Comprehensive Physiology Wiley Online Library

Calcium Signaling Systems

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Voltage‐Dependent Calcium‐Signaling System
1.1 Voltage‐Gated Calcium Channels
1.2 Basal Pacemaker Activity
1.3 Agonist‐Induced Modulation of Pacemaker Activity
2 Calcium Mobilization–Dependent Signaling System
2.1 Inositol (1,4,5)‐Triphosphate (IP3) and IP3 Receptor (IP3R) Channels
2.2 cADP Ribose and RyR Channels
2.3 Calcium Pumps
2.4 Intracellular Calcium Buffers
3 Calcium Entry Controlled by Calcium Mobilization
3.1 Capacitative Calcium Entry
3.2 Voltage‐Gated Calcium Entry
4 Temporal and Spatial Organization of Calcium Signals
4.1 Local and Global Calcium Spikes
4.2 Cell Specificity of Calcium Signaling
4.3 Receptor Specificity of Calcium Signaling
4.4 Concentration‐Dependent Regulation
4.5 Intraorganelle Calcium Signaling
5 Amplification and Synchronization of Calcium Signals
5.1 Purinergic Receptor Channels
5.2 Gap Junction Channels
6 Cellular Functions of Calcium Signals
6.1 Calcium‐Controlled Enzymes
6.2 Calcium‐Controlled Channels
6.3 Calcium Signaling and Exocytosis
6.4 Mitochondrial Functions and Calcium Signals
6.5 Nuclear Functions and Calcium Signals
7 Summary
Figure 1. Figure 1.

Spontaneous plasma membrane oscillator activity in rat pituitary gonadotrophs. A: Simultaneous recording of membrane potential Vm and [Ca2+]i during spontaneous firing of action potentials. B: Sensitivity of firing frequency to current injection. [From Li et al. 234 with permission.]

Figure 2. Figure 2.

Comparison of effects of gonadotropin‐releasing hormone (GnRH) (left panels) and inositol(1,4,5)‐triphosphate [Ins(1,4,5)P3] (right panels) on pattern of Ca2+ spiking in rat gonadotrophs: GnRH‐induced [Ca2+]i oscillations were measured in intact cells loaded with Indo 1‐AM; IP3‐induced [Ca2+]i oscillations were measured indirectly, by a calcium‐controlled potassium current, and IP3 was injected through the pipette. [From Stojilkovic et al. 429 with permission.]

Figure 3. Figure 3.

Schematic representation of the endoplasmic reticulum (ER) oscillator. CMR, seven‐membrane‐domain calcium‐mobilizing receptor; PM, plasma membrane; PLC, phospholipase C; DAG, diacyglycerol; PKC, protein kinase C; InsP3, inositol1,4,5‐trisphosphate.

Figure 4. Figure 4.

Components of the agonist‐induced calcium signal in an excitable cell. A: Spike and plateau phases of the [Ca2+]i response to agonist stimulation can be resolved into a largely extracellular calcium–independent component and an influx‐dependent component (dashed area). B: Extracellular calcium–dependent component in agonist‐induced [Ca2+]i response can be analyzed further by utilizing specific inhibitors of plasma membrane calcium channels.

Figure 5. Figure 5.

Kinetics of depletion and repletion of agonist‐sensitive calcium pool. A: Typical pattern of [Ca2+]i oscillations in a single rat gonadotroph. B: Store calcium content is expressed as a percentage of prestimulus level. Open circles, endoplasmic reticulum calcium content during gonadotropin‐releasing hormone (GnRH) stimulation. Closed circles, endoplasmic reticulum calcium content after withdrawal of GnRH. Estimation of intraluminal Ca2+ was done by ionomycin applied at different times after GnRH stimulation.

Figure 6. Figure 6.

Patterns of synchronization of [Ca2+]i and membrane potentials in cells operated by calcium‐mobilizing receptors. Schematic representation of thyroid‐releasing hormone (TRH)‐induced [Ca2+]i and membrane potential (Vm) responses in lactotrophs (A) and gonadotropin‐releasing hormone (GnRH)‐induced [Ca2+]i and Vm responses in gonadotrophs (B).

[From S. S. Stojilkovic and K. J. Catt. Calcium oscillations in anterior pituitary cells. Endocr. Rev. 13: 256–280, 1992, with permission. © The Endocrine Society.]
Figure 7. Figure 7.

Concentration‐dependent voltage‐response profiles in agonist (experimental records)‐ and inositol1,4,5‐triphosphate (InsP3) (model simulations) stimulated gonadotrophs. In experiments, increasing concentrations of gonadotropin‐releasing hormone (GnRH) were applied at the arrow. In model simulations, increasing concentrations of InsP3 were used.

[From Li et al. 235 with permission.]
Figure 8. Figure 8.

Dependence of spiking frequency on agonist concentration and calcium influx. A: Modulation of Ca2+ spiking frequency by depolarization (left panel) and by increase in gonadotropin‐releasing hormone (GnRH) concentration (right panel). B: Membrane potential (Vm) dependence of depolarization on sustained GnRH‐induced Ca2+ oscillations. Dashed horizontal line indicates maximum frequency response reached 150 s after initiation of oscillations at the holding potential of −50 mV. In a step‐depolarization protocol, calcium‐activated potassium current was employed as an indicator of cytosolic calcium concentration.

[From Kukuljan et al. 211 with permission.]
Figure 9. Figure 9.

Nonoscillatory calcium responses in single parathyroid cells, GT1‐7 neurons, and Leydig cells. No obvious modulations of the amplitude of [Ca2+]i response to increasing endothelin‐1(ET‐1) concentrations were observed in parathyroid and Leydig cells. In GT1‐7 cells, a consistent increase in the amplitude of [Ca2+]i response to increasing concentrations of endothelin‐1 was observed. GnRH, gonadotropin‐releasing hormone; GnRH‐Ant., GnRh antagonist; BQ‐123, ETA receptor antagonist.

[From M. Tomic, M. L. Dufau, K. K. Catt, and S. S. Stojilkovic. Calcium signaling in single rat Leydig cells. Endocrinology 136: 3422–3429, 1995. © The Endocrine Society.]
Figure 10. Figure 10.

Comparison of the patterns of gonadotropin‐releasing hormone (GnRH)‐induced [Ca2+]i responses in rat gonadotrophs and Leydig cells. A: Time dependence of the [Ca2+]i response in the two cell types. Two upper tracings are from gonadotrophs and bottom tracing from a Leydig cell. B: Concentration‐dependent effects of GnRH on the number of cells showing biphasic responses in gonadotrophs and Leydig cells. Dotted lines illustrate EC50 values.

Figure 11. Figure 11.

Dependence of the frequency of Ca2+ spiking on agonist concentrations in rat gonadotrophs. Data for concentration responses for gonadotropin‐releasing hormone (GnRH) and endothelin‐1 (ET‐1) were derived from Stojilkovic et al. 422 and those for pituitary adenylate cyclase–activating polypeptide (PACAP) from unpublished results.

Figure 12. Figure 12.

Comparison of concentration dependence and [Ca2+]i signaling patterns in Leydig cells, GT1‐7 neurons, and pituitary gonadotrophs stimulated with gonadotropin‐releasing hormone (GnRH). Left panels: Data for concentration responses were derived from Iida et al. 169, Krsmanovic et al. 208, and Tomic et al. 453. Right panels: Schematic representation of the pattern of Ca2+ signals.

[From M. Tomic, M. L. Dufau, K. J. Catt, and S. S. Stojikovic 454. Calcium signaling in single rat Leydig cells. Endocrinology 136: 3422–3429, 1995. © The Endocrine Society.]
Figure 13. Figure 13.

Schematic representation of intracellular calcium releasable pools. PM, plasma membrane, ER, endoplasmic reticulum; IP3R, inositol‐1,4,5‐triphosphate receptor; m., membrane.

Figure 14. Figure 14.

Schematic representation of purinergic system for self‐amplification of Ca2+ signals and secretion, as well as cell‐to‐cell spreading of Ca2+ signals. Co‐secretion of ATP with hormone is essential for initiation of this signaling system. CMR, calcium‐mobilizing receptors; DAG, diacylglycerol; PKC, protein kinase C; IP3, inositol‐1,4,5‐triphosphate.

Figure 15. Figure 15.

Effects of ATP on the plasma membrane oscillator in identified rat gonadotrophs. A: Initiation of [Ca2+]i spiking in silent cells by ATP (left panel) and modulation of spiking frequency in spontaneously active cells by increasing concentrations of ATP (right panel). B: Effects of Mg2+ on ATP‐induced spiking (left panel) and lack of effects of Mg2+ on spontaneously driven Ca2+ (right panel). C: Addition of high (100 μM) ATP abolishes spontaneous and ATP‐induced Ca2+ transients. D: In cells stimulated with high ATP, addition of P2 receptor blocker suramin and Mg2+ reestablished the oscillatory pattern of [Ca2+]i spiking.

[From Tomic et al. 455 with permission.]
Figure 16. Figure 16.

Effects of extracellular ATP on gonadotropin‐releasing hormone (GnRH)‐induced [Ca2+]i and secretory response. A: Effects of ATP on frequency of spiking during sustained GnRH stimulation. B: Effects of ATP on sustained GnRH‐induced luteinizing hormone (LH) release in perifused pituitary cells.

[From Tomic et al. 455 with permission.]
Figure 17. Figure 17.

Transcriptional regulation of c‐fos by multiple intracellular messengers. DAG, diacylglycerol; PKC, protein kinase C; CaMK, calmodulin kinase; PKA, protein kinase A; CREB, cAMP‐responsive element‐binding protein; SRF, serum response factor.

[From S. S. Stojilkovic, J. Reinhart, and K. J. Catt 431. GnRH receptors: structure and signal transduction pathways. Endocr. Rev. 15: 462–499, 1994, with permission. © The Endocrine Society.]


Figure 1.

Spontaneous plasma membrane oscillator activity in rat pituitary gonadotrophs. A: Simultaneous recording of membrane potential Vm and [Ca2+]i during spontaneous firing of action potentials. B: Sensitivity of firing frequency to current injection. [From Li et al. 234 with permission.]



Figure 2.

Comparison of effects of gonadotropin‐releasing hormone (GnRH) (left panels) and inositol(1,4,5)‐triphosphate [Ins(1,4,5)P3] (right panels) on pattern of Ca2+ spiking in rat gonadotrophs: GnRH‐induced [Ca2+]i oscillations were measured in intact cells loaded with Indo 1‐AM; IP3‐induced [Ca2+]i oscillations were measured indirectly, by a calcium‐controlled potassium current, and IP3 was injected through the pipette. [From Stojilkovic et al. 429 with permission.]



Figure 3.

Schematic representation of the endoplasmic reticulum (ER) oscillator. CMR, seven‐membrane‐domain calcium‐mobilizing receptor; PM, plasma membrane; PLC, phospholipase C; DAG, diacyglycerol; PKC, protein kinase C; InsP3, inositol1,4,5‐trisphosphate.



Figure 4.

Components of the agonist‐induced calcium signal in an excitable cell. A: Spike and plateau phases of the [Ca2+]i response to agonist stimulation can be resolved into a largely extracellular calcium–independent component and an influx‐dependent component (dashed area). B: Extracellular calcium–dependent component in agonist‐induced [Ca2+]i response can be analyzed further by utilizing specific inhibitors of plasma membrane calcium channels.



Figure 5.

Kinetics of depletion and repletion of agonist‐sensitive calcium pool. A: Typical pattern of [Ca2+]i oscillations in a single rat gonadotroph. B: Store calcium content is expressed as a percentage of prestimulus level. Open circles, endoplasmic reticulum calcium content during gonadotropin‐releasing hormone (GnRH) stimulation. Closed circles, endoplasmic reticulum calcium content after withdrawal of GnRH. Estimation of intraluminal Ca2+ was done by ionomycin applied at different times after GnRH stimulation.



Figure 6.

Patterns of synchronization of [Ca2+]i and membrane potentials in cells operated by calcium‐mobilizing receptors. Schematic representation of thyroid‐releasing hormone (TRH)‐induced [Ca2+]i and membrane potential (Vm) responses in lactotrophs (A) and gonadotropin‐releasing hormone (GnRH)‐induced [Ca2+]i and Vm responses in gonadotrophs (B).

[From S. S. Stojilkovic and K. J. Catt. Calcium oscillations in anterior pituitary cells. Endocr. Rev. 13: 256–280, 1992, with permission. © The Endocrine Society.]


Figure 7.

Concentration‐dependent voltage‐response profiles in agonist (experimental records)‐ and inositol1,4,5‐triphosphate (InsP3) (model simulations) stimulated gonadotrophs. In experiments, increasing concentrations of gonadotropin‐releasing hormone (GnRH) were applied at the arrow. In model simulations, increasing concentrations of InsP3 were used.

[From Li et al. 235 with permission.]


Figure 8.

Dependence of spiking frequency on agonist concentration and calcium influx. A: Modulation of Ca2+ spiking frequency by depolarization (left panel) and by increase in gonadotropin‐releasing hormone (GnRH) concentration (right panel). B: Membrane potential (Vm) dependence of depolarization on sustained GnRH‐induced Ca2+ oscillations. Dashed horizontal line indicates maximum frequency response reached 150 s after initiation of oscillations at the holding potential of −50 mV. In a step‐depolarization protocol, calcium‐activated potassium current was employed as an indicator of cytosolic calcium concentration.

[From Kukuljan et al. 211 with permission.]


Figure 9.

Nonoscillatory calcium responses in single parathyroid cells, GT1‐7 neurons, and Leydig cells. No obvious modulations of the amplitude of [Ca2+]i response to increasing endothelin‐1(ET‐1) concentrations were observed in parathyroid and Leydig cells. In GT1‐7 cells, a consistent increase in the amplitude of [Ca2+]i response to increasing concentrations of endothelin‐1 was observed. GnRH, gonadotropin‐releasing hormone; GnRH‐Ant., GnRh antagonist; BQ‐123, ETA receptor antagonist.

[From M. Tomic, M. L. Dufau, K. K. Catt, and S. S. Stojilkovic. Calcium signaling in single rat Leydig cells. Endocrinology 136: 3422–3429, 1995. © The Endocrine Society.]


Figure 10.

Comparison of the patterns of gonadotropin‐releasing hormone (GnRH)‐induced [Ca2+]i responses in rat gonadotrophs and Leydig cells. A: Time dependence of the [Ca2+]i response in the two cell types. Two upper tracings are from gonadotrophs and bottom tracing from a Leydig cell. B: Concentration‐dependent effects of GnRH on the number of cells showing biphasic responses in gonadotrophs and Leydig cells. Dotted lines illustrate EC50 values.



Figure 11.

Dependence of the frequency of Ca2+ spiking on agonist concentrations in rat gonadotrophs. Data for concentration responses for gonadotropin‐releasing hormone (GnRH) and endothelin‐1 (ET‐1) were derived from Stojilkovic et al. 422 and those for pituitary adenylate cyclase–activating polypeptide (PACAP) from unpublished results.



Figure 12.

Comparison of concentration dependence and [Ca2+]i signaling patterns in Leydig cells, GT1‐7 neurons, and pituitary gonadotrophs stimulated with gonadotropin‐releasing hormone (GnRH). Left panels: Data for concentration responses were derived from Iida et al. 169, Krsmanovic et al. 208, and Tomic et al. 453. Right panels: Schematic representation of the pattern of Ca2+ signals.

[From M. Tomic, M. L. Dufau, K. J. Catt, and S. S. Stojikovic 454. Calcium signaling in single rat Leydig cells. Endocrinology 136: 3422–3429, 1995. © The Endocrine Society.]


Figure 13.

Schematic representation of intracellular calcium releasable pools. PM, plasma membrane, ER, endoplasmic reticulum; IP3R, inositol‐1,4,5‐triphosphate receptor; m., membrane.



Figure 14.

Schematic representation of purinergic system for self‐amplification of Ca2+ signals and secretion, as well as cell‐to‐cell spreading of Ca2+ signals. Co‐secretion of ATP with hormone is essential for initiation of this signaling system. CMR, calcium‐mobilizing receptors; DAG, diacylglycerol; PKC, protein kinase C; IP3, inositol‐1,4,5‐triphosphate.



Figure 15.

