. 57–118.
 109. Grisham, J. W. Cell types in rat liver cultures: their identification and isolation. Mol. Cell. Biochem. 53/54: 23–33, 1983.
 110. Groothuis, G. M. M., M. J. Hardonk, K. P. T. Keulemans, P. Nieuwenhuis, and D. K. F. Meijer. Autoradiographic and kinetic demonstration of acinar heterogeneity of taurocholate transport. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G455–G462, 1982.
 111. Groothuis, G. M. M., M. J. Hardonk, and D. K. F. Meijer. Hepatobiliary transport of drugs: do periportal and perivenous hepatocytes perform the same job? Trends Pharmacol. Sci. 6: 322–327, 1985.
 112. Groothuis, G. M. M., K. P. T. Keulemans, M. J. Hardonk, and D. K. F. Meijer. Acinar heterogeneity in hepatic transport of dibromosulfophthalein and ouabain studied by auto‐radiography, normal and retrograde perfusions and computer simulation. Biochem. Pharmacol. 32: 3069–3078, 1983.
 113. Groothuis, G. M. M., J. G. Weitering, K. P. T. Keulemans, M. J. Hardonk, D. Mulder, and D. K. F. Meijer. Heterogeneity of rat hepatocytes in bile acid and DBSP transport studied after induction of selective acinar damage by N‐hydroxy‐2‐acetylaminofluorene and carbon tetrachloride. Naunyn‐Schmiedeberg's Arch. Pharmacol. 322: 310–318, 1983.
 114. Guarino, A. M., and L. S. Schanker. Biliary excretion of probenecid and its glucuronide. J. Pharmacol. Exp. Ther. 164: 387–395, 1968.
 115. Guengerich, F. P., G. A. Dannan, S. T. Wright, M. V. Martin, and L. S. Kaminsky. Purification and characterization of microsomal cytochrome P450s. Xenobiotica 12: 701–716, 1982.
 116. Guengerich, F. P., and D. C. Liebler. Enzymatic activation of chemicals to toxic metabolites. Crit. Rev. Toxicol. 14: 259–307, 1985.
 117. Guguen‐Guillouzo, C., and A. Guillouzo. Modulation of functional activities in cultured rat hepatocytes. Mol. Cell. Biochem. 53/54: 35–56, 1983.
 118. Gumucio, J. J. Functional and anatomic heterogeneity in the liver acinus: impact on transport. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G578–G582, 1983.
 119. Gumucio, D. L., J. J. Gumucio, J. A. P. Wilson, C. Cutter, M. Krauss, R. Caldwell, and E. Chen. Albumin influences sulfobromophthalein transport by hepatocytes of each acinar zone. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G86–G95, 1984.
 120. Gumucio, J. J., M. May, C. Dvorak, J. Chiannale, and V. Massey. The isolation of functionally heterogeneous hepatocytes of the proximal and distal half of the liver acinus in the rat. Hepatology Baltimore 6: 932–944, 1986.
 121. Gumucio, J. J., and D. L. Miller. Functional implications of liver cell heterogeneity. Gastroenterology 80: 393–403, 1981.
 122. Gumucio, J. J., D. L. Miller, M. D. Krauss, and C. C. Zanolli. Transport of fluorescent compounds into hepatocytes and the resultant zonal labeling of the hepatic acinus in the rat. Gastroenterology 80: 639–645, 1981.
 123. Hacki, W., J. Bircher, and R. Preisig. A new look at the plasma disappearance of sulfobromophthalein (BSP): correlation with BSP transport maximum and hepatic plasma flow in man. J. Lab. Clin. Med. 88: 1019–1029, 1976.
 124. Hanzon, V. Liver cell secretion under normal and pathologic conditions studied by fluorescence microscopy on living rats. Acta Physiol. Scand. Suppl. 101: 1–268, 1952.
 125. Harris, C., and R. G. Thurman. A new method to study glutathione adduct formation in periportal and pericentral regions of the liver lobule by micro‐reflectance spectrophotometry. Mol. Pharmacol. 29: 88–96, 1986.
 126. Harrison, L. I., and M. Gibaldi. Influence of cholestasis on drug elimination: pharmacokinetics. J. Pharm. Sci. 65: 1346–1348, 1976.
 127. Herman, R. H., R. N. Redinger, and D. M. Small. The effects of surgery on bile secretion and composition. Surg. Forum 22: 378–380, 1971.
 128. Hirom, P. C., R. D. Hughes, and P. Millburn. The physicochemical factor required for the biliary excretion of organic cations and anions. Biochem. Soc. Trans. 2: 327–330, 1974.
 129. Hirom, P. C., P. Millburn, and R. L. Smith. Bile and urine as complementary pathways for the excretion of foreign organic compounds. Xenobiotica 6: 55–64, 1976.
 130. Hirom, P. C., P. Millburn, R. L. Smith, and R. T. Williams. Molecular weight and chemical structure as factors in the biliary excretion of sulphonamides in the rat. Xenobiotica 2: 205–214, 1972.
 131. Hirom, P. C., P. Millburn, R. L. Smith, and R. T. Williams. Species variations in the threshold molecular‐weight factor for the biliary excretion of organic anions. Biochem. J. 129: 1071–1077, 1972.
 132. Hjelle, J. J. Hepatic UDP‐glucuronic acid regulation during acetaminophen biotransformation in rats. J. Pharmacol. Exp. Ther. 237: 750–756, 1986.
 133. Hofmann, A. F. Chemistry and enterohepatic circulation of bile acids. Hepatology Baltimore 4: 4S–14S, 1984.
 134. Hopfer, U. Isolated membrane vesicles as tools for analysis of epithelial transport. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E445–E449, 1977.
 135. Houston, J. B. Kinetics of drug metabolism and disposition: physiological determinants. In: Drug Metabolism and Disposition: Considerations in Clinical Pharmacology, edited by G. R. Wilkinson and M. D. Rawlins. Lancaster, UK: MTP, 1985, p. 62–90.
 136. Howell, S. R., G. A. Hazelton, and C. D. Klaassen. Depletion of hepatic UDP‐glucuronic acid by drugs that are glucuronidated. J. Pharmacol. Exp. Ther. 236: 610–614, 1986.
 137. Hugentobler, G., and P. J. Meier. Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G656–G664, 1986.
 138. Hughes, R. D., P. Millburn, and R. T. Williams. Molecular weight as a factor in the excretion of monoquaternary ammonium cations in the bile of rat, rabbit and guinea pig. Biochem. J. 136: 967–978, 1973.
 139. Hughes, R. D., P. Millburn, and R. T. Williams. Biliary excretion of some diquaternary ammonium cations in the rat, guinea pig and rabbit. Biochem. J. 136: 979–984, 1973.
 140. Hwang, S. W., and L. S. Schanker. Hepatic uptake and biliary excretion of N‐acetyl procaine amide ethobromide in the rat. Am. J. Physiol. 225: 1437–1443, 1973.
 141. Ingelman‐Sundberg, M. Bioactivation or inactivation of toxic compounds. In: Drug Metabolism and Distribution, edited by J. W. Lamble. Amsterdam: Elsevier, 1983, p. 22–27. (Curr. Rev. Biomed. Ser. 3.).
 142. Inoue, M., E. Hirata, Y. Morino, S. Nagase, J. Chowdhury, N. R. Chowdhury, and I. M. Arias. The role of albumin in the hepatic transport of bilirubin: studies in mutant analbuminemic rats. J. Biochem. Tokyo 97: 737–743, 1985.
