Comprehensive Physiology Wiley Online Library

Enterocyte Cytoskeleton: Its Structure and Function

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Brush‐Border Structure: Overview
1.1 Microvillus Core
1.2 Terminal Web
2 Components of Brush‐Border Cytoskeleton
2.1 Microvilli
2.2 Terminal Web
3 Functional Properties of Brush‐Border Cytoskeleton
3.1 Microvilli: Their Functional Properties
3.2 Terminal Web: Two Functional Domains?
4 Assembly of Brush‐Border Cytoskeleton
5 Functions of Other Cytoskeletal Components
5.1 Intermediate Filaments
5.2 Microtubules
6 Note Added in Proof
Figure 1. Figure 1.

Working model depicting organization and major proteins of brush‐border cytoskeleton. Model for the structure of cytoskeletal apparatus underlying brush‐border membrane summarizes work from numerous laboratories. Some components, e.g., 80‐kDa and 33‐kDa proteins in microvilli and caldesmon and p36 in terminal web, are shown as present but have yet to be designated as structural components. CM, calmodulin; ZA, zonula adherens; TM, tropomyosin.

[Adapted from Mooseker 89, 90.]


Figure 1.

Working model depicting organization and major proteins of brush‐border cytoskeleton. Model for the structure of cytoskeletal apparatus underlying brush‐border membrane summarizes work from numerous laboratories. Some components, e.g., 80‐kDa and 33‐kDa proteins in microvilli and caldesmon and p36 in terminal web, are shown as present but have yet to be designated as structural components. CM, calmodulin; ZA, zonula adherens; TM, tropomyosin.

[Adapted from Mooseker 89, 90.]
References
 1. Abrahamson, D. R., and R. Rodewald. Evidence for the sorting of endocytotic vesicle contents during the receptor‐mediated transport of IgG across the newborn rat intestine. J. Cell Biol. 91: 270–280, 1981.
 2. Alicea, H. A., and M. S. Mooseker. Comparative analysis of the actin‐binding proteins of the chicken and mammalian intestinal brush border (Abstract). J. Cell Biol. 99: 306a, 1984.
 3. Alicea, H. A., and M. S. Mooseker. Characterization of villin from the intestinal brush border of the rat, and comparative analysis with avian villin. Cell Motil. Cytoskeleton 9: 60–72, 1989.
 4. Arreaza‐Plaza, C. A., V. Bosch, and M. A. Otayek. Lipid transport across the intestinal epithelial cell: effect of colchicine. Biochim. Biophys. Acta 431: 297–302, 1976:
 5. Baines, A. J. A spectrum of spectrins. Nature Lond. 312: 310–311, 1984.
 6. Barwick, K. W., C. Howe, M. S. Mooseker, and J. S. Morrow. The cytoskeleton of human intestinal brush border: identification of potential differentiation antigens (Abstract). Lab. Invest. 54: 5a, 1986.
 7. Begg, D. A., R. Rodewald, and L. I. Rebhun. The visualization of actin filament polarity in thin sections. Evidence for uniform polarity of membrane‐associated filaments. J. Cell Biol. 79: 846–852, 1978.
 8. Bonder, E. M., and M. S. Mooseker. Direct electron microscopic visualization of barbed end capping and filament cutting by intestinal microvillar 95‐kdalton protein (villin): a new actin assembly assay using the Limulus acrosomal process. J. Cell Biol. 96: 1097–1107, 1983.
 9. Bretscher, A. Fimbrin is a cytoskeletal protein that crosslinks F‐actin in vitro. Proc. Natl. Acad. Sci. USA 78: 6849–6853, 1981.
 10. Bretscher, A. Microfilament organization in the cytoskeleton of the intestinal brush border. In: Cell and Muscle Motility, edited by R. M. Dowben and J. W. Shay. New York: Plenum, 1983, vol. 4, p. 239–268.
 11. Bretscher, A. Purification of an 80,000‐dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J. Cell Biol. 97: 425–432, 1983.
 12. Bretscher, A., and A. Lynch. Identification and localization of immunoreactive forms of caldesmon in smooth and nonmuscle cells. A comparison with the distributions of tropomyosin and α‐actinin. J. Cell Biol. 100: 1656–1663, 1985.
