Comprehensive Physiology Wiley Online Library

Production, Action, and Degradation of Somatostatin

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Anatomical Distribution of Somatostatin Cells
1.1 Localization
1.2 Pancreatic Somatostatin Cells
2 Biosynthesis, Processing, and Intracellular Targeting
2.1 Somatostatin Genes and Gene Products
3 Regulation of Islet Somatostatin
3.1 Regulation of Secretion
3.2 Regulation of Gene Expression
4 Actions and Mechanism of Action of Somatostatin
4.1 Islet Cell Actions
4.2 Extra‐Islet Actions
4.3 Somatostatin Agonists
4.4 Somatostatin Receptors
5 Metabolism of Somatostatin
6 Circulating Somatostatin
7 Islet Somatostatin Function
7.1 Paracrine Regulation
7.2 Regulation via the Microcirculation
7.3 Gap Junctional Coupling
7.4 Independent Regulation by Somatostatin‐14 and Somatostatin‐28
8 Somatostatin and Diabetes
8.1 Experimental Insulinopenic Diabetes
8.2 Experimental Hyperinsulinemic Diabetes
8.3 Human Diabetes
9 Concluding Remarks
Figure 1. Figure 1.

Structure of somatostatin (SST)‐14, SST‐28, the putative human cortistatin (CST)‐17 peptide, and various synthetic SST analogues. Residues critical for biological activity are shown in bold.

Figure 2. Figure 2.

Schematic representation of mammalian prosomatostatin (Pro‐SST) and its cleavage products. Processing occurs at three sites marked by the presence of either paired Arg–Lys or single (Lys or Arg) basic amino acid residues. Although each of these forms is capable of release from somatostatin cells, only SST‐14 and SST‐28 are biologically active.

Figure 3. Figure 3.

Schematic depiction of preprosomatostatin (PPSST) and pre‐procortistatin (PPCST) molecules sequenced by cloning techniques in human, frog, and teleost species. The biologically active SSTs in each instance are located in the C‐terminal segment of the precursor and consist of SST‐14, SST‐28, CST‐14, and the putative cleavage product CST‐29 in humans; SST‐14, frog SST‐14 (FSST), and FSST‐28 in frogs; SST‐14 and anglerfish SST‐28 (AFSST‐28) in anglerfish; and SST‐14 and catfish SST‐22 (CFSST‐22) in catfish.

Figure 4. Figure 4.

Effects of endogenous or exogenous somatostatin (SST), insulin, and glucagon on the function of pancreatic islet cells. Somatostatin inhibits insulin and glucagon release, glucagon stimulates insulin and SST release, and insulin inhibits the release of glucagon and possibly of SST. In addition, all three islet hormones inhibit their own secretion by an autocrine mechanism. Physiologically, intra‐islet insulin and glucagon regulate the secretion of SST, and intra‐islet insulin regulates glucagon release. The precise physiological role of intra‐islet SST remains unclear (see text for details).

[From Patel 231 with permission.]
Figure 5. Figure 5.

Schematic depiction of the rat somatostatin gene and its regulatory domains. The mRNA coding region consists of two exons, of 238 and 367 bp, separated by an intron of 621 bp. Located upstream (5′ end) from the start site of mRNA transcription (arrow) axe the regulatory elements TATA (−26 bp), cAMP‐response element (CRE, −48/−41 bp), atypical glucocorticoid response element (aGRE, −250/−71 bp), and a somatostatin promoter silencer element (SMS‐PS, −260/−189 bp). Tissue‐specific elements (TSE) consisting of TAAT motifs that operate in concert with CRE to provide high‐level constitutive activity are located within the TSE I (−104/−86 bp) and TSE II (−303/−286 bp) regions.

Figure 6. Figure 6.

Schematic model of cAMP‐mediated target gene regulation. The level of intracellular cAMP is regulated by extracellular hormones, which bind to their transmembrane receptors and activate/inactivate adenylate cyclase (AC) via G proteins. Cyclic AMP binds to the regulatory subunit of protein kinase A (PKA), leading to dissociation and activation of the catalytic subunit, which then translocates to the nucleus, where it phosphorylates cAMP‐response element (CRE)–binding protein (CREB) and CREB‐binding protein (CBP). Phosphorylated CREB recruits CBP, which acts as an adaptor molecule, linking the kinase inducible domain (KID) of CREB with the basal transcriptional complex via transcription Factor (TF) II B. The glutamine‐rich Q2 domain of CREB also interacts with the basal transcriptional complex via a TBP associated factor (TAF) 110‐like molecule, which links Q2 with TATA box binding protein (TBP) (see text for details).

Figure 7. Figure 7.

Principal actions of somatostatin (SST). It inhibits both the basal and the stimulated secretion of growth hormone (GH), thyroid‐stimulating hormone (TSH), and islet hormones. It has no effect on luteinizing hormone, follicle‐stimulating hormone, prolactin, or corticotropin (ACTH) in normal subjects. It does, however, suppress elevated corticotropin levels in Addison's disease and in corticotropin‐producing tumors. In addition, it inhibits the basal and the thyrotropin‐releasing hormone (TKH)–stimulated release of prolactin in vitro and diminishes elevated prolactin levels in acromegaly. In the gastrointestinal tract, SST inhibits the release of virtually every gut hormone that has been tested. It has a generalized inhibitory effect on gut exocrine secretion (gastric acid, pepsin, bile, colonic fluid) and suppresses motor activity generally through inhibition of gastric emptying, gallbladder contraction, and small intestine segmentation. However, SST stimulates migrating motor complex activity. The effects of SST on the thyroid include inhibition of the TSH‐stimulated release of thyroxine (T4) and Triiodothyronine (T3). The adrenal effects include inhibition of angiotensin II–stimulated aldosterone secretion and of acetylcholine‐stimulated medullary catecholamine secretion. In the kidneys, SST inhibits the release of renin stimulated by hypovolemia and antidiuretic hormone–mediated water absorption. CCK, cholecystokinin; CRH, corticotropin‐releasing hormone; VIP, vasoactive intestinal peptide.

[From Patel 231 with permission.]
Figure 8. Figure 8.

Schematic depiction of SSTR signalling pathways leading to inhibition of secretion (a) and cell proliferation and induction of apoptosis (b). (a) Receptor activation leads to a fall in intracellular cAMP (due to inhibition of adenylyl cyclase), a fall in Ca2+ influx (due to activation of K+ and Ca2+ ion channels), and stimulation of phosphatases such as calcineurin (which inhibits exocytosis) and serine threonine phosphatases (which dephospharylate and activate Ca2+ and K+ channel proteins). Blockade of secretion by SST is in part mediated through inhibition of Ca2+ and cAMP (proximal effect) and through a more potent distal effect involving direct inhibition of exocytosis via SRIF‐dependent activation of calcineurin. (b) Induction of protein tyrosine phosphatase by SRIF plays a key role in mediating cell growth arrest (via SSTRs1, 2, 4, 5) or apoptosis (via SSTR3). Cell growth arrest is dependent on activation of the MAPK pathway and induction of Rb (Retinoblastoma tumor suppressor protein) and p21 (cyclin‐dependent kinase inhibitor). c‐src, which associates with both the activated receptor and PTP may provide the link between the receptor, PTP, and the mitogenic signaling complex. Induction of apoptosis is associated with dephosphorylation‐dependant activation of p53 and of Bax.

(Reproduced from Patel Y.C. 233 with permission).
Figure 9. Figure 9.

Quantitative analysis of the expression of somatostatin receptors (SSTRs) 1 to 5 in β, α, and δ cells from human islets determined by double‐label confocal immunofluorescence immunocytochemistry. Bars represent the mean ± SE (n = 3) percent of cells positive for a given SSTR subtype in 8 to 20 islets from each of three pancreata. Means of 1081 ± 80 β cells, 432 ± 28 α cells, and 221 ± 12 δ cells were analyzed. Note the preferential expression of SSTR1 in β cells and of SSTR2 in α cells. In β cells only, SSTR4 is weakly expressed in islets.

[From Kumar et al. 154 with permission.]


Figure 1.

Structure of somatostatin (SST)‐14, SST‐28, the putative human cortistatin (CST)‐17 peptide, and various synthetic SST analogues. Residues critical for biological activity are shown in bold.