 143. Inoue, M., R. Kinne, T. Tran, and I. M. Arias. Taurocholate transport by rat liver sinusoidal membrane vesicles: evidence of sodium cotransport. Hepatology Baltimore 2: 572–579, 1982.
 144. Inoue, M., R. Kinne, T. Tran, and I. M. Arias. Taurocholate transport by rat liver canalicular membrane vesicles. J. Clin. Invest. 73: 659–663, 1984.
 145. Inoue, M., R. Kinne, T. Tran, L. Diempica, and I. M. Arias. Rat liver canalicular membrane vesicles. Isolation and tropocological characterization. J. Biol. Chem. 258: 5183–5188, 1983.
 146. Israili, Z. H., and P. G. Dayton. Enhancement of xenobiotic elimination: role of intestinal excretion. Drug Metab. Rev. 15: 1123–1159, 1984.
 147. Jansen, P. L. M., G. M. M. Groothuis, W. H. M. Peters, and D. K. F. Meijer. Selective hepatobiliary transport defect for organic anions and neutral steroids in mutant rats with hereditary conjugated hyperbilirubinemia. Hepatology Baltimore 7: 71–76, 1987.
 148. Jansen, P. L. M., W. H. Peters, and W. M. Lamers. Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology Baltimore 5: 573–579, 1985.
 149. Javitt, N. B. Phenol‐3,6‐dibromophthalein disulfonate, a new compound for the study of liver disease. Proc. Soc. Exp. Biol. Med. 117: 254–257, 1964.
 150. Javitt, N. B. Hepatic bile formation. N. Engl. J. Med. 295: 1464–1469, 1976.
 151. Johansson, P., J. O. Josefsoon, and L. Nassbeyer. Induction and inhibition of pinocytosis by aminoglycoside antibiotics. Br. J. Pharmacol. 83: 615–623, 1984.
 152. Jones, A. L., G. T. Hradek, R. H. Renston, K. Y. Wong, G. Karlaganis, and G. Paumgartner. Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G233–G237, 1980.
 153. Jones, A. L., D. L. Schmucher, R. H. Renston, and T. Murakami. The architecture of bile secretion. A morphological perspective of physiology. Dig. Dis. Sci. 25: 609–629, 1980.
 154. Jones, D. B., M. S. Ching, R. Smallwood, and D. J. Morgan. A carrier‐protein receptor is not a prerequisite for avid hepatic elimination of highly bound compounds: a study of propranol elimination by the isolated perfused rat liver. Hepatology Baltimore 5: 590–593, 1985.
 155. Jones, E. A., J. M. Vierling, C. J. Steer, and J. Reichen. Cell surface receptors in the liver. Prog. Liver Dis. 6: 43–80, 1979.
 156. Joppen, C., E. Petzinger, and M. Frimmer. Properties of iodipamide uptake by isolated rat hepatocytes. Naunyn‐Schmiedeberg's Arch. Pharmacol. 331: 393–397, 1985.
 157. Jungermann, K., and N. Katz. Functional hepatocellular heterogeneity. Hepatology Baltimore 3: 385–395, 1982.
 158. Kaloyanides, G. J. Renal pharmacology of aminoglycoside antibiotics. In: Kidney, Small Proteins and Drugs, edited by C. Bianchi, A. Bertelli, and C. G. Duarte. Basel: Karger, 1984, p. 148–167. (Contr. Nephrol. 42.).
 159. Kaplowitz, N., T. Y. Aw, and M. Ookhtens. The regulation of hepatic glutathione. Annu. Rev. Pharmacol. Toxicol. 25: 715–744, 1985.
 160. Kates, R. E., and T. N. Tozer. Biliary secretion of methotrexate in rats and its inhibition by probenecid. J. Pharm. Sci. 65: 1348–1351, 1976.
 161. Kenwright, S., and A. J. Levi. Impairment of hepatic uptake of rifamycin by probenecid and its therapeutic implications. Lancet 2: 1401–1405, 1973.
 162. Ketley, J. N., W. H. Habig, and W. B. Jakoby. Binding of nonsubstrate ligands to the glutathione S‐transferases. J. Biol. Chem. 250: 8670–8673, 1975.
 163. Ketterer, B., P. Ross‐Mansell, and J. K. Whitehead. The isolation of carcinogenic‐binding protein from liver of rats given 4‐dimethylaminoazobenzene. Biochem. J. 103: 316–324, 1967.
 164. Ketterer, B., E. Tipping, J. F. Hackney, and D. Beale. A low‐molecular‐weight protein that resembles ligandin in its binding properties. Biochem. J. 155: 511–521, 1976.
 165. Kitani, K., S. Kanai, and R. Miura. Increased biliary excretion of ouabain induced by bucolome in the rat. Clin. Exp. Pharmacol. Physiol. 5: 117–124, 1978.
 166. Kitani, K., R. Miura, and S. Kanai. Difference in the effect of bucolome on the hepatic transport maximum of sulfobromophthalein and indocyanine green. Tohoku J. Exp. Med. 126: 247–256, 1978.
 167. Klaassen, C. D. Comparison of the effects of two‐thirds hepatectomy and bile‐duct ligation on hepatic excretory function. J. Pharmacol. Exp. Ther. 191: 25–31, 1974.
 168. Klaassen, C. D. Effect of microsomal enzyme inducers on the biliary excretion of cardiac glycosides. J. Pharmacol. Exp. Ther. 191: 201–211, 1974.
 169. Klaassen, C. D. Stimulation of the development of the hepatic excretory mechanism to ouabain in newborn rats with microsomal enzyme inducers. J. Pharmacol. Exp. Ther. 191: 212–218, 1974.
 170. Klaassen, C. D. Extrahepatic distribution of sulfobromophthalein. Can. J. Physiol. Pharmacol. 53: 120–123, 1975.
 171. Klaassen, C. D. Independence of bile acid and ouabain hepatic uptake: studies in the newborn rat. Proc. Soc. Exp. Biol. Med. 157: 66–69, 1978.
 172. Klaassen, C. D., D. L. Eaton, and C. Z. Cagen. Hepatobiliary disposition of xenobiotics. Prog. Drug Metab. 6: 1–75, 1981.
 173. Klaassen, C. D., and J. B. Watkins. Mechanisms of bile formation, hepatic uptake and biliary excretion. Pharmacol. Rev. 36: 1–67, 1984.
 174. Kramer, W., U. Bickel, H. P. Bascher, W. Gerok, and G. Kurz. Bile‐salt binding polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labeling. Eur. J. Biochem. 129: 13–24, 1982.
 175. Kupferberg, H. J. Inhibition of ouabain‐3H uptake by liver slices and its excretion into the bile by compounds having a steroid nucleus. Life Sci. 8: 1179–1185, 1969.
 176. Kupferberg, H. J., and L. S. Schanker. Biliary secretion of ouabain‐3H and its uptake by liver slices in the rat. Am. J. Physiol. 214: 1048–1053, 1968.
 177. Kurz, H. Die Permeation von Giften in die Leber; Eigenschaften der Zellmembran. Naunyn‐Schmiedebergs Arch. Pharmakol. Exp. Pathol. 254: 33–44, 1966.
 178. Laperche, Y., C. Graillot, J. Arondel, and P. Berthelot. Uptake of rifampicin by isolated rat liver cells. Interaction with sulfobromophthalein uptake and evidence for separate carriers. Biochem. Pharmacol. 28: 2065–2069, 1979.
 179. Laperche, Y., A. M. Preaux, G. Feldmann, J. L. Mahu, and P. Berthelot. Effect of fasting on organic anion uptake by isolated rat liver cells. Hepatology Baltimore 1: 617–621, 1981.