Effects of ATP on the plasma membrane oscillator in identified rat gonadotrophs. A: Initiation of [Ca2+]i spiking in silent cells by ATP (left panel) and modulation of spiking frequency in spontaneously active cells by increasing concentrations of ATP (right panel). B: Effects of Mg2+ on ATP‐induced spiking (left panel) and lack of effects of Mg2+ on spontaneously driven Ca2+ (right panel). C: Addition of high (100 μM) ATP abolishes spontaneous and ATP‐induced Ca2+ transients. D: In cells stimulated with high ATP, addition of P2 receptor blocker suramin and Mg2+ reestablished the oscillatory pattern of [Ca2+]i spiking.

[From Tomic et al. 455 with permission.]


Figure 16.

Effects of extracellular ATP on gonadotropin‐releasing hormone (GnRH)‐induced [Ca2+]i and secretory response. A: Effects of ATP on frequency of spiking during sustained GnRH stimulation. B: Effects of ATP on sustained GnRH‐induced luteinizing hormone (LH) release in perifused pituitary cells.

[From Tomic et al. 455 with permission.]


Figure 17.

Transcriptional regulation of c‐fos by multiple intracellular messengers. DAG, diacylglycerol; PKC, protein kinase C; CaMK, calmodulin kinase; PKA, protein kinase A; CREB, cAMP‐responsive element‐binding protein; SRF, serum response factor.