Figure 2.

Schematic representation of mammalian prosomatostatin (Pro‐SST) and its cleavage products. Processing occurs at three sites marked by the presence of either paired Arg–Lys or single (Lys or Arg) basic amino acid residues. Although each of these forms is capable of release from somatostatin cells, only SST‐14 and SST‐28 are biologically active.



Figure 3.

Schematic depiction of preprosomatostatin (PPSST) and pre‐procortistatin (PPCST) molecules sequenced by cloning techniques in human, frog, and teleost species. The biologically active SSTs in each instance are located in the C‐terminal segment of the precursor and consist of SST‐14, SST‐28, CST‐14, and the putative cleavage product CST‐29 in humans; SST‐14, frog SST‐14 (FSST), and FSST‐28 in frogs; SST‐14 and anglerfish SST‐28 (AFSST‐28) in anglerfish; and SST‐14 and catfish SST‐22 (CFSST‐22) in catfish.



Figure 4.

Effects of endogenous or exogenous somatostatin (SST), insulin, and glucagon on the function of pancreatic islet cells. Somatostatin inhibits insulin and glucagon release, glucagon stimulates insulin and SST release, and insulin inhibits the release of glucagon and possibly of SST. In addition, all three islet hormones inhibit their own secretion by an autocrine mechanism. Physiologically, intra‐islet insulin and glucagon regulate the secretion of SST, and intra‐islet insulin regulates glucagon release. The precise physiological role of intra‐islet SST remains unclear (see text for details).

[From Patel 231 with permission.]


Figure 5.

Schematic depiction of the rat somatostatin gene and its regulatory domains. The mRNA coding region consists of two exons, of 238 and 367 bp, separated by an intron of 621 bp. Located upstream (5′ end) from the start site of mRNA transcription (arrow) axe the regulatory elements TATA (−26 bp), cAMP‐response element (CRE, −48/−41 bp), atypical glucocorticoid response element (aGRE, −250/−71 bp), and a somatostatin promoter silencer element (SMS‐PS, −260/−189 bp). Tissue‐specific elements (TSE) consisting of TAAT motifs that operate in concert with CRE to provide high‐level constitutive activity are located within the TSE I (−104/−86 bp) and TSE II (−303/−286 bp) regions.



Figure 6.

Schematic model of cAMP‐mediated target gene regulation. The level of intracellular cAMP is regulated by extracellular hormones, which bind to their transmembrane receptors and activate/inactivate adenylate cyclase (AC) via G proteins. Cyclic AMP binds to the regulatory subunit of protein kinase A (PKA), leading to dissociation and activation of the catalytic subunit, which then translocates to the nucleus, where it phosphorylates cAMP‐response element (CRE)–binding protein (CREB) and CREB‐binding protein (CBP). Phosphorylated CREB recruits CBP, which acts as an adaptor molecule, linking the kinase inducible domain (KID) of CREB with the basal transcriptional complex via transcription Factor (TF) II B. The glutamine‐rich Q2 domain of CREB also interacts with the basal transcriptional complex via a TBP associated factor (TAF) 110‐like molecule, which links Q2 with TATA box binding protein (TBP) (see text for details).



Figure 7.

Principal actions of somatostatin (SST). It inhibits both the basal and the stimulated secretion of growth hormone (GH), thyroid‐stimulating hormone (TSH), and islet hormones. It has no effect on luteinizing hormone, follicle‐stimulating hormone, prolactin, or corticotropin (ACTH) in normal subjects. It does, however, suppress elevated corticotropin levels in Addison's disease and in corticotropin‐producing tumors. In addition, it inhibits the basal and the thyrotropin‐releasing hormone (TKH)–stimulated release of prolactin in vitro and diminishes elevated prolactin levels in acromegaly. In the gastrointestinal tract, SST inhibits the release of virtually every gut hormone that has been tested. It has a generalized inhibitory effect on gut exocrine secretion (gastric acid, pepsin, bile, colonic fluid) and suppresses motor activity generally through inhibition of gastric emptying, gallbladder contraction, and small intestine segmentation. However, SST stimulates migrating motor complex activity. The effects of SST on the thyroid include inhibition of the TSH‐stimulated release of thyroxine (T4) and Triiodothyronine (T3). The adrenal effects include inhibition of angiotensin II–stimulated aldosterone secretion and of acetylcholine‐stimulated medullary catecholamine secretion. In the kidneys, SST inhibits the release of renin stimulated by hypovolemia and antidiuretic hormone–mediated water absorption. CCK, cholecystokinin; CRH, corticotropin‐releasing hormone; VIP, vasoactive intestinal peptide.

[From Patel 231 with permission.]


Figure 8.

Schematic depiction of SSTR signalling pathways leading to inhibition of secretion (a) and cell proliferation and induction of apoptosis (b). (a) Receptor activation leads to a fall in intracellular cAMP (due to inhibition of adenylyl cyclase), a fall in Ca2+ influx (due to activation of K+ and Ca2+ ion channels), and stimulation of phosphatases such as calcineurin (which inhibits exocytosis) and serine threonine phosphatases (which dephospharylate and activate Ca2+ and K+ channel proteins). Blockade of secretion by SST is in part mediated through inhibition of Ca2+ and cAMP (proximal effect) and through a more potent distal effect involving direct inhibition of exocytosis via SRIF‐dependent activation of calcineurin. (b) Induction of protein tyrosine phosphatase by SRIF plays a key role in mediating cell growth arrest (via SSTRs1, 2, 4, 5) or apoptosis (via SSTR3). Cell growth arrest is dependent on activation of the MAPK pathway and induction of Rb (Retinoblastoma tumor suppressor protein) and p21 (cyclin‐dependent kinase inhibitor). c‐src, which associates with both the activated receptor and PTP may provide the link between the receptor, PTP, and the mitogenic signaling complex. Induction of apoptosis is associated with dephosphorylation‐dependant activation of p53 and of Bax.

(Reproduced from Patel Y.C. 233 with permission).


Figure 9.

Quantitative analysis of the expression of somatostatin receptors (SSTRs) 1 to 5 in β, α, and δ cells from human islets determined by double‐label confocal immunofluorescence immunocytochemistry. Bars represent the mean ± SE (n = 3) percent of cells positive for a given SSTR subtype in 8 to 20 islets from each of three pancreata. Means of 1081 ± 80 β cells, 432 ± 28 α cells, and 221 ± 12 δ cells were analyzed. Note the preferential expression of SSTR1 in β cells and of SSTR2 in α cells. In β cells only, SSTR4 is weakly expressed in islets.