 180. LaRusso, N. F., L. J. Kost, J. A. Carter, and S. S. Barham. Triton WR‐1339, a lysosomotropic compound, is excreted into bile and alters the biliary excretion of lysosomal enzymes and lipids. Hepatology Baltimore 2: 209–215, 1982.
 181. Lavy, U. I., W. Hespe, and D. K. F. Meijer. Uptake and excretion of the quaternary ammonium compound deptropine methiodide in the isolated perfused rat liver. Naunyn‐Schmiedeberg's Arch. Pharmacol. 275: 183–192, 1972.
 182. Levi, A. J., Z. Gatmaitan, and I. M. Arias. Two cytoplasmic protein fractions, Y and Z, and their possible role in hepatic uptake of bilirubin, sulfobromophthalein and other anions. J. Clin. Invest. 48: 2156–2167, 1969.
 183. Levine, W. G. Biliary excretion of drugs and other xenobiotics. Annu. Rev. Pharmacol. Toxicol. 18: 81–96, 1978.
 184. Levine, W. G. Biliary excretion of drugs and other xenobiotics. Prog. Drug Res. 25: 361–419, 1981.
 185. Levine, W. G. Excretion mechanisms. In: Biological Basis of Detoxification, edited by J. Caldwell and W. B. Jakoby. New York: Academic, 1983, p. 251–285.
 186. Levy, D., and S. Cheng. Photoaffinity labeling of anion transport components in hepatocyte plasma membranes. Ann. NY Acad. Sci. 346: 232–242, 1980.
 187. Lien, E. J. Structure‐activity relationships and drug disposition. Annu. Rev. Pharmacol. Toxicol. 21: 31–61, 1981.
 188. Lilienblum, W., A. K. Walli, and K. W. Bock. Differential induction of rat liver microsomal UDP‐glucuronosyltransferase activities by various inducing agents. Biochem. Pharmacol. 31: 907–913, 1982.
 189. Lunazzi, G., C. Tiribelli, B. Gazzin, and G. L. Sottocasa. Further studies on bilitranslocase, a plasma membrane protein involved in hepatic organic anion uptake. Biochim. Biophys. Acta 685: 117–122, 1982.
 190. MacGregor, J. T., and A. Burkhalter. Biliary excretion of nicotinamide riboside. A possible role in the regulation of hepatic pyridine nucleotide dynamics. Biochem. Pharmacol. 22: 2645–2658, 1973.
 191. MacGregor, J. T., and T. W. Clarkson. Metabolism and biliary excretion of phenanthridinium salts. II. Biliary excretion. Biochem. Pharmacol. 21: 1679–1696, 1972.
 192. Mahu, J.‐L., P. Duvaldestin, D. Dhumeaux, and P. Berthelot. Biliary transport of cholephilic dyes: evidence for two different pathways. Am. J. Physiol. 232 (Endocrinol. Metab. Gastrointest. Physiol. 1): E445–E450, 1977.
 193. Marinovic, Y., J.‐C. Glasinovic, B. Semelle, J.‐F. Boivieux, and S. Erlinger. Facilitation of hepatic uptake of phenol 3,6‐dibromphthalein disulfonate by taurocholate. Am. J. Physiol. 232 (Endocrinol. Metab. Gastrointest. Physiol. 1): E560–E564, 1977.
 194. Mark, W., H. Glatt, and F. Oesch. Xenobiotic metabolizing enzymes of rat liver nonparenchymal cells. Toxicol. Appl. Pharmacol. 84: 500–511, 1986.
 195. Marzo, A., and P. Ghirardi. Biliary and urinary excretion of five cardiac glycosides and its correlation with their physical and chemical properties. Naunyn‐Schmiedeberg's Arch. Pharmacol. 298: 51–56, 1977.
 196. Matern, S., K. W. Bock, and W. Gerok (editors). Advances in Glucuronide Conjugation. Lancaster, UK: MTP, 1985. (Falk Symp. 40.).
 197. McDevitt, D. G., A. S. Nies, and G. R. Wilkinson. Influence of phenobarbital on factors responsible for hepatic clearance of indocyanine green in rat: relative contributions of induction and altered liver blood flow. Biochem. Pharmacol. 26: 1247–1250, 1977.
 198. Meier, P. J., A. S. Meier‐Abt, C. Barrett, and J. L. Boyer. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J. Biol. Chem. 259: 10614–10622, 1984.
 199. Meier, P. J., S. Ruetz, G. Fricker, and L. Landman. Identical bile acid (BA) transport systems are present in apical membranes of liver, ileum and kidney epithelial cells (Abstract). Hepatology Baltimore 6: 1134, 1986.
 200. Meier, P. J., E. S. Sztul, A. Reuben, and J. L. Boyer. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J. Cell Biol. 98: 991–1000, 1984.
 201. Meijer, D. K. F. The mechanisms for hepatic uptake and biliary excretion of organic cations. In: Intestinal Permeation, edited by M. Kramer and F. Lauterbach. Amsterdam: Excerpta Med., 1976, p. 196–207.
 202. Meijer, D. K. F., J. W. Arends, and J. G. Weitering. The cardiac glycoside sensitive step in the hepatic transport of the bisquaternary ammonium compound, hexafluorenium. Eur. J. Pharmacol. 15: 245–258, 1971.
 203. Meijer, D. K. F., and A. Blom. Hepatic transport of organic anions and organic cations in the rat in vivo, isolated perfused rat livers and isolated hepatocytes. The Liver. Quantitative Aspects of Structure and Function, edited by R. Preisig and J. Bircher. Aulendorf, Switzerland: Editio Cantor, 1979, p. 77–86. (Proc. Int. Gstaad Symp. 3.).
 204. Meijer, D. K. F., A. Blom, and J. G. Weitering. The influence of phenobarbital on the subcellular distribution in liver and the transport rate in isolated hepatocytes of dibromosulfophthalein. Biochem. Pharmacol. 31: 2539–2542, 1982.
 205. Meijer, D. K. F., A. Blom, J. G. Weitering, and R. Hornsveld. Pharmacokinetics of the hepatic transport of organic anions: influence of extra‐ and intracellular binding on hepatic storage of dibromosulfophthalein and interactions with indocyanine green. J. Pharmacokinet. Biopharm. 12: 43–65, 1984.
 206. Meijer, D. K. F., J. Bognacki, and W. G. Levine. Effect of nafenopin (SU‐13,437) on liver function. Influence on the hepatic transport of organic anions. Naunyn‐Schmiedeberg's Arch. Pharmacol. 290: 235–250, 1975.
 207. Meijer, D. K. F., J. Bognacki, and W. G. Levine. Effect of nafenopin (SU‐13,437) on liver function. Hepatic uptake and biliary excretion of ouabain in the rat. Drug Metab. Dispos. 3: 220–225, 1975.
 208. Meijer, D. K. F., E. S. Bos, and K. J. Van der Laan. Hepatic transport of mono and bisquaternary ammonium compounds. Eur. J. Pharmacol. 11: 371–377, 1970.
 209. Meijer, D. K. F., K. Keulemans, and G. J. Mulder. Isolated perfused rat liver technique. Methods Enzymol. 77: 81–93, 1981.
 210. Meijer, D. K. F., C. Neef, and G. M. M. Groothuis. Carrier‐mediated transport of drug by the liver. In: Topics in Pharmaceutical Sciences, edited by D. D. Breimer and P. Speiser. Amsterdam: Elsevier, 1983, p. 167–189.
