Comprehensive Physiology Wiley Online Library

Salt and Water Transport by Gallbladder Epithelium

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Morphology
2 Basic Transport Functions
3 Mechanisms of Transepithelial Salt Transport
3.1 Basic Electrophysiology of Gallbladder Epithelium
3.2 Paracellular Pathway
3.3 Apical Cell Membrane
3.4 Basolateral Cell Membrane
3.5 Intracellular Ionic Activities
3.6 Transepithelial Ion Fluxes
3.7 Mechanisms of Salt Transport at Apical Membrane
3.8 Mechanisms of Salt Transport at Basolateral Membrane
4 Mechanisms of Transepithelial Water Transport
4.1 Pinocytotic Theory
4.2 Electroosmotic Theory
4.3 Osmotic Theory
5 Conclusions
Figure 1. Figure 1.

Passive, steady‐state equivalent electrical circuits for gallbladder epithelium. M, apical (mucosal) solution; C, cell interior; S, basolateral (serosal) solution. Left, basolateral membrane is represented by lumped equivalent (Rb). Ra and Rs, electrical resistances of apical membrane and paracellular pathway, respectively. Right, lateral membrane has distributed resistance (R1) in series with lateral intercellular space (RLIS). R*b, resistance of basal region of basolateral membrane; Rj, resistance of junctions (see refs. 44, 75).

Figure 2. Figure 2.

Thévenin equivalent circuit for gallbladder epithelium. Each element of circuit is represented by equivalent resistance (R) in series with equivalent electromotive force (or zero‐current voltage, E). a, Apical membrane; b, basolateral membrane; s, paracellular pathway. Measured membrane voltages are depicted on right. Polarity convention is Vms = VmVs; Vmc = VcVm; Vcs = VcVs.

[From Reuss 93.]
Figure 3. Figure 3.

Intracellular and extracellular ionic activities (a) in Necturus gallbladder. V, voltages; , electrodiffusive driving forces. Arrows, direction of net driving forces for electrodiffusion.

(Data from refs. 3, 46, 47, 50, 52, 77, 94, 100, 109, 110.)
Figure 4. Figure 4.

Effects of nominal apical removal of Na+ or Cl on membrane voltages and intracellular sodium ion activity (aNai+) (see Table 3).

[From Reuss 100.]
Figure 5. Figure 5.

Working hypothesis of ion transport mechanisms in Necturus gallbladder epithelium. Top, apical solution; bottom, basolateral solution. Only primary active element is Na+ pump (P). Open circles, carriers; parallel lines, channels. Basolateral membrane Na+ entry pathway is hypothetical.

Figure 6. Figure 6.

Three‐compartment model of water transport. Membrane separating compartments 1 and 2 is semipermeable, i.e., permeable to water but not to solute, i.e., reflection coefficient σs = 1. Membrane separating compartments 2 and 3 is porous, i.e., equally permeable to water and small solutes (σs = 0). Water transport is in direction shown by arrows, provided that compartment 2 is hyperosmotic relative to compartment 1, independent of osmolality in compartment 3.

[Adapted from Curran and MacIntosh 18.]
Figure 7. Figure 7.

Standing‐gradient model. Active solute transport into channel makes channel fluid hypertonic. Water follows down osmotic gradient, across channel walls. As solute diffuses along channel, osmolality decreases progressively from closed to open end. In steady state, standing osmotic gradient is maintained.

[From Diamond and Bossert 29.]
Figure 8. Figure 8.

Top, epithelium, with lateral intercellular space (LIS) and unstirred layers (USL) of thicknesses δ1 and δ2, respectively. Middle, concentration (C) profile of osmotic probe added to solution 1. Bottom, simultaneous concentration profile of NaCl, present in both solutions at equal concentrations. Profile of [NaCl] will be reversed if osmotic probe is instead added to solution 2.

[From Diamond 28.]


Figure 1.

Passive, steady‐state equivalent electrical circuits for gallbladder epithelium. M, apical (mucosal) solution; C, cell interior; S, basolateral (serosal) solution. Left, basolateral membrane is represented by lumped equivalent (Rb). Ra and Rs, electrical resistances of apical membrane and paracellular pathway, respectively. Right, lateral membrane has distributed resistance (R1) in series with lateral intercellular space (RLIS). R*b, resistance of basal region of basolateral membrane; Rj, resistance of junctions (see refs. 44, 75).



Figure 2.

Thévenin equivalent circuit for gallbladder epithelium. Each element of circuit is represented by equivalent resistance (R) in series with equivalent electromotive force (or zero‐current voltage, E). a, Apical membrane; b, basolateral membrane; s, paracellular pathway. Measured membrane voltages are depicted on right. Polarity convention is Vms = VmVs; Vmc = VcVm; Vcs = VcVs.