 13. Bretscher, A., M. Osborn, J. Wehland, and K. Weber. Villin associates with specific microfilamentous structures as seen by immunofluorescence microscopy on tissue sections and cells microinjected with villin. Exp. Cell Res. 135: 213–219, 1981.
 14. Bretscher, A., and K. Weber. Localization of actin and microfilament associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J. Cell Biol. 79: 839–845, 1978.
 15. Bretscher, A., and K. Weber. Purification of microvilli and an analysis of the protein components of the microfilament core bundle. Exp. Cell Res. 116: 397–407, 1978.
 16. Bretscher, A., and K. Weber. Fimbrin, a new microfilament‐associated protein present in microvilli and other cell surface structures. J. Cell Biol. 86: 335–343, 1980.
 17. Bretscher, A., and K. Weber. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium‐dependent manner. Cell 20: 839–847, 1980.
 18. Broschat, K. O., and D. R. Burgess. Regulatory roles of tropomyosin in brush border structure and motility (Abstract). J. Cell Biol. 99: 5a, 1984.
 19. Broschat, K. O., R. P. Stidwell, and D. R. Burgess. Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton. Cell 35: 561–571, 1983.
 20. Burgess, D. R. Morphogenesis of intestinal villi. II. Mechanism of formation of previllous ridges. J. Embryol. Exp. Morphol. 34: 723–740, 1975.
 21. Burgess, D. R. Reactivation of intestinal epithelial cell brush border motility. ATP‐dependent contraction via a terminal web contractile ring. J. Cell Biol. 95: 853–866, 1982.
 22. Burgess, D. R., and B. E. Prum. Reevaluation of brush border motility: calcium induces core filament solution and microvillar vesiculation. J. Cell Biol. 94: 97–107, 1982.
 23. Buschmann, R. Morphometry of the small intestinal enterocytes of the fasted rat and the effects of colchicine. Cell Tissue Res. 231: 289–299, 1983.
 24. Chambers, C., and R. D. Grey. Development of the structural components of the brush border in absorptive cells in the chick intestine. Cell Tissue Res. 204: 387–405, 1979.
 25. Coleman, T., A. Harris, M. S. Mooseker, and J. Morrow. The beta subunit of spectrin determines its protein 4.1‐dependent interaction with actin (Abstract). J. Cell Biol. 101: 283a, 1985.
 26. Collins, J. H., and C. W. Borysenko. The 110,000‐dalton actin‐ and calmodulin‐binding protein from intestinal brush border is a myosin‐like ATPase. J. Biol. Chem. 259: 14128–14135, 1984.
 27. Collucio, L. M., and A. Bretscher. Calcium‐regulated cooperative binding of the microvillar 110K‐calmodulin complex to F‐actin: formation of decorated filaments. J. Cell Biol. 105: 325–333, 1987.
 28. Conzelman, K. A., and M. S. Mooseker. Re‐evaluation of the hydrophobic nature of the 110‐kDalton calmodulin‐, actin‐, and membrane‐binding protein of the intestinal microvillus. J. Cell. Biochem. 30: 271–279, 1986.
 29. Conzelman, K. A., and M. S. Mooseker. The 110‐kD protein‐calmodulin complex of the intestinal microvillus is an actin‐activated MgATPase. J. Cell Biol. 105: 313–324, 1987.
 30. Coudrier, E., H. Reggio, and D. Louvard. Immunolocalization of the 110,000 molecular weight cytoskeletal protein of intestinal microvilli. J. Mol. Biol. 152: 49–66, 1981.
 31. Coudrier, E., H. Reggio, and D. Louvard. Characterization of an integral membrane glycoprotein associated with the microfilaments of pig intestinal microvilli. EMBO J. 2: 469–475, 1983.
 32. Cowell, G. M., and E. M. Danielsen. Biosynthesis of intestinal microvillar proteins: rapid expression of cytoskeletal components in microvilli of pig small intestinal mucosal explants. FEBS Lett. 172: 309–314, 1984.