 211. Meijer, D. K. F., R. J. Vonk, K. Keulemans, and J. G. Weitering. Hepatic uptake and biliary excretion of dibromosulphthalein. Albumin dependence, influence of phenobarbital and nafenopin pretreatment and the role of Y and Z protein. J. Pharmacol. Exp. Ther. 202: 8–21, 1977.
 212. Meijer, D. K. F., R. J. Vonk, E. Scholtens, and W. G. Levine. The influence of dehydrocholate on hepatic uptake and biliary excretion of 3H‐taurocholate and 3H‐ouabain. Drug Metab. Dispos. 4: 1–7, 1976.
 213. Meijer, D. K. F., R. J. Vonk, and J. G. Weitering. The influence of various bile salts and some cholephilic dyes on Na+‐, K+‐ and Mg2+‐activated ATPase of rat liver in relation to cholestatic effects. Toxicol. Appl. Pharmacol. 43: 597–612, 1978.
 214. Meijer, D. K. F., J. G. Weitering, B. L. Bajema, and G. A. Vermeer. Pharmacokinetics of biliary excretion in man. V. Dibromosulfophthalein. Eur. J. Clin. Pharmacol. 24: 549–556, 1983.
 215. Meijer, D. K. F., J. G. Weitering, and R. J. Vonk. Hepatic uptake and biliary excretion of d‐tubocurarine and trimethyltubocurarine in the rat in vivo and in isolated perfused rat livers. J. Pharmacol. Exp. Ther. 198: 229–239, 1976.
 216. Meijer, D. K. F., J. Wester, and M. Gunnink. Distribution of quaternary ammonium compounds between particulate and soluble constituents of rat liver in relation to their transport from plasma into bile. Naunyn‐Schmiedeberg's Arch. Pharmacol. 273: 179–192, 1972.
 217. Meister, A. Glutathione. In: The Liver: Biology and Pathobiology (2nd ed.), edited by I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafritz. New York: Raven, 1988, p. 401–417.
 218. Meister, A., and M. E. Anderson. Glutathione. Annu. Rev. Biochem. 52: 711–760, 1983.
 219. Mesa, V. A., J. Fevery, and J. De Groote. The maximal biliary excretory rate (Tm) of ioglycamide in the rat. Effect of taurocholate. J. Hepatol. 1: 243–252, 1985.
 220. Meuwissen, J. A. T. P., B. Ketterer, and K. P. M. Heirwegh. Role of soluble binding proteins in overall hepatic transport of bilirubin. In: Chemistry and Physiology of Bile Pigments, edited by P. D. Berk and N. I. Berlin. Bethesda, MD: Natl. Inst. Health, 1977, p. 323–327.
 221. Meyer‐Brunot, H. G., and H. Keberle. Biliary excretion of ferrioxamines of varying liposolubility in perfused rat liver. Am. J. Physiol. 214: 1193–1200, 1968.
 222. Miller, L. L., C. J. Bly, M. L. Watson, and W. F. Dale. The dominant role of the liver in plasma protein synthesis. J. Exp. Med. 94: 451–453, 1951.
 223. Mohri, K., T. Uesugi, and K. Kamisaka. Buculome N‐glucuronide: purification and identification of a major metabolite of buculome in rat bile. Xenobiotica 15: 615–621, 1985.
 224. Morey, K. S., and G. Litwack. Isolation and properties of cortisol metabolite binding protein from livers of rats given 4‐dimethyl‐aminoazobenzene. Biochem. J. 103: 316–324, 1967.
 225. Morgan, D. J., D. B. Jones, and R. A. Smallwood. Modelling of substrate elimination by the liver: has the albumin receptor model superseded the well stirred model? Hepatology Baltimore 5: 1231–1235, 1985.
 226. Mouelhi, M. E., and F. C. Kauffman. Sublobular distribution of transferases and hydrolases associated with glucuronide, sulfate and glutathione conjugation in human liver. Heptology Baltimore 6: 450–456, 1986.
 227. Mudge, G. H., G. R. Stibitz, M. S. Robinson, and M. W. Gemborys. Competition for binding to multiple sites of human serum albumin for cholecystographic agents and sulfobromophthalein. Drug Metab. Dispos. 6: 440–452, 1978.
 228. Mulder, G. J. Sulfation—metabolic aspects. In: Progress in Drug Metabolism, edited by J. W. Bridges and L. F. Chasseaud. London: Taylor & Francis, 1984, vol. 8, p. 35–100.
 229. Mulder, G. J., J. H. N. Meerman, A. M. Van den Goorbergh. Bioactivation of xenobiotics by conjugation. In: Xenobiotic Conjugation Chemistry, edited by G. D. Paulsen, J. Caldwell, D. H. Hutson, and J. J. Menn. Washington, DC: Am. Chem. Soc., 1986, p. 282–301.
 230. Mulder, G. J., E. Scholtens, and D. K. F. Meijer. Collection of metabolites in bile and urine from the rat. Methods Enzymol. 77: 21–30, 1981.
 231. Muller, W., and A. E. Stillbauer. Liver slice uptake of intravenous and oral biliary contrast media. Arch. Int. Pharmacodyn. Ther. 246: 187–204, 1980.
 232. Nagar, H., and S. A. Berger. The excretion of antibiotics by the biliary tract. Surg. Gynecol. Obstet. 158: 601–607, 1984.
 233. Nakae, H., Y. Iuchi, and S. Muranishi. Biopharmaceutical study of the hepato‐biliary transport of drugs. VIII. Investigations of hepatic uptake of organic cations by portal infusion. Chem. Pharm. Bull. Tokyo 26: 88–95, 1978.
 234. Nakae, H., H. Okamoto, K. Takada, and S. Muranishi. Biopharmaceutical study of the hepato‐biliary transport of drugs. VI. Inhibition of active biliary excretion of organic cations by retrograde infusion. Chem. Pharm. Bull. Tokyo 25: 427–433, 1977.
 235. Nakae, H., R. Sakata, and S. Muranishi. Biopharmaceutical study of the hepato‐biliary transport of drugs. V. Hepatic uptake and biliary excretion of organic cations. Chem. Pharm. Bull. Tokyo 24: 886–893, 1976.
 236. Nakae, H., K. Takada, S. Asada, and S. Muranishi. Transport rates of hepatic uptake and biliary excretion of an organic cation, acetyl procainamide ethobromide. Biochem. Pharmacol. 29: 2573–2576, 1980.
 237. Nayak, P. K., and L. S. Schanker. Active transport of tertiary amine compounds into bile. Am. J. Physiol. 217: 1639–1643, 1969.
 238. Nebert, D. W., H. J. Eisen, M. Negishi, M. A. Lang, L. M. Hjelnuland, and A. B. Okey. Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P450) activities. Annu. Rev. Pharmacol. Toxicol. 21: 431–462, 1981.
 239. Nebert, D. W., and F. J. Gonzalez. Cytochrome P450 gene expression and regulation. Trends Pharmacol. Sci. 6: 160–164, 1985.
 240. Neef, C., K. T. P. Keulemans, and D. K. F. Meijer. Hepatic uptake and biliary excretion of organic cations. I. Characterization of three new model compounds. Biochem. Pharmacol. 33: 3977–3990, 1984.
 241. Neef, C., K. P. T. Keulemans, and D. K. F. Meijer. Hepatic uptake and biliary excretion of organic cations. II. The influence of ion pair formation. Biochem. Pharmacol. 33: 3991–4002, 1984.
 242. Neef, C., and D. K. F. Meijer. Structure‐pharmacokinetics relationship of quaternary ammonium compounds. Correlation of physicochemical and pharmacokinetic parameters. Naunyn‐Schmiedeberg's Arch. Pharmacol. 328: 111–118, 1984.