[From Reuss 93.]


Figure 3.

Intracellular and extracellular ionic activities (a) in Necturus gallbladder. V, voltages; , electrodiffusive driving forces. Arrows, direction of net driving forces for electrodiffusion.

(Data from refs. 3, 46, 47, 50, 52, 77, 94, 100, 109, 110.)


Figure 4.

Effects of nominal apical removal of Na+ or Cl on membrane voltages and intracellular sodium ion activity (aNai+) (see Table 3).

[From Reuss 100.]


Figure 5.

Working hypothesis of ion transport mechanisms in Necturus gallbladder epithelium. Top, apical solution; bottom, basolateral solution. Only primary active element is Na+ pump (P). Open circles, carriers; parallel lines, channels. Basolateral membrane Na+ entry pathway is hypothetical.



Figure 6.

Three‐compartment model of water transport. Membrane separating compartments 1 and 2 is semipermeable, i.e., permeable to water but not to solute, i.e., reflection coefficient σs = 1. Membrane separating compartments 2 and 3 is porous, i.e., equally permeable to water and small solutes (σs = 0). Water transport is in direction shown by arrows, provided that compartment 2 is hyperosmotic relative to compartment 1, independent of osmolality in compartment 3.

[Adapted from Curran and MacIntosh 18.]


Figure 7.

Standing‐gradient model. Active solute transport into channel makes channel fluid hypertonic. Water follows down osmotic gradient, across channel walls. As solute diffuses along channel, osmolality decreases progressively from closed to open end. In steady state, standing osmotic gradient is maintained.

[From Diamond and Bossert 29.]


Figure 8.

Top, epithelium, with lateral intercellular space (LIS) and unstirred layers (USL) of thicknesses δ1 and δ2, respectively. Middle, concentration (C) profile of osmotic probe added to solution 1. Bottom, simultaneous concentration profile of NaCl, present in both solutions at equal concentrations. Profile of [NaCl] will be reversed if osmotic probe is instead added to solution 2.