 33. Cowell, G. M., and E. M. Danielsen. Membrane insertion of the microvillar 110‐kDa protein of the enterocyte. Biochem. J. 225: 275–276, 1985.
 34. Craig, R., and J. Megerman. Assembly of smooth muscle myosin into side‐polar filaments. J. Cell Biol. 75: 990–996, 1977.
 35. Craig, S. W., and J. V. Pardo. Alpha‐actinin localization in the junctional complex of intestinal epithelial cells. J. Cell Biol. 80: 203–210, 1979.
 36. Craig, S. W., and T. D. Pollard. Actin‐binding proteins. Trends Biochem. Sci. 7: 88–91, 1982.
 37. Craig, S. W., and L. D. Powell. Regulation of actin polymerization by villin, a 95,000 dalton cytoskeletal component of intestinal brush borders. Cell 22: 739–746, 1980.
 38. Drenckhahn, D., and U. Groschel‐Stewart. Localization of myosin, actin, and tropomyosin in rat intestinal epithelium: immunohistochemical studies at the light and electron microscope levels. J. Cell Biol. 86: 475–482, 1980.
 39. Drenckhahn, D., H.‐D. Hofmann, and H. Mannberg. Villin is associated with core filaments and rootlets of intestinal epithelial microvilli. Cell Tissue Res. 278: 409–414, 1983.
 40. Drenckhahn, D., and H. G. Mannherz. Distribution of actin and the actin‐associated proteins myosin, tropomyosin, alpha‐actinin, vinculin, and villin in rat and bovine exocrine glands. Eur. J. Cell Biol. 30: 167–176, 1983.
 41. Fishkind, D. J., M. S. Mooseker, and E. M. Bonder. Actin assembly and filament cross‐linking in the presence of TW 260/240, the tissue‐specific spectrin of the chicken intestinal brush border. Cell Motil. 5: 311–322, 1985.
 42. Franke, W. W., B. Appelhaus, E. Schmid, C. Freudenstein, M. Osborn, and K. Weber. The organization of cytokeratin filaments in the intestinal epithelium. Eur. J. Cell Biol. 19: 255–268, 1979.
 43. Franke, W., S. Winter, C. Grund, E. Schmid, D. Schiller, and E. Jarasch. Isolation and characterization of desmosome‐associated tonofilaments from rat intestinal brush border. J. Cell Biol. 90: 116–127, 1981.
 44. Geiger, B., A. Dutton, K. T. Tokuyasu, and S. J. Singer. Immunoelectron microscope studies of membrane‐microfilament interactions: distributions of α‐actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J. Cell Biol. 91: 614–628, 1981.
 45. Geiger, B., K. T. Tokuyasu, and S. J. Singer. Immunocytochemical localization of α‐actinin in intestinal epithelial cells. Proc. Natl. Acad. Sci. USA 76: 2833–2837, 1979.
 46. Gerke, V., and K. Weber. Isolation and characterization of mammalian villin and fimbrin, the two bundling proteins of the intestinal microvilli. Eur. J. Cell Biol. 31: 249–255, 1983.
 47. Gerke, V. and K. Weber. Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium dependent binding to nonerythroid spectrin and F‐actin. EMBO J. 3: 227–233, 1984.
 48. Gerke, V., and K. Weber. Calcium‐dependent conformational changes in the 36‐kDa subunit of intestinal protein I related to the cellular 36‐kDa target of Rous sarcoma virus tyrosine kinase. J. Biol. Chem. 260: 1668–1695, 1985.
 49. Ginsel, L. A., N. F. Debets, and W. T. Daems. The effect of colchicine on the distribution of apical vesicles and tubules in adsorptive cells of cultured human small intestine. In: Microtubule and Microtubule Inhibitors, edited by M. Borgers and M. De Brabander. Amsterdam: Elsevier/North‐Holland, 1975, p. 187–198. (Proc. Int. Symp., Beerse, Belgium, Sept. 1975.)
 50. Glenney, J. R., Jr., and P. Glenney. Fodrin is the general spectrin‐like protein found in most cells whereas spectrin and the TW protein have a restricted distribution. Cell 34: 503–512, 1983.