 243. Neef, C., R. Oosting, and D. K. F. Meijer. Structurepharmacokinetics relationship of quaternary ammonium compounds. Elimination and distribution characteristics. Naunyn‐Schmiedeberg's Arch. Pharmacol. 328: 103–110, 1984.
 244. Nunn, A. D., and M. D. Loberg. Hepatobiliary agents. In: Radiopharmaceuticals: Structure‐Activity Relationships, edited by R. P. Spencer. New York: Grune & Stratton, 1981, p. 540–548.
 245. Offerhaus, L. Drug interactions at excretory mechanisms. Pharmacol. Ther. 15: 69–78, 1981.
 246. Okuda, H., R. Nunes, S. Vallabhajosula, A. Strashun, S. J. Goldsmith, and P. D. Berk. Studies of the hepatocellular uptake of the hepatobiliary scinti‐scanning agent 99mTc‐DISIDA. J. Hepatol. 3: 251–259, 1986.
 247. Orrenius, S., and P. Moldeus. The multiple roles of glutathione in drug metabolism. Trends Pharmacol. Sci. 5: 432–435, 1984.
 248. Oshio, C., and M. J. Phillips. Contractility of bile canaliculi: implications for liver function. Science Wash. DC 212: 1041–1042, 1981.
 249. Pang, K. S. The effect of intercellular distribution of drugmetabolizing enzymes on the kinetics of stable metabolite formation by liver: first pass effect. Drug Metab. Rev. 14: 61–76, 1983.
 250. Paumgartner, G., P. Probst, R. Kraines, and C. M. Leevy. Kinetics of indocyanine green removal from the blood. Ann. NY Acad. Sci. 170: 134–142, 1970.
 251. Peterlik, M., and H. Gazda. Sodium‐linked transport of ethacrynic acid by rat liver. Possible significance for choleretic action. Biochem. Pharmacol. 29: 2733–2739, 1980.
 252. Peters, W. H. M., H. Nauta, and P. L. M. Jansen. The molecular masses and molecular structure of UDP‐glucuronyl transferase as determined by radiation‐inactivation analysis. In: Advances in Glucuronide Conjugation, edited by S. Matern, K. W. Bock, and W. Gerok. Lancaster, UK: MTP, 1985, p. 235–244. (Falk Symp. 40.).
 253. Peterson, R. E., and J. M. Fujimoto. Biliary excretion of morphine‐3‐glucuronide and morphine‐3‐ethereal sulfate by different pathways in the rat. J. Pharmacol. Exp. Ther. 184: 409–418, 1973.
 254. Petzinger, E., and K. Fischer. Transport function of the liver. Lack of correlation between hepatocellular ouabain uptake and binding to (Na+,K+)‐ATPase. Biochim. Biophys. Acta 815: 334–340, 1985.
 255. Petzinger, E., K. Fischer, and H. Fasold. Role of the bile acid transport system in hepatocellular ouabain uptake. In: Cardiac Glycosides 1785–1985. Biochemistry, Pharmacology, Clinical Relevance, edited by E. Erdmann, K. Greeff, and J. C. Skou. Darmstadt, FRG: Steinkopff‐Verlag, 1986, p. 297–304.
 256. Petzinger, E., and M. Frimmer. Driving forces in hepatocellular uptake of phalloidin and cholate. Biochim. Biophys. Acta 778: 539–568, 1984.
 257. Phillips, M. J., M. Oda, E. Mak, M. M. Fisher, and K. N. Jeejeebhoy. Microfilament dysfunction as a possible cause of intrahepatic cholestasis. Gastroenterology 69: 48–58, 1975.
 258. Phillips, M. J., C. Oshio, M. Miyairi, H. Katz, and C. R. Smith. A study of bile canalicular contractions in isolated hepatocytes. Hepatology Baltimore 2: 763–768, 1982.
 259. Plaa, G. L. The enterohepatic circulation. In: Handbook of Experimental Pharmacology, edited by J. R. Gillette and J. R. Mitchell. Berlin: Springer‐Verlag, 1975, p. 130–149.
 260. Pollard, M. R., and G. J. Dutton. Liver snips. A simple, rapid and reproducible method for studying metabolism in small fragments of tissue, as applied to glucuronidation in rat liver. Biochem. J. 202: 469–473, 1982.
 261. Potter, B. J., B. Blader, and P. D. Berk. BSP uptake by rat liver sinusoidal membrane vesicles: further evidence for carrier mediated transport (Abstract). Hepatology Baltimore 5: 1042, 1985.
 262. Poznansky, M. J., and R. L. Juliano. Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol. Rev. 26: 277–336, 1984.
 263. Ramzan, M. I., A. A. Somogyi, J. S. Walker, C. A. Shanks, and E. J. Triggs. Clinical pharmacokinetics of the nondepolarizing muscle relaxants. Clin. Pharmacokinet. 6: 25–60, 1981.
 264. Rao, M. L., G. S. Rao, and H. Breur. Uptake of estrone, estradiol‐17β and testosterone by isolated rat liver cells. Biochem. Biophys. Res. Commun. 77: 566–573, 1977.
 265. Rao, M. L., G. S. Rao, J. Eckel, and H. Breur. Factors involved in the uptake of corticosterone by rat liver cells. Biochim. Biophys. Acta 500: 322–332, 1977.
 266. Rao, M. L., G. S. Rao, M. Holler, H. Breur, P. J. Schattenberg, and W. D. Stein. Uptake of cortisol by isolated rat liver cells. A phenomenon indicative of carrier‐mediated and simple diffusion. Hoppe‐Seyler's Z. Physiol. Chem. 357: 573–584, 1976.
 267. Rappaport, A. M. Hepatic blood flow: morphologic aspects and physiologic regulation. Int. Rev. Physiol. 21: 1–63, 1980.
 268. Rawlins, M. D. Extrahepatic drug metabolism. In: Drug Metabolism and Disposition: Considerations in Clinical Pharmacology, edited by G. R. Wilkinson and M. D. Rawlins. Lancaster, UK: MTP, 1985, p. 21–35.
 269. Reichen, J., and P. D. Berk. Isolation of an organic anion binding protein from rat liver plasma membrane fractions by affinity chromatography. Biochem. Biophys. Res. Commun. 91: 484–489, 1979.
 270. Reichen, J., and G. Paumgartner. Uptake of bile acids by perfused rat liver. Am. J. Physiol. 231: 734–742, 1976.
 271. Reichen, J., and G. Paumgartner. Excretory function of the liver. In: Liver and Biliary Tract Physiology I, edited by N. B. Javitt. Baltimore, MD: University Park, 1980, vol. 21, p. 103–150. (Int. Rev. Physiol. Ser.).
 272. Reichen, J., and F. R. Simon. Cholestasis: In: The Liver: Biology and Pathobiology (2nd ed.), edited by I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafritz. New York: Raven, 1988, p. 1105–1124.
 273. Reid, D. J. Cellular defense mechanisms against reactive metabolites. In: Bioactivation of Foreign Compounds, edited by M. W. Anders. New York: Academic, 1985, p. 71–108.
 274. Reid, L. M., and D. M. Jefferson. Culturing hepatocytes and other differentiated cells. Hepatology Baltimore 4: 548–559, 1984.
 275. Reuben, A. Bile formation: sites and mechanisms. Hepatology Baltimore 4: 15S–24S, 1984.
 276. Reuben, A., K. E. Howell, and J. L. Boyer. Effects of taurocholate on the size of mixed lipid micelles and their association with pigment and proteins in rat bile. J. Lipid Res. 23: 1039–1052, 1982.