[From Diamond 28.]
References
 1. Andreoli, T. E., and J. A. Schafer. Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F89–F96, 1979.
 2. Baerentsen, H. J., O. Christensen, P. G. Thomsen, and T. Zeuthen. Steady states and the effects of ouabain in the Necturus gallbladder epithelium: a model analysis. J. Membr. Biol. 68: 215–225, 1982.
 3. Baerentsen, H., F. Giraldez, and T. Zeuthen. Influx mechanisms for Na+ and Cl− across the brush border membrane of leaky epithelia: a model and microelectrode study. J. Membr. Biol. 75: 205–218, 1983.
 4. Barry, P. H., and J. M. Diamond. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64: 763–873, 1984.
 5. Bello‐Reuss, E., T. P. Grady, and L. Reuss. Mechanism of the effect of cyanide on cell membrane potentials in Necturus gall‐bladder epithelium. J. Physiol. Lond. 314: 343–357, 1981.
 6. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3− transport. J. Gen. Physiol. 81: 53–94, 1983.
 7. Boulpaep, E. L., and H. Sackin. Electrical analysis of intraepithelial barriers. Curr. Top. Membr. Transp. 13: 170–196, 1980.
 8. Brazy, P. C., and R. B. Gunn. Furosemide inhibition of chloride transport in human red blood cells. J. Gen. Physiol. 68: 583–599, 1976.
 9. Clausen, C., S. A. Lewis, and J. M. Diamond. Impedance analysis of a tight epithelium using a distributed resistance model. Biophys. J. 26: 291–318, 1979.
 10. Corcia, A., and W. M. Armstrong. KCl cotransport: a mechanism for basolateral chloride exit in Necturus gallbladder. J. Membr. Biol. 76: 173–182, 1983.
 11. Cotton, C., and L. Reuss. Measurement of the effective thickness of the mucosal unstirred layer in Necturus gallbladder epithelium (Abstract). J. Gen. Physiol. 86: 44, 1985.
 12. Cotton, C., and L. Reuss. Measurement of hydraulic water permeability (Lp) of the apical membrane of Necturus gallbladder epithelium (NGB) (Abstract). Federation Proc. 45: 891, 1986.
 13. Cremaschi, D., and S. Hénin. Na+ and Cl− transepithelial routes in rabbit gallbladder. Tracer analysis of the transports. Pfluegers Arch. 361: 33–41, 1975.
 14. Cremaschi, D., S. Henin, G. Meyer, and T. Bacciola. Does amphotericin B unmask an electrogenic Na+ pump in rabbit gallbladder? Shift of gallbladders with negative to gallbladders with positive transepithelial p.d.'s. J. Membr. Biol. 34: 55–71, 1977.
 15. Cremaschi, D., and G. Meyer. Amiloride‐sensitive sodium channels in rabbit and guinea‐pig gall‐bladder. J. Physiol. Lond. 326: 21–34.
 16. Crmaschi, D., G. Meyer, S. Bermano, and M. Marcati. Different sodium chloride cotransport systems in the apical membrane of rabbit gallbladder epithelial cells. J. Membr. Biol. 73: 227–235, 1983.
 17. Cremaschi, D., G. Meyer, and C. Rosetti. Bicarbonate effects, electromotive forces and potassium effluxes in rabbit and guinea‐pig gall‐bladder. J. Physiol. Lond. 335: 51–64, 1983.
 18. Curran, P. F., and J. R. MacIntosh. A model system for biological water transport. Nature Lond. 193: 347–348, 1962.
 19. Curran, P. F., and A. K. Solomon. Ion and water fluxes in the ileum of rats. J. Gen. Physiol. 41: 143–168, 1957.
 20. Davis, C. W., and A. L. Finn. Effects of mucosal sodium removal on cell volume in Necturus gallbladder epithelium. Am. J. Physiol. 249 (Cell Physiol. 18): C304–C312, 1985.
 21. Diamond, J. M. The reabsorptive function of the gall‐bladder. J. Physiol. Lond. 161: 442–473, 1962.
 22. Diamond, J. M. The mechanism of solute transport by the gall‐bladder. J. Physiol. Lond. 161: 474–502, 1962.
 23. Diamond, J. M. The mechanism of water transport by the gall‐bladder. J. Physiol. Lond. 161: 503–527, 1962.
 24. Diamond, J. M. Transport of salt and water in rabbit and guinea pig gallbladder. J. Gen. Physiol. 48: 1–14, 1964.
 25. Diamond, J. M. The mechanism of isotonic water transport. J. Gen. Physiol. 48: 15–42, 1964.
 26. Diamond, J. M. Transport mechanisms in the gallbladder. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. V, chapt. 115, p. 2451–2482.
 27. Diamond, J. M. Solute‐linked water transport in epithelia. In: Membrane Transport Processes, edited by J. F. Hoffman. New York: Raven, 1978, vol. 1, p. 257–276.
 28. Diamond, J. M. Osmotic water flow in leaky epithelia. J. Membr. Biol. 51: 195–216, 1979.
 29. Diamond, J. M., and W. H. Bossert. Standing‐gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50: 2061–2083, 1967.