 51. Glenney, J. R., Jr., and P. Glenney. Spectrin, fodrin, and TW 260/240: family of related proteins lining the plasma membrane. Cell Motil. 3: 671–682, 1983.
 52. Glenney, J. R., Jr., and P. Glenney. The microvillus 110K cytoskeletal protein is an integral membrane protein. Cell 37: 743–751, 1984.
 53. Glenney, J. R., Jr., and P. Glenney. Comparison of Ca2+ ‐regulated events in the intestinal brush border. J. Cell Biol. 100: 754–763, 1985.
 54. Glenney, J. R., Jr., P. Glenney, M. Osborn, and K. Weber. An F‐actin‐ and calmodulin‐binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell 28: 843–854, 1982.
 55. Glenney, J. R., Jr., P. Glenney, and K. Weber. Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW 260/240) are related molecules containing a common calmodulin‐binding subunit bound to a variant cell‐type specific subunit. Proc. Natl. Acad. Sci. USA 79: 4002–4005, 1982.
 56. Glenney, J. R., Jr., P. Glenney, and K. Weber. The spectrin‐related molecule, TW 260/240 cross‐links the actin bundles of the microvillus rootlets in the brush borders of intestinal epithelial cells. J. Cell Biol. 96: 1491–1496, 1983.
 57. Glenney, J. R., Jr., P. Kaulfus, P. Matsudaira, and K. Weber. F‐actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments. J. Biol. Chem. 256: 9283–9288, 1981.
 58. Glenney, J. R., Jr., P. Kaulfus, and K. Weber. F‐actin assembly modulated by villin: Ca++ ‐dependent nucleation and capping of the barbed end. Cell 24: 471–480, 1981.
 59. Glenney, J. R., Jr., M. Osborn, and K. Weber. The intracellular localization of the microvillus 110K‐protein, a component considered to be involved in side‐on membrane attachment of F‐actin. Exp. Cell Res. 138: 199–205, 1982.
 60. Glenney, J. R., Jr., and K. Weber. Calmodulin‐binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells. J. Biol. Chem. 255: 10551–10554, 1980.
 61. Gonnella, P. A., and M. R. Neutra. Membrane‐bound and fluid‐phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ilium. J. Cell Biol. 99: 909–917, 1984.
 62. Gould, K. L., J. A. Cooper, A. Bretscher, and T. Hunter. The protein‐tyrosine kinase substrate, p81, is homologous to a chicken microvillar core protein. J. Cell Biol. 102: 660–669, 1986.
 63. Gould, K. L., J. A. Cooper, and T. Hunter. The 46,000‐dalton tyrosine protein kinase substrate is widespread, whereas the 36,000‐dalton substrate is only expressed at high levels in certain rodent tissues. J. Cell Biol. 98: 487–497, 1984.
 64. Greenberg, M. E., R. Brackenbury, and G. M. Edelman. Changes in the distribution of the 34‐kdalton tyrosine kinase substrate during differentiation and maturation of chicken tissues. J. Cell Biol. 98: 473–486, 1984.
 65. Herman, I., and T. D. Pollard. Electron microscopic localization of cytoplasmic myosin with ferritin‐labeled antibodies. J. Cell Biol. 88: 346–351, 1981.
 66. Hirokawa, N., R. E. Cheney, and M. Willard. Location of a protein of the fodrin‐spectrin‐TW 260/240 family in the mouse intestinal brush border. Cell 32: 953–965, 1983.
 67. Hirokawa, N., and J. Heuser. Quick‐freeze, deep‐etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J. Cell Biol. 91: 399–409, 1981.
 68. Hirokawa, N., T. C. S. Keller, R. Chasan, and M. S. Mooseker. Mechanism of brush border contractility studied by the quick‐freeze, deep‐etch method. J. Cell Biol. 96: 1325–1336, 1983.
 69. Hirokawa, N., L. G. Tilney, K. Fujiwara, and J. E. Heuser. The organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J. Cell Biol. 94: 425–443, 1982.