[From Kumar et al. 154 with permission.]
References
 1. Aguila, M. C.. Growth hormone‐releasing factor increases somatostatin release and mRNA levels in the rat periventricular nucleus via nitric oxide by activation of guanylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 91: 782–786, 1994.
 2. Aguila, M. C., W. L., Dees, W. E. Haensly, and S. M. McCann. Evidence that somatostatin is localized and synthesized in lymphoid organs. Proc. Natl. Acad. Sci. U.S.A. 88: 11485–11489, 1991.
 3. Aguilar‐Bryan, L., C. G., Nichols, S. W. Wechsler, J. P. Clement IV, A. E. Boyd III, G. Gonzalez, H. Herrera‐Sosa, K. Nguy, J. Bryan, and D. A. Nelson. Cloning of the β cell high‐affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268: 423–425, 1995.
 4. Alberti, K. G., N. J., Christensen, S. E. Christensen, A. P. Hansen, J. Iversen, K. Lundbaek, K. Seyer‐Hansen, and H. Orskov. Inhibition of insulin secretion by somatostatin. Lancet ii: 1299–1301, 1973.
 5. Alpert, S., D., Hanshan, and G. Teitelman. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53: 295–308, 1988.
 6. Amherdt, M., Y. C., Patel, and L. Orci. Selective binding of somatostatin‐14 and somatostatin‐28 to islet cells revealed by quantitative electron microscopic autoradiography. J. Clin. Invest. 80: 1455–1458, 1987.
 7. Amherdt, M., Y. C., Patel, and L. Orci. Binding and internalization of somatostatin, insulin, and glucagon by cultured rat islet cells. J. Clin. Invest. 84: 412–417, 1989.
 8. Aponte, G., D., Gross, and T. Yamada. Capillary orientation of rat pancreatic D cell processes: evidence for endocrine release of somatostatin. Am. J. Physiol. 249: (Gastrointest. Liver Physiol. G599–G606, 1985.
 9. Argos, P., W. L., Taylor, C. D. Minth, and J. E. Dixon. Nucleotide and amino acid sequence comparisons of preprosomatostatins. J. Biol. Chem. 258: 8788–8793, 1983.
 10. Arias, J., A. S., Alberts, P. Brindle, F. X. Claret, T. Smeal, M. Karin, J. Feramisco, and M. R. Montminy. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370: 226–229, 1994.
 11. Arimura, A., H., Sato, A. Dupont, N. Nishi, and A. V. Schally. Somatostatin: abundance of immunoreactive hormone in rat stomach and pancreas. Science 189: 1007–1009, 1975.
 12. Ashcroft, F. M., and P. Rorsman. Electrophysiology of the pancreatic β cell. Prog. Biophys. Mol. Biol. 54: 87–143, 1989.
 13. Azaryan, A. V., M., Wong, T. C. Friedman, N. X. Cawley, F. E. Estivariz, H.‐C. Chen, and Y. P. Loh. Purification and characterization of a paired basic residue‐specific yeast aspartic protease encoded by the Yap3 gene. J. Biol. Chem. 268: 11968–11975, 1993.
 14. Baetens, D., F., Malaisse‐Lagae, A. Perrelet, and L. Orci. Endocrine pancreas: three‐dimensional reconstruction shows two types of islets of Langerhans. Science 206: 1323–1325, 1979.
 15. Baetens, D., Y., Stefan, M. Ravazzola, F. Malaisse‐Lague, D. L. Coleman, and L. Orci. Alternation of islet cell populations in spontaneously diabetic mice. Diabetes 27: 1–7, 1978.
 16. Baldissera, F. G. A., M. A., Munoz‐Perez, and J. J. Holst. Somatostatin 1–28 circulates through human plasma. Reg. Pep. 6: 63–69, 1983.
 17. Barber, D. L., M. E., McGuire, and M. B. Ganz. Beta‐adrenergic and somatostatin receptors regulate Na–H exchange independent of cAMP. J. Biol. Chem. 264: 21038–21042, 1989.
 18. Barden, N., J. P., Cote, M. Lavoie, and A. Dupont. Secretion of somatostatin by rat islets of Langerhans and gastric mucosa and a role for pancreatic somatostatin in the regulation of glucagon release. Metabolism 27: 1215–1218, 1978.
 19. Baskin, D. G., and J. W. Ensinck. Somatostatin in epithelial cells of intestinal mucosa is present primarily as somatostatin‐28. Peptides 5: 615–621, 1984.
 20. Bass, R. T., B. L., Buckwalter, B. P. Patel, M. H. Pausch, L. A. Price, J. Strand, and J. R. Hadcock. Identification and characterization of novel somatostatin antagonists. Mol. Pharmacol. 50: 709–715, 1996.
 21. Benoit, R., P., Bohlen, N. Ling, A. Briskin, F. Esch, P. Brazeau, S.‐Y. Ying, and R. Guillemin. Presence of somatostatin‐28[1–12] in hypothalamus and pancreas. Proc. Natl. Acad. Sci. U.S.A. 79: 917–921, 1982.
 22. Benoit, R., F., Esch, H. P. J. Bennett, N. Ling, M. Ravazzola, L. Orci, and E. J. Mufson. Processing of prosomatostatin. Metabolism 39 (Suppl. 2): 22–25, 1990.
 23. Benoit, R., N., Ling, and F. Esch. A new prosomatostatin derived peptide reveals a pattern for prohormone cleavage at monobasic sites. Science 238: 1126–1129, 1987.
 24. Benuck, M., and N. Marks. Differences in the degradation of hypothalamic releasing factors by rat and human serum. Life Sci. 19: 1271, 1976.
 25. Berelowitz, M., D., Coleman, and L. Frohman. Temporal relationship in tissue somatostatin‐like immunoreactivity to metabolic changes in genetically obese and diabetic mice. Diabetes 29: 717–723, 1980.
 26. Berelowitz, M., D., Dudlak, and L. A. Frohman. Release of somatostatin‐like immunoreactivity from incubated rat hypothalamus and cerebral cortex. J. Clin. Invest. 69: 1293–1301, 1982.
 27. Berelowitz, M., S., Firestone, and L. A. Frohman. Effects of growth hormone excess and deficiency on hypothalamic somatostatin content and release and on tissue somatostatin distribution. Endocrinology 109: 714–719, 1981.
 28. Berelowitz, M., K., Maeda, S. Harris, and L. A. Frohman. The effect of alterations in the pituitary thyroid axis on hypothalamic content and in vitro release of somatostatin‐like immunoreactivity. Endocrinology 107: 24–29, 1980.
 29. Berelowitz, M., B., Shapiro, B. Pimstone, and S. Kronheim. Growth hormone release inhibitory hormone‐like immunoreactivity in pancreas and gut in streptozotocin diabetes in the rat and response to insulin administration. Clin. Endocrinol. (Oxf.) 10: 195–198, 1979.
 30. Berelowitz, M., M., Szabo, L. A. Frohman, S. Firestone, and L. Chu. Somatomedin‐C mediates growth hormone negative feedback by effects on both the hypothalamus and the pituitary. Science 212: 1279–1281, 1981.
 31. Bersani, M., L., Thim, F. G. A. Baldissera, and J. J. Holst. Prosomatostatin 1–64 is a major product of somatostatin gene expression in pancreas and gut. J. Biol. Chem. 264: 10633–10636, 1989.
 32. Bhathena, S. J., H. K., Oie, A. F. Gazdar, N. R. Voyles, S. D. Wilkins, and L. Recant. Insulin, glucagon, and somatostatin receptors on cultured cells and clones from rat islet cell tumor. Diabetes 31: 521–531, 1982.
 33. Bhattacharya, S., R., Eckner, S. Grossman, E. Oldread, Z. Arany, A. D'Andrea, and D. M. Livingston. Cooperation of Stat2 and p300/CBP in signalling induced by interferon‐α. Nature 383: 344–347, 1996.
 34. Billestrup, N., M. R., Montminy, P. Serup, and J. H. Nielsen. Stimulation of somatostatin and insulin gene transcription by growth hormone[abstract]. In: Program 9th Int. Congr. Endocrinol., Nice, August 1992, p. 08–01 –005.
 35. Binimelis, J., S., Webb, and J. Serrano. Plasma immunoreactive somatostatin is elevated in diabetic ketoacidosis and correlates with plasma non‐esterified fatty acid concentration. Diabet. Med. 4: 221–224, 1987.
 36. Bonner‐Weir, S., and L. Orci. New perspectives on the microvas‐culature of the islets of Langerhans in the rat. Diabetes 31: 883–889, 1982.