[From S. S. Stojilkovic, J. Reinhart, and K. J. Catt 431. GnRH receptors: structure and signal transduction pathways. Endocr. Rev. 15: 462–499, 1994, with permission. © The Endocrine Society.]
References
 1. Abbracchio, M. P., and G. Burnstock Purinoreceptors: are there families of P2X and P2Y purinoreceotors? Pharmacol. Ther. 64: 445–475, 1994.
 2. Abou‐Samra, A. B., K. J. Catt, and G. Aguilera Calcium‐dependent control of corticotropin release in rat anterior pituitary cell cultures. Endocrinology 121: 965–971, 1987.
 3. Abou‐Samra, A.‐B., J. P. Harwood, V. C. Manganiello, K. J. Catt, and G. Aguilera Phorbol 12‐myristate 13‐acetate and vasopressin potentiate the effect of corticotropin‐releasing factor on cyclic AMP production in rat anterior pituitary cells. J. Biol. Chem. 262: 1129–1136, 1987.
 4. Adler, M., B. S. Wong, S. L. Sabol, N. Busin, M. B. Jackson, and F. F. Weight. Action potentials and membrane ion channels in clonal anterior pituitary cells. Proc. Natl. Acad. Sci. U.S.A. 80: 2086–2090, 1983.
 5. Aguilera, G., J. P. Harwood, J. X. Wilson, J. Molrell, J. H. Brown, and K. J. Catt. Mechanisms of action of corticotropin‐releasing factor and other regulators of corticotropin release in rat pituitary cells. J. Biol. Chem. 258: 8039–8045, 1983.
 6. Albert, P. R., and A. H. Tashjian Jr.. Relationship of thyrotropin‐releasing hormone‐induced spike and plateau phases of cytosolic free Ca2+ concentrations to hormone secretion. Selective blockade using ionomycin and nifedipine. J. Biol. Chem. 259: 15350–15363, 1984.
 7. Albert, P. R., and A. H. Tashjian Jr Thyrotropin‐releasing hormone‐induced spike and plateau in cytosolic free Ca2+ concentration in pituitary cells. Relation to prolactin release. J. Biol. Chem. 259: 5827–5832, 1984.
 8. Albert, P. R., G. Wolfson, and A. H. Tashjian Jr. Diacylglycerol increases cytosolic free Ca2+ concentration in rat pituitary cells. J. Biol. Chem. 262: 6577–6581, 1987.
 9. Aletta, J. M., M. A. Selbert, A. C. Nairn, and A. M. Edelman. Activation of a calcium–calmodulin‐dependent protein kinase I cascade in PC12 cells. J. Biol. Chem. 271: 20930–20934, 1996.
 10. Allbritton, N. L., E. Oancea, M. A. Kuhn, and T. Meyer Source of nuclear calcium signals. Proc. Natl. Acad. Sci. U.S.A. 91: 12458–12462, 1994.
 11. Al‐Mohanna, F. A., K.W.T. Caddy, and S. R. Bolsver. The nucleus is insulated from large cytosolic calcium ion changes. Nature 367: 745–750, 1994.
 12. Alvarez, J., M. Montero, and J. Garcia‐Sancho. High affinity inhibition of Ca2+‐dependent K+ channels by cytochrome P‐450 inhibitors. J. Biol. Chem. 267: 11789–11793, 1992.
 13. Ammala, C., O. Larsson, P. O. Berggern, K. Bokvist, L. J. Berggren, H. Kindmark, and P. Rorsman Insoitol trisphosphate‐dependent periodic activation of a Ca2+‐activated K+ conductance in glucose‐stimulated pancreatic β‐cells. Nature 353: 849–852, 1991.
 14. Andrews, W. V., R. A. Maurer, and P. M. Conn. Stimulation of rat luteinizing hormone‐beta messenger RNA levels by gonadotropin releasing hormone. Apparent role for protein kinase C. J. Biol. Chem. 263: 13755–13761, 1988.
 15. Antoni, F. A., and G. Dayanithi Blockade of K+ channels reverses the inhibitory action of atriopeptin on secretagogue‐stimulated ACTH release by perifused isolated rat anterior pituitary cells. J. Endocrinol. 126: 183–191, 1990.
 16. Asaoka, Y., S.‐I. Nakamura, K. Yoshida, and Y. Nishizuka Protein kinase C, calcium and phospholipid degradation. Trends Biochem. Sci. 17: 414–417, 1992.
 17. Badmintgon, M. N., A. K. Campbell, and C. M. Rembold. Differential regulation of nuclear and cytosolic Ca2+ in HeLa cells. J. Biol. Chem. 271: 31210–31214, 1996.
 18. Balboa, M. A., B. L. Firestein, C. Godson, K. S. Bell, and P. A. Insel. Protein kinase Cα mediates phospholipase D activation by nucleotides and phorbol ester in Madin‐Darby canine kidney cells. J. Biol. Chem. 269: 10511–10516, 1994.
 19. Balla, T., S. Nakanishi, and K. J. Catt. Cation sensitivity of inositol 1,4,5‐trisphosphate production and metabolism in agonist‐stimulated adrenal glomerulosa cells. J. Biol. Chem. 269: 16101–16107, 1994.
 20. Barros, F., G. M. Katz, G. J. Kaczorowski, and R. L. Vandlen. Calcium current in GH3 cultured pituitary cells under whole‐cell voltage clamp: inhibition by voltage‐dependent potassium currents. Proc. Natl. Acad. Sci. U.S.A. 82: 1108–1112, 1985.
 21. Bean, B. P. Pharmacology and electrophysiology of ATP‐activated ion channels. Trends Pharmacol. Sci. 13: 87–90, 1992.
 22. Benham, C. D., and R. W. Tsien. A novel receptor‐operated Ca2+‐permeable channel activated by ATP in smooth muscle. Nature 328: 275–278, 1987.
 23. Bennett, M. R., L. Farnell, W. G. Gibson, and S. Karunanithi Quantal transmission at purinergic junctions: stochastic interaction between ATP and its receptors. Biophys. J. 68: 925–935, 1995.
 24. Berridge, M. J. Inositol trisphosphate and calcium signaling. Nature 361: 315–325, 1993.
 25. Berridge, M. J. Capacitative calcium entry. Biochem. J. 312: 1–11, 1995.
 26. Berridge, M. J., and R. F. Irvine. Inositol phosphates and cell signalling. Nature 341: 197–205, 1989.
 27. Bezprozvanny, I., and B. E. Ehrlich. ATP modulates the function of inositol 1,4,5‐trisphosphate‐gated channels at two sites. Neuron 10: 1175–1184, 1993.
 28. Bezprozvanny, I. B., K. Ondrias, E. Kaftan, D. A. Stoyanovsky, and B. E. Ehrlich. Activation of the calcium release channel (ryanodine receptor) by heparin and other polyanions is calcium dependent. Mol. Biol. Cell 4: 347–352, 1993.
 29. Bezprozvanny, I., J. Watras, and B. E. Ehrlich. Bell‐shaped calcium‐response curves of Ins,,P3‐ and calcium‐gated channels from endoplasmic reticulum of cerebellum. Nature 351: 751–754, 1991.
 30. Biales, B., M. A. Dicher, and A. Tischler Sodium and calcium action potential in pituitary cells. Nature 267: 172–174, 1977.
 31. Bird, S. J., M. F. Rossier, A. R. Hughes, S. B. Shears, D. L. Armstrong, and J. W. Putney. Activation of Ca2+ entry into acinar cells by a non‐phosphorylatable inositol trisphosphate. Nature 352: 162–165, 1991.
 32. Bito, H., K. Deisseroth, and R. W. Tsien. CREB phosphorylation and dephosphorylation: a Ca2+‐ and stimulus duration‐dependent switch for hippocampal gene expression. Cell 87: 1203–1214, 1996.
 33. Blondel, O., G. I. Bell, and S. Seino Inositol 1,4,5‐trisphosphate receptors, secretory granules and secretion in endocrine and neuroendocrine cells. Trends Neurosci. 18: 157–161, 1995.
 34. Bo, X., Y. Zhang, M. Nassar, G. Burnstock, and R. Schoepfer A P2X purinoreceptor cDNA confering a novel pharmacological profile. FEBS Lett. 375: 129–133, 1995.
 35. Boitano, S., E. R. Dirksen, and M. J. Sanderson. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258: 292–295, 1992.
 36. Bootman, M. D., C. W. Taylor, and M. J. Berridge. The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5‐trisphosphate receptor. J. Biol. Chem. 267: 25113–25119, 1992.
 37. Bosma, M. M., and B. Hille Electrophysiological properties of a cell line of the gonadotrope lineage. Endocrinology 130: 3411–3420, 1992.
 38. Brake, A. J., M. J. Wagenbach, and D. Julius New structural motif for ligand‐gated ion channels defined by an ionotropic ATP receptor. Nature 371: 519–523, 1994.
 39. Braun, A. P., and H. Schulman The multifunctional calcium/calmodulin‐dependent protein kinase: from form to function. Annu. Rev. Physiol. 57: 417–445, 1995.
 40. Buell, G., C. Lewis, G. Collo, R. A. North, and A. Surprenant An antagonist‐insensitive P2X receptor expressed in epithelia and brain. EMBO J. 15: 55–62, 1996.
 41. Burgoyne, R. D., and A. Morgan Regulated exocytosis. Biochem. J. 293: 305–316, 1993.
 42. Burgoyne, R. D., A. Morgan, and A. JH. O'Sullivan. The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells: role of calcium and protein kinase C. Cell. Signal. 4: 323–334, 1989.
 43. Burnstock, G. Physiological and pathological roles of purines: an update. Drug Dev. Res. 28: 195–206, 1993.
 44. Caccavelli, L., D. Cussac, I. Pellegrini, V. Audinot, P. Jaquet, and A. Enjalbert D2 dopaminergic receptors: normal and abnormal transduction mechanisms. Horm. Res. 38: 78–83, 1992.
 45. Camacho, P., and J. D. Lechleiter. Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium‐ATPase. Science 260: 226–229, 1993.
 46. Camacho, P., and J. D. Lechleiter. Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82: 765–771, 1995.
 47. Campbell, K. P., A. T. Leung, and A. H. Sharp. The biochemistry and molecular biology of the dihydropyridine‐sensitive calcium channels. Trends Neurosci. 11: 425–430, 1988.
 48. Canonico, P. L., C. A. Valdenergo, and R. M. Macleod. The inhibition of phosphatidylinositol turnover: a possible postreceptor mechanism for the prolactin secretion inhibiting effect of dopamine. Endocrinology 113: 7–14, 1990.
 49. Carew, M. A., M.‐L. Wu, G. J. Law, Y.‐Z. Tseng, and W. T. Mason. Extracellular ATP activates calcium entry and mobilization via P2U‐purinoceptors in rat lactotrophs. Cell Calcium 16: 227–235, 1994.
 50. Castelletti, L., M. Memo, C. Missale, P. F. Spano, and A. Valero Potassium channels involved in the transduction mechanism of dopamine D2 receptors in rat lactotrophs. J. Physiol. (Lond.) 410: 251–265, 1989.
 51. Castro, E., J. Mateo, A. R. Tome, R. M. Barbosa, M. T. Miras‐Portugal, and L. M. Rosario. Cell‐specific purinergic receptors coupled to Ca2+ entry and Ca2+ release from internal stores in adrenal chromaffin cells. J. Biol. Chem. 270: 5098–5106, 1995.
 52. Catt, K. J., and S. S. Stojilkovic. Calcium signaling and gonadotropin secretion. Trends Endocrinol. Metab. 1: 15–20, 1989.
 53. Catterall, W. A. Structure and function of voltage‐sensitive ion channels. Science 242: 50–61, 1988.
 54. Cena, V., and E. Rojas Kinetic characteristics of calcium‐dependent, cholinergic receptor controlled ATP secretion from adrenal medullary chromaffin cells. Biochim. Biophys. Acta 1023: 213–222, 1990.
 55. Cesnjaj, M., K. J. Catt, and S. S. Stojilkovic. Coordinate actions of calcium and protein kinase C in the expression of primary response genes in pituitary gonadotrophs. Endocrinology 135: 692–701, 1994.
 56. Cesnjaj, M., L. Z. Krsmanovic, K. J. Catt, and S. S. Stojilkovic. Autocrine induction of c‐fos expression in GT1 neuronal cells by gonadotropin‐releasing hormone. Endocrinology 133: 3042–3045, 1993.
 57. Cesnjaj, M., L. Zheng, K. J. Catt, and S. S. Stojilkovic. Dependence of stimulus‐transcription coupling on phospholipase D in agonist‐stimulated pituitary cells. Mol. Biol. Cell 9: 1037–1047, 1995.
 58. Chadwick, C. C., A. Saito, and S. Fleischer Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc. Natl. Acad. Sci. U.S.A. 87: 2132–2136, 1990.
 59. Chang, J. P., K. L. Yu, A. O. Wong, and R. E. Peter. Differential actions of dopamine receptor subtypes on gonadotropin and growth hormone release in vitro in goldfish. Neuroendocrinology 51: 664–674, 1990.
 60. Charles, C. A., S. K. Kodali, and R. F. Tyndale. Intercellular calcium waves in neurons. Mol. Cell. Neurosci. 7: 337–353, 1996.
 61. Chatila, T., K. A. Anderson, N. Ho, and A. R. Means. A unique phosphorylation‐dependent mechanism for the activation of Ca2+/calmodulin‐dependent protein kinase type IV/GR. J. Biol. Chem. 271: 21542–21548, 1996.
 62. Cheek, T. R., and O. Thastrup Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells. Cell Calcium 10: 213–221, 1989.
 63. Chen, C.‐C., A. N. Akoplan, L. Sivllott, D. Colquhoun, G. Burnstock, and J. N. Wood. A P2X purinoreceptor expressed by a subset of sensory neurons. Nature 377: 418–431, 1995.
 64. Chen, C., and I. J. Clarke. Modulation of Ca2+ influx in the ovine somatotroph by growth hormone‐releasing factor. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E204–EE212, 1995.
 65. Chen, C., J. M. Israel, and J. D. Vincent. Electrophysiological responses of rat pituitary cells in somatotroph‐enriched primary culture to human growth hormone releasing factor. Neuroendocrinology 50: 679–687, 1989.
 66. Chen, C., J. Zhang, P. McNeill, M. Pullar, J. T. Cummins, and I. J. Clarke. Human growth hormone releasing factor (hGRF) modulates calcium currents in human growth hormone secreting adenoma cells. Brain Res. 604: 345–348, 1993.
 67. Chen, Z.‐P., M. Kratzmeier, A. Levy, C. A. McArdle, A. Poch, A. Day, A. K. Mukhopadhyay, and S. L. Lightman. Evidence for a role of pituitary ATP receptors in the regulation of pituitary function. Proc. Natl. Acad. Sci. U.S.A. 92: 5219–5223, 1995.
 68. Chen, Z.‐P., M. Kratzmeier, A. Poch, S. Xu, C. A. McArdle, A. Levy, A. K. Mukhopadhyay, and S. L. Lightman. Effects of extracellular nucleotides in the pituitary: adenosine trisphosphate receptor‐mediated intracellular responses in gonadotrope‐derived αT3–1 cells. Endocrinology 137: 248–256, 1996.
 69. Chen, Z.‐P., A. Levy, and S. L. Lightman. Activation of specific ATP receptors induces a rapid increase in intracellular calcium ions in rat hypothalamic neurons. Brain Res. 641: 249–256, 1994.
 70. Chen, Z.‐P., A. Levy, and S. L. Lightman. Nucleotides as extracellular signaling molecules. J. Neuroendocrinol. 7: 83–96, 1995.
 71. Chen, Z.‐P., A. Levy, C. A. McArdle, and S. L. Lightman. Pituitary ATP receptors: characterization and functional localization to gonadotropes. Endocrinology 135: 1280–1284, 1994.
 72. Cheung, P. H., F. J. Dowd, J. E. Porter, and L. S. Li. A Ca2+‐ATPase from rat parotid gland plasma membranes has the characteristics of an ecto‐ATPase. Cell. Signal. 4: 25–35, 1992.
 73. Choi, O. H., R. S. Adelstein, and M. A. Beaven. Secretion from rat basophilic RBL‐2H3 cells is associated with diphosphorylation of myosin light chains by myosin light chain kinase as well as phosphorylation by protein kinase C. J. Biol. Chem. 269: 536–541, 1994.
 74. Clapper, D. L., T. F. Walseth, P. J. Dargoe, and H. C. Lee. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262: 9561–9568, 1987.
 75. Clementi, E., H. Scheer, D. Zavvhetti, C. Fasolato, T. Pozzan, and J. Meldolesi Receptor‐activated Ca2+ influx. J. Biol. Chem. 267: 2164–2172, 1992.
 76. Collart, M. A., N. Tourkine, D. Belin, P. Vassalli, P. Jeanteur, and J.‐M. Blanchard. c‐fos gene transcription in murine macrophages is modulated by a calcium‐dependent block to elongation in intron 1. Mol. Cell. Biol. 11: 2826–2831, 1991.
 77. Collo, G., R. A. North, E. Kawashima, E. Merlo‐Pich, S. Neidhart, A. Surprenant, and G. Buell Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP‐gated ion channels. J. Neurosci. 16: 2495–2507, 1996.
 78. Connor, J. A. Intracellular calcium mobilization by inositol 1,4,5‐trisphosphate: intracellular movements and compartmentalization. Cell Calcium 14: 185–200, 1993.
 79. Corcuff, J. B., N. C. Guerineau, P. Mariot, B. T. Lussier, and P. Mollard Multiple cytosolic calcium signals and membrane electrical events evoked in single arginine vasopressin‐stimulated corticotrophs. J. Biol. Chem. 268: 22313–22321, 1993.
 80. Cox, D. A., and M. A. Matlib. Modulation of intramitochondrial free Ca2+ concentration by antagonists of Na+‐Ca2+ exchange. Trends Pharmacol. Sci. 14: 408–413, 1993.
 81. Cullen, P. J., J. J. Hsuan, O. Truong, A. J. Letcher, T. R. Jackson, A. P. Dawson, and R. F. Irvine. Identification of a specific Ins,,,P4‐binding protein as a member of the GAP1 family. Nature 376: 527–530, 1995.
 82. Currie, W. D., W. Li, K. G. Baimbridge, B. H. Yuen, and P.C.K. Leung. Cytosolic free calcium increased by prostaglandin F2α (PGF2α), gonadotropin‐releasing hormone, and angiotensin II in rat granulosa cells and PGF2α in human granulosa cells. Endocrinology 130: 1837–1843, 1992.
 83. Cusack, N. J. P2 receptors: subclassification and structure‐activity relationships. Drug Dev. Res. 28: 244–252, 1993.
 84. Danoff, S. K., C. D. Ferris, C. Donath, G. A. Fischer, S. Munemitsu, A. Ullrich, S. H. Snyder, and C. A. Ross. Inositol 1,4,5‐trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 88: 2951–2955, 1991.
 85. Davidson, J. S., I. K. Wakefield, U. Sohnius, P. A. van der Merwe, and R. P. Millar. A novel extracellular nucleotide receptor coupled to phosphoinositidase‐C in pituitary cells. Endocrinology 126: 80–87, 1990.