 70. Howe, C. L., T. C. S. Keller, M. S. Mooseker, and R. H. Wasserman. Analysis of cytoskeletal proteins and Ca++ ‐dependent regulation of structure in intestinal brush borders from rachitic chicks. Proc. Natl. Acad. Sci. USA 79: 1134–1138, 1982.
 71. Howe, C. L., and M. S. Mooseker. Characterization of the 110‐kdalton actin‐calmodulin‐, and membrane‐binding protein from microvilli of intestinal epithelial cells. J. Cell Biol. 97: 974–985, 1983.
 72. Howe, C. L., M. S. Mooseker, and T. A. Graves. Brush border calmodulin. A major component of the isolated microvillus core. J. Cell Biol. 85: 916–923, 1980.
 73. Howe, C. L., L. M. Sacramone, M. S. Mooseker, and J. S. Morrow. Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins. J. Cell Biol. 101: 1379–1385, 1985.
 74. Hull, B. E., and L. A. Staehelin. The terminal web. A reevaluation of its structure and function. J. Cell Biol. 81: 67–82, 1979.
 75. Ilundain, A., and R. J. Naftalin. Role of Ca2+ ‐dependent regulator protein in intestinal secretion. Nature Lond. 279: 446–448, 1979.
 76. Kakiuchi, S., and K. Sobue. Control of the cytoskeleton by calmodulin and calmodulin‐binding proteins. Trends Biochem. Sci. 8: 59–62, 1983.
 77. Keller, T. C. S., K. A. Conzelman, R. Chasan, and M. S. Mooseker. The role of myosin in terminal web contraction in isolated intestinal epithelial brush borders. J. Cell Biol. 100: 1647–1655, 1985.
 78. Keller, T. C. S., and M. S. Mooseker. Ca++ ‐calmodulin‐dependent phosphorylation of myosin, and its role in brush border contraction in vitro. J. Cell Biol. 95: 943–959, 1982.
 79. Lazarides, E., and W. J. Nelson. Expression of spectrin in nonerythroid cells. Cell 31: 505–508, 1982.
 80. Le Count, T. S., and R. D. Grey. Transient shortening of microvilli induced by cyclohexamide in the duodenal epithelium of the chicken. J. Cell Biol. 53: 601–613, 1972.
 81. Madara, J. Increases in guinea pig small intestine transepithelial resistance induced by osmotic loads are accompanied by rapid alterations in absorptive‐cell tight‐junction structure. J. Cell Biol. 97: 125–136, 1983.
 82. Madara, J., D. Barenberg, and S. Carlson. Effects of cytochalasin D on occluding junctions of intestinal adsorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J. Cell Biol. 102: 2125–2136, 1986.
 83. Matsudaira, P. T. Structural and functional relationship between the membrane glycoproteins involved in attachment of microfilaments to the microvillar membrane. In: Brush Border Membranes. London: Pitman, 1983, p. 233–244. (Ciba Found. Symp. 95.)
 84. Matsudaira, P. T., and D. R. Burgess. Identification and organization of the components in the isolated microvillus cytoskeleton. J. Cell Biol. 83: 667–673, 1979.
 85. Matsudaira, P. T., and D. R. Burgess. Partial reconstruction of the microvillus core bundle: characterization of villin as a Ca++ ‐dependent, actin bundling/depolymerizing protein. J. Cell Biol. 92: 648–656, 1982.
 86. Matsudaira, P. T., and D. R. Burgess. Organization of cross filaments in microvilli. J. Cell Biol. 92: 657–664, 1982.
 87. Matsudaira, P., E. Mandelkow, W. Renner, L. K. Hesterberg, and K. Weber. Role of fimbrin and villin in determining the interfilament distances of actin bundles. Nature Lond. 301: 209–214, 1983.
 88. Michaels, J. The effects of colchicine on the distribution of glycoprotein‐containing vesicles in epithelial cells of the murine colon. Cell Tissue Res. 228: 323–335, 1983.
 89. Misch, P., P. Giebel, and R. Faust. Intestinal microvilli responses to feeding and fasting. Eur. J. Cell Biol. 21: 264–279, 1980.
 90. Mooseker, M. S. Brush border motility. Microvillar contraction in triton‐treated brush borders isolated from intestinal epithelium. J. Cell Biol. 71: 417–433, 1976.