 37. Bourbonnais, Y., D., Germain, J. Ash, and D. Y. Thomas. Cleavage of prosomatostatin by the yeast Yap3 and Kex2 endoprotease. Biochimie 76: 226–233, 1994.
 38. Brakch, N., A. S., Galanopoulou, Y. C. Patel, G. Boileau, and N. G. Seidah. Comparative proteolytic processing of rat prosomatostatin by the convertases PC1, PC2, furin, PACE4 and PC5 in constitutive and regulated secretory pathways. FEBS Lett. 362: 143–146, 1995.
 39. Braks, J. A. M., and G. J. M. Martens. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78: 263–273, 1994.
 40. Brazeau, P., W. W., Vale, R. Burgus, N. Ling, M. Butcher, J. Rivier, and R. Guillemin. Hypothalamic peptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79, 1973.
 41. Brelje, T. C., D. W., Scharp, and R. L. Sorenson. Three‐dimensional imaging of intact isolated islets of Langerhans with confocal microscopy. Diabetes 38: 808–814, 1989.
 42. Brown, P. J., A. B., Lee, M. G. Norman, D. H. Presky, and A. Schonbrunn. Identification of somatostatin receptors by covalent labeling with a novel photoreactive somatostatin analog. J. Biol. Chem. 265: 17995–18004, 1990.
 43. Brownstein, M. J., J. T., Russell, and H. Gainer. Synthesis, transport, and release of posterior pituitary hormones. Science 207: 373–378, 1980.
 44. Bruno, J. F., Y., Xu, J. Song, and M. Berelowitz. Tissue distribution of somatostatin receptor subtype messenger ribonucleic acid in the rat. Endocrinology 133: 2561–2567, 1993.
 45. Brans, C., G., Weckbecker, F. Raulf, K. Kaupman, P. Schoeffter, D. Hoyer, and H. Lubbert. Molecular pharmacology of somatostatin‐receptor subtypes. Ann. N.Y. Acad. Sci. 733: 138–146, 1994.
 46. Cawley, N. X., B. D., Noe, and Y. P. Loh. Purified yeast aspartic protease 3 cleaves anglerfish prosomatostatin I and II at di‐ and monobasic sites to generate somatostatin‐14 and‐28. Fed. Eur. Biochem. Soc. 332: 273–276, 1993.
 47. Chakravarti, D., V. J., LaMorte, M. C. Nelson, T. Nakajima, I. G. Schulman, H. Juguilon, M. Montminy, and R. M. Evans. Role of CBP/P300 in nuclear receptor signaling. Nature 383: 99–103, 1996.
 48. Chiba, T., J., Park, and T. Yamada. Biosynthesis of somatostatin in canine fundic D cells. J. Clin. Invest. 81: 282–287, 1988.
 49. Chiba, T., T., Taminato, S. Kadowaki, K. Chihara, S. Matsukura, M. Nozawa, Y. Seino, and T. Fujita. Reversal of increased gastric somatostatin in streptozotocin‐diabetic rats by whole pancreas transplantation. Diabetes 30: 724–727, 1981.
 50. Chowen‐Breed, J., R. A., Steiner, and D. K. Clifton. Sexual dimorphism and testosterone dependent regulation of somatostatin gene expression in the periventricular nucleus of the rat brain. Endocrinology 125: 357–362, 1989.
 51. Chrivia, J. C., R. P. S., Kwok, N. Lamb, M. Hagiwara, M. R. Montminy, and R. H. Goodman. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855–859, 1993.
 52. Cohen, R. M., and W. A. Ablanalp. Resistance of growth hormone secretion to somatostatin in men with type 1 diabetes mellitus. Diabetes 40: 1251–1258, 1991.
 53. Conlon, J. M., A. J., McCulloch, and K. G. M. Alberti. Circulating somatostatin concentrations in healthy and non‐insulin‐dependent (type II) diabetic subject. Diabetes 32: 723–729, 1983.
 54. Conlon, J. M., J., Whittaker, V. Hammond, and K. G. M. M. Alberti. Metabolism of somatostatin and its analogs by the liver. Biochem. Biophys. Acta 677: 234, 1981.
 55. Cordelier, P., J.‐P., Esteve, C. Bousquet, et al. Characterization of the antiproliferative signal mediated by the somatostatin receptor subtype sst5. Proc. Natl. Acad. Sci. U.S.A. 94: 9343–9348, 1997.
 56. Cotroneo, P., J., Marie, and G. Rosselin. Characterization of covalently crosslinked somatostatin receptors in hamster beta cell insulinoma. Eur. J. Biochem. 174: 219–224, 1988.
 57. Curry, D. L., L. L., Bennett, and C. H. Li. Direct inhibition of insulin secretion by synthetic somatostatin. Biochem. Biophys. Res. Commun. 58: 885–889, 1974.
 58. D'Alessio, D. A., and J. W. Ensinck. Fasting and postprandial concentrations of somatostatin‐28 and somatostatin‐14 in type 11 diabetes in men. Diabetes 29: 1198–1202, 1990.
 59. D'Alessio, D. A., W. Y., Fujimoto, and J. W. Ensinck. Effects of glucagon‐like peptide 1‐(7–36) on release of insulin, glucagon, and somatostatin by rat pancreatic islet cell monolayer cultures. Diabetes 38: 1534–1538, 1989.
 60. D'Alesssio, D. A., C., Sieber, C. Beglinger, and W. Ensinck. A physiologic role for somatostatin 28 as a regulator of insulin secretion. J. Clin. Invest. 84: 857–862, 1989.
 61. Dash, P. K., K. A., Karl, M. A. Colicos, R. Prywes, and E. R. Kandel. cAMP response element–binding protein is activated by Ca2+/calmodulin as well as cAMP‐dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 88: 5061–5065, 1991.
 62. Day, R., S., Benjannet, L. Matsuuchi, R. B. Kelly, M. Marcinkiewicz, M. Chretien, and N. G. Seidah. Maintained PC1 and PC2 expression in the AtT‐20 variant cell line 6T3 lacking regulated secretion and dPOMC: restored POMC expression and regulated secretion after cAMP treatment. DNA Cell Biol. 14: 175–188, 1995.
 63. Day, R., W., Dong, R. Panetta, J. Kraicer, M. T. Greenwood, and Y. C. Patel. Expression of mRNA for somatostatin receptor (sstr) types 2 and 5 in individual rat pituitary cells. A double labeling in situ hybridization analysis. Endocrinology 136: 5232–5235, 1995.
 64. De Lecea, L., J. R. Criado, O. Prospero‐Garcia, K. M. Gautvik, P. Schweitzer, P. E. Danielson, C. L. M. Dunlop, G. R. Siggins, S. J. Henriksen, and J. G. Sutcliffe. A cortical neuropeptide with neuronal depressant and sleep‐modulating properties. Nature 381: 242–245, 1996.
 65. De Weille, J. R., H. Schmid‐Antomarchi, M. Fosset, and M. Lazdunski. Regulation of ATP‐sensitive K+ channels in insulinoma cells: activation by somatostatin and protein kinase C and the role of cAMP. Proc. Natl. Acad. Sci. U.S.A. 86: 2971–2975, 1989.
 66. Dolais‐Kitabgi, J., Y. Le Marchand‐Brustel, and P. Freychet. Somatostatin in the pancreas and hypothalamus of obese mice. Diabetologia 17: 257–261, 1979.
 67. Dubois, M. P.. Immunoreactive somatostatin is present in discrete cells of the endocrine pancreas. Proc. Natl. Acad. Sci. U.S.A. 72: 1340–1343, 1975.
 68. Effendic, S., F., Enzmann, A. Nylen, K. Uvnas‐Wallensten, and R. Luft. Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas. Proc. Natl. Acad. Sci. U.S.A. 76: 5901–5904, 1979.
 69. Ensinck, J. W., E. C., Laschansky, R. E. Vogel, and D. A. D'Alessio. Effect of somatostatin‐28 on dynamics of insulin secretion in perfused rat pancreas. Diabetes 40: 1163–1169, 1991.
 70. Ensinck, J. W., E. C., Laschansky, R. E. Vogel, D. A. Simonowitz, B. A. Roos, and B. H. Francis. Circulating prosomatostatin‐derived peptides. Differential responses to food ingestion. J. Clin. Invest. 83: 1580–1589, 1989.
 71. Epelbaum, J.. Somatostatin in the central nervous system: physiology and pathological modifications. Prog. Neurobiol. 27: 62–100, 1986.
 72. Eppler, C. M., J. R., Zysk, M. Corbett, and H.‐M. Shieh. Purification of a pituitary receptor for somatostatin. The utility of biotinylated somatostatin analogs. J. Biol. Chem. 267: 15603–15612, 1992.