 86. Decamilli, P., D. Marconi, and A. Spada Dopamine inhibits adenylate cyclase in human prolactin secreting pituitary adenomas. Nature 278: 252–254, 1979.
 87. de Jongh, K. S., C. Warner, A. A. Colvin, and W. A. Catterall. Characterization of the two size forms of the α1 subunit of skeletal muscle L‐type calcium channels. Proc. Natl. Acad. Sci. U.S.A. 88: 10778–10782, 1991.
 88. del Castillo, A. R., M. L. Vitale, and J.‐M. Tfifaro. Ca2+ and pH determine the interaction of chromaffin cell scinderin with phosphatidylserine and phosphatidylinositol 4,5‐biphosphate and its cellular distribution during nicotinic‐receptor stimulation and protein kinase C activation. J. Cell. Biol. 119: 797–810, 1992.
 89. de Leon, M., Y. Wang, L. Jones, E. Perez‐Reyes, X. Wei, T. W. Soong, T. P. Snutch, and D. T. Yue. Essential Ca2 +‐binding motif for Ca2 +‐sensitive inactivation of L‐type Ca2+ channels. Science 270: 1502–1506, 1995.
 90. Delisle, S., K.‐H. Krause, G. Denning, B.V.L. Potter, and M. J. Welsh. Effect of inositol trisphosphate and calcium on oscillating elevations of intracellular calcium in Xenopus oocytes. J. Biol. Chem. 265: 11726–11730, 1990.
 91. Demer, L. L., C. M. Wortham, E. R. Dirksen, and M. J. Sanderson. Mechanical stimulation induces intercellular calcium signaling in bovine aortic endothelial cells. Am. J. Physiol. 264 (Heart Circ. Physiol. 35): H2094–H2102, 1993.
 92. Desrues, L., M. Lamacz, B. G. Jenks, H. Vaudry, and M. C. Tonon. Effect of dopamine on adenylate cyclase activity, polyphosphoinositide metabolism and cytosolic calcium concentrations in frog pituitary melanotrophs. J. Endocrinol. 136: 421–429, 1993.
 93. Deussen, A., B. Bading, M. Kelm, and J. Schrader Formation and salvage of adenosine by macrovascular endothelial cells. Am. J. Physiol. 264 (Heart Circ. Physiol. 35): H692–H700, 1993.
 94. de Young, G., and J. Keizer A single pool IP3‐receptor based model for agonist stimulated Ca2+ oscillations. Proc. Natl. Acad. Sci. U.S.A. 89: 9895–9899, 1992.
 95. Diaz, R., T. E. Wieleman, S. J. Anderson, and P. Stahl The use of permeabilized cells to study the ion requirements of receptor‐ligand dissociation in endosomes. Biochem. J. 260: 127–134, 1989.
 96. Dolmetsch, R. E., and R. S. Lewis. Signalling between intracellular Ca2+ stores and depletion‐activated Ca2+ channels generates [Ca2 +]i oscillations in T lymphocytes. J. Gen. Physiol. 103: 365–388, 1994.
 97. Doucet, J. P., S. P. Squinto, and N. G. Bazan. Fos‐jun and the primary genomic response in the nervous system. Possible physiological role and pathophysiological significance. Mol. Neurobiol. 4: 27–55, 1990.
 98. Drouva, S. V., C. Bihoreau, E. Laplante, R. Rasolonjanahary, H. Clauser, and C. Kordon Dihydropyridine‐sensitive calcium channel activity related to prolactin, growth hormone, and luteinizing hormone release from anterior pituitary cells in culture: interactions with somatostatin, dopamine, and estrogens. Endocrinology 123: 2762–2773, 1988.
 99. Dubel, S. J., T.V.B. Starr, J. Hell, M. K. Ahlijanian, J. J. Enyeart, W. A. Catterall, and T. P. Snutch. Molecular cloning of the α‐1 subunit of an ω‐conotoxin‐sensitive calcium channel. Proc. Natl. Acad. Sci. U.S.A. 89: 5058–5062, 1992.
 100. Dubinsky, J. M., and G. S. Oxford. Ionic currents in two strains of rat anterior pituitary tumor cells. J. Gen. Physiol. 83: 309–339, 1984.
 101. Dubinsky, J. M., and G. S. Oxford. Dual modulation of K + channels by thyrotropin‐releasing hormone in clonal pituitary cells. Proc. Natl. Acad. Sci. U.S.A. 82: 4282–4286, 1985.
 102. Dufy, B., J. D. Vincent, H. Fleury, P. du Pasquier, D. Gourdji, and A. Toxoer‐Vidal. Membrane effects of thyrotropin‐releasing hormone and estrogen shown by intracellular recording from pituitary cells. Science 204: 309–311, 1979.
 103. Dufy‐Barbe, L., L. Bresson, P. Sartor, M.‐F. Odessa, and B. Dufy Calcium homeostasis in growth hormone (GH)‐secreting adenoma cells: effect of GH‐releasing factor. Endocrinology 131: 1436–1444, 1996.
 104. Ehrlich, B. E., E. Kaftan, S. Bezprozvannaya, and I. Bezprozvanny The pharmacology of intracellular Ca2+ release channels. Trends Pharmacol. Sci. 15: 145–149, 1994.
 105. Einhorn, L. C., and G. S. Oxford. Guanine nucleotide binding proteins mediate D2 dopamine receptor activation of a potassium channel in rat lactotrophs. J. Physiol. (Lond.) 462: 563–578, 1993.
 106. Eldar, H., P. Ben‐Av, U.‐S. Schmidt, E. Livneh, and M. Liscovitch Up‐regulation of phospholipase D activity induced by overexpression of protein kinase C‐α. J. Biol. Chem. 268: 12560–12564, 1993.
 107. Ely, J. A., C. Ambroz, A. J. Baukal, S. B. Christensen, T. Balla, and K. J. Catt. Relationship between agonist‐ and thapsigargin‐sensitive calcium pools in adrenal glomerulosa cells. J. Biol. Chem. 266: 18635–18641, 1991.
 108. Enjalbert, A., and J. Backaert Pharmacological characterization of the D2 dopaminergic receptor negatively coupled with adenylate cyclase in rat anterior pituitary cells. Mol. Pharmacol. 23: 576–584, 1983.
 109. Enjalbert, A., F. Musset, C. Chenard, M. Priam, C. Kordon, and S. Heisler Dopamine inhibits prolactin secretion stimulated by the calcium channel agonist Bay‐K‐8644 through a pertussis toxin‐sensitive G protein in anterior pituitary cells. Endocrinology 123: 406–412, 1988.
 110. Evans, R. J., V. Derkach, and A. Surprenant ATP mediates fast synaptic transmission in mammalian neurons. Nature 357: 503–505, 1992.
 111. Fasolato, C., M. Hoth, G. Matthews, and R. Penner Ca2 + and Mn2+ influx through receptor‐mediated activation of nonspecific cation channels in mast cells. Proc. Natl. Acad. Sci. U.S.A. 90: 3068–3072, 1993.
 112. Fasolato, C., M. Zottini, E. Clementi, D. Zaccetti, J. Meldolesi, and T. Pozzan Intracellular Ca2+ pools in PC12 cells. Three intracellular pools are distinguished by their turnover and mechanisms of Ca2+ accumulation, storage, and release. J. Biol. Chem. 266: 20159–20167, 1991.
 113. Ferreira, Z. S., N. J. Cipolla, and R. P. Markus. Presence of P2–purinoreceptors in the rat pineal gland. Br. J. Pharmacol. 112: 107–110, 1994.
 114. Ferris, C. D., R. L. Huganir, D. S. Bredt, A. M. Cameron, and S. H. Snyder. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin‐dependent protein kinases in reconstituted lipid vesicles. Proc. Natl. Acad. Sci. U.S.A. 88: 2232–2235, 1991.
 115. Ferris, C. D., and S. H. Snyder. IP3 receptor: ligand‐activated calcium channels in multiple forms. Adv. Second Messenger Phosphoprotein Res. 26: 95–107, 1992.
 116. Fewtrell, C. Ca2+ oscillations in non‐excitable cells. Annu. Rev. Physiol. 55: 427–454, 1993.
 117. Fielder, J. L., H. B. Pollard, and E. Rojas Quantitative analysis of depolarization‐induced ATP release from mouse brain synaptosomes: external calcium dependent and independent processes. J. Membr. Biol. 127: 21–33, 1992.
 118. Fiekers, J. F., and L. M. Konpoka. Spontaneous transients of [Ca2 +]i depend on external calcium and the activation of L‐type voltage‐gated calcium channels in a clonal pituitary cell line (AtT‐20) of cultured mouse corticotropes. Cell Calcium 19: 327–336, 1996.
 119. Finch, E. A., T. J. Turner, and S. M. Goldin. Calcium as a coagonist of inositol 1,4,5‐trisphosphate‐induced calcium release. Science 252: 443–446, 1991.
 120. Fisher, S. K. Homologous and heterologous regulation of receptor‐stimulated phosphoinositide hydrolysis. Eur. J. Pharmacol. 288: 231–250, 1995.
 121. Fliegel, L., E. Leberer, N. M. Green, and D.H.S. MacLenan. The fast twitch muscle calsequesterin isoform predominates in rabbit slow‐twich soleus muscle. FEBS Lett. 242: 297–300, 1989.
 122. Fohr, K. J., J. Scott, G. A. Hilger, and M. Gratzl Characterization of the inositol 1,4,5‐trisphosphate‐induced calcium release from permeabilized endocrine cells and its inhibition by decavanadate and p‐hydroxymercuribenzoate. Biochem. J. 262: 83–89, 1989.
 123. Fohr, K. J., Y. Wahl, R. Engline, T. P. Kemmer, and M. Gratzl Decavanadate displaces inositol 1,4,5‐trisphosphate (IP3) from its receptor and inhibits IP3 induced Ca2+ release in permeabilized pancreatic acinar cells. Cell Calcium 12: 735–742, 1991.
 124. Foskett, J. K., C. M. Roifman, and D. Wong Activation of calcium oscillations by thapsigargin in parotid acinar cells. J. Biol. Chem. 266: 2778–2782, 1991.
 125. Foskett, J. K., and D.C.P. Wong. [Ca2 +]i inhibition of Ca2 + release‐activated Ca2+ influx underlies agonist‐ and thapsigargin‐induced [Ca2 +]i oscillations in salivary acinar cells. J. Biol. Chem. 269: 31525–31532, 1994.
 126. Friel, D. D., and R. W. Tsien. An FCCP‐sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus‐evoked changes in [Ca2 +]i J. Neurosci. 14: 4007–4024, 1994.
 127. Fujii, Y., M. Tomic, S. S. Stojilkovic, T. Iida, M. L. Brandi, Y. Ogino, and K. Sakaguchi Effects of endothelin‐1 on Ca2 + signaling and secretion in parathyroid cells. J. Bone Miner. Res. 10: 716–725, 1995.
 128. Fujii, Y., Y. Yamada, K. Chihara, N. Inagaki, and S. Seino Somatostatin receptor subtype SSTR2 mediates the inhibition of high‐voltage‐activated calcium channels by somatostatin and its analogue SMS 201–995. FEBS Lett. 355: 117–120, 1994.
 129. Fujimoto, T. Calcium pump of the plasma membrane is localized in caveolae. J. Cell. Biol. 120: 1147–1157, 1992.
 130. Fujimoto, T., S. Nakade, A. Miyawaki, K. Mikoshiba, and K. Ogawa Localization of inositol 1,4,5‐trisphosphate receptorlike protein in plasmalemmal caveolae. J. Cell. Biol. 119: 1507–1513, 1992.
 131. Galione, A., H. C. Lee, and W. B. Busa. Ca2 +‐induced Ca2 + release in sea urchin egg homogenates: modulation by cyclic ADP‐ribose. Science 253: 1143–1146, 1991.
 132. Gerasimenko, O. V., J. V. Gerasimenko, A. V. Tepikin, and O. H. Petersen. ATP‐dependent accumulation and inositol trisphosphate‐ or cyclic ADP‐ribose‐mediated release of Ca2 + from the nuclear envelope. Cell 80: 439–444, 1995.
 133. Geschwind, J.‐F., M. Hiriart, M. C. Glennon, H. Najafi, B. E. Corkey, F. M. Matschinsky, and M. Prentki Selective activation of Ca2+ by extracellular ATP in a pancreatic β‐cell line (HIT). Biochim. Biophys. Acta 1012: 107–115, 1989.
 134. Ghosh, T. K., P. S. Eis, J. M. Mullaney, C. L. Ebert, and D. L. Gill. Competitive, reversible, and potent antagonism of inositol 1,4,5‐trisphosphate‐activated calcium release by heparin. J. Biol. Chem. 263: 11075–11079, 1988.
 135. Giannini, G., E. Clementi, R. Ceci, G. Marziali, and V. Sorrentino Expression of a ryanodine receptor‐Ca2+ channel that is regulated by TGF‐beta. Science 257: 91–94, 1992.
 136. Gilchrist, J. S., M. P. Czubryt, and G. N. Pierce. Calcium and calcium‐binding proteins in the nucleus. Mol. Cell. Biochem. 135: 79–88, 1994.
 137. Girard, S., and D. Clapham Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx. Science 260: 229–232, 1993.
 138. Gomora, J. C., G. Avila, and G. Cota Ca2+ current expression in pituitary melanotrophs of neonatal rats and its regulation by D2 dopamine receptors. J. Physiol. (Lond.) 492: 763–737, 1996.
 139. Gray, P.T.A. Oscillations of free cytosolic calcium evoked by cholinergc and catecholaminergic agonists in rat parotid acinar cells. J. Physiol. (Lond.) 406: 35–53, 1988.
 140. Greenberg, S., F. di Virgilio, T. H. Steinberg, and S. C. Silvestein. Extracellular nucleotides mediate Ca2+ fluxes in J774 macrophages by two distinct mechanisms. J. Biol. Chem. 263: 10337–10343, 1988.
 141. Greengard, P., F. Valtorta, A. J. Czernik, and F. Benfenati Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259: 780–785, 1993.
 142. Grunicke, H. H., and F. Uberall Protein kinase C modulation. Cancer Biol. 3: 351–360, 1992.
 143. Guerineau, N., J.‐B. Corcuff, A. Tabarin, and P. Mollard Spontaneous and corticotropin‐releasing factor‐induced cytosolic calcium transients in corticotrophs. Endocrinology 129: 409–420, 1991.
 144. Gunter, T. E., K. K. Gunter, S.‐S. Sheu, and C. E. Gavin. Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267 (Cell Physiol. 36): C313–C339, 1994.
 145. Hajnoczky, G., L. D. Robb‐Gaspers, M. B. Seitz, and A. P. Thomas. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82: 415–424, 1995.
 146. Hansen, J. R., C. A. McArdle, and P. M. Conn. Relative roles of calcium derived from intra‐ and extracellular sources in dynamic luteinizing hormone release from perifused pituitary cells. Mol. Endocrinol. 1: 808–815, 1987.
 147. Hanson, P. I., T. Meyer, L. Stryer, and H. Schulman Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12: 943–956, 1994.
 148. Harden, T. K., J. L. Boyer, and R. A. Nicholas. 1 2‐purinergic receptors: subtype‐associated signaling responses and structure. Annu. Rev. Pharmacol. Toxicol. 35: 541–579, 1995.
 149. Hardie, R. C., and B. Minke The trp gene is essential for a light‐activated Ca2+ channel in Drosophila photoreceptors. Neuron 8: 643–651, 1992.
 150. Hardie, R. C., and B. Minke Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide‐mediated Ca2+ mobilization. Trends Neurosci. 16: 371–376, 1993.
 151. Hardie, R. C., A. Peretz, E. Suss‐Toby, A. Rom‐Glas, S. A. Bishop, Z. Selinger, and B. Minke Protein kinase C is required for light adaptation in Drosophila photoreceptor. Nature 363: 634–637, 1993.
 152. Harootunian, A. T., J.P.Y. Kao, S. Paranjape, and R. Y. Tsien. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science 251: 75–78, 1991.
 153. Haug, E., and K. M. Gautvik. Effects of sex steroids on prolactin secreting rat pituitary cells in culture. Endocrinology 99: 1482–1489, 1976.
 154. Helmchen, F., K. Imoto, and B. Sakmann Ca2+ buffering and action potential‐evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70: 1069–1081, 1996.
 155. Hennager, D. J., M. J. Welsh, and S. Delisle Changes in either cytosolic or nucleoplasms inositol 1,4,5‐trisphosphate levels can control nuclear Ca2+ concentration. J. Biol. Chem. 270: 4959–4962, 1995.
 156. Hernandez‐Cruz, A., F. Sala, and P. R. Adams. Subcellular calcium transients visualized by confocal microscopy in a voltage‐clamped vertebrate neurons. Science 247: 858–862, 1990.
 157. Herrington, J., Y. B. Park, D. F. Babcook, and B. Hille Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron 16: 219–228, 1996.
 158. Heyward, P. M., C. Chen, and I. J. Clarke. Inward membrane currents and electrophysiological responses to GnRH in ovine gonadotropes. Neuroendocrinology 61: 609–621, 1995.
 159. Heyward, P. M., and I. J. Clarke. A transient effect of estrogen on calcium currents and electrophysiological responses to gonadotropin‐releasing hormone in ovine gonadotropes. Neuroendocrinology 62: 543–552, 1995.
 160. Hille, B. Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer, 1991.
 161. Holl, R. W., M. O. Thorner, and D. A. Leong. Cytosolic free calcium in normal somatotropes: effects of forskolin and phorbol ester. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E373–E379, 1989.
 162. Holl, R. W., M. O. Thorner, G. L. Mandell, J. A. Sullivan, Y. N. Sinha, and D. A. Leong. Spontaneous oscillations of intracellular calcium and growth hormone secretion. J. Biol. Chem. 263: 9682–9685, 1988.
 163. Hoth, M., and R. Penner Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355: 353–355, 1992.
 164. Hoth, M., and R. Penner Calcium release‐activated calcium current in rat mast cells. J. Physiol. (Lond.) 465: 359–386, 1993.
 165. Huang, K.‐P. The mechanism of protein kinase C activation. Trends Neurosci. 12: 425–432, 1989.
 166. Huang, K.‐P., and F. L. Huang. How is protein kinase C activated in CNS. Neurochem. Int. 22: 417–433, 1993.
 167. Humbert, J. P., N. Matter, J. C. Artault, P. Koppler, and A. N. Malviya. Inositol 1,4,5‐trisphosphate receptor is located in the inner buclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5‐trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membrane. J. Biol. Chem. 271: 478–485, 1996.
 168. Hunyady, L., A. J. Baukal, M. Bor, J. A. Ely, and K. J. Catt. Regulation of 1,2‐diacylglycerol production by angiotensin‐II in bovine adrenal glomerulosa cells. Endocrinology 126: 1001–1008, 1990.