 91. Mooseker, M. S. Actin binding proteins of the brush border. Cell 35: 11–13, 1983.
 92. Mooseker, M. S. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu. Rev. Cell Biol. 1: 261–293, 1985.
 93. Mooseker, M. S., E. M. Bonder, K. A. Conzelman, D. J. Fishkind C. L. Howe, and T. C. S. Keller. The brush border cytoskeleton and integration of cellular functions. J. Cell Biol. 99: 104s–112s, 1984.
 94. Mooseker, M. S., E. M. Bonder, B. G. Grimwade, C. L. Howe, T. C. S. Keller, R. H. Wasserman, and K. A. Wharton. Regulation of contractility, cytoskeletal structure, and filament assembly in the brush border of intestinal epithelial cells. Cold Spring Harbor Symp. Quant. Biol. 46: 855–870, 1982.
 95. Mooseker, M. S., T. Coleman, and K. Conzelman. Calcium and the regulation of cytoskeletal assembly, structure and contractility. In: Calcium and the Cell. London: Pitman, 1986, p. 232–245. (Ciba Found. Symp. 122.)
 96. Mooseker, M. S., T. A. Graves, K. A. Wharton, N. Falco, and C. L. Howe. Regulation of microvillus structure: calcium‐dependent solation and cross‐linking of actin filaments in the microvilli of intestinal epithelial cells. J. Cell Biol. 87: 809–822, 1980.
 97. Mooseker, M. S., and C. L. Howe. The brush border of intestinal epithelium: a model system for analysis of cell surface architecture and motility. In: Methods in Cell Biology. The Cytoskeleton. Biological Systems and In Vitro Models, edited by L. Wilson, New York: Academic, 1982, vol. 25, pt. B, p. 144–175.
 98. Mooseker, M. S., T. C. S. Keller, and N. Hirokawa. Regulation of contractility and cytoskeletal structure in the brush border. In: Brush Border Membranes. London: Pitman, 1983, p. 195–215. (Ciba Found. Symp. 95.)
 99. Mooseker, M. S., T. D. Pollard, and K. Fujiwara. Characterization and localization of myosin in the brush border of intestinal epithelial cells. J. Cell Biol. 79: 444–453, 1978.
 100. Mooseker, M. S., T. D. Pollard, and K. A. Wharton. Nucleated polymerization of actin from the membrane‐associated ends of microvillar filaments in the intestinal brush border. J. Cell Biol. 95: 222–233, 1982.
 101. Mooseker, M. S., and L. G. Tilney. The organization of an actin filament‐membrane complex: filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J. Cell Biol. 67: 725–743, 1975.
 102. Mukherjee, T. M., and L. A. Staehelin. The fine structural organization of the brush border of intestinal epithelial cells. J. Cell Sci. 8: 573–599, 1971.
 103. Overton, J., and J. Shoup. Fine structure of cell surface specializations in the maturing duodenal mucosa of the chick. J. Cell Biol. 21: 75–85, 1964.
 104. Pavelka, M., A. Ellinger, and A. Gangl. Effect of colchicine on rat small intestinal absorptive cells. I. Formation of basolateral microvillus borders. J. Ultrastruct. Res. 85: 249–259, 1983.
 105. Pearl, M., D. Fishkind, M. Mooseker, D. Keene, and T. Keller. Studies on the spectrin‐like protein from the intestinal brush border, TW 260/240, and characterization of its interaction with the cytoskeleton and actin. J. Cell Biol. 98: 66–78, 1984.
 106. Pitelka, D. R., and B. N. Taggart. Mechanical tension induces lateral movement of intramembrane components of the tight junction: studies on mouse mammary cells in culture. J. Cell Biol. 96: 606–612, 1983.
 107. Reaven, E. P., and G. M. Reaven. Distribution and content of microtubules in relation to the transport of lipid. An ultrastructural quantitative study of the absorptive cell of the small intestine. J. Cell Biol. 75: 559–572, 1977.