 277. Rollins, D. E. Pharmacokinetics of drug excretion in bile. In: Pharmacokinetic Basis for Drug Treatment, edited by L. Z. Benet, N. S. Massoud, and J. G. Gambertoglio. New York: Raven, 1984, p. 77–88.
 278. Rollins, D. E., J. W. Freston, and D. M. Woodburry. Transport of organic anions into liver cells and bile. Biochem. Pharmacol. 29: 1023–1028, 1980.
 279. Rollins, D. E., and C. D. Klaassen. Biliary excretion of drugs in man. Clin. Pharmacokinet. 4: 368–379, 1979.
 280. Rowland, M. Protein binding and drug clearance. Clin. Pharmacokinet. 9, Suppl. 1: 10–17, 1984.
 281. Roy‐Chowdhury, J., N. Roy‐Chowdhury, P. M. Novikoff, A. B. Novikoff, I. M. Arias. UDP‐glucuronyl transferase: problems within a biological “family.rdquo; In: Advances in Glucuronide Conjugation, edited by S. Matern, K. W. Bock, and W. Gerok. Lancaster, UK: MTP, 1985, p. 33–40. (Falk Symp. 40.).
 282. Ruifrok, P. G. Uptake of quaternary ammonium compounds into rat liver plasma membrane vesicles. Biochem. Pharmacol. 31: 1431–1435, 1982.
 283. Ruifrok, P. G., and D. K. F. Meijer. Sodium coupled uptake of taurocholate by rat liver plasma membrane vesicles. Liver 2: 28–34, 1982.
 284. Russel, J. Q., and C. D. Klaassen. Species variation in the biliary excretion of ouabain. J. Pharmacol. Exp. Ther. 183: 513–519, 1972.
 285. Ryrfeldt, A. Biliary excretion of some penicillines, quaternary ammonium compounds and tertiary amines including aspects on mechanisms for their excretion. Acta Pharmacol. Toxicol. Suppl. 32: 1–23, 1973.
 286. Ryrfeldt, A., and E. Hansson. Biliary excretion of quaternary ammonium compounds and tertiary amines in the rat. Acta Pharmacol. Toxicol. 30: 59–68, 1971.
 287. Said, M. H., W. B. Strum, and D. Hollander. Inhibitory effect of unconjugated bile acids on the enterohepatic circulation of methotrexate. J. Pharmacol. Exp. Ther. 213: 660–664, 1984.
 288. Schanker, L. S. Secretion of organic compounds in bile. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. V, chapt. 114, p. 2433–2499.
 289. Schanker, L. S. Transport of drugs. In: Metabolic Pathways. Metabolic Transport, edited by L. E. Hokin. London: Academic, 1972, vol. 6, p. 543–579.
 290. Schanker, L. S., and H. M. Solomon. Active transport of quaternary ammonium compounds into bile. Am. J. Physiol. 204: 829–832, 1963.
 291. Scharschmidt, B. F., and R. Schmid. The micellar sink. A quantitative assessment of the association of organic anions with mixed micelles and other macromolecular aggregates in rat bile. J. Clin. Invest. 62: 1122–1131, 1978.
 292. Scharschmidt, B. F., and R. W. Van Dyke. Mechanisms of hepatic electrolyte transport. Gastroenterology 85: 1199–1214, 1983.
 293. Scharschmidt, B. F., J. G. Waggoner, and P. D. Berk. Hepatic organic anion uptake in the rat. J. Clin. Invest. 56: 1280–1292, 1975.
 294. Schenck‐Gustafsson. Quinidine induced reduction of the biliary excretion of digoxin in patients. In: Cardiac Glycosides 1785–1985. Biochemistry‐Pharmacology‐Clinical Relevance, edited by E. Erdmann, K. Greeff, and J. C. Skou. Darmstadt, FRG: Steinkopff‐Verlag, 1986, p. 293–296.
 295. Schenker, S., and B. Combes. Role of hepatic adenosine triphosphate in BSP transport and metabolism in vivo. Am. J. Physiol. 212: 295–300, 1967.
 296. Schmid, R. Bilirubin metabolism: state of the art. Gastroenterology 74: 1307–1312, 1978.
 297. Schwarz, L. R., R. Burr, M. Schwenk, E. Pfaff, and H. Greim. Uptake of taurocholic acid into isolated rat liver cells. Eur. J. Biochem. 55: 617–623, 1975.
 298. Schwarz, L. R., R. Götz, and C. D. Klaassen. Uptake of sulfobromophthalein‐glutathione conjugate by isolated hepatocytes. Am. J. Physiol. 239 (Cell Physiol. 8): C118–C123, 1980.
 299. Schwarz, L. R., M. Schwenk, E. Pfaff, and H. Greim. Excretion of taurocholate from isolated hepatocytes. Eur. J. Biochem. 71: 369–373, 1976.
 300. Schwenk, M. Transport systems of isolated hepatocytes. Arch. Toxicol. 44: 113–126, 1980.
 301. Schwenk, M., R. Burr, L. Schwarz, and E. Pfaff. Uptake of bromosulfophthalein by isolated liver cells. Eur. J. Biochem. 64: 189–197, 1976.
 302. Schwenk, M., and V. López del Pino. Uptake of estrone sulfate by isolated rat liver cells. J. Steroid Biochem. 13: 669–673, 1980.
 303. Schwenk, M., T. Wiedmann, and H. Remmer. Uptake, accumulation and release of ouabain by isolated rat hepatocytes. Naunyn‐Schmiedeberg's Arch. Pharmacol. 316: 340–344, 1981.
 304. Seydel, J. K., and K. J. Schaper. Quantitative structurepharmacokinetic relationships and drug design. Pharmacol. Ther. 15: 131–182, 1982.
 305. Shorey, J., S. Schenker, and B. Combes. Effect of acute hypoxia on hepatic excretory function. Am. J. Physiol. 216: 1441–1452, 1969.
 306. Sies, H. Reduced and oxidized glutathione efflux from liver. In: Glutathione: Storage, Transport and Turnover in Mammals, edited by Y. Sakamoto, T. Higashi, and N. Taheiski. Tokyo: Japan Sci. Soc., 1983, p. 63–88.
 307. Simion, F. A., B. Fleischer, and S. Fleischer. Ionic requirements for taurocholate transport in rat liver plasma membrane vesicles. J. Bioenerg. Biomembr. 16: 507–515, 1984.
 308. Simon, F. R., E. M. Sutherland, and M. Gonzalez. Regulation of bile salt transport in rat liver. Evidence that increased maximum bile salt secretory capacity is due to increased cholic acid receptors. J. Clin. Invest. 70: 401–411, 1982.
 309. Smith, R. L. The biliary excretion and enterohepatic circulation of drugs and other organic compounds. Prog. Drug Res. 9: 299–360, 1966.
 310. Smith, R. L. Excretion of drugs in bile. In: Handbook of Experimental Pharmacology, edited by B. B. Brodie and J. G. Gilette. Berlin: Springer‐Verlag, 1971, vol. 28, p. 354–389.
 311. Smith, R. L. The Excretory Function of Bile. The Elimination of Drugs and Toxic Substances in Bile. London: Chapman & Hall, 1973.
 312. Sokol, P. P., P. D. Holohan, and C. R. Ross. Electroneutral transport of organic cations in canine renal brush border membrane vesicles. J. Pharmacol. Exp. Ther. 233: 694–699, 1985.