 30. Diamond, J. M., and J. M. Tormey. Role of long extracellular channels in fluid transport across epithelia. Nature Lond. 210: 817–820, 1966.
 31. Dietschy, J. M. Water and solute movement across the wall of the everted rabbit gall bladder. Gastroenterology 47: 395–408, 1964.
 32. Dietschy, J. M. Recent developments in solute and water transport across the gallbladder epithelium. Gastroenterology 50: 692–707, 1966.
 33. Dietschy, J. M., and E. W. Moore. Diffusion potentials and potassium distribution across the gallbladder wall. J. Clin. Invest. 43: 1551–1560, 1964.
 34. Duffey, M. E., B. Hainau, S. Ho, and C. J. Bentzel. Regulation of epithelial tight junction permeability by cyclic AMP. Nature Lond. 294: 451–453, 1981.
 35. Duffey, M. E., K. Turnheim, R. A. Frizzell, and S. G. Schultz. Intracellular chloride activities in rabbit gallbladder: direct evidence for the role of the sodium‐gradient in energizing “uphill” chloride transport. J. Membr. Biol. 42: 229–245, 1978.
 36. Eldrup, E., O. Frederiksen, K. Mollgard, and J. Rostgaard. Effects of a small serosal hydrostatic pressure on sodium and water transport and morphology in rabbit gall‐bladder. J. Physiol. Lond. 331: 67–85, 1982.
 37. Ericson, A.‐C., and K. R. Spring. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am. J. Physiol. 243 (Cell Physiol. 12): C140–C145, 1982.
 38. Fisher, R. S. Chloride movement across basolateral membrane of Necturus gallbladder epithelium. Am. J. Physiol. 247 (Cell Physiol. 16): C495–C500, 1984.
 39. Frederiksen, O. Effect of amiloride on sodium and water reabsorption in the rabbit gall‐bladder. J. Physiol. Lond. 335: 75–88, 1983.
 40. Frederiksen, O., and P. P. Leyssac. Transcellular transport of isosmotic volumes by the rabbit gall‐bladder in vitro. J. Physiol. Lond. 201: 201–224, 1969.
 41. Frederiksen, O., and P. P. Leyssac. Effects of cytochalasin B and dimethylsulphoxide on isosmotic fluid transport by rabbit gall‐bladder in vitro. J. Physiol. Lond. 265: 103–118, 1977.
 42. Frizzell, R. A., M. C. Dugas, and S. G. Schultz. Sodium chloride transport by rabbit gallbladder direct evidence for a coupled NaCl influx process. J. Gen. Physiol. 65: 830–834, 1975.
 43. Frizzell, R. A., and K. Heintze. Transport functions of the gallbladder. In: Liver and Biliary Tract Physiology I, edited by N. B. Javitt. Baltimore, MD: University Park, 1980, vol. 21, p. 221–247. (Int. Rev. Physiol. Ser.)
 44. Frömter, E. The route of passive ion movement through the epithelium of Necturus gallbladder. J. Membr. Biol. 8: 259–301, 1972.
 45. Frömter, E., and J. Diamond. Route of passive ion permeation in epithelia. Nature New Biol. 235: 9–13, 1972.
 46. Garcia‐Diaz, J. F., and W. M. Armstrong. The steady‐state relationship between sodium and chloride transmembrane electrochemical potential differences in Necturus gallbladder. J. Membr. Biol. 55: 213–222, 1980.
 47. Garcia‐Diaz, J. F., A. Corcia, and W. M. Armstrong. Intracellular chloride activity and apical membrane chloride conductance in Necturus gallbladder. J. Membr. Biol. 73: 145–155, 1983.
 48. Garcia‐Diaz, J. F., W. Nagel, and A. Essig. Voltage‐dependent K conductance at the apical membrane of Necturus gallbladder. Biophys. J. 43: 269–278, 1983.
 49. Gelarden, R. T., and R. C. Rose. Electrical properties and diffusion potentials in gallbladder of man, monkey, dog, goose and rabbit. J. Membr. Biol. 19: 37–54, 1974.
 50. Giraldez, F. Active sodium transport and fluid secretion in the gall‐bladder epithelium of Necturus. J. Physiol. Lond. 348: 431–455, 1984.
 51. Gögelein, H., and W. Van Driessche. Noise analysis of the K+ current through the apical membrane of Necturus gallbladder. J. Membr. Biol. 60: 187–198, 1981.
 52. Graf, J., and G. Giebisch. Intracellular sodium activity and sodium transport in Necturus gallbladder epithelium. J. Membr. Biol. 47: 327–355, 1979.
 53. Green, R., and G. Giebisch. Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F167–F174, 1984.
 54. Greger, R. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pfluegers Arch. 390: 38–43, 1981.
 55. Guggino, W. B., E. E. Windhager, E. L. Boulpaep, and G. Giebisch. Cellular and paracellular resistances of the Necturus proximal tubule. J. Membr. Biol. 67: 143–154, 1982.