 108. Reiker, J., H. Swanijung‐Collins, J. Montibeller, B. Lamperski, and J. H. Collins. Brush border myosin heavy and light chain phosphorylation by calmodulin‐dependent kinases (Abstract). J. Cell Biol. 101: 160a, 1985.
 109. Rodewald, R., S. B. Newman, and M. J. Karnovsky. Contraction of isolated brush borders from the intestinal epithelium. J. Cell Biol. 70: 541–554, 1976.
 110. Sefton, B. A., and T. Hunter. Tyrosine protein kinases. In: Advances in Cyclic Nucleotide and Protein Phosphorylation Research, edited by P. Greengard and G. Robison, New York: Raven, 1984, vol. 18, p. 195–226.
 111. Stidwell, R. P., and D. R. Burgess. A burst of elongation of intestinal microvilli during embryogenesis coincides with dramatic changes in the G:F‐actin ratios. J. Cell Biol. 99: 30a, 1984.
 112. Stidwell, R. P., and D. R. Burgess. Regulation of intestinal brush border microvillus length during development by the G‐ to F‐actin ratio. Dev. Biol. 114: 381–388, 1986.
 113. Stidwell, R. P., T. Wysolmerski, and D. R. Burgess. The brush border cytoskeleton is not static: in vivo turnover of proteins. J. Cell Biol. 98: 641–645, 1984.
 114. Stossel, T. P., C. Chaponnier, R. Ezzel, J. H. Hartwig, P. Janmey, D. Kwiatkowski, S. Lind, D. Smith, F. S. Southwick, H. L. Yin, and K. S. Zaner. Nonmuscle actin‐binding proteins. Annu. Rev. Cell Biol. 1: 353–402, 1985.
 115. Swanljung‐Collins, H., and J. H. Collins. Calcium and actin stimulation of the ATPase activity of brush border 110,000‐dalton protein‐calmodulin complex (Abstract). J. Cell Biol. 101: 163a, 1985.
 116. Swanljung‐Collins, H., J. Montibeller, and J. H. Collins. Purification and characterization of the 110‐kDa actinand calmodulin‐binding protein from intestinal brush border: a myosin‐like ATPase. Methods Enzymol. 139: 137–147, 1987.
 117. Tamura, R., Y. Nishi, and Y. Takesue. Immunolocalization of the 33KD protein in the microvilli of rabbit small‐intestinal epithelial cells. Exp. Cell Res. 150: 356–366, 1984.
 118. Tamura, R., Y. Takesue, and Y. Nishi. A 33,000‐dalton protein of the microvilli isolated from rabbit small‐intestinal epithelial cells. Purification and some properties. J. Biochem. Tokyo 92: 1259–1277, 1982.
 119. Verner, K., and A. Bretscher. Induced morphological changes in isolated microvilli: Regulation of membrane topography in vitro by submembranous microfilaments. Eur. J. Cell Biol. 29: 187–192, 1983.
 120. Verner, K., and A. Bretscher. Microvillus 110K‐calmodulin: effects of nucleotides on isolated cytoskeletons and the interaction of the purified complex with F‐actin. J. Cell Biol. 100: 1455–1465, 1985.
 121. Walsh, T. P., A. Weber, K. Davis, E. Bonder, and M. S. Mooseker. Calcium dependence of villin‐induced actin depolymerization. Biochemistry 23: 6099–6102, 1984.
 122. Walsh, T. P., A. Weber, J. Higgins, E. M. Bonder, and M. S. Mooseker. Effect of villin on the kinetics of actin polymerization. Biochemistry 23: 2613–2621, 1984.
 123. Wang, Y., E. M. Bonder, M. S. Mooseker, and D. L. Taylor. Effects of villin on the polymerization and subunit exchange of actin. Cell Motil. 3: 151–165, 1983.
 124. Wasserman, R. H. Intestinal absorption of calcium and phosphorus. Federation Proc. 40: 68–72, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Thomas C. S. Keller, Mark S. Mooseker. Enterocyte Cytoskeleton: Its Structure and Function. Compr Physiol 2011, Supplement 19: Handbook of Physiology, The Gastrointestinal System, Intestinal Absorption and Secretion: 209-221. First published in print 1991. doi: 10.1002/cphy.cp060406