 313. Solomon, H. M., and L. S. Schanker. Hepatic transport of organic cations: active uptake of a quaternary ammonium compound procainamide ethobromide by rat slices. Biochem. Pharmacol. 12: 621–626, 1963.
 314. Sottocasa, G. L., G. Baldini, S. Passamonti, and G. C. Lunazzi. Electrogenic sulfobromophthalein (BSP) movements mediated by bilitranslocase in liver plasma membrane vesicles (Abstract). J. Hepatol. (Suppl. 1): S133, 1985.
 315. Sottocasa, G. L., G. Baldini, G. Sandri, G. Lunazzi, and C. Tiribelli. Reconstitutions in vitro of sulfobromophthalein transport by bilitranslocase. Biochim. Biophys. Acta 685: 123–128, 1982.
 316. Sottocasa, G. L., C. Tiribelli, M. Luriani, G. C. Lunazzi, and B. Gazzin. Isolation and some properties of a protein molecule involved in hepatic bilirubin and other anion transport. In: Functional and Molecular Aspects of Biomembrane Transport, edited by E. Quagliariclo. Amsterdam: Elsevier/North‐Holland, 1979, p. 451–458.
 317. Stacey, N. H., and C. D. Klaassen. Uptake of ouabain by isolated hepatocytes from livers of developing rats. J. Pharmacol. Exp. Ther. 211: 360–363, 1979.
 318. Stoeckel, K., P. J. M. McNamara, A. J. McClean, P. du Souich, D. Lalka, and M. Gibaldi. Nonlinear pharmacokinetics of indocyanine green in the rabbit and rat. J. Pharmacokinet. Biopharm. 8: 483–496, 1980.
 319. Stremmel, W., and P. D. Berk. Hepatocellular BSP and bilirubin uptake is selectively inhibited by an antibody to the liver plasma membrane BSP/bilirubin binding protein (Abstract). Hepatology Baltimore 5: 1035, 1985.
 320. Sutfin, T., and W. J. Jusko. Compendium of active drug metabolites. In: Drug Metabolism and Disposition: Considerations in Clinical Pharmacology, edited by G. R. Wilkinson and M. D. Rawlins. Lancaster, UK: MTP, 1985, p. 91–159.
 321. Sweeney, E. F., and J. M. Fujimoto. Effect of intrabiliary administration of Triton X‐100 on biliary excretory function in the rat. Biochem. Pharmacol. 33: 2309–2313, 1984.
 322. Tafler, M., K. Ziegler, and M. Frimmer. Iodipamide uptake by rat liver plasma membrane vesicles enriched in the sinusoidal fraction: evidence for carrier mediated transport dependent on membrane potential. Biochim. Biophys. Acta 855: 157–168, 1986.
 323. Taylor, W. The excretion of steroid hormone metabolites in bile and feces. Vitam. Horm. 29: 201–285, 1971.
 324. Thalhammer, T., R. Fuchs, M. Peterlik, and J. Graf. Hepatocellular electrolyte transport and bile secretion. In: Hepatology: Festschrift for Hans Popper, edited by H. Brunner and H. Thaler. New York: Raven, 1985, p. 319–327.
 325. Thalhammer, T., G. Hansel, and J. Graf. Analysis of hepatic uptake and biliary excretion of an anionic xenobiotic utilizing isolated plasmamembrane vesicles. In: Pharmacochemistry Library VIII, edited by M. Tichy. Amsterdam: Elsevier, 1985. (Proc. Symp. QSAR Toxicol. Xenobiochem.).
 326. Theilman, L., Y. R. Stollman, I. M. Arias, and A. W. Wolkoff. Does Z protein have a role in transport of bilirubin and bromosulfophthalein by isolated perfused rat liver. Hepatology Baltimore 4: 923–926, 1984.
 327. Thurman, R. G., and F. C. Kauffman. Factors regulating drug metabolism in intact hepatocytes. Pharmacol. Rev. 31: 229–251, 1980.
 328. Thurman, R. G., and F. C. Kauffman. Sublobular compartmentation of pharmacologic events (SCOPE): metabolic fluxes in periportal and pericentral regions of the liver lobule. Hepatology Baltimore 5: 144–151, 1985.
 329. Tipping, E., and B. Ketterer. The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem. J. 195: 441–452, 1981.
 330. Tiribelli, C., G. C. Lunazzi, and G. L. Sottocasa. Mechanisms of hepatic uptake of organic anions. Clin. Sci. 71: 1–8, 1986.
 331. Tozer, T. N. Implications of altered plasma protein binding in disease states. In: Pharmacokinetic Basis for Drug Treatment, edited by L. Z. Benet, N. Massoud, and J. G. Gambertoglio. New York: Raven, 1984, p. 173–193.
 332. Trager, W. F., and B. Testa. Stereoselective drug disposition. In: Drug Metabolism and Disposition: Considerations in Clinical Pharmacology, edited by G. R. Wilkinson and M. D. Rawlins. Lancaster, UK: MTP, 1985, p. 35–61.
 333. Tukey, R. H., and T. R. Tephly. Purification and properties of rabbit liver p‐nitrophenol UDP‐glucuronyltransferase. Arch. Biochem. Biophys. 209: 565–578, 1981.
 334. Uesugi, T., J. Bognacki, and W. G. Levine. Biliary excretion of drugs in the rat during liver regeneration. Biochem. Pharmacol. 25: 1187–1193, 1976.
 335. Uesugi, T., and M. Ikeda. Studies on biliary excretion mechanisms of drugs. IV. Inhibitory studies on sulfobromophthalein and glucuronides in the rat. Biochem. Pharmacol. 25: 1361–1368, 1976.
 336. Van der Sluijs P., and D. K. F. Meijer. Binding of drugs with a quaternary ammonium group to alpha‐1 acid glycoprotein and asialo alpha‐1 acid glycoprotein. J. Pharmacol. Exp. Ther. 234: 703–707, 1985.
 337. Van der Sluijs, P., H. H. Spanjer, and D. K. F. Meijer. Hepatic disposition of cationic drugs bound to asialo‐orosomucoid: lack of co‐endocytosis and evidence for intrahepatic dissociation. J. Pharmacol. Exp. Ther. 240: 668–673, 1987.
 338. Vessey, D. A. Hepatic metabolism of drugs and toxins. In: Hepatology: A Textbook of Liver Disease, edited by D. Zakim and T. D. Boyer. Philadelphia, PA: Saunders, 1982, p. 197–230.
 339. von Dippe, P., and D. Levy. Characterization of the bile acid transport system in normal and transformed hepatocytes. Photoaffinity labeling of the taurocholate carrier protein. J. Biol. Chem. 258: 8896–8901, 1983.
 340. Vonk, R. J., M. Danhof, T. Coenraads, A. B. D. Van Doorn, K. Keulemans, A. H. J. Scaf, and D. K. F. Meijer. Influence of bile salts on hepatic transport of dibromosulphthalein. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 6): E524–E534, 1979.
 341. Vonk, R. J., P. A. Jekel, and D. K. F. Meijer. Choleresis and hepatic transport mechanisms. II. Influence of bile salt choleresis and biliary micelle binding on the biliary excretion of various organic anions. Naunyn‐Schmiedeberg's Arch. Pharmacol. 290: 375–387, 1975.
 342. Vonk, R. J., P. A. Jekel, D. K. F. Meijer, and M. J. Hardonk. Transport of drugs in isolated hepatocytes. The influences of bile salts. Biochem. Pharmacol. 27: 397–405, 1978.