 169. Hunyady, L., F. Merelli, A. J. Baukal, and K. J. Catt. Agonist‐induced endocytosis and signal generation in adrenal glomerulosa cells. A potential mechanism for receptor‐operated calcium entry. J. Biol. Chem. 266: 2783–2788, 1991.
 170. Iida, T., S. S. Stojilkovic, S.‐I. Izumi, and K. J. Catt. Spontaneous and agonist‐induced calcium oscillations in pituitary gonadotrophs. Mol. Endocrinol. 5: 949–958, 1991.
 171. Iino, M., and M. Endo Calcium‐dependent immediate feedback control of inositol 1,4,5‐trisphosphate‐induced Ca2+ release. Nature 360: 76–78, 1992.
 172. Illes, P., and W. Norenberg Neuronal ATP receptors and their mechanism of action. Trends Pharmacol. Sci. 14: 50–54, 1993.
 173. Imagawi, T., J. S. Smith, R. Coronado, and K. J. Campbell. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2 +‐permeable pore of the calcium release channel. J. Biol. Chem. 262: 16636–16643, 1987.
 174. Ingram, C. D., R. J. Bicknell, and W. T. Mason. Intracellular recordings from bovine anterior pituitary cells: modulation of spontaneous activity by regulators of prolactin secretion. Endocrinology 119: 2508–2515, 1986.
 175. Inui, M., A. Saito, and S. Fleischer Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262: 1740–1747, 1987.
 176. Irvine, R. F. “Qantal” Ca2+ release and the control of Ca2 + entry by inositol phosphates: a possible mechanism. FEBS Lett. 263: 5–9, 1990.
 177. Israel, J.‐M., P. Jaquet, and J.‐D. Vincent. The electrical properties of isolated human prolactin‐secreting adenoma cells and their modification by dopamine. Endocrinology 117: 1448–1455, 1985.
 178. Izumi, S.‐I., S. S. Stojilkovic, and K. J. Catt. Calcium mobilization and influx during the biphasic cytosolic calcium and secretory responses in agonist‐stimulated pituitary gonadotrophs. Arch. Biochem. Biophys. 275: 410–428, 1989.
 179. Izumi, S.‐I., S. S. Stojilkovic, T. Iida, L. Z. Krsmanovic, R. J. Omeljaniuk, and K. J. Catt. Role of voltage‐sensitive calcium channels in [Ca2 +]i and secretory responses to activators of protein kinase C in pituitary gonadotrophs. Biochem. Biophys. Res. Commun. 170: 359–367, 1990.
 180. Jacob, R. Calcium oscillations in electrically non‐excitable cells. Biophysica Acta 1052: 427–438, 1990.
 181. Jacob, R. M., J. E. Merritt, T. J. Hallem, and T. J. Rink. Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature 335: 40–45, 1988.
 182. Jensen, J. R., and V. Rehder FCCP releases Ca2+ from a non‐mitochondrial store in an identified Helisoma neuron. Brain Res. 551: 311–314, 1991.
 183. Jobin, R. M., M. Tomic, L. Zheng, S. S. Stojilkovic, and K. J. Catt. GnRH‐induced potentiation of calcium‐dependent exocytosis in pituitary gonadotrophs. Endocrinology 136: 3398–3405, 1995.
 184. Jouaville, L. S., F. Ichas, E. L. Holmuhamedov, P. Camacho, and J. D. Lechleiter. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377: 438–441, 1995.
 185. Karin, M., and T. Smeal Control of transcriptional factors by signal transduction pathways: the beginning of the end. Trends Biochem. Sci. 17: 418–422, 1992.
 186. Kasai, H., and G. J. Augustine. Cytosolic Ca2+ gradients triggering undirectional fluid secretion from exocrine pancreas. Nature 348: 735–738, 1990.
 187. Kass, G. E., S. K. Duddy, G. A. Moore, and S. Orrenius 2,5‐Di(tert‐butyl)1,4‐benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5‐trisphosphate‐sensitive Ca2+ pool. J. Biol. Chem. 264: 15192–15198, 1989.
 188. Kato, M., J. Hoyland, S. K. Sikdar, and W. T. Mason. Imaging of intracellular calcium in rat anterior pituitary cells in response to growth hormone releasing factor. J. Physiol. (Lond.) 447: 171–189, 1992.
 189. Kawanishi, T., L. M. Blank, A. T. Harootunian, M. T. Smith, and R. Y. Tsien. Ca2 + oscillations induced by hormonal stimulation of individual fura‐2‐loaded hepatocytes. J. Biol. Chem. 264: 12859–12866, 1989.
 190. Keizer, J., Y.‐X. Li, S. S. Stojilkovic, and J. Rinzel InsP3‐induced Ca2 + excitability of the endoplasmic reticulum. Mol. Biol. Cell 6: 945–951, 1995.
 191. Keja, J. A., and K. S. Kits. Single‐channel properties of high‐and low‐voltage‐activated calcium channels in rat pituitary melanotropic cells. J. Neurophysiol. 71: 840–855, 1994.
 192. Keja, J. A., and K. S. Kits. Voltage dependence of G‐protein‐mediated inhibition of high‐voltage‐activated calcium channels in rat pituitary melanotropes. Neuroscience 62: 281–289, 1994.
 193. Khan, A. A., J. P. Steiner, M. G. Klein, M. F. Schneider, and S. H. Snyder. IP3 receptors: localization to plasma membrane of T cells and cocapping with the T cell receptor. Science 257: 815–818, 1992.
 194. Kidokoro, Y. Spontaneous calcium action potentials in a clonal pituitary cell line and their relationship to prolactin secretion. Nature 258: 741–742, 1975.
 195. Kiley, S. C., P. J. Parker, D. Fabbro, and S. Jaken Differential regulation of protein kinase C isozymes by thyrotropin‐releasing hormone in GH4Ci cells. J. Biol. Chem. 266: 23761–23768, 1991.
 196. Kiley, S. C., P. J. Parker, D. Fabbro, and S. Jaken Hormone‐and phorbol ester‐activated protein kinase C isozymes mediate a reorganization of the actin cytoskeleton associated with prolactin secretion in GH4C1 cells. Mol. Endocrinol. 6: 120–131, 1992.
 197. Kim, K.‐T., and W. Westhead Cellular responses to Ca2+ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2+ and secretion from bovine chromaffin cells. Proc. Natl. Acad. Sci. U.S.A. 86: 9881–9885, 1989.
 198. Klee, C. B., G. F. Draetta, and M. J. Hubbard. Calcineurin. Adv. Enzymol. Relat. Areas Mol. Biol. 61: 149–200, 1988.
 199. Kleuss, C., H. Scherbul, J. Hescheler, G. Schultz, and B. Wittig Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins. Science 259: 832–834, 1993.
 200. Koch, B. D., and A. Schonbrunn The somatostatin receptor is directly coupled to adenylate cyclase in GH4C1 pituitary cell membranes. Endocrinology 114: 1784–1790, 1984.
 201. Koch, B. D., and A. Schonbrunn Characterization of the cyclic AMP‐independent actions of somatostatin in GH cells. J. Biol. Chem. 263: 226–234, 1988.
 202. Kong, S. K., D. Tsang, K. N. Leung, and C. Y. Lee. Nuclear envelope acts as a calcium barrier in C6 glioma cells. Biochem. Biophys. Res. Commun. 218: 595–600, 1996.
 203. Kongsamut, S., I. Shibuya, and W. W. Douglas. Melanotrophs of Xenopus laevis do respond directly to neuropeptide‐Y as evidenced by reductions in secretion and cytosolic calcium pulsing in isolated cells. Endocrinology 133: 336–342, 1993.
 204. Koppler, P., N. Matter, and A. N. Malviya. Evidence for stereospecific inositol 1,3,4,5‐[3H]tetrakisphosphate binding sites on rat liver nuclei. Delineating inositol 1,3,4,5‐tetrakisphosphate interaction in nuclear calcium signaling process. J. Biol. Chem. 268: 26248–26252, 1993.
 205. Korn, S. J., A. Bolden, and R. Horn Control of action potentials and Ca2+ influx by the Ca2 +‐dependent chloride current in mouse pituitary cells. J. Physiol. (Lond.) 439: 423–437, 1991.
 206. Krause, E., F. Pfeiffer, A. Schmid, and I. Schulz Depletion of intracellular calcium stores activates a calcium conducting nonselective cation current in mouse pancreatic acinar cells. J. Biol. Chem. 271: 32523–32528, 1996.
 207. Krsmanovic, L. Z., S. S. Stojilkovic, T. Balla, S. Al‐Damluji, R. I. Weiner, and K. J. Catt. Receptors and neurosecretory actions of endothelin in hypothalamic neurons. Proc. Natl. Acad. Sci. U.S.A. 88: 11124–11128, 1991.
 208. Krsmanovic, L. Z., S. S. Stojilkovic, and K. J. Catt. Pulsatile gonadotropin‐releasing hormone release and its regulation. Trends Endocrinol. Metab. 7: 56–59, 1996.
 209. Krsmanovic, L. Z., S. S. Stojilkovic, L. M. Mertz, M. Tomic, and K. J. Catt. Expression of gonadotropin‐releasing hormone receptors and autocrine regulation of neuropeptide release in immortalized hypothalamic neurons. Proc. Natl. Acad. Sci. U.S.A. 90: 3908–3912, 1993.
 210. Kukuljan, M., E. Rojas, K. J. Catt, and S. S. Stojilkovic. Membrane potential regulates inositol 1,4,5‐trisphosphate‐controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs. J. Biol. Chem. 269: 4860–4865, 1994.
 211. Kukuljan, M., S. S. Stojilkovic, E. Rojas, and K. J. Catt. Apamin‐sensitive potassium channels mediate agonist‐induced oscillations of membrane potential in pituitary gonadotrophs. FEBS Lett. 301: 19–22, 1992.
 212. Kukuljan, M., L. Vergara, and S. S. Stojilkovic. Modulation of the kinetics of inositol 1,4,5‐trisphosphate‐induced [Ca2 +]i oscillations by calcium entry in pituitary gonadotrophs. Biophys. J. 72: 698–707, 1997.
 213. Kumakura, K., K. Sasaki, T. Sakuri, M. Ohara‐Imaizumi, H. Misonou, S. Nakamura, Y. Matsuda, and Y. Nonomura Essential role of myosin light chain kinase in the mechanism for MgATP‐dependent priming of exocytosis in adrenal chromaffin cells. J. Neurosci. 14: 7695–7703, 1994.
 214. Kumar, N. M., and N. B. Gilula. The gap junction communication channels. Cell 84: 381–388, 1996.
 215. Kurihara, K., K. Hosoi, and T. Ueha Characterization of ecto‐nucleoside triphosphatase on A‐431 human epidermoidal carcinoma cells. Enzyme 46: 213–220, 1992.
 216. Kuryshev, Y. A., G. V. Childs, and A. K. Ritchie. Corticotropin‐releasing hormone stimulation of Ca2+ entry in corticotropes is partially dependent on protein kinase A. Endocrinology 136: 3925–3935, 1995.
 217. Kusano, K., S. Fueshko, H. Gainer, and S. Wray Electrical and synaptic properties of embryonic luteinizing hormone–releasing hormone neurons in explant cultures. Proc. Natl. Acad. Sci. U.S.A. 92: 3918–3922, 1995.
 218. Lacerda, A. E., D. Rampe, and A. M. Brown. Effects of protein kinase C activators on cardiac Ca2+ channels. Nature 335: 249–251, 1988.
 219. Lai, F. A., H. P. Erickson, E. Rousseau, Q. Y. Liu, and G. Meissner Purification and reconstitution of the calcium release channel. Nature 331: 315–319, 1988.
 220. Lamberts, S.W.J., and R. M. MacLeod. Regulation of prolactin secretion at the level of the lactotrophs. Endocr. Rev. 7: 279–318, 1990.
 221. Lang, D.G., and A. K. Ritchie. Tetraethylammonium blockade of apamin‐sensitive and insensitive Ca2 +‐activated K+ channels in a pituitary cell line. J. Physiol. (Lond.) 425: 117–132, 1990.
 222. Lechleiter, J. D., and D. E. Clapham. Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69: 283–294, 1992.
 223. Lee, H. C. Potentiation of calcium‐ and caffeine‐induced calcium release by cyclic ADP‐ribose. J. Biol. Chem. 268: 293–299, 1993.
 224. Lee, H. C., R. Aarthus, and T. F. Walseth. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261: 352–355, 1993.
 225. Leong, D. A. A complex mechanism of facilitation in pituitary ACTH cells: recent single‐cell studies. J. Exp. Biol. 139: 151–168, 1988.
 226. Leong, D. A. A model for intracellular calcium signaling and the coordinate regulation of hormone biosynthesis, receptors and secretion. Cell Calcium 12: 255–268, 1991.
 227. Leong, D. A., and M. O. Thorner. A potential code of luteinizing hormone–releasing hormone‐induced calcium ion responses in the regulation of luteinizing hormone secretion among individual gonadotropes. J. Biol. Chem. 266: 9016–9022, 1991.
 228. Leung, A. T., T. Imagawa, and K. P. Campbell. Structural characterization of the 1,4‐dihydropyridine receptor of the voltage‐dependent Ca2+ channel from rabbit skeletal muscle. J. Biol. Chem. 262: 7943–7946, 1987.
 229. Lewis, C., S. Neldhart, C. Holy, R. A. North, G. Buell, and A. Surprenant Coexpression of P2X2 and P2X3 receptor subunits can account for ATP‐gated currents in sensory neurons. Nature 377: 432–435, 1995.
 230. Lewis, D. L., M. B. Goodman, P. A. St. John, and J. L. Barker. Calcium currents and fura‐2 signals in fluorescence‐activated cell sorted lactotrophs and somatotrophs of rat anterior pituitary. Endocrinology 123: 611–621, 1988.
 231. Lewis, D. L., F. F. Weight, and A. Luini A guanine nucleotide‐binding protein mediates the inhibition of voltage‐dependent calcium current by somatostatin in a pituitary cell line. Proc. Natl. Acad. Sci. U.S.A. 83: 9035–9039, 1986.
 232. Li, G., E. Rungger‐Brandle, I. Just, J.‐C. Jonas, K. Aktories, and C. B. Wollheim. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT‐T15 cells and pacreatic islets. Mol. Biol. Cell 4616: 1199–1213, 1994.
 233. Li, Y.‐X., J. Keizer, S. S. Stojilkovic, and J. Rinzel Calcium excitability of the ER membrane: an explanation for IP3‐induced Ca2+ oscillations. Am. J. Physiol. 269 (Cell Physiol. 32): C1079–C1092, 1995.
 234. Li, Y.‐X., J. Rinzel, J. Keizer, and S. S. Stojilkovic. Calcium oscillations in pituitary gonadotrophs: comparison of experiments and theory. Proc. Natl. Acad. Sci. U.S.A. 91: 58–62, 1994.
 235. Li, Y.‐X., J. Rinzel, L. Vergara, and S. S. Stojilkovic. Spontaneous electrical and calcium oscillations in pituitary gonadotrophs. Biophys. J. 69: 785–795, 1995.
 236. Li, Y.‐X., S. S. Stojilkovic, J. Keizer, and J. Rinzel Sensing and refilling calcium stores in an excitable cell. Biophys. J. 72: 1080–1091, 1997.
 237. Limor, R., D. Ayalon, A. M. Capponi, G. Childa, and Z. Naor Cytosolic free calcium in cultured pituitary cells separated by centrifugal elutriation: effect of gonadotropin‐releasing hormone. Endocrinology 120: 497–503, 1987.
 238. Lin, C., G. Hajnoczky, and A. P. Thomas. Propagation of cytosolic calcium waves into the nuclei of hepatocytes. Cell Calcium 16: 247–258, 1994.
 239. Lin, S. H., and W. E. Russell. Two Ca2 +‐dependent ATPases in rat liver plasma membrane. The previously purified (Ca2 + ‐Mg2 +)ATPase is not a Ca2 + pump but an ecto‐ATPase. J. Biol. Chem. 263: 12253–12258, 1988.
 240. Liscovitch, M. Crosstalk among multiple signal‐activated phospholipases. Trends Biochem. Sci. 17: 393–399, 1992.
 241. Lledo, P.‐M., V. Homburger, J. Bockaert, and J. D. Vincent. Differential G protein‐mediated coupling of D2 dopamine receptors to K+ and Ca2 + currents in rat anterior pituitary cells. Neuron 8: 455–463, 1992.
 242. Lledo, P.‐M., J.‐M. Israel, and J.‐D. Vincent. A guanine nucleotide‐binding protein mediates the inhibition of voltage‐dependent calcium currents by dopamine in rat lactotrophs. Brain Res. 528: 143–147, 1990.
 243. Lledo, P.‐M., P. Legendre, J.‐M. Israel, and J.‐D. Vincent. Dopamine inhibits two characterized voltage‐dependent calcium currents in identified rat lactotroph cells. Endocrinology 127: 990–1001, 1990.
 244. Lledo, P.‐M., P. Legendre, J. Zhang, J.‐M. Israel, and J.‐D. Vincent. Effects of dopamine on voltage‐dependent potassium currents in identified rat lactotroph cells. Neuroendocrinology 52: 545–555, 1990.
 245. Llinas, R., M. Sugimori, and R. B. Silver. Microdomains of high calcium concentration in a presynaptic terminal. Science 256: 677–679, 1992.
 246. Lohret, T. A., R. C. Murphy, T. Drgon, and K. W. Kinnally. Activity of the mitochondrial multiple conductance channel is independent of the adenine nucleotide translocator. J. Biol. Chem. 271: 4846–4849, 1996.
 247. Lu, K. P., and A. R. Means. Regulation of the cell cycle by calcium and calmodulin. Endocr. Rev. 14: 40–58, 1993.
 248. Luini, A., D. Lewis, S. Guild, D. Corda, and J. Axelrod Hormone secretagogues increase cytosolic calcium by increasing cAMP in corticotropin‐secreting cells. Proc. Natl. Acad. Sci. U.S.A. 82: 8034–8038, 1985.
 249. Luini, A., D. Lewis, S. Guild, G. Schofield, and F. Weight Somatostatin, an inhibitor of ACTH secretion, decreases cytosolic free calcium and voltage‐dependent calcium current in a pituitary cell line. J. Neurosci. 6: 3128–3132, 1986.
 250. Lussier, B. T., M. B. French, B. C. Moor, and J. Kraicer Free intracellular Ca2+ concentration and growth hormone (GH) release from purified rat somatotrophs. III. Mechanism of action of GH‐releasing factor and somatostatin. Endocrinology 128: 592–603, 1991.
 251. Lussier, B. T., D. A. Wood, M. B. French, B. C. Moor, and J. Kraicer Free intracellular Ca2+ concentration ([Ca2 +]i) and growth hormone release from purified rat somatotrophs. II. Somatostatin lowers [Ca2 +]i by inhibiting Ca2+ influx. Endocrinology 128: 583–591, 1991.
 252. Lytton, J., M. Westlin, S. E. Burk, G. E. Shull, and D. H. MacLennan. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J. Biol. Chem. 267: 14483–14489, 1992.