 73. Fehman, H. C., P., Jehle, U. Markus, and B. Goke. Functional active receptors for insulin‐like growth factor‐I (IGF‐I) and IGF‐II on insulin‐, glucagon‐, and somatostatin‐producing cells. Metabolism 45: 759–766, 1996.
 74. Ferreri, K., G., Gill, and M. R. Montminy. The cAMP‐regulated transcription factor CREB interacts with a component of the TFIID complex. Proc. Natl. Acad. Sci. U.S.A. 91: 1210–1213, 1994.
 75. Finley, J. C. W., J. L., Maderdrut, L. J. Roger, and P. Petrusz. The immunocytochemical localization of somatostatin‐containing neurons in the rat central nervous system. Neuroscience 6: 2173–2192, 1981.
 76. Francis, B. H., and J. W. Ensinck. Differential alterations of the circulating prosomatostatin‐derived peptides during insulin‐induced hypoglycemia in man. J. Clin. Endocrinol. Metab. 65: 880–884, 1987.
 77. Frankel, B. J., A. M., Heldt, and G. M. Grodsky. Effects of K+ and arginine on insulin, glucagon, and somatostatin release from the in vitro perfused rat pancreas. Endocrinology 110: 428–431, 1982.
 78. Fujimoto, W. Y., S., Kawazu, M. Ikeuchi, and Y. Kanazawa. In vitro paracrine regulation of islet B‐cell function by A and D cells. Life Sci. 32: 1873–1878, 1983.
 79. Fukusumi, S., C., Kitada, S. Takekawa, H. Kizawa, J. Sakomoto, M. Miyamoto, S. Hinura, K. Kitano, and M. Fujimo. Identification and characterization of a novel human corticostatin like peptide. Biochem. Biophys. Res. Commun. 232: 157–163, 1997.
 80. Fuller, P., and K. Verity. Somatostatin gene expression in the thymus gland. J. Immunol. 143: 1015–1017, 1989.
 81. Funckes, C. L., C. D., Minth, R. Deschenes, M. Magazin, M. A. Tavianini, M. Sheets, K. Collier, H. L. Weith, D. L. Aron, B. A. Roos, and J. E. Dixon. Cloning and characterization of a mRNA encoding rat preprosomatostatin. J. Biol. Chem. 258: 8781–8787, 1983.
 82. Galanopoulou, A. S., G., Kent, S. N. Rabbani, N. G. Seidah, and Y. C. Patel. Heterologous processing of prosomatostatin in constitutive and regulated secretory pathways. J. Biol. Chem. 268: 6041–6049, 1993.
 83. Galanopoulou, A. S., N. G., Seidah, and Y. C. Patel. Direct role of furin in mammalian prosomatostatin processing. Biochem. J. 309: 33–40, 1995.
 84. Galanopoulou, A. S., N. G., Seidah, and Y. C. Patel. Heterologous processing of rat prosomatostatin to somatostatin‐14 by PC2: requirement for secretory cell but not the secretion granule. Biochem. J. 311: 111–118, 1995.
 85. Garry, D. J., R. L., Sorenson, R. P. Elde, B. E. Maley, and A. Madsen. Immunohistochemical colocalization of GABA and insulin in β‐cells of rat islet. Diabetes 35: 1090–1095, 1986.
 86. Gerber, P. P. G., E. R., Trimble, C. B. Wollheim, and A. E. Renold. Effect of insulin on glucose and arginine stimulated somatostatin secretion from the isolated perfused rat pancreas. Endocrinology 109: 279, 1981.
 87. Gerber, P. P. G., E. R., Trimble, C. B. Wollheim, A. E. Renold, and R. E. Miller. Glucose and cyclic AP as stimulators of somatostatin and insulin secretion from the isolated, perfused rat pancreas. Diabetes 30: 40–44, 1981.
 88. Gerich, J. E.. Somatostatin. In: Handbook of Diabetes Mellitus, edited by M. Brownlee (ed) New York: 1981, vol. 1, 297–354.
 89. Gerich, J. E.. Role of somatostatin and its analogs in the pathogenesis and treatment of diabetes. Metabolism 39 (Suppl. 2): 52–54, 1990.
 90. German, M. S., L. G., Moss, and W. J. Rutter. Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J. Biol. Chem. 265: 1465–1469, 1990.
 91. Gilon, P., G., Bertrand, M. M. Loubatieres‐Mariani, C. Remade, and J. C. Henquin. The influence of γ‐aminobutyric acid on hormone release by the mouse and rat endocrine pancreas. Endocrinology 129: 2521–2529, 1991.
 92. Gittes, G. K., and W. J. Rutter. Onset of cell‐specific gene expression in the developing mouse pancreas. Proc. Natl. Acad. Sci. U.S.A. 89: 1128–1132, 1992.
 93. Gonzalez, G. A., and M. R. Montminy. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675–680, 1989.
 94. Goodman, R. H., D. C., Aron, and B. A. Roos. Rat preprosomatostatin: structure and processing by microsomal membranes. J. Biol. Chem. 258: 5570–5573, 1982.
 95. Goto, Y., M., Berelowitz, and L. A. Frohman. Acute effects of alloxan‐ and streptozotocin‐induced insulin deficiency on somatostatin and glucagon secretion by the perfused isolated rat pancreatico‐duodenal preparation. Diabetologia 20: 66–71, 1981.
 96. Goto, Y., R. G., Carpenter, M. Berelowitz, and L. A. Frohman. Effect of ventromedial hypothalamic lesions on the secretion of somatostatin, insulin, and glucagon by the perfused rat pancreas. Metabolism 29: 986–990, 1980.
 97. Greenwood, M. T., N., Hukovic, U. Kumar, R. Panetta, S. A. Hjorth, C. B. Srikant, and Y. C. Patel. Ligand binding pocket of the human somatostatin receptor 5 (hsstr5): mutational analysis of the extracellular domains. Mol. Pharmacol. 52: 807–814, 1997.
 98. Gremlich, S., C., Bonny, G. Waeber, and B. Thorens. Fatty acids decrease IDX‐1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J. Biol. Chem. 272: 30261–30269, 1997.
 99. Grigorakis, S. I., R., Panetta, and Y. C. Patel. Expression of mRNA for somatostatin receptor (sstr) subtypes 1–5 in islets and differential downregulation of sstr2 mRNA by SST agonists. In: Program Annual Meeting American Diabetes Association, June 1995, Atlanta, Georgia, p. 132A. Abstract nr. 485.
 100. Grill, V., M., Gutniak, A. Roovete, and S. Effendic. A stimulating effect of glucose on somatostatin release is impaired in non‐insulin‐dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 59: 293–297, 1984.
 101. Grube, D., and R. Bohn. The microanatomy of human islets of Langerhans, with special reference to somatostatin (D‐) cells. Arch. Histol. Jpn. 46: 327–353, 1983.
 102. Gutniak, M., V., Grill, and S. Effendic. Effects of insulin on fasting and meal stimulated somatostatin‐like immunoreactivity in NIDDM: evidence of more than one mechanism of action. J. Clin. Endocrinol. Metab. 62: 77–83, 1986.
 103. Gutniak, M., V., Grill, K. L. Wiechel, and S. Effendic. Basal and meal‐induced somatostatin‐like immunoreactivity in healthy subjects and in IDDM and totally pancreatectomized patients. Diabetes 36: 802–807, 1987.
 104. Guz, Y., M. R., Montminy, R. Stein, J. Leonard, L. W. Gamer, C. V. E. Wright, and G. Teitelman. Expression of murine STF‐1, a putative insulin gene transcription factor in β cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121: 11–18, 1995.
 105. Gyr, K., C., Beglinger, E. Kohler, U. Trautzi, U. Keller, and S. R. Bloom. Circulating somatostatin. Physiological regulator or pancreatic function? J. Clin. Invest. 79: 1595–1600, 1987.
 106. Hagiwara, M., P., Brindle, and A. Harootunian. Coupling of stimulation and transcription via cyclic AMP responsive factor CREB is rate limited by nuclear entry of protein kinase. Mol. Cell Biol. 13: 4852–4859, 1993.
 107. Halban, P. A. and J.‐C., Irminger. Sorting and processing of secretory proteins. Biochem. J. 299: 1–18, 1994.
 108. Hansen, A. P.. Diurnal patterns of blood glucose serum free fatty acid insulin, glucagon, and growth hormone in normals and juvenile diabetics. Diabetologia 6: 27–33, 1970.