 56. Gunter‐Smith, P. J., and S. G. Schultz. Potassium transport and intracellular potassium activities in rabbit gallbladder. J. Membr. Biol. 65: 41–47, 1982.
 57. Heintze, K., and K.‐U. Petersen. Na/H and Cl/HCO3 exchange as a mechanism for HCO3‐stimulated NaCl absorption by gallbladder. In: Hydrogen Ion Transport in Epithelia, edited by I. Schulz, G. Sachs, J. G. Forte, and K. J. Ullrich. Amsterdam: Elsevier/North‐Holland, 1980, p. 345–354.
 58. Heintze, K., K.‐U. Petersen, P. Olles, S. H. Saverymuttu, and J. R. Wood. Effects of bicarbonate on fluid and electrolyte transport by the guinea pig gallbladder: a bicarbonate‐chloride exchange. J. Membr. Biol. 45: 43–59, 1979.
 59. Heintze, K., K.‐U. Petersen, and J. R. Wood. Effects of bicarbonate on fluid and electrolyte transport by guinea pig and rabbit gallbladder: stimulation of absorption. J. Membr. Biol. 62: 175–181, 1981.
 60. Hénin, S., and D. Cremaschi. Transcellular ion route in rabbit gallbladder. Electrical properties of the epithelial cells. Pfluegers Arch. 355: 125–139, 1975.
 61. Hénin, S., D. Cremaschi, T. Schettino, G. Meyer, C. L. L. Donin, and F. Cotelli. Electrical parameters in gallbladders of different species. Their contribution to the origin of the transmural potential difference. J. Membr. Biol. 34: 73–91, 1977.
 62. Hill, A. E. Solute‐solvent coupling in epithelia: a critical examination of the standing‐gradient osmotic flow theory. Proc. R. Soc. Lond. B Biol. Sci. 190: 99–114, 1975.
 63. Hill, A. E. Solute‐solvent coupling in epithelia: an electroosmotic theory of fluid transfer. Proc. R. Soc. Lond. B Biol. Sci. 190: 115–134, 1975.
 64. Hill, A. Salt‐water coupling in leaky epithelia. J. Membr. Biol. 56: 177–182, 1980.
 65. Hill, A. E., and B. S. Hill. Sucrose fluxes and junctional water flow across Necturus gallbladder epithelium. Proc. R. Soc. Lond. B Biol. Sci. 200: 163–174, 1978.
 66. Hill, B. S., and A. E. Hill. Fluid transfer by Necturus gallbladder epithelium as a function of osmolarity. Proc. R. Soc. Lond. B Biol. Sci. 200: 151–162, 1978.
 67. Hodgkin, A. L., and P. Horowicz. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. Lond. 148: 127–160, 1959.
 68. Ikonomov, O., M. Simon, and E. Frömter. Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium. Pfluegers Arch. 403: 301–307, 1985.
 69. Ives, H. E., V. J. Yee, and D. G. Warnock. Mixed type inhibition of the renal Na+/H+ antiporter by Li+ and amiloride. J. Biol. Chem. 258: 9710–9716, 1983.
 70. Jarrell, J. A. Reversible carbon dioxide‐induced inhibition of dye coupling in Necturus gallbladder. Am. J. Physiol. 244 (Cell Physiol. 13): C419–C421, 1983.
 71. Kaye, G. I., H. O. Wheeler, R. T. Whitlock, and N. Lane. Fluid transport in the rabbit gallbladder: a combined physiological and electron microscopic study. J. Cell Biol. 30: 237–268, 1966.
 72. Kinsella, J. L., and P. S. Aronson. Properties of the Na+‐H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F451–F469, 1980.
 73. Koefoed‐Johnson, V., and H. H. Ussing. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.
 74. Kottra, G., and E. Frömter. Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. I. Experimental procedures. Pfluegers Arch. 402: 409–420, 1984.
 75. Kottra, G., and E. Frömter. Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. II. Test of model circuits and quantification of results. Pfluegers Arch. 402: 421–432, 1984.
 76. Larson, M., and B.‐E. Persson. Carbonic anhydrase inhibition slows down volume regulatory increase in Necturus gallbladder epithelial cells. Acta Physiol. Scand. 124: 118, 1985.
 77. Larson, M., and K. R. Spring. Bumetanide inhibition of NaCl transport by Necturus gallbladder. J. Membr. Biol. 74: 123–129, 1983.
 78. Liedtke, C. M., and U. Hopfer. Anion transport in brush border membrane isolated from rat small intestine. Biochem. Biophys. Res. Commun. 76: 579–585, 1977.
 79. Liedtke, C. M., and U. Hopfer. Mechanism of Cl− translocation across small intestinal brush‐border membrane. I. Absence of Na+‐Cl− cotransport. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G263–G271, 1982.
 80. Liedtke, C. M., and U. Hopfer. Mechanism of Cl− translocation across small intestinal brush‐border membrane. II. Demonstration of Cl−‐OH− exchange and Cl− conductance. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G272–G280, 1982.