 253. Lytton, J., M. Westlin, and M. R. Hanley. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca‐ATPase family of calcium pumps. J. Biol. Chem. 266: 17067–17071, 1991.
 254. Ma, Y., E. Kobrinsky, and A. R. Mark. Cloning and expression of a novel truncated calcium channel from non‐excitable cells. J. Biol. Chem. 270: 483–493, 1995.
 255. Maeda, N., M. Niinobe, and K. Mikoshiba A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5‐trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex. EMBO J. 9: 61–67, 1990.
 256. Malgaroli, A., L. Vallar, F. R. Elahi, T. Pozzan, A. Spada, and J. Meldolesi Dopamine inhibits cytosolic Ca2+ increases in rat lactotroph cells. J. Biol. Chem. 262: 13920–13927, 1987.
 257. Marchetti, C., G. V. Childs, and A. M. Brown. Membrane currents of identified isolated rat corticotropes and gonadotropes. Am. J. Physiol. 252 (Endocrinol. Metab. 15): E340–E346, 1987.
 258. Marchetti, C., G. V. Childs, and A. M. Brown. Voltage‐dependent calcium currents in rat gonadotropes separated by centrifugal elutriation. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E589–E596, 1990.
 259. Marshall, I.C.B., and C. W. Taylor. Biphasic effects of cytosolic Ca2+ on Ins,,P3‐stimulated Ca2+ mobilization in hepatocytes. J. Biol. Chem. 268: 13214–13220, 1993.
 260. Marshall, I.C.B., and C. W. Taylor. Regulation of inositol 1,4,5‐trisphosphate receptors. J. Exp. Biol. 184: 161–182, 1993.
 261. Marshall, I.C.B., and C. W. Taylor. Two calcium binding sites mediate the interconversion of liver inositol 1,4,5‐trisphosphate receptors between three conformational states. Biochem. J. 301: 591–598, 1994.
 262. Martelli, A. M., R. S. Gilmour, V. Bertagnolo, L. M. Neri, L. Manzoli, and L. Cocco Nuclear localization and signaling activity of phosphoinositase C beta in Swiss 3T3 cells. Nature 358: 242–245, 1992.
 263. Mason, M. J., M. P. Mahaut‐Smith, and S. Grinstein The role of intracellular Ca2+ in the regulation of the plasma membrane Ca2+ permeability of unstimulated rat lymphocytes. J. Biol. Chem. 266: 10872–10879, 1991.
 264. Matesic, D. F., J. A. Germak, E. Dupont, and B. V. Madhukar. Immortalized hypothalamic luteinizing hormone–releasing hormone neurons express a connexin 26‐like protein and display functional gap junction coupling assayed by fluorescence recovery after photobleaching. Neuroendocrinology 58: 485–492, 1993.
 265. Matthews, R. P., C. R. Guthrie, L. M. Wailes, X. Zhao, A. R. Means, and G. S. McKnight. Calcium‐calmodulin‐dependent protein kinase types II and IV differentially regulate CREB‐dependent gene expression. Mol. Cell. Biol. 14: 6107–6116, 1994.
 266. Mayer, M. L. A calcium‐activated chloride current generates the after‐depolarization of rat sensory neurones in culture. J. Physiol. (Lond.) 364: 217–239, 1985.
 267. Mazzanti, M., L. J. Defelice, J. Cohn, and H. Malter Ion channels in the nuclear envelope. Nature 343: 764–767, 1990.
 268. Mazzanti, M., B. Innocenti, and M. Rigatelli ATP‐dependent ionic permeability on nuclear envelope in in situ nuclei of Xenopus oocytes. FASEB J. 8: 231–236, 1994.
 269. McArdle, C. A., W. Forrest‐Owen, J. S. Davidson, R. Fowkes, R. Bunting, W. T. Mason, A. Poch, and M. Kratzmeier Ca2 + entry in gonadotrophs and αT3–1 cells: does store‐dependent Ca2+ influx mediate gonadotrophin‐releasing hormone action? J. Endocrinol. 149: 155–169, 1996.
 270. McArdle, C. A., R. Bunting, and W. T. Mason. Dynamic video imaging of cytosolic Ca2+ in the αT3–1, gonadotrope‐derived cell line. Mol. Cell. Endocrinol. 3: 124–132, 1992.
 271. McCormack, J. G., A. P. Halestrap, and R. M. Denton. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70: 391–425, 1990.
 272. McDonald, T. V., B. A. Premack, and P. Gardner Flash photolysis of caged inositol 1,4,5‐trisphosphate activates plasma membrane calcium current in human T cells. J. Biol. Chem. 268: 3889–3896, 1993.
 273. McPherson, P. S., and K. P. Campbell. The ryanodine receptor/ Ca2+ release channel. J. Biol. Chem. 268: 13765–13768, 1993.
 274. McPherson, S. M., P. S. McPherson, L. Mathews, K. P. Campbell, and F. J. Longo. Cortical localization of a calcium release channel in sea urchin eggs. J. Cell. Biol. 116: 1111–1121, 1992.
 275. Means, A. R., I. C. Bagchi, M. F. Vanberkum, and B. E. Kemp. Regulation of smooth muscle myosin light chain kinase by calmodulin. Adv. Exp. Med. Biol. 304: 11–24, 1991.
 276. Means, A. R., and J. R. Dedman. Calmodulin—an intracellular calcium receptor. Nature 285: 73–77, 1980.
 277. Means, A. R., and S. E. George. Calmodulin regulation of smooth myosin light‐chain kinase. J. Cardiovasc. Pharmacol. 12: S25–S29, 1988.
 278. Means, A. R., M. F. Vanberkum, I. Bagchi, K. P. Lu, and C. D. Rasmussen. Regulatory functions of calmodulin. Pharmacol. Ther. 50: 255–270, 1991.
 279. Meda, P. The role of gap junction membrane channels in secretion and hormonal action. J. Bioenerg. Biomembr. 28: 369–377, 1996.
 280. Meldolesi, J., A. Villa, P. Volpe, and T. Pozzan Cellular sites of IP3 action. Adv. Second Messenger Phosphoprotein Res. 26: 187–208, 1992.
 281. Merelli, F., S. S. Stojilkovic, T. Iida, L. Z. Krsmanovic, L. Zheng, P. L. Mellon, and K. J. Catt. Gonadotropin‐releasing hormone‐induced calcium signaling in clonal pituitary gonadotrophs. Endocrinology 131: 925–932, 1992.
 282. Mermelstein, P. G., J. B. Becker, and D. J. Surmeier. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. J. Neurosci. 16: 595–604, 1996.
 283. Meyer, T. Cell signaling by second messenger waves. Cell 64: 675–678, 1991.
 284. Meyer, T., and L. Stryer Calcium spiking. Annu. Rev. Biophys. Chem. 20: 153–174, 1991.
 285. Meyer, T. E., and J. F. Habener. Cyclic adenosine 3′,5′‐monophosphate response element binding protein (CREB) and related transcription‐activating deoxyribonucleic acid‐binding proteins. Endocr. Rev. 14: 269–290, 1993.
 286. Michalak, M., R. E. Milner, K. Burns, and M. Opas Calreticulin. Biochem. J. 285: 681–692, 1992.
 287. Mignery, G. A., C. L. Newton, B. T. Archer, and T. C. Sudhof. Structure and expression of the rat inositol 1,4,5‐trisphsophate receptor. J. Biol. Chem. 265: 12679–12685, 1990.
 288. Mignery, G. A., T. C. Sudhof, K. Takei, and P. de Camilli. Putative receptor for insoitol 1,4,5‐trisphosphate similar to ryanodine receptor. Nature 342: 192–195, 1989.
 289. Miller, R. J. Multiple calcium channels and neuronal function. Science 235: 46–52, 1987.
 290. Milner, R. E., K. S. Famulski, and M. Michalak Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and non‐muscle cells. Mol. Cell. Biochem. 112: 1–13, 1992.
 291. Minke, B., and Z. Selinger Inositol lipid pathway in fly photoreceptors: excitation, calcium mobilization and retinal degradation. In: Retinal Research, edited by N. N. Osborne and G. J. Chader. New York: Pergamon, 1996, vol. 11, p. 99–124.
 292. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemioosmotic type of mechanism. Nature 191: 144–148, 1961.
 293. Mitsui, K., M. Brady, H. C. Palfrey, and A. C. Nairn. Purification and characterization of calmodulin‐dependent protein kinase III from rabbit reticulocytes and rat pancreas. J. Biol. Chem. 268: 13422–13433, 1993.
 294. Miyawaki, A., T. Furuichi, Y. Ryou, S. Yoshikawa, T. Nakagawa, T. Saitoh, and K. Mikoshiba Structure–function relationships of the mouse inositol 1,4,5‐trisphosphate receptor. Proc. Natl. Acad. Sci. U.S.A. 88: 4911–4915, 1991.
 295. Miyazaki, S., H. Shirakawa, K. Nakada, Y. Honda, M. Yuzaki, S. Nakade, and K. Mikoshiba Antibody to the inositol trisphosphate receptor blocks thimerosal‐enhanced Ca2 +‐induced Ca2+ release and Ca2+ oscillations in hamster eggs. FEBS Lett. 309: 180–184, 1992.
 296. Miyazaki, S., M. Yuzaki, K. Nakada, H. Shirakawa, S. Nakanishi, S. Nakade, and K. Mikoshiba Block of Ca2+ wave and Ca2+ oscillation by antibody to the inositol 1,4,5‐trisphosphate receptor in fertilized hamster eggs. Science 257: 251–255, 1992.
 297. Molday, R. S. Calmodulin regulation of cyclic‐nucleotide‐gated channels. Curr. Opin. Neurobiol. 6: 445–52, 1996.
 298. Mollard, P., N. Guerineau, C. Chiavaroli, W. Schlegel, and D. M. Cooper. Adenosine A1 receptor‐induced inhibition of Ca2+ transients linked to action potentials in clonal pituitary cells. Eur. J. Pharmacol. 206: 271–277, 1991.
 299. Mollard, P., J.‐M. Theler, N. Guerineau, P. Vacher, C. Chiavaroli, and W. Schlegel Cytosolic Ca2+ of excitable pituitary cells at resting potentials is controlled by steady state Ca2+ currents sensitive to dihydropyridines. J. Biol. Chem. 269: 25158–25164, 1994.
 300. Mollard, P., P. Vacher, B. Dufy, and J. L. Barker. Somatostatin blocks Ca2+ action potential activity in prolactin‐secreting pituitary tumor cells through coordinate actions of K+ and Ca2+ conductances. Endocrinology 123: 721–732, 1988.
 301. Montero, M., J. Garcia‐Sancho, and J. Alvares Transient inhibition by chemotactic peptide of a store‐operated Ca2+ entry pathway in human neutrophils. J. Biol. Chem. 268: 13055–13061, 1993.
 302. Moore, G. A., D. J. McConkey, G.E.N. Kass, P. J. O'Brien, and S. Orrenius 2,5‐Di(tert‐butyl)‐1,4‐benzohydroquinone—a novel inhibitor of liver microsomal Ca2+ sequestration. FEBS Lett. 224: 331–336, 1987.
 303. Mori, Y., T. Friedrich, M.‐S. Kim, A. Mikami, J. Nakai, P. Ruth, E. Bosse, F. Hofmann, V. Flockerzi, and T. Furuichi Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350: 398–402, 1991.
 304. Morris, A. P., D. V. Gallacher, R. F. Irvine, and O. H. Petersen. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+ ‐dependent K+ channels. Nature 330: 653–655, 1987.
 305. Muallem, S., M. Scheffield, S. Pandol, and G. Sachs Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 82: 4433–4437, 1985.
 306. Musset, F., P. Bertrand, C. Kordon, and A. Enjalbert Differential coupling with pertussis toxin‐sensitive G proteins of dopamine and somatostatin receptors involved in regulation of adenohypophyseal secretion. Mol. Cell. Endocrinol. 73: 1–10, 1990.
 307. Nairn, A. C., and H. C. Palfrey. Identification of the major Mr 100,000 substrate for calmodulin‐dependent protein kinase III in mammalian cells as elongation factor‐2. J. Biol. Chem. 262: 17299–17303, 1987.
 308. Nairn, A. C., and M. R. Picciotto. Calcium/calmodulin‐dependent protein kinases. Semin. Cancer Biol. 5: 295–303, 1994.
 309. Nakagawa, T., H. Okano, T. Furuichi, J. Aruga, and K. Mikoshiba The subtypes of the mouse inositol 1,4,5‐trisphosphate receptor are expressed in a tissue specific and developmentally specific manner. Proc. Natl. Acad. Sci. U.S.A. 88: 6244–6248, 1991.
 310. Nakajima, T., T. Lkitazawa, E. Hamada, H. Hazama, M. Omata, and Y. Kurachi 17β‐Estradiol inhibits the voltage‐dependent l‐type Ca2+ currents in aortic smooth muscle cells. Eur. J. Pharmacol. 294: 625–635, 1995.
 311. Nakazawa, K., K. Fujimori, A. Takanaka, and K. Inoue Comparison of adenosine triphosphate‐ and nicotine‐activated inward currents in rat phaeochromocytoma cells. J. Physiol. 434: 647–660, 1991.
 312. Naor, Z., H. D. Cohen, J. Hermon, and R. Limor Induction of exocytosis in permeabilized pituitary cells by α‐ and β‐type protein kinase C. Proc. Natl. Acad. Sci. U.S.A. 86: 4501–4504, 1989.
 313. Nathanson, M. H., P. J. Padfield, A. J. O'Sullivan, A. D. Burghstahler, and J. D. Jamieson. Mechanism of Ca2+ wave propagation in pancreatic acinar cells. J. Biol. Chem. 267: 18118–18121, 1992.
 314. Naumov, A. P., J. Herrington, and B. Hille Actions of growth‐hormone‐releasing hormone on rat pituitary cells: intracellular calcium and ionic currents. Pflugers Arch. 427: 414–421, 1994.
 315. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263: 1768–1771, 1994.
 316. Neely, A., and C. J. Lingle. Two components of calcium‐activated potassium current in rat adrenal chromaffin cells. J. Physiol. (Lond.) 453: 97–131, 1992.
 317. Neher, E., and G. J. Augustine. Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. (Lond.) 450: 272–301, 1992.
 318. Nilius, B. Permeation properties of a non‐selective cation channel in human vascular endothelial cells. Pflugers Arch. 416: 609–611, 1990.
 319. Nilius, B., G. Schwartz, M. Oike, and G. Droogmans Histamine‐activated, non‐selective cation currents and Ca2+ transients in endothelial cells. Pflugers Arch. 424: 285–293, 1993.
 320. Nishizuka, Y. Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1369, 1984.
 321. Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–614, 1992.
 322. Norregaard, A., B. Vilsen, and J. P. Andersen. Transmembrane segement M3 is essential to thapsigargin sensitivity of the sarcoplasmic reticulum Ca2+ ‐ATPase. J. Biol. Chem. 269: 26598–26601, 1994.
 323. Nowycky, M. C., A. P. Fox, and R. W. Tsien. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443, 1985.
 324. Ohara‐Imaizumi, M., T. Sakurai, S. Nakamura, S. Nakanishi, Y. Matsuda, S. Muramatsu, Y. Nonomura, and K. Kumakura Inhibition of Ca2+ ‐dependent catecholamine release by myosin light chain kinase inhibitor, wortmannin, in adrenal chromaffin cells. Biochem. Biophys. Res. Commun. 185: 1016–1021, 1992.
 325. Ortmann, O., F. Merelli, S. S. Stojilkovic, K. D. Schultz, G. Emons, and K. J. Catt. Modulation of calcium signaling and LH secretion by progesterone in pituitary gonadotrophs and clonal pituitary cells. J. Steroid Biochem. Mol. Biol. 48: 47–54, 1994.
 326. Ortmann, O., S. S. Stojilkovic, M. Cesnjaj, G. Emons, and K. J. Catt. Modulation of cytoplasmic calcium signaling in rat pituitary gonadotrophs by estradiol and progesterone. Endocrinology 131: 1565–1568, 1992.
 327. Osipchuk, Y., and M. Cahalan Cell‐to‐cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359: 241–244, 1992.
 328. Osipchuk, Y. V., M. Wakui, D. I. Yule, D. V. Gallacher, and O. H. Petersen. Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G‐protein activation, internal application of inositol trisphosphate or Ca2+ : simultaneous microfluorimetry and Ca2+ dependent Cl− current recording in single pancreatic acinar cells. EMBO J. 9: 697–704, 1990.
 329. Ostberg, B. C., O. Sand, T. Bjoro, and E. Haugh The phorbol ester TPA induced hormone release and electrical activity in clonal rat pituitary cells. Acta Physiol. Scand. 126: 517–524, 1986.
 330. Otsu, K., H. F. Willard, V. K. Khanna, F. Zorzato, N. M. Green, and D. H. MacLennan. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J. Biol. Chem. 265: 13472–13483, 1990.
 331. Ozawa, K., Z. Szallasi, M. G. Kazanietz, P. M. Blumberg, H. Mischak, J. F. Mushinski, and M. A. Beaven. Ca2+ ‐dependent and Ca2+ ‐independent isozymes of protein kinase C mediate exocytosis in antigen‐stimulated rat basophilic RBL‐2H3 cells. J. Biol. Chem. 268: 1749–1756, 1993.
 332. Ozawa, K., K. Yamada, M. G. Kazanietz, P. M. Blumberg, and M. A. Beaven. Different isozymes of protein kinase C mediate feedback inhibition of phospholipase C and stimulatory signals for exocytosis in rat RBL‐2H3 Cells. J. Biol. Chem. 268: 2280–2283, 1993.
 333. Ozawa, S., and N. Kimura Membrane potential changes caused by thyrotropin‐releasing hormone in the clonal GH3 cell and their relationship to secretion of pituitary hormone. Proc. Natl. Acad. Sci. U.S.A. 76: 6017–6020, 1979.
 334. Ozawa, S., and O. Sand Electrophysiology of excitable endocrine cells. Physiol. Rev. 66: 887–952, 1986.
 335. Palfrey, H. C., A. C. Nairn, L. L. Muldoon, and M. L. Villereal. Rapid activation of calmodulin‐dependent protein kinase II in mitogen‐stimulated human fibroblasts. Correlation with intracellular Ca2+ transients. J. Biol. Chem. 262: 9785–9792, 1987.
 336. Pandol, S. J., and M. S. Schoeffield‐Payne. Cyclic GMP mediates the agonist‐stimulated increase in plasma membrane calcium entry in the pancreatic acinar cells. J. Biol. Chem. 265: 12846–12853, 1990.
 337. Parekh, A. B., H. Terlau, and W. Stuhmer Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature 364: 814–818, 1993.
 338. Park, Y. B. Ion selectivity and gating of small conductance Ca2+ ‐activated K+ channels in cultured rat adrenal chromaffin cells. J. Physiol. (Lond.) 481: 555–570, 1994.
 339. Parker, I., and I. Ivorra Inhibition by Ca2+ of inositol trisphosphate‐mediated Ca2+ liberation: a possible mechanism for oscillatory release of Ca2+. Proc. Natl. Acad. Sci. U.S.A. 87: 260–264, 1990.