 109. Hara, M., G., Patton, and J. Gerich. Increased somatostatin release from pancreases of alloxan diabetic rats perfused in vitro. Life Sci. 24: 625–628, 1979.
 110. Harald, H. H., W., Schmidt, T. D. Warner, K. Ishi, H. Sheng, and F. Murad. Insulin secretion from pancreatic β cells caused by L‐arginine‐derived nitrogen oxides. Science 255: 721–723, 1992.
 111. He, H. T., K., Johnson, K. Thermos, and T. Reisine. Purification of a putative brain somatostatin receptor. Proc. Natl. Acad. Sci. U.S.A. 6: 1480–1484, 1989.
 112. Hellman, B., and A. Lernmark. Inhibition of the in vitro secretion of insulin by an extract of pancreatic α1 cells. Endocrinology 84: 1484–1487, 1969.
 113. Hermansen, K.. Effects of substance P and other peptides on the release of somatostatin, insulin, and glucagon in vitro Endocrinology 107: 256–261, 1980.
 114. Hermansen, K.. Secretion of somatostatin from the normal and diabetic pancreas. Diabetologia 19: 492–504, 1980.
 115. Hermansen, K.. Pancreatic D cell recognition of D glucose. Studies with D‐glucose, D‐glyceraldehyde dihydroxyactone, D‐mannoheptulose, D‐fructose, D‐galactose, and D‐ribose. Diabetes 30: 203–210, 1981.
 116. Hermansen, K.. Tolbutamide, glucose, calcium, and somatostatin secretion. Acta Endocrinol. (Copenh.) 99: 86–93, 1982.
 117. Hermansen, K.. Enkephalins and the secretion of pancreatic somatostatin and insulin in the dog: studies in vitro Endocrinology 113: 1149–1154, 1983.
 118. Hermansen, K., H., Orskov, and S. E. Christensen. Streptozotocin diabetes: a glucoreceptor dysfunction affecting D cells as well as B and A cells. Diabetologia 17: 385–389, 1979.
 119. Herrera, P.‐L., J., Huarte, R. Zufferey, A. Nichols, B. Mermillod, J. Philippe, P. Muniesa, F. Sanvito, L. Orci, and J.‐D. Vassalli. Ablation of islet endocrine cells by targeted expression of hormone‐promoter‐driven toxigenes. Proc. Natl. Acad. Sci U.S.A. 91: 12999–13003, 1994.
 120. Hipkin, R. W., J., Friedman, R. B. Clark, et al. Agonist‐induced desensitization, internalization and phosphorylation of the sst2A somatostatin receptor. J. Biol. Chem. 27: 13,869–13,876, 1997.
 121. Hobart, P., R., Crawford, L.‐P. Shen, R. Pictet, and W. J. Rutter. Cloning and sequencing analysis of cDNAs encoding two distinct somatostatin precursors found in endocrine pancreas of anglerfish. Nature 288: 137–141, 1980.
 122. Hoeffler, J. P., T. E., Meyer, Y. Yun, J. L. Jameson, and J. F. Habener. Cyclic‐AMP responsive DNA‐binding protein: structure based on a cloned placental cDNA. Science 242: 1430–1433, 1988.
 123. Hokfelt, T., S., Effendic, C. Hellerstrom, O. Johansson, R. Luft, and A. Arimura. Cellular localization of somatostatin in endocrine‐like cells and neurons of the rat with special references to the A1 cells of the pancreatic islets and to the hypothalamus. Acta. Endocrinol. (Copenh.) 80 (Suppl. 200): 5–41, 1975.
 124. Hsu, W. H., H. D., Xiang, A. S. Rajan, D. L. Kunze, and A. E. Boyd. Somatostatin inhibits insulin secretion by a G‐protein‐mediated decrease in Ca2+ entry through voltage‐dependent Ca2+ channels in the beta cell. J. Biol. Chem. 266: 837–843, 1991.
 125. Hukovic, N., M., Rocheville, U. Kumar, R. Sasi, S. Khare, and Y. C. Patel. Agonist‐dependent upregulation of human somatostatin receptor type 1 requires molecular signals in the cytoplasmic C‐tail. J. Biol. Chem. 274: 24550–24558, 1999.
 126. Hukovic, N., R., Panetta, U. Kumar, and Y. C. Patel. Agonist‐dependent regulation of cloned human somatostatin receptor types 1–5 (hSSTR1–5): subtype selective internalization or upregulation. Endocrinology 137: 4046–4049, 1996.
 127. Hukovic, N., R., Panetta, U. Kumar, M. Rocheville, and Y. C. Patel. The cytoplasmic tail of the human somatostatin receptor type 5 is crucial for interaction with adenylyl cyclase, and in mediating desensitization and internalization. J. Biol. Chem. 273: 21416–21422, 1998.
 128. Hunyady, B., R. W., Hipkin, A. Schonbrunn, and E. Mezey. Immunohistochemical localization of somatostatin receptor sst2A in the rat pancreas. Endocrinology 138: 2632–2635, 1997.
 129. Ikeda, S. R., and G. G. Schofield. Somatostatin blocks a calcium current in rat sympathetic ganglion neurons. J. Physiol. (Lond.) 409: 221–240, 1989.
 130. Ipp, E., R. E., Dobbs, A. Arimura, W. Vale, V. Harris, and R. H. Unger. Release of immunoreactive somatostatin from the pancreas in response to glucose, amino acids, pancreozymin‐cholecystokinin, and tolbutamide. J. Clin. Invest. 60: 760–765, 1977.
 131. Ipp, E., R. E., Dobbs, V. Harris, A. Arimura, W. Vale, and R. H. Unger. The effects of gastrin, gastric inhibitory polypeptide, secretin, and the octapeptide of cholecystokinin upon immunoreactive somatostatin release by the perfused canine pancreas. J. Clin. Invest. 60: 1216–1219, 1977.
 132. Ipp, E., R., Dobbs, and R. H. Unger. Morphine and gb‐endorphin influence the secretion of the endocrine pancreas. Nature 276: 190–191, 1978.
 133. Ipp, E., J., Rivier, R. E. Dobbs, M. Brown, W. Vale, and R. H. Unger. Somatostatin analogs inhibit somatostatin release. Endocrinology 104: 1270–1273, 1979.
 134. Itoh, M., L., Mandarino, and J. E. Gerich. Antisomatostatin gamma globulin augments secretion of both insulin and glucagon in vitro. Diabetes 29: 693–696, 1980.
 135. Jacob, K. K., L., Ouyang, and F. M. Stanley. A consensus insulin response element is activated by an ETS‐related transcription factor. J. Biol. Chem. 270: 27773–27779, 1995.
 136. Johansson, O., T., Hokfelt, and R. P. Elde. Immunohistochemical distribution of somatostatin‐like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13: 265–339, 1984.
 137. Jonsson, J., L., Carlsson, J. Edlund, and H. Edlund. Insulin promoter‐factor I is required for pancreas development in mice. Nature 371: 606–609, 1994.
 138. Kadowaki, S., T., Taminato, T. Chiba, Y. Goto, M. Nozawa, Y. Seino, S. Matsukura, and T. Fujita. Reversal of the enhanced somatostatin release from isolated, perfused diabetic rat pancreas after the amelioration of diabetes by whole pancreas transplantation. Diabetes 29: 742–746, 1980.
 139. Kadowaki, S., T., Taminato, T. Chiba, Y. Goto, M. Nozawa, Y. Seino, S. Matsukura, and T. Fujita. Somatostatin release from the isolated, perfused diabetic rat pancreas: inverse relationship between pancreatic somatostatin and insulin. Diabetes 29: 960–963, 1980.
 140. Kamei, Y., L., Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S. C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld. A CBP integrator complex mediates transcriptional activation and AP‐1 inhibition by nuclear receptors. Cell 85: 403–414, 1996.
 141. Kanatsuka, A., H., Makino, Y. Matsushima, J. Kasanuki, M. Osegawa, and A. Kumagai. Effect of calcium on the secretion of somatostatin and insulin from pancreatic islets. Endocrinology 108: 2254–2257, 1981.
 142. Kaupman, K., C., Bruns, F. Raulf, H. P. Weber, H. Mattes, and H. Lubbert. Two amino acids, located in transmembrane domains VI and VII, determine the selectivity of the peptide agonist SMS201–995 for the SSTR2 somatostatin receptor. EMBO J. 14: 727–735, 1995.