 81. Machen, T. E., D. Erlij, and F. B. P. Wooding. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J. Cell Biol. 54: 302–312, 1972.
 82. Martin, D. W., and J. M. Diamond. Energetics of coupled active transport of sodium and chloride. J. Gen. Physiol. 50: 295–315, 1966.
 83. Mills, J. W., and D. R. Di Bona. Distribution of Na+ pump sites in the frog gallbladder. Nature Lond. 271: 273–275, 1978.
 84. Mollgard, K., and J. Rostgaard. The transcellular compartment of tubulo‐cisternal endoplasmic reticulum, a common feature of transporting epithelial cells. In: Water Transport Across Epithelia. Barriers, Gradients and Mechanisms, edited by H. H. Ussing, N. Bindslev, N. A. Lassen, and O. Sten‐Knudsen. Copenhagen: Munksgaard, 1981, p. 85–98. (Alfred Benzon Symp. 15.)
 85. Moreno, J. H., and J. M. Diamond. Cation permeation mechanisms and cation selectivity in tight junctions of gallbladder epithelium. In: Membranes. A Series of Advances. Lipid Bilayers and Biological Membranes: Dynamic Properties, edited by G. Eisenman, New York: Dekker, 1975, vol. 3, p. 383–497.
 86. Musch, M. W., S. A. Orellana, L. S. Kimberg, M. Field, D. R. Halm, E. J. Krasny, Jr., and R. A. Frizzell. Na+‐K+ Cl− co‐transport in the intestine of a marine teleost. Nature Lond. 300: 351–353, 1982.
 87. Pedley, T. J., and J. Fischbarg. Unstirred layer effects in osmotic water flow across gallbladder epithelium. J. Membr. Biol. 54: 89–102, 1980.
 88. Persson, B.‐E., and K. R. Spring. Gallbladder epithelial cell hydraulic water permeability and volume regulation. J. Gen. Physiol. 79: 481–505, 1982.
 89. Petersen, K.‐U., and L. Reuss. Cyclic AMP‐induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J. Gen. Physiol. 81: 705–729, 1983.
 90. Petersen, K.‐U., and L. Reuss. Electrophysiological effects of propionate and bicarbonate on gallbladder epithelium. Am. J. Physiol. 248 (Cell Physiol. 17): C58–C69, 1985.
 91. Petersen, K.‐U., F. Wehner, and J. M. Winterhager. Na/H exchange at the apical membrane of guinea‐pig gallbladder epithelium: properties and inhibition by cyclic AMP. Pfluegers Arch. 405: S115–S120, 1985.
 92. Reuss, L. Effects of amphotericin B on the electrical properties of Necturus gallbladder: intracellular microelectrode studies. J. Membr. Biol. 41: 65–86, 1978.
 93. Reuss, L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. III. Ionic permeability of the basolateral cell membrane. J. Membr. Biol. 47: 239–259, 1979.
 94. Reuss, L. Mechanisms of sodium and chloride transport by gallbladder epithelium. Federation Proc. 38: 2733–2738, 1979.
 95. Reuss, L. Transport in gallbladder. In: Membrane Transport in Biology. Transport Organs, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1979, vol. 4, pt. B, p. 853–898.
 96. Reuss, L. Mechanisms of the mucosa‐negative transepithelial potential produced by amphotericin B in gallbladder epithelium. Federation Proc. 40: 2206–2212, 1981.
 97. Reuss, L. Potassium transport mechanisms by amphibian gallbladder. In: Ion Transport by Epithelia, edited by S. G. Schultz. New York: Raven, 1981, p. 109–128.
 98. Reuss, L. The paracellular pathway in amphibian gallbladder. In: The Paracellular Pathway, edited by S. E. Bradley and E. F. Purcell. New York: Josiah Macy, Jr. Found., 1982, p. 247–269.
 99. Reuss, L. Basolateral KCl co‐transport in a NaCl‐absorbing epithelium. Nature Lond. 305: 723–726, 1983.
 100. Reuss, L. Independence of apical membrane Na+ and Cl− entry in Necturus gallbladder epithelium. J. Gen. Physiol. 84: 423–445, 1984.
 101. Reuss, L. Changes in cell volume measured with an electrophysiologic technique. Proc. Natl. Acad. Sci. USA 82: 6014–6018, 1985.
 102. Reuss, L., E. Bello‐Reuss, and T. P. Grady. Effects of ouabain on fluid transport and electrical properties of Necturus gallbladder. Evidence in favor of a neutral basolateral sodium transport mechanism. J. Gen. Physiol. 73: 385–402, 1979.
 103. Reuss, L., and J. L. Costantin. Cl−/HCO3− exchange at the apical membrane of Necturus gallbladder. J. Gen. Physiol. 83: 801–818, 1984.
 104. Reuss, L., and A. L. Finn. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady‐state effects of mucosal solution ionic substitutions. J. Membr. Biol. 25: 115–139, 1975.
 105. Reuss, L., and A. L. Finn. Electrical properties of the cellular transpeithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J. Membr. Biol. 25: 141–161, 1975.