 340. Parker, I., and I. Ivorra Localized all‐or‐none calcium liberation by inositol trisphosphate. Science 250: 977–979, 1990.
 341. Parker, I., Y. Yao, and V. Ilyin Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol trisphosphate. Biophys. J. 70: 222–237, 1996.
 342. Parker, K. E., and A. Scarpa An ATP‐activated nonselective cation channel in guinea pig ventricular myocytes. Am. J. Physiol. 269 (Heart Circ. Physiol. 40): H789–H797, 1995.
 343. Partridge, L. D., T. H. Muller, and D. Swandulla Calcium‐activated non‐selective channels in the nervous system. Brain Res. Rev. 19: 319–325, 1994.
 344. Partridge, L. D., and D. Swandulla Calcium‐activated nonspecific cation channels. Trends Neurosci. 11: 69–72, 1988.
 345. Patel, Y. C., and C. B. Srikant. Somatostatin mediation of adenohypophysial secretion. Annu. Rev. Physiol. 48: 551–567, 1986.
 346. Pearson, J. D. Ectonucleotidases: measurement of activities and use of inhibitors. Methods Pharmacol. 6: 83–107, 1985.
 347. Perez‐Reyes, E., X. Wei, A. Castellano, and L. Birnbaumer Molecular diversity of l‐type calcium channels. J. Biol. Chem. 265: 20430–20436, 1990.
 348. Perez‐Tezic, C., J. Pyle, M. Jaconi, L. Stehno‐Bittel, and D. E. Clapham. Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ store. Science 273: 1875–1877, 1996.
 349. Perrin, D., K. Moller, K. Hanke, and H.‐D. Soling. cAMP and Ca2+ ‐mediated secretion in parotid acinar cells is associated with reversible changes in the organization of the cytoskeleton. J. Cell. Biol. 116: 127–134, 1992.
 350. Peter, R. E., J. P. Chang, C. S. Nahorniak, R. J. Omeljaniuk, M. Sokolowska, S. H. Shih, and R. Billard Interactions of catecholamines and GnRH in regulation of gonadotropin secretion in teleost fish. Recent Prog. Horm. Res. 42: 513–548, 1986.
 351. Petersen, C. C., and M. J. Berridge. The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes. J. Biol. Chem. 269: 32246–32253, 1994.
 352. Petersen, C. C., and M. J. Berridge. G‐protein regulation of capacitative calcium entry may be mediated by protein kinases A and C in Xenopus oocytes. Biochem. J. 307: 663–668, 1995.
 353. Petersen, C.C.H., O. H. Petersen, and M. J. Berridge. The role of endoplasmic reticulum calcium pumps during cytosolic calcium spiking in pancreatic acinar cells. J. Biol. Chem. 268: 22262–22264, 1993.
 354. Petersen, C.C.H., E. C. Toescu, and O. H. Petersen. Different patterns of receptor‐activated cytoplasmic oscillations in single pancreatic acinar cells: dependence on receptor type, agonist concentration and intracellular calcium buffering. EMBO J. 10: 527–533, 1991.
 355. Petersen, O. H., C. H. Petersen, and H. Kasai Calcium and hormone action. Annu. Rev. Physiol. 56: 297–319, 1994.
 356. Phillips, A. M., A. Bull, and L. E. Kelly. Identification of a Drosophila gene encoding a calmodulin‐binding protein with homology to the trp phototransduction gene. Neuron 8: 631–642, 1992.
 357. Picher, M., J. Sevigny, P. D'Orleans‐Juste, and A. R. Beaudoin. Hydrolysis of P2‐purinoreceptor agonists by a purified ectonucleotidase from the bovine aorta, the ATP‐diphosphohydrolase. Biochem. Pharmacol. 51: 1453–1460, 1996.
 358. Picotto, G., V. Massheimer, and R. Boland Acute stimulation of intestinal cell calcium influx induced by 17 beta‐estradiol via the cAMP messenger system. Mol. Cell. Endocrinol. 119: 129–134, 1996.
 359. Pietri, F., M. Hilly, and J. P. Mauger. Calcium mediates the interconversion between two states of the liver inositol 1,4,5‐trisphosphate receptor. J. Biol. Chem. 265: 17478–17485, 1990.
 360. Pozzan, T., R. Rizzuto, P. Volpe, and J. Meldolesi Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74: 596–636, 1994.
 361. Putney, J. W., Jr. Capacitative calcium entry revisited. Cell Calcium 11: 611–624, 1990.
 362. Putney, J. W., Jr. Inositol phosphates and calcium entry. Adv. Second Messenger Phosphoprotein Res. 26: 143–156, 1992.
 363. Putney, J. W., Jr., and G. St. J. Bird. The inositol phosphate‐calcium signaling system in nonexcitable cells. Endocr. Rev. 14: 610–631, 1993.
 364. Randriamampita, C., and R. Y. Tsien. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364: 809–814, 1993.
 365. Rane, S. G., and K. Dunlop Kinase C activator 1–oleoyl‐2–acetylglycerol attenuates voltage‐dependent calcium current in sensory neurones. Proc. Natl. Acad. Sci. U.S.A. 83: 184–188, 1986.
 366. Ransone, L. J., and I. M. Verma. Nuclear proto‐oncogenes fos and jun. Annu. Rev. Cell Biol. 6: 539–557, 1990.
 367. Rao, K., W.‐Y. Paik, L. Zheng, R. M. Jobin, M. Tomic, H. Jiang, S. Nakanishi, and S. S. Stojilkovic. Wortmannin‐sensitive and insensitive steps in calcium‐controlled exocytosis in pituitary gonadotrophs. Endocrinology, 138: 1440–1449, 1997.
 368. Rapp, P.E., and M. J. Berridge. The control of transepithelial potential oscillations in the salivary gland of Calliphora erythrocephala. J. Exp. Biol. 93: 119–132, 1981.
 369. Rawlings, S. R., N. Demaurex, and W. Schlegel Pituitary adenylate cyclase‐activating polypeptide increases [Ca2+]i in rat gonadotrophs through an inositol trisphosphate‐dependent mechanism. J. Biol. Chem. 269: 5680–5686, 1994.
 370. Reisine, T. Phorbol esters and corticotropin‐releasing factor stimulate calcium influx in the anterior pituitary tumor cell line, AtT‐20, through different intracellular sites of action. J. Pharmacol. Exp. Ther. 248: 984–990, 1989.
 371. Reisine, T., and G. I. Bell. Molecular biology of somatostatin receptors. Endocr. Rev. 16: 427–442, 1995.
 372. Renterghen, C. V., G. Romey, and M. Lazdunski Vasopressin modulates the spontaneous electrical activity in aortic cells (line A7r5) by acting on three different types of ionic channels. Proc. Natl. Acad. Sci. U.S.A. 85: 9365–9369, 1988.
 373. Rhee, S. G., P.‐G. Suh, S.‐H. Ryu, and S. Y. Lee. Studies on inositol phospholipid‐specific phospholipase C. Science 244: 546–550, 1989.
 374. Rhoads, A. R., R. Parui, N.‐D. Vu, R. Cadogan, and P. D. Wagner. ATP‐induced secretion in PC12 cells and photoaffinity labeling of receptors. J. Neurochem. 61: 1657–1666, 1993.
 375. Ribeiro, C.M.P., and J. W. Putney Jr. Differential effects of protein kinase C activation on calcium storage and capacitative calcium entry in NIH 3T3 cells. J. Biol. Chem. 271: 21522–21528, 1996.
 376. Rinzel, J., J. Keizer, and Y.‐X. Li. Modeling plasma membrane and endoplasmic reticulum excitability in pituitary cells. Trends Endocrinol. Metab. 7: 388–393, 1996.
 377. Ritchie, A. K. Two distinct calcium‐activated potassium currents in a rat anterior pituitary cell line. J. Physiol. (Lond.) 385: 591–609, 1987.
 378. Ritchie, A. K. Thyrotropin‐releasing hormone stimulates a calcium‐activated potassium current in a rat anterior pituitary cell line. J. Physiol. (Lond.) 385: 611–625, 1987.
 379. Rizzuto, R., M. Brini, M. Murgia, and T. Pozzan Microdomains with high Ca2+ close to IP3‐sensitive channels are sensed by neighboring mitochondria. Science 262: 744–746, 1993.
 380. Rizzuto, R., W. M. Simpson, M. Brini, and T. Pozzan Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358: 325–327, 1992.
 381. Robb‐Gaspers, L. D., and A. P. Thomas. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J. Biol. Chem. 270: 8102–8107, 1995.
 382. Rooney, T. A., E. J. Sass, and A. P. Thomas. Characterization of cytosolic calcium oscillations induced by phenylaphrine and vasopressin in single fura‐2‐loaded hepatocytes. J. Biol. Chem. 264: 17131–17141, 1989.
 383. Rooney, T. A., E. J. Sass, and A. P. Thomas. Agonist‐induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J. Biol. Chem. 265: 10792–10796, 1990.
 384. Rotenberg, A., M. Mayford, R. D. Hawkins, E. R. Kandel, and R. U. Muller. Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell 87: 1351–1361, 1996.
 385. Roussel, J. P., G. Mateu, and H. Astier Blockade of potassium or calcium channels provokes modifications in TRH‐induced TSH release from rat perifused pituitaries. Endocr. Regul. 26: 163–170, 1992.
 386. Rozengurt, E., and L. A. Heppler. A specific effect of external ATP on the permeability of transformed 3T3 cells. Biochem. Biophys. Res. Commun. 67: 1581–1588, 1975.
 387. Ruth, P., A. Rohrkasten, M. Biel, E. Bosse, S. Regulla, H. E. Meyer, V. Flockerzi, and F. Hofmann Primary structure of the β subunit of the DHP‐sensitive calcium channel from skeletal muscle. Science 245: 1115–1118, 1989.
 388. Sagara, Y., F. F. Belda, L. Demeis, and G. Inesi Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin. J. Biol. Chem. 267: 12606–12613, 1992.
 389. Sage, S. O., D. J. Adams, and C. van Breemen. Synchronized oscillations in cytoplasmic free calcium concentration in confluent bradykinin‐stimulated bovine pulmonary artery endothelial cell monolayers. J. Biol. Chem. 264: 6–9, 1989.
 390. Sah, P. Ca2+ ‐activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19: 150–154, 1996.
 391. Saimi, Y., and C. Kung Ion channel regulation by calmodulin binding. FEBS Lett. 350: 155–158, 1994.
 392. Sala, F., and A. Hernandez‐Cruz. Calcium diffusion modeling in a spherical neuron. Biophys. J. 57: 313–324, 1990.
 393. Sargeant, P., R. W. Farndale, and S. O. Sage. The tyrosine kinase inhibitors methyl 2,5‐dihydroxynnamate and genistein reduce thrombin‐evoked tyrosine phosphorylation and Ca2+ entry in human platelets. FEBS Lett. 315: 242–246, 1993.
 394. Scheenen, W. J., H. G. Yntema, P. H. Willems, E. W. Roubos, J. R. Lieste, and B. G. Jenks. Neuropeptide Y inhibits Ca2+ oscillations, cyclic AMP, and secretion in melanotrope cells of Xenopus laevis via a Y1 receptor. Peptides 16: 889–895, 1995.
 395. Schlegel, W., B. P. Winiger, P. Mollard, P. Vacher, F. Wuarin, G. R. Zahnd, C. B. Wollheim, and B. Dufy Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials. Nature 329: 719–721, 1987.
 396. Schulman, H., and L. L. Lou. Multifunctional Ca2+/calmodulin‐dependent protein kinase: domain structure and regulation. Trends Biochem. Sci. 14: 62–66, 1989.
 397. Seabrook, G. R., M. Knowles, N. Brown, J. Myers, H. Sinclair, S. Patel, S. B. Freedman, and G. McAllister Pharmacology of high‐threshold calcium currents in GH4C1 pituitary cells and their regulation by activation of human D2 and D4 dopamine receptors. Br. J. Pharmacol. 112: 728–734, 1994.
 398. Sham, J.S.K., L. Cleemann, and M. Morad Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc. Natl. Acad. Sci. U.S.A. 92: 121–125, 1995.
 399. Shan, J., L. M. Resnick, Q. Y. Liu, X. C. Wu, M. Barbagallo, and P. K. Pang. Vascular effects of 17β‐estradiol in male Sprague‐Dawley rats. Am. J. Physiol. 266 (Heart Circ. Physiol. 37): H967–H973, 1994.
 400. Shangold, G. A., and R. J. Miller. Direct neuropeptide Y‐induced modulation of gonadotrope intracellular calcium transients and gonadotropin secretion. Endocrinology 126: 2336–2342, 1990.
 401. Shangold, G. A., S. N. Murphy, and R. J. Miller. Gonadotropin‐releasing hormone‐induced Ca2+ transients in single identified gonadotropes require both intracellular Ca2+ mobilization and Ca2+ influx. Proc. Natl. Acad. Sci. U.S.A. 85: 6566–6570, 1988.
 402. Shearman, M. S., K. Sekiquchi, and Y. Nishizuka Modulation of ion channel activity: a key function of the protein kinase C enzyme family. Pharmacol. Rev. 41: 211–237, 1989.
 403. Shepherd, G. M. Neurobiology. New York: Oxford University Press, 1988.
 404. Shipston, M. J., J. S. Kelly, and F. A. Antoni. Glucocorticoids block protein kinase A inhibition of calcium‐activated potassium channels. J. Biol. Chem. 271: 9197–9200, 1996.
 405. Simasko, S. M., G. A. Weiland, and R. E. Oswald. Pharmacological characterization of two calcium currents in GH3 cells. Am. J. Physiol. 254 (Endocrinol. Metab. 17): E328–E336, 1988.
 406. Simpson, P. B., and J. T. Russell. Mitochondria support inositol 1,4,5‐trisphosphate‐mediated Ca2+ waves in cultured oligodendorocytes. J. Biol. Chem. 271: 33493–33501, 1996.
 407. Slivka, S. R., and P. A. Insel. Phorbol ester and neomycin dissociate bradykinin receptor‐mediated arachidonic acid release and polyphosphoinositide hydrolysis in Madin‐Darby canine kidney cells. J. Biol. Chem. 263: 14640–14647, 1988.
 408. Sneyd, J., A. C. Charles, and M. J. Sanderson. A model for the propagation of intercellular calcium waves. Am. J. Physiol. 266 (Cell Physiol. 35): C293–C302, 1994.
 409. Snutch, T. P., J. P. Leonard, M. M. Gilbert, H. A. Lester, and N. Davidson Rat brain expresses a heterogeneous family of calcium channels. Proc. Natl. Acad. Sci. U.S.A. 87: 3391–3395, 1990.
 410. Sorrentino, V., and P. Volpe Ryanodine receptors: how many, where and why. Trends Pharmacol. Sci. 14: 98–103, 1993.
 411. Squires, P. E., R.F.L. James, N.J.M. London, and M. J. Dunne. ATP‐induced intracellular Ca2+ signals in isolated human insulin‐secreting cells. Pflugers Arch. 427: 181–183, 1994.
 412. Stack, J., and A. Surprenant. Dopamine actions on calcium currents, potassium currents and hormone release in rat melanotrophs. J. Physiol. (Lond.) 439: 37–58, 1991.
 413. Starr, T., V.B. W. Prystay, and T. P. Snutch. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc. Natl. Acad. Sci. U.S.A. 88: 5621–5625, 1991.
 414. Stauffer, P. L., H. Zhao, K. Luby‐Phelps, R. L. Moss, R. A. Star, and S. Muallem Gap junction communication modulates [Ca2+]i oscillations and enzyme secretion in pancreatic acini. J. Biol. Chem. 268: 19769–19775, 1993.
 415. Stea, A., T. W. Soong, and T. P. Snutch. Determinants of PKC‐dependent modulation of a family of neuronal calcium channels. Neuron 15: 929–940, 1995.
 416. Stehno‐Bittel, L., A. Luckhoff, and D. E. Clapham. Calcium release from the nucleus by InsP3 receptor channels. Neuron 14: 163–167, 1995.
 417. Stehno‐Bittel, L., C. Perez‐Terzic, and D. E. Clapham. Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 270: 1835–1838, 1955.
 418. Stendahl, O., K.‐H. Krause, J. Krischer, P. Jerstrom, J.‐M. Theler, R. A. Clark, J.‐L. Carpentier, and D. P. Lew. Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science 265: 1439–1441, 1994.
 419. Stojilkovic, S. S., T. Balla, S. Fukuda, M. Cesnjaj, F. Merelli, L. Z. Krsmanovic, and K. J. Catt. Endothelin ETA receptors mediate the signaling and secretory actions of endothelins in pituitary gonadotrophs. Endocrinology 130: 465–474, 1992.
 420. Stojilkovic, S. S., and K. J. Catt. Neuroendocrine actions of endothelins. Trends Pharmacol. Sci. 13: 385–391, 1992.
 421. Stojilkovic, S. S., and K. J. Catt. Calcium oscillations in anterior pituitary cells. Endocr. Rev. 13: 256–280, 1992.
 422. Stojilkovic, S. S., J. P. Chang, S.‐I. Izumi, K. Tasaka, and K. J. Catt. Mechanisms of secretory responses to gonadotropin‐releasing hormone and phorbol esters in cultured pituitary cells. J. Biol. Chem. 263: 17301–17306, 1988.
 423. Stojilkovic, S. S., T. Iida, M. Cesnjaj, and K. J. Catt. Differential actions of endothelin and gonadotropin‐releasing hormone in pituitary gonadotrophs. Endocrinology 131: 2821–2828, 1992.
 424. Stojilkovic, S. S., T. Iida, F. Merelli, and K. J. Catt. Calcium signaling and secretory responses in endothelin‐stimulated anterior pituitary cells. Mol. Pharmacol. 39: 762–770, 1991.
 425. Stojilkovic, S. S., T. Iida, F. Merelli, A. Torsello, L. Z. Krsmanovic, and K. J. Catt. Interactions between calcium and protein kinase C in the control of signaling and secretion in pituitary gonadotrophs. J. Biol. Chem. 266: 10377–10384, 1991.
 426. Stojilkovic, S. S., T. Iida, M. A. Virmani, S.‐I. Izumi, E. Rojas, and K. J. Catt. Dependence of hormone secretion on activation‐inactivation kinetics of voltage‐sensitive Ca2+ channels in pituitary gonadotrophs. Proc. Natl. Acad. Sci. U.S.A. 87: 8855–8859, 1990.
 427. Stojilkovic, S. S., S.‐I. Izumi, and K. J. Catt. Participation of voltage‐sensitive calcium channels in pituitary hormone secretion. J. Biol. Chem. 263: 13054–13061, 1988.
 428. Stojilkovic, S. S., L. Z. Krsmanovic, D. J. Spergel, M. Tomic, and K. J. Catt. Calcium signaling and episodic secretory responses of GnRH neurons. Methods Neurosci. 20: 68–84, 1994.