 343. Vonk, R. J., E. Scholtens, G. T. P. Keulemans, and D. K. F. Meijer. Choleresis and hepatic transport mechanisms. IV. Influence of bile salt choleresis on the hepatic transport of the organic cations, d‐tubocurarine and N4‐acetyl procainamide ethobromide. Naunyn‐Schmiedeberg's Arch. Pharmacol. 302: 1–9, 1978.
 344. Vonk, R. J., H. Van der Veen, G. Prop, and D. K. F. Meijer. The influence of taurocholate and dehydrocholate choleresis on plasma disappearance and biliary excretion of indocyanine green in the rat. Naunyn‐Schmiedeberg's Arch. Pharmacol. 282: 401–410, 1974.
 345. Vonk, R. J., A. B. D. Van Doorn, G. J. Mulder, and D. K. F. Meijer. The influence of bile salts on hepatocellular transport. Bile Acid Meeting. V. Biological Effects of Bile Salts, 1978, p. 121–126. (Falk Symp. 26.).
 346. Vonk, R. J., A. B. D. Van Doorn, A. H. J. Scaf, and D. K. F. Meijer. Choleresis and hepatic transport mechanisms. III. Binding of ouabain and K‐strophantoside to biliary micelles and influence of choleresis on their biliary excretion. Naunyn‐Schmiedeberg's Arch. Pharmacol. 300: 173–177, 1977.
 347. Wasserman, O. Influence of substituents on pharmacokinetics of bisquaternary ammonium compounds. Naunyn‐Schmiedeberg's Arch. Pharmacol. 270, Suppl.: R154, 1971.
 348. Watkins, J. B., and C. D. Klaassen. Effect of repeated oral administration of taurocholate on hepatic excretory function in the rat. J. Pharmacol. Exp. Ther. 218: 182–187, 1981.
 349. Weisiger, R. A. Non‐equilibrium drug binding and hepatic removal. In: Protein Binding and Drug Transport, edited by J. P. Tillement and E. Lindenlaut. New York: Schattauer, 1986.
 350. Weisiger, R., J. Gollan, and R. Ockner. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin‐bound substances. Science Wash. DC 211: 1048–1051, 1981.
 351. Weitering, J. G., W. Lammers, D. K. F. Meijer, and G. J. Mulder. Localization of d‐tubocurarine in rat liver lysosomes. Lysosomal uptake, biliary excretion and displacement by quinacrine in vivo. Naunyn‐Schmiedeberg's Arch. Pharmacol. 299: 277–281, 1977.
 352. Weitering, J. G., G. J. Mulder, D. K. F. Meijer, W. Lammers, M. Veenhuis, and S. E. Wendelaar‐Bonga. On the localisation of d‐tubocurarine in rat liver lysosomes in vivo by electron microscopy and subcellular fractionation. Naunyn‐Schmiedeberg's Arch. Pharmacol. 289: 251–256, 1975.
 353. Westra, P., K. T. P. Keulmans, M. C. Houwertjes, M. J. Hardonk, and D. K. F. Meijer. Mechanisms underlying the prolonged duration of action of muscle relaxants due to extrahepatic cholestasis. Br. J. Anaesth. 53: 217–227, 1981.
 354. Wheeler, H. O. Secretion of bile acids by the liver and their role in the formation of hepatic bile. Arch. Intern. Med. 130: 533–541, 1972.
 355. Whitmer, D. J., S. C. Hauser, and J. L. Gollan. Mechanisms of formation, hepatic transport and metabolism of bile pigments. In: Intrahepatic Calculi. New York: Liss, 1984, p. 29–52.
 356. Wieland, T., M. Nassal, W. Kramer, G. Fricker, U. Bickel, and G. Kurz. Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamidine by photoaffinity labeling. Proc. Natl. Acad. Sci. USA 81: 5232–5236, 1984.
 357. Wilkinson, G. R., and D. G. Shand. A physiologic approach to hepatic drug clearance. Clin. Pharmacol. Ther. 18: 377–390, 1975.
 358. Wills, R. J., R. D. Smith, and G. J. Yakatan. Dose dependent pharmacokinetics and biliary excretion of bromphenol blue in the rat. J. Pharm. Sci. 72: 1127–1131, 1983.
 359. Winkler, K., and C. Gram. Models for description of bromsulfalein elimination curves in man after single intravenous injection. Acta Med. Scand. 169: 263–272, 1961.
 360. Wishart, G. J. Functional heterogeneity of UDP‐glucuronosyltransferase as indicated by its differential development and inducibility by glucocorticoids. Biochem. J. 174: 485–489, 1978.
 361. Wishart, G. J. Demonstration of functional heterogeneity of hepatic uridine diphosphase glucuronosyltransferase activities after administration of 3‐methylcholanthrene and phenobarbital to rats. Biochem. J. 174: 671–672, 1978.
 362. Wishart, G. J., and G. J. Dutton. Regulation of onset of development of UDP‐glucuronosyltransferase activity towards O‐aminophenol by glucocorticoids in late‐foetal rat liver in utero. Biochem. J. 168: 507–511, 1977.
 363. Wisse, E., R. B. De Zanger, K. Charels, P. Van Der Smissen, and R. S. McCuskey. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology Baltimore 5: 683–692, 1985.
 364. Wolkoff, A. W. The glutathione S‐transferases: their role in the transport of organic anions from blood to bile. In: Liver and Biliary Tracts Physiology I, edited by N. B. Javitt. Baltimore, MD: University Park, 1980, vol. 21, p. 151–169. (Int. Rev. Physiol. Ser.).
 365. Wolkoff, A. W., and C. T. Chung. Identification, purification and partial characterization of an organic anion binding protein from rat liver cell plasma membrane. J. Clin. Invest. 65: 1152–1161, 1980.
 366. Wolkoff, A. W., C. A. Goresky, J. Sellin, Z. Gatmaitan, and I. M. Arias. Role of ligandin in transfer of bilirubin from plasma into liver. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E638–E648, 1979.
 367. Wolkoff, A. W., R. Nakata, K. L. Johnson, and A. Sosiak. Influence of Cl‐ on organic anion transport in short term cultured rat hepatocytes and isolated perfused liver (Abstract). Hepatology Baltimore 6: 1199, 1986.
 368. Wolkoff, A. W., A. Sosiak, H. C. Greenblatt, J. Van Renswoude, and R. J. Stockert. Immunological studies of an organic anion‐binding protein isolated from rat liver cell plasma membrane. J. Clin. Invest. 76: 454–459, 1985.
 369. Yam, J., M. Reeves, and J. J. Roberts. Comparison of sulfobromophthalein (BSP) and sulfobromophthalein glutathione (BSP‐SSH) disposition under conditions of altered liver function in the isolated perfused rat liver. J. Lab. Clin. Med. 87: 373–383, 1976.
 370. Yoshioka, K., H. Nishimura, and T. Hasegawa. Effect of a phenyl group in quaternary ammonium compounds on thiamine uptake in isolated rat hepatocytes. Biochim. Biophys. Acta 819: 263–266, 1985.
 371. Ziegler, K., M. Frimmer, and H. Fosold. Further characterization of membrane proteins involved in the transport of organic anions in hepatocyte. Biochim. Biophys. Acta 769: 117–129, 1984.
 372. Ziegler, K., M. Frimmer, S. Müllner, and H. Fasold. 3'‐Isothiocyanate‐benzamdido[3H]cholate, a new photoaffinity label for hepatocellular membrane proteins responsible for the uptake of both bile acids and phalloidin. Biochim. Biophys. Acta 773: 11–22, 1984.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Dirk K. F. Meijer. Transport and Metabolism in the Hepatobiliary System. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 717-758. First published in print 1989. doi: 10.1002/cphy.cp060335