 106. Reuss, L., and T. P. Grady. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium. J. Membr. Biol. 51: 15–31, 1979.
 107. Reuss, L., S. A. Lewis, N. K. Wills, S. I. Helman, T. C. Cox, W. F. Boron, A. W. Siebens, W. B. Guggino, G. Biebisch, and S. G. Schultz. Ion transport processes in basolateral membranes of epithelia. Federation Proc. 43: 2488–2502, 1984.
 108. Reuss, L., and K.‐U. Petersen. Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium. J. Gen. Physiol. 85: 409–429, 1985.
 109. Reuss, L., and S. A. Weinman. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J. Membr. Biol. 49: 345–362, 1979.
 110. Reuss, L., S. A. Weinman, and T. P. Grady. Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium. J. Gen. Physiol. 76: 33–52, 1980.
 111. Reuss, L., S. A. Weinman, and K.‐U. Petersen. Unstirred layer effects on electrical properties and transport across the apical membrane of amphibian gallbladder epithelium. In: Intestinal Absorption and Secretion, edited by E. Skadhauge and K. Heintze, Lancaster, UK: MTP, 1984, p. 55–66.
 112. Rose, R. C. Absorptive functions of the gallbladder. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, p. 1021–1033.
 113. Rose, R. C., R. T. Gelarden, and D. L. Nahrwold. Electrical properties of isolated human gallbladder. Am. J. Physiol. 224: 1320–1326, 1973.
 114. Rose, R. C., and D. L. Nahrwold. Electrolyte transport by gallbladders of rabbit and guinea pig: effect of amphotericin B and evidence of rheogenic Na transport. J. Membr. Biol. 29: 1–22, 1976.
 115. Rose, R. C., and D. L. Nahrwold. Electrolyte transport in Necturus gallbladder: the role of rheogenic Na transport. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G358–G365, 1980.
 116. Rose, R. C., and S. G. Schultz. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J. Gen. Physiol. 57: 639–663, 1971.
 117. Sackin, H. and E. L. Boulpaep. Models for coupling of salt and water transport. J. Gen. Physiol. 66: 671–733, 1975.
 118. Schultz, S. G. The double‐membrane model for sodium‐absorbing epithelia: current status and questions for the future. In: Membrane Biophysics. Physical Methods in the Study of Epithelia, edited by M. A. Dinno, A. B. Callahan, and T. C. Rozzell. New York: Liss, 1983, vol. II, p. 1–13.
 119. Spring, K. R. Fluid transport by gallbladder epithelium. J. Exp. Biol. 106: 181–194, 1983.
 120. Spring, K. R., and A.‐C. Ericson. Epithelial cell volume modulation and regulation. J. Membr. Biol. 69: 167–176, 1982.
 121. Spring, K. R., and A. Hope. Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder. J. Gen. Physiol. 73: 287–305, 1979.
 122. Spring, K. R., A. Hope, and B.‐E. Persson. Quantitative light microscopic studies of epithelial fluid transport. In: Water Transport Across Epithelia. Barriers, Gradients and Mechanisms, edited by H. H. Ussing, N. Bindslev, N. A. Lassen, and O. Sten‐Knudsen. Copenhagen: Munksgaard, 1981, p. 190–205. (Alfred Benzon Symp. 15.)
 123. Spring, K. R., and G. Kimura. Chloride reabsorption by renal proximal tubules of Necturus. J. Membr. Biol. 38: 233–254, 1978.
 124. Steward, M. C. Paracellular non‐electrolyte permeation during fluid transport across rabbit gall‐bladder epithelium. J. Physiol. Lond. 322: 419–439, 1982.
 125. Stoddard, J. S., and L. Reuss. Effect of mucosal CO2/HCO3 on intracellular pH in Necturus gallbladder epithelium (Abstract). J. Gen. Physiol. 86: 42, 1985.
 126. Sullivan, B., and W. O. Berndt. Transport by isolated rabbit gallbladders in phosphate‐buffered solutions. Am. J. Physiol. 225: 838–844, 1973.
 127. Sullivan, B., and W. O. Berndt. Transport by isolated rabbit gallbladders in bicarbonate‐buffered solutions. Am. J. Physiol. 225: 845–848, 1973.
 128. Suzuki, K., G. Kottra, L. Kampmann, and E. Frömter. Square wave pulse analysis of cellular and paracellular conductance pathways in Necturus gallbladder epithelium. Pfluegers Arch. 394: 302–312, 1982.
 129. Tormey, J., and J. M. Diamond. The ultrastructural route of fluid transport in rabbit gall bladder. J. Gen. Physiol. 50: 2031–2060, 1967.
 130. Van Driessche, W., and H. Gögelein. Potassium channels in the apical membrane of the toad gallbladder. Nature Lond. 275: 665–667, 1978.