 429. Stojilkovic, S. S., M. Kukuljan, T. Iida, E. Rojas, and K. J. Catt. Integration of cytoplasmic calcium and membrane potential oscillations maintains calcium signaling in pituitary gonadotrophs. Proc. Natl. Acad. Sci. USA 89: 4081–4085, 1992.
 430. Stojilkovic, S. S., M. Kukuljan, M. Tomic, E. Rojas, and K. J. Catt. Mechanism of agonist‐induced [Ca2+]i oscillations in pituitary gonadotrophs. J. Biol. Chem. 268: 7713–7720, 1993.
 431. Stojilkovic, S. S., F. Merelli, T. Iida, L. Z. Krsmanovic, and K. J. Catt. Endothelin stimulation of cytosolic calcium and gonadotropin secretion in anterior pituitary cells. Science 248: 1663–1666, 1990.
 432. Stojilkovic, S. S., J. Reinhart, and K. J. Catt. GnRH receptors: structure and signal transduction pathways. Endocr. Rev. 15: 462–499, 1994.
 433. Stojilkovic, S. S., E. Rojas, A. Stutzin, S.‐I. Izumi, and K. J. Catt. Desensitization of pituitary gonadotropin secretion by agonist‐induced inactivation of voltage‐sensitive calcium channels. J. Biol. Chem. 264: 10939–10942, 1989.
 434. Stojilkovic, S. S., A. Stutzin, S.‐I. Izumi, S. Dufour, A. Torsello, M. A. Virmani, E. Rojas, and K. J. Catt. Generation and amplification of the cytoplasmic calcium signal during secretory responses to gonadotropin‐releasing hormone. New Biol. 3: 272–283, 1990.
 435. Stojilkovic, S. S., M. Tomic, M. Kukuljan, and K. J. Catt. Control of calcium spiking frequency in pituitary gonadotrophs by a single‐pool cytoplasmic oscillator. Mol. Pharmacol. 45: 1013–1021, 1994.
 436. Striessnig, J., B. J. Murphy, and W. A. Catterall. Dihydropryridine receptor of l‐type Ca2+ channels: identification of binding domains for [3H](+)‐PN200–110 and [3H]azidopine within the α1 subunit. Proc. Natl. Acad. Sci. U.S.A. 88: 10769–10773, 1991.
 437. Stull, J. T., M. H. Nunnally, and C. H. Michnoff. Calmodulin‐dependent protein kinases. In: The Enzymes, edited by E. G. Krebs and P. D. Boyer. Orlando, FL: Academic, 1986, p. 113–166.
 438. Stutzin, A., S. S. Stojilkovic, K. J. Catt, and E. Rojas Characteristics of two types of calcium channels in rat pituitary gonadotrophs. Am. J. Physiol. 257 (Cell Physiol. 26): C865–C874, 1989.
 439. Surprenant, A., F. Rassendren, E. Kawashima, R. A. North, and G. Buell The cytosolic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272: 735–738, 1996.
 440. Sweeney, H. L., B. F. Bowman, and J. T. Stull. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am. J. Physiol. 264 (Cell Physiol. 33): C1085–C1095, 1993.
 441. Takasawa, S., K. Nata, H. Yonekura, and H. Okamoto Cyclic ADP‐ribose in insulin secretion from pancreatic β cells. Science 259: 370–373, 1993.
 442. Takemura, H., A. R. Hughes, O. Thastrup, and J. W. Putney. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. J. Biol. Chem. 264: 12266–12271, 1989.
 443. Takeshima, H., S. Nishimura, T. Matsumoto, H. Ishida, K. Kangawa, N. Manamino, H. Matsuo, M. Ueda, M. Hanaoka, and T. Hirose Primary structure and expression from complementary DNA of sceletal muscle ryanodine receptor. Nature 339: 439–445, 1989.
 444. Takuwa, N., W. Zhou, and Y. Takuwa Calcium, calmodulin and cell cycle progression. Cell. Signal. 7: 93–104, 1995.
 445. Tallent, M., G. Liapakis, A. M. O'Carroll, S. J. Lolait, M. Dichter, and T. Reisine Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an l‐type Ca2+ current in the pituitary cell line AtT‐20. Neuroscience 71: 1073–1081, 1996.
 446. Tanabe, T., H. Takeshima, A. Mikami, V. Flockerzi, H. Takahashi, K. Kangawa, M. Kojima, H. Matsuo, T. Hirose, and S. Numa Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328: 313–318, 1987.
 447. Taraskevich, P. S., and W. W. Douglas. Catecholamines of supposed inhibitory hypophysiotrophic function suppress action potentials in prolactin cells. Nature 276: 832–834, 1978.
 448. Tasaka, K., S. S. Stojilkovic, S.‐I. Izumi, and K. J. Catt. Biphasic activation of cytosolic free calcium and LH responses by gonadotropin‐releasing hormone. Biochem. Biophys. Res. Commun. 154: 398–403, 1988.
 449. Tatham, P.E.R., and M. Lindau ATP‐induced pore formation in the plasma membrane of rat peritoneal mast cells. J. Gen. Physiol. 95: 459–476, 1990.
 450. Thastrup, O., P. J. Cullen, B. K. Drobak, M. R. Hanley, and A. P. Dawson. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+ ‐ATPase. Proc. Natl. Acad. Sci. U.S.A. 87: 2466–2470, 1990.
 451. Thompson, N. T., R. W. Bonser, and L. G. Garland. Receptor‐coupled phospholipase D and its inhibition. Trends Pharmacol. Sci. 12: 404–408, 1991.
 452. Thorner, M. O., R. W. Holl, and D. A. Leong. The somatotrope: an endocrine cell with functional calcium transients. J. Exp. Biol. 139: 169–179, 1988.
 453. Toescu, E. C., A. M. Lawrie, O. H. Petersen, and D. V. Gallacher. Spatial and temporal distribution of agonist‐evoked cytoplasmic Ca2+ signals in exocrine acinar cells analyzed by digital image microscopy. EMBO J. 11: 1623–1629, 1992.
 454. Tomic, M., M. Cesnjaj, K. J. Catt, and S. S. Stojilkovic. Developmental and physiological aspects of Ca2+ signaling in agonist‐stimulated pituitary gonadotrophs. Endocrinology 135: 1762–1771, 1994.
 455. Tomic, M., M. L. Dufau, K. J. Catt, and S. S. Stojilkovic. Calcium signaling in single rat Leydig cells. Endocrinology 136: 3422–3429, 1995.
 456. Tomic, M., R. M. Jobin, L. A. Vergara, and S. S. Stojilkovic. Expression of purinergic receptor channels in their role in calcium signaling and hormone release in pituitary gonadotrophs. J. Biol. Chem. 271: 21200–21208, 1996.
 457. Torres, M., J. Pintor, and M. T. Miras‐Portugal. Presence of ectonucleotidases in cultured chromaffin cells: hydrolysis of extracellular adenine nucleotides. Arch. Biochem. Biophys. 279: 37–44, 1990.
 458. Toyofuku, T., K. Kurzydlowski, J. Lytton, and D. H. MacLennan. The nuclear binding/hinge domain plays a crucial role in determining isoform‐specific Ca2+ dependence of organellar Ca2+ ‐ATPases. J. Biol. Chem. 267: 14490–14496, 1992.
 459. Traina, G., S. Cannistraro, and P. Bagnoli Effects of somatostatin on intracellular calcium concentration in PC12 cells. J. Neurochem. 66: 485–492, 1996.
 460. Treisman, R. The serum responsive element. Trends Biochem. Sci. 17: 423–426, 1992.
 461. Tschopl, M., L. Harms, W. Norenberg, and P. Illes Excitatory effects of adenosine 5′‐trisphosphate on rat locus coeruleus neurones. Eur. J. Pharmacol. 213: 71–77, 1992.
 462. Tse, A., and B. Hille GnRH‐induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes. Science 255: 462–464, 1992.
 463. Tse, A., and B. Hille Role of voltage‐gated Na+ and Ca2+ channels in gonadotropin‐releasing hormone‐induced membrane potential changes in identified rat gonadotropes. Endocrinology 132: 1475–1481, 1993.
 464. Tse, A., F. W. Tse, W. Almers, and B. Hille Rhythmic exocytosis stimulated by GnRH‐induced calcium oscillations in rat gonadotropes. Science 260: 82–84, 1993.
 465. Tse, A., F. W. Tse, and B. Hille Calcium homeostasis in identified rat gonadotrophs. J. Physiol. (Lond.) 477: 511–525, 1994.
 466. Tse, A., F. W. Tse, and B. Hille Modulation of Ca2+ oscillation and apamin‐sensitive, Ca2+ ‐activated K+ current in rat gonadotropes. Pflugers Arch. 430: 645–652, 1995.
 467. Tsien, R. W., and R. Y. Tsien. Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol. 6: 715–760, 1990.
 468. Valentijn, J. A., E. Louiset, H. Vaudry, and L. Cazin Dopamine‐induced inhibition of action potentials in cultured frog pituitary melanotrophs is mediated through activation of potassium channels and inhibition of calcium and sodium channels. Neuroscience 42: 29–39, 1991.
 469. Valentijn, J. A., H. Vaudry, and L. Cazin Multiple control of calcium channel gating by dopamine D2 receptors in frog pituitary melanotrophs. Ann. N. Y. Acad. Sci. 680: 211–228, 1993.
 470. Valera, S., N. Hussy, R. J. Evans, N. Adami, A. Surpernant, and G. Buell A new class of ligand‐gated ion channel defoined by P2X receptor for extracellular ATP. Nature 371: 516–519, 1994.
 471. van Goor, F., J. I. Goldberg, and J. P. Chang. Dopamine actions on calcium current in identified goldfish (Carassius aureatus) gonadotropin cells. In: Reproductive Physiology of Fish, edited by F. Goetz and P. Thomas. 1995, p. 61–63.
 472. Veenstra, R. D. Size and selectivity of gap junction channels formed from different connexins. J. Bioenerg. Biomembr. 28: 327–337, 1996.
 473. Vergara, L. A., S. S. Stojilkovic, and E. Rojas GnRH induced cytosolic calcium oscillations in pituitary gonadotrophs: phase resetting by membrane depolarization. Biophys. J. 69: 1606–1614, 1995.
 474. Vergara, L., E. Rojas, and S. S. Stojilkovic. A novel calcium‐activated apamin‐insensitive potassium current in pituitary gonadotrophs. Endocrinology 138 (in press), 1997.
 475. Vogel, H. J. Calmodulin: a versatile calcium mediator protein. Biochem. Cell. Biol. 72: 357–376, 1994.
 476. Vogel, H. J., and M. Zhang Protein engineering and NMR studies of calmodulin. Mol. Cell. Biochem. 149/150: 3–15, 1995.
 477. Vostal, J. C., W. L. Jackson, and N. R. Shulman. Cytosolic and stored calcium antagonistically control tyrosine phosphorylation of specific platelet proteins. J. Biol. Chem. 266: 16911–16916, 1991.
 478. Wakui, M., Y. V. Osipchuk, and O. H. Petersen. Receptor‐activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+ ‐induced Ca2+ release. Cell 63: 1025–1032, 1990.
 479. Wakui, M., B.V.L. Potter, and O. H. Petersen. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature 339: 317–320, 1989.
 480. Walton, P. D., J. A. Airey, J. L. Sutko, C. F. Beck, G. A. Mignery, T. C. Sudhof, T. J. Bdeerinck, and M. H. Ellisman. Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J. Cell. Biol. 113: 1145–1157, 1991.
 481. Wang, J., K. G. Baimbridge, and P.C.K. Leung. Changes in cytosolic free calcium ion concentrations in individual rat granulosa cells: effect of luteinizing hormone–releasing hormone. Endocrinology 124: 1912–1917, 1989.
 482. Wang, J., P. Ciofi, and W. R. Crowley. Neuropeptide Y suppresses prolactin secretion from rat anterior pituitary cells: evidence for interactions with dopamine through inhibitory coupling to calcium entry. Endocrinology 137: 587–594, 1996.
 483. Wang, X., T. Inukai, M. A. Greer, and S. E. Greer. Evidence that Ca2+ ‐activated K+ channels participate in the regulation of pituitary prolactin secretion. Brain Res. 662: 83–87, 1994.
 484. Watras, J., I. Bezprozvanny, and B. E. Ehrlich. Inositol 1,4,5‐trisphosphate‐gated channels in cerebellum: presence of multiple conductance states. J. Neurosci. 11: 3239–3245, 1991.
 485. Werlen, G., D. Belin, B. Conne, E. Roche, D. P. Lew, and M. Prentki Intracellular Ca2+ and the regulation of early response gene expression in HL‐60 myeloid leukemia cells. J. Biol. Chem. 268: 16596–16601, 1993.
 486. Wheeler, D. B., A. Randall, W. A. Sather, and R. W. Tsien. Neuronal calcium channels encoded by the α1A subunit and their contribution to excitatory synaptic transmission in the CNS. Prog. Brain Res. 105: 65–78, 1995.
 487. White, R. E., A. Schonbrunn, and D. L. Armstrong. Somatostatin stimulates Ca2+ activated K+ channels through protein dephosphorylation. Nature 351: 570–573, 1991.
 488. Wickman, K., and D. E. Clapham. Ion channel regulation by G proteins. Physiol. Rev. 75: 865–885, 1995.
 489. Wictome, M., I. Henderson, A. G. Lee, and J. M. East. Mechanism of inhibition of the calcium pump of sarcoplasmic reticulum by thapsigargin. Biochem. J. 283: 525–529, 1992.
 490. Wiley, J. S., R. Chen, and G. P. Jamieson. The ATP4‐ receptor‐operated channel (P2Z class) of human lymphocytes allows Ba2+ and ethidium+ uptake: inhibition of fluxes by suramin. Arch. Biochem. Biophys. 305: 54–60, 1993.
 491. Williams, M. E., P. F. Brust, D. H. Feldman, S. Patthi, S. Simerson, A. Maroufi, A. F. McCue, G. Velicelebi, S. B. Ellis, and M. M. Harpold. Structure and functional expression of an ω‐conotoxin‐sensitive human N‐type calcium channel. Science 257: 389–395, 1992.
 492. Williams, P. J., B. A. MacVicar, and Q. J. Pittman. A dopaminergic inhibitory postsynaptic potential mediated by an increased potassium conductance. Neuroscience 31: 673–681, 1989.
 493. Xu, Y. H., D. A. Wilkinson, and G. M. Carlson. Divalent cations but not other activators enhance phosphorylase kinase's affinity for glycogen phosphorylase. Biochemistry 35: 5014–5021, 1996.
 494. Yagi, K., M. Shinbo, M. Hashizume, L. S. Shimba, S. Kurimura, and Y. Miura ATP diphosphohydrolase is responsible for ecto‐ATPase and ecto‐ADPase activites in bovine aorta endothelial and smooth muscle cells. Biochem. Biophys. Res. Commun. 180: 1200–1206, 1991.
 495. Yagodin, S. V., L. Holtzclaw, C. A. Sheppard, and J. T. Russell. Nonlinear propagation of agonist‐induced cytoplasmic calcium waves in single astrocytes. J. Neurobiol. 25: 265–280, 1994.
 496. Yamashita, N., I. Kojima, N. Shibuya, and E. Ogata Pertussis toxin inhibits somatostatin‐induced K+ conductance in human pituitary tumor cells. Am. J. Physiol. 253 (Endocrinol. Metab. 16): E28–E32, 1987.
 497. Yamashita, N., N. Shibuya, and E. Ogata Hyperpolarization of the membrane potential caused by somatostatin in dissociated human pituitary adenoma cells that secrete growth hormone. Proc. Natl. Acad. Sci. U.S.A. 83: 6198–6202, 1986.
 498. Yatani, A., J. Codina, R. D. Sekura, L. Birnbaumer, and A. M. Brown. Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K+ channels by isolated GK protein in clonal rat anterior pituitary cell membranes. Mol. Endocrinol. 1: 283–289, 1987.
 499. Yeager, M., and B. J. Nicholson. Structure of gap junction intercellular channels. Cur. Opin. Struct. Biol. 6: 183–192, 1996.
 500. Yoshimura, Y., M. Nishida, and J. Kawada An ecto‐ATPase of thyroidal cell membrane. Endocrinol. Jpn. 30: 769–775, 1983.
 501. Yule, D. I., and D. V. Gallacher. Oscillations in cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine. FEBS Lett. 239: 358–362, 1988.
 502. Zhang, F., J. L. Ram, P. R. Standley, and J. R. Sowers. 17β‐Estradiol attenuates voltage‐dependent Ca2+ currents in A7r5 vascular smooth muscle cell line. Am. J. Physiol. 266 (Cell Physiol. 35): C975–C980, 1994.
 503. Zheng, L., L. Z. Krsmanovic, L. A. Vergara, K. J. Catt, and S. S. Stojilkovic. Dependence of intracellular signaling and neurosecretion on phospholipase D activation in immortalized gonadotropin‐releasing hormone neurons. Proc. Natl. Acad. Sci. U.S.A. 94: 1573–1578, 1997.
 504. Zheng, L., S. S. Stojilkovic, L. Hunyady, L. Z. Krsmanovic, and K. J. Catt. Sequential activation of phospholipase C and phospholipase D in agonist‐stimulated gonadotrophs. Endocrinology 134: 1446–1454, 1994.
 505. Zhou, Z., and E. Neher Mobile and immobile calcium buffers in bovine chromaffin cells. J. Physiol. (Lond.) 469: 245–273, 1993.
 506. Ziganshin, A. U., L. E. Ziganshin, B. E. King, and G. Burnstock Characteristics of ecto‐ATPase of Xenopus oocytes and the inhibitory actions of suramin on ATP breakdown. Pflugers Arch. 429: 412–418, 1995.
 507. Zimmermann, H. Signaling via ATP in the nervous system. Trends Neurosci. 17: 420–426, 1994.
 508. Zorzato, F., J. Fuji, K. Otsu, M. Philips, N. M. Green, F. A. Lai, G. Meissner, and D. H. MacLennan. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265: 2244–2256, 1990.
 509. Zweifach, A., and R. S. Lewis. Mitogen‐regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl. Acad. Sci. U.S.A. 90: 6295–6299, 1993.
 510. Zweifach, A., and R. S. Lewis. Rapid inactivation of depletion‐activated calcium current (ICARC) due to local calcium feedback. J. Gen. Physiol. 105: 209–226, 1995.
 511. Zweifach, A., and R. S. Lewis. Slow calcium‐dependent inactivation of depletion‐activated calcium current. Store‐dependent and ‐independent mechanisms. J. Biol. Chem. 270: 14445–14451, 1995.
 512. Zweifach, A., and R. S. Lewis. Calcium‐dependent potentiation of store‐operated calcium channels. J. Gen. Physiol. 107: 597–610, 1996.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Stanko S. Stojilkovic. Calcium Signaling Systems. Compr Physiol 2011, Supplement 20: Handbook of Physiology, The Endocrine System, Cellular Endocrinology: 177-224. First published in print 1998. doi: 10.1002/cphy.cp070109