 143. Kawai, K., L., Orci, E. Ipp, A. Perrelet, and R. H. Unger. Circulating somatostatin acts on the islets of Langerhans via a somatostatin poor compartment. Science 218: 477–478, 1982.
 144. Kendall, D. M., V., Poitout, L. K. Olson, R. L. Sorenson, and R. P. Robertson. Somatostatin coordinately regulates glucagon gene expression and exocytosis in HIT‐T15 cells. J. Clin. Invest. 96: 2496–2502, 1995.
 145. Kleinman, R., R., Gingerich, G. Ohning, H. Wong, K. Olthoff, J. Walsh, and F. C. Brunicardi. The influence of somatostatin on glucagon and pancreatic polypeptide secretion in the isolated perfused human pancreas. Int. J. Pancreatol. 18: 51–57, 1995.
 146. Kleinman, R., G., Ohning, H. Wong, P. Watt, J. Walsh, and F. C. Brunicardi. Regulatory role of intraislet somatostatin on insulin secretion in the isolated perfused human pancreas. Pancreas 9: 172–178, 1994.
 147. Kleuss, C., J., Heschefeler, C. Ewel, W. Rosenthal, G. Schultz, and B. Wittig. Assignment of G protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353: 43–48, 1991.
 148. Koch, B. D. and A., Schonbrunn. Characterization of the cyclic AMP‐independent actions of somatostatin in GH cells. J. Biol. Chem. 263: 226–234, 1988.
 149. Koerker, D. J., W., Ruch, E. Chideckel, J. Palmer, C. J. Goodner, J. Ensinck, and C. C. Gale. Somatostatin: hypothalamic inhibitor of the endocrine pancreas. Science 184: 482–4843, 1974.
 150. Kohen, E., C., Kohen, and A. Rabinovitch. Cell‐to‐cell communication in rat pancreatic islet monolayer cultures is modulated by agents affecting islet‐cell secretory activity. Diabetes 32: 95–98, 1983.
 151. Kohen, E., C., Kohen, B. Thorell, D. H. Mintz, and A. Rabinovitch. Intercellular communication in pancreatic islet monolayer cultures: a microfluorometric study. Science 204: 862–865, 1979.
 152. Krulich, L., A. P. S., Dhariwal, and S. M. McCann. Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro. Endocrinology 83: 783–790, 1968.
 153. Kumar, U., D., Laird, C. B. Srikant, E. Escher, and Y. C. Patel. Expression of the five somatostatin receptor (SSTR1–5) subtypes in rat pituitary somatotrophes: quantitative analysis by double‐label immunofluorescence confocal microscopy. Endocrinology 138: 4473–4476, 1997.
 154. Kumar, U., R., Sasi, S. Suresh, A. Patel, M. Thangaraju, P. Metrakos, S. C. Patel, and Y. C. Patel. Subtype selective expression of the five somatostatin receptors (hSSTR1–5) in human pancreatic islet cells: a quantitative double‐label immunohistochemical analysis. Diabetes 48: 77–85, 1999.
 155. Kvietys, P. R., M. A., Perry, and D. A. Granger. Permeability of pancreatic capillaries to small molecules. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G519–G524, 1983.
 156. Kwok, R. P., M. E., Laurance, J. R. Lundbard, P. S. Goldman, H. Shih, L. M. Connnor, S. J. Marriott, and R. H. Goodman. Control of cAMP‐regulated enhancers by the viral transactivator Tax through CREB and the co‐activator CBP. Nature 380: 642–646, 1996.
 157. Kwok, R. P. S., J. R., Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. E. Roberts, M. R. Green, and R. H. Goodman. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370: 223–226, 1994.
 158. Lamberts, S. W. J., E. P., Krenning, and J.‐C. Reubi. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr. Rev. 12: 450–482, 1991.
 159. Lamberts, S. W. J., A.‐J. Van Der Lely, and W. W. de Herder. Drug therapy: octreotide. N. Engl. J. Med. 334: 246–254, 1996.
 160. Larsson, L.‐I.. Innervation of the pancreas by substance P, enkephalin, vasoactive intestinal polypeptide and gastrin/CCK immunoreactive nerves. J. Histochem. Cytochem. 27: 1283–1284, 1979.
 161. Larsson, L. I.. Distribution and morphology of somatostatin cells. Adv. Exp. Biol. Med. 188: 383–402, 1985.
 162. Larsson, L. I., N. Golterman, L. De Magistris, J. F. Rehfeld, and T. W. Schwartz. Somatostatin cell processes as pathways for paracrine secretion. Science 205: 1393–1395, 1979.
 163. Larsson, L. I., and J. F. Rehfeld. Peptidergic and adrenergic innervation of pancreatic ganglia. Scand. J. Gastroenterol. 14: 433–437, 1979.
 164. Leonard, J., B., Peers, T. Johnson, K. Ferreri, S. Lee, and M. R. Montminy. Characterization of somatostatin transactivating factor‐1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol. Endocrinol. 7: 1275–1283, 1993.
 165. Leonard, J., P., Serup, G. Gonzalez, T. Edlund, and M. R. Montminy. The LIM family transcription factor Isl‐1 requires cAMP response element binding protein to promote somatostatin expression in pancreatic islet cells. Proc. Natl. Acad. Sci. U.S.A. 89: 6247–6251, 1992.
 166. Lepage‐Lezin, A., P., Joseph‐Bravo, G. Devilliers, L. Benedetti, J.‐M. Launay, S. Gomez, and P. Cohen. Prosomatostatin is processed in the Golgi apparatus of rat neural cells. J. Biol. Chem. 266: 1679–1688, 1991.
 167. Liapakis, G., C., Haeger, J. Rivier, and T. Reisine. Development of a selective agonist at the somatostatin receptor subtype SSTR1. J. Pharmacol. Exp. Ther. 276: 1089–1094, 1996.
 168. Liebow, C., C., Reilly, M. Serrano, et al. Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase. Proc. Natl. Acad. Sci. U.S.A. 86: 2003–2007, 1989.
 169. Liu, F., M. A., Thompson, S. Wagner, M. E. Greenberg, and M. R. Green. Activating transcription factor‐1 can mediate Ca2+‐ and cAMP‐inducible transcriptional activation. J. Biol. Chem. 208: 6714–6720, 1993.
 170. Liu, J.‐L., D. N., Papachristou, and Y. C. Patel. Glucocorticoids activate somatostatin gene transcription through co‐operative interaction with the cyclic AMP signalling pathway. Biochem. J. 301: 863–869, 1994.
 171. Liu, J.‐L., and Y. C. Patel. Glucocorticoids inhibit somatostatin gene expression through accelerated degradation of SS‐mRNA in human thyroid medullary carcinoma TT cells. Endocrinology 136: 2389–2396, 1995.
 172. Loh, Y. P., and H. A. Gritsch. Evidence for intragranular processing of proopiomelanocortin in the mouse pituitary intermediate lobe. Eur. J. Cell Biol. 26: 177–183, 1981.
 173. Lopez‐Fernandez, J., F., Sanchez‐Franco, B. Velasco, R. M. Tolon, F. Pazos, and L. Cacicedo. Growth hormone induces somatostatin and insulin‐like growth factor I gene expression in the cerebral hemispheres of aging rats. Endocrinology 137: 4384–4391, 1996.
 174. Lu, M., C. P., Miller, and J. F. Habener. Functional regions of the homeodomain protein IDX‐1 required for transactivation of the rat somatostatin gene. Endocrinology 137: 2959–2967, 1996.
 175. Luft, R., S., Efendic, T. Hokfelt, O. Johansson, and A. Arimura. Immunohistochemical evidence for the localization of somatostatin‐like immunoreactivity in a cell population of the pancreatic islets. Med. Biol. 52: 428–430, 1974.
 176. Luini, A., and M. A. de Matteis. Evidence that receptor‐linked G protein inhibits exocytosis by a post‐second messenger mechanism in AtT‐20 cells. J. Neurochem. 54: 30–38, 1990.
 177. MacFarlane, W. M., M. L., Read, M. Gilligan, I. Bujalska, and K. Docherty. Glucose modulates the binding activity of the beta‐cell transcription factor IUF1 in a phosphorylation‐dependent manner. Biochem. J. 303: 625–631, 1994.