 131. Van Os, C. H., J. A. Michels, and J. F. G. Slegers. Effects of electrical gradients on volume flows across gall bladder epithelium. Biochim. Biophys. Acta 443: 545–555, 1976.
 132. Van Os, C. H., and J. F. G. Slegers. Correlation between (Na+‐K+)‐activated ATPase activities and the rate of isotonic fluid transport of gallbladder epithelium. Biochim. Biophys. Acta 241: 89–96, 1971.
 133. Van Os, C. H., and J. F. G. Slegers. Path of osmotic water flow through rabbit gall bladder epithelium. Biochim. Biophys. Acta 291: 197–207, 1973.
 134. Van Os, C. H., and J. F. G. Slegers. The electrical potential profile of gallbladder epithelium. J. Membr. Biol. 24: 341–363, 1975.
 135. Van Os, C. H., G. Wiedner, and E. M. Wright. Volume flows across gallbladder epithelium induced by small hydrostatic and osmotic gradients. J. Membr. Biol. 49: 1–20, 1979.
 136. Warnock, D. G., R. Greger, P. B. Dunham, M. A. Benjamin, R. A. Frizzell, M. Field, K. R. Spring, H. E. Ives, P. S. Aronson, and J. Seifter. Ion transport processes in apical membranes of epithelia. Federation Proc. 43: 2473–2487, 1984.
 137. Wedner, H. J., and J. M. Diamond. Contributions of unstirred‐layer effects to apparent electrokinetic phenomena in the gall‐bladder. J. Membr. Biol. 1: 92–108, 1969.
 138. Weinman, S. A., and L. Reuss. Na+‐H+ exchange at the apical membrane of Necturus gallbladder. Extracellular and intracellular pH studies. J. Gen. Physiol. 80: 299–321, 1982.
 139. Weinman, S. A., and L. Reuss. Na+‐H+ exchange and Na+ entry across the apical membrane of Necturus gallbladder. J. Gen. Physiol. 83: 57–74, 1984.
 140. Weinstein, A. M., and J. L. Stephenson. Electrolyte transport across a simple epithelium. Steady‐state and transient analysis. Biophys. J. 27: 165–186, 1979.
 141. Wheeler, H. O. Concentrating function of the gallbladder. Am. J. Med. 51: 588–595, 1971.
 142. Whitlock, R. T., and H. O. Wheeler. Coupled transport of solute and water across rabbit gallbladder epithelium. J. Clin. Invest. 43: 2249–2265, 1964.
 143. Whitlock, R. T., and H. O. Wheeler. Hydrogen ion transport by isolated rabbit gallbladder. Am. J. Physiol. 217: 310–316, 1969.
 144. Whittembury, G., C. V. De Martinez, A. Paz‐Aliaga, and H. Linares. Paracellular water flow in leaky epithelia. Evidence from solvent drag of extracellular solutes. In: Water Transport Across Epithelia. Barriers, Gradients and Mechanisms, edited by H. H. Ussing, N. Bindslev, N. A. Lassen, and O. Sten‐Knudsen. Copenhagen: Munksgaard, 1981, p. 17–35. (Alfred Benzon Symp. 15.)
 145. Wieth, J. O., and J. Brahm. Cellular anion transport. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 49–89.
 146. Windhager, E. E., E. L. Boulpaep, and G. Giebisch. Electrophysiological studies on single nephrons. Proc. Int. Congr. Nephrol. 1: 35–47, 1966.
 147. Winterhager, J. M., C. P. Stewart, K. Heintze, and K.‐U. Petersen. Electroneutral secretion of bicarbonate by guinea pig gallbladder epithelium. Am. J. Physiol. 250 (Cell Physiol. 19): C617–C628, 1986.
 148. Wood, J. R., and J. Svanvik. Gall‐bladder water and electrolyte transport and its regulation. Gut 24: 579–593, 1983.
 149. Wright, E. M., A. P. Smulders, and J. M. Tormey. The role of the lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gallbladder. J. Membr. Biol. 7: 198–219, 1972.
 150. Yoshitomi, K., B.‐C. Burckhardt, and E. Frömter. Rheogenic sodium‐bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pfluegers Arch. 405: 360–366, 1985.
 151. Zeldin, D. C., A. Corcia, and W. M. Armstrong. Cyclic AMP‐induced changes in membrane conductance of Necturus gallbladder epithelial cells. J. Membr. Biol. 84: 193–206, 1985.
 152. Zeuthen, T. Relations between intracellular ion activities and extracellular osmolarity in Necturus gallbladder epithelium. J. Membr. Biol. 66: 109–121, 1982.
 153. Zeuthen, T., and T. Machen. HCO3−/CO2 stimulates Na+/H+ and Cl+/HCO3− exchange in Necturus gallbladder. In: Hydrogen Ion Transport in Epithelia, edited by J. G. Forte, D. G. Warnock, and F. C. Rector, Jr. New York: Wiley, 1984, p. 97–108.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Luis Reuss. Salt and Water Transport by Gallbladder Epithelium. Compr Physiol 2011, Supplement 19: Handbook of Physiology, The Gastrointestinal System, Intestinal Absorption and Secretion: 303-322. First published in print 1991. doi: 10.1002/cphy.cp060411