 178. Mackin, R. B., B. D., Noe, and J. Spiess. Identification of a somatostatin‐14‐generating propeptide converting enzyme as a member of the kex2/furin/PC family. Endocrinology 129: 2263–2265, 1991.
 179. Mackin, R. B., B. D., Noe, and J. Spiess. The anglerfish somatostatin‐28‐generating propeptide converting enzyme is an aspartyl protease. Endocrinology 129: 1951–1957, 1991.
 180. Magazin, M., C. D., Minth, C. L. Funckes, R. Deschenes, M. A. Tavianini, and J. E. Dixon. Sequence of a CDNA encoding pancreatic preprosomatostatin‐22. Proc. Natl. Acad. Sci. U.S.A. 79: 5152–5156, 1982.
 181. Makino, H., Y., Matsushima, A. Kanatsuka, M. Yamamoto, A. Kumagai, and M. Nishimura. Changes in pancreatic somatostatin content in spontaneously diabetic mice, as determined by radioimmunoassay and immunohistochemical methods. Endocrinology 104: 243–247, 1979.
 182. Maletti, M., M., Andersson, J.‐C. Marie, G. Rosselin, and V. Mutt. Solubilization and partial purification of somatostatin‐28 preferring receptors from hamster pancreatic beta cells. J. Biol. Chem. 267: 15620–15625, 1992.
 183. Mandarino, L., D., Stenner, W. Blanchard, S. Nissen, J. Gerich, N. Ling, P. Brazeau, P. Bohlen, F. Esch, and R. Guillemin. Selective effects of somatostatin‐14,‐25, and‐28 on in vitro insulin and glucagon secretion. Nature 291: 76–77, 1981.
 184. Marcinkiewicz, M., D., Ramla, N. G. Seidah, and M. Chretien. Developmental expression of the prohormone convertases PC1 and PC2 in mouse pancreatic islets. Endocrinology 135: 1651–1660, 1994.
 185. Marki, F., U. M., Butcher, and J.‐C. Richter. Multiple subcutaneous injections of somatostatin induce tachyphylaxis of the suppression of plasma insulin, but not glucagon, in the rat. Regul. Pept. 4: 333–339, 1982.
 186. Marki, F., L., Schenkel, B. Petrack, A.J. Czernik, J. Ansell, M. Allen, D. E. Brandish, J. R. Martin, C. McMartin, G. E. Peters, and R. Wade. Rapid conversion of somatostatin to active metabolite in human plasma. FEBS Lett. 127: 22, 1981.
 187. Marks, N., F., Stern, and M. Benuck. Correlation between biological potency and biodegradation of a somatostatin analogue. Nature 261: 511–512, 1976.
 188. Marre, M., J., Miller, A. M. Helman, and R. Assan. Reciprocal gastropancreatic modulations for the release of somatostatin‐like immunoreactivity, glucagon, and insulin in the rat. Diabetes 32: 768–773, 1983.
 189. Matsushima, Y., H., Makino, and A. Kanatsuka. Pancreatic somatostatin contents in spontaneously diabetic KK and nonobese diabetic mice. Horm. Metab. Res. 14: 292–298, 1982.
 190. McDonald, J. K., F., Greiner, G. E. Bauer, R. P. Elde, and B. D. Noe. Separate cell types that express two different forms of somatostatin in anglerfish islets can be immunohistochemically differentiated. J. Histochem. Cytochem. 35: 155–162, 1987.
 191. McEvoy, R. C., and O. D. Hegre. Morphometric quantitation of the pancreatic insulin‐, glucagon‐, and somatostatin‐positive cell populations in normal and alloxan‐diabetic rats. Diabetes 26: 1140–1146, 1977.
 192. McMartin, C., and G. E. Purdon. Early fate of somatostatin in the circulation of the rat after intravenous injection. J. Endocrinol. 77: 67, 1978.
 193. Meda, P., J.‐F., Denef, A. Perrelet, and L. Orci. Nonrandom distribution of gap junctions between pancreatic β‐cells. Am. J. Physiol. 238 (Cell Physiol. 7): C114–C119, 1980.
 194. Meda, P., E., Kohen, C. Kohen, A. Rabinovitch, and L. Orci. Direct communication of homologous and heterologous endocrine islet cells in culture. J. Cell Biol. 92: 221–226, 1982.
 195. Meda, P., A., Perrelet, and L. Orci. Increase of gap junctions between pancreatic B‐cells during stimulation of insulin secretion. Cell Biol. 82: 441–448, 1979.
 196. Mehler, P. S., A. L., Sussman, A. Maman, J. W. Leitner, and K. E. Sussman. Role of insulin secretagogues in the regulation of somatostatin binding by isolated rat islets. J. Clin. Invest. 66: 1334–1338, 1980.
 197. Meriney, S. D., D. B., Gray, and G. R. Pilar. Somatostatin‐induced inhibition of neuronal Ca2+ current modulated by cGMP‐dependent protein kinase. Nature 369: 336–339, 1994.
 198. Meyer, T. E., and J. F. Habener. Cyclic 3′‐5′‐monophosphate response element binding protein (CREB) and related transcription‐activating deoxyribonucleic acid–binding proteins. Endocr. Rev. 14: 269–290, 1993.
 199. Michaels, R. L., and J. D. Sheridan. Islets of Langerhans: dye coupling among immunocytochemically distinct cell types. Science 214: 801–803, 1981.
 200. Miller, C. P., R. E., Mcgehee, and J. F. Habener. IDX‐1—a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 13: 1145–1156, 1994.
 201. Miralles, P., E., Peiro, P. Degano, R. A. Silvestre, and J. Marco. Inhibition of insulin and somatostatin secretion and stimulation of glucagon release by homologous galanin in perfused rat pancreas. Diabetes 39: 996–1001, 1990.
 202. Molloy, S. S., L. Thomas, J. K. Van Slyke, P. E. Stenberg, and G. Thomas. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 13: 18–33, 1994.
 203. Montminy, M, P., Brindle, J. Arias, K. Ferreri, and R. Armstrong. Regulation of somatostatin gene transcription by cAMP. In: Somatostatin and Its Receptors, Ciba Foundation Symposium 190, Chichester: Wiley, 1995, p. 7–20.
 204. Montminy, M., P., Brindle, J. Arias, K. Ferreri, and R. Armstrong. Regulation of somatostatin gene transcription by cyclic adenosine monophosphate. Metabolism 45: 4–7, 1996.
 205. Montminy, M. R., and L. M. Bilezikjian. Binding of a nuclear protein to the cAMP response element of the somatostatin gene. Nature 328: 175–178, 1987.
 206. Montminy, M. R., R. H., Goodman, S. J. Horovitch, and J. F. Habener. Primary structure of the gene encoding rat preprosomatostatin. Proc. Natl. Acad. Sci. U.S.A. 81: 3337–3340, 1984.
 207. Montminy, M. R., M. J., Low, L. Tapia‐Arancibia, S. Reichlin, G. Mandel, and R. H. Goodman. Cyclic AMP regulates somatostatin mRNA accumulation in primary diencephalic cultures and in transfected fibroblast cells. J. Neurosci. 6: 1171–1176, 1986.
 208. Moore, C. A., J. D., Kittilson, S. K. Dohl, and M. A. Sheridan. Isolation and characterization of a cDNA encoding for preprosomatostatin containing [Tyr7, Gly10]‐somatostatin‐14 from the endocrine pancreas of rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 98: 253–261, 1995.
 209. Nagamune, H., K., Muramatsu, T. Akamatsu, Y. Tamai, K. Izumi, A. Tsuji, and Y. Matsuda. Distribution of the kexin family proteases in pancreatic islets: PACE4C is specifically expressed in B cells of pancreatic islets. Endocrinology 136: 357–360, 1995.
 210. Nakajima, T., A., Fukamizu, J. Takahashi, F. H. Gage, T. Fisher, J. Blenis, and M. R. Montminy. The signal‐dependent coactivator CBP is a nuclear target for pp90RSK. Cell 86: 465–474, 1996.
 211. Naylor, S. L., A. Y., Sakaguchi, L. P. Shen, G. I. Bell, W. J. Rutter, and T. B. Shows. Polymorphic human somatostatin gene is located on chromosome 3. Proc. Natl. Acad. Sci. U.S.A. 80: 2686–2689, 1983.
 212. Neerman‐Arbez, M., V., Cirulli, and P. A. Halban. Levels of the conversion endoproteases PC1 (PC3) and PC2 distinguish between insulin‐producing pancreatic islet β cells and non‐β cells. Biochem. J. 300: 57–61, 1994.
 213. Nelson‐Piercy, C., P. J., Hammond, M. E. Giullian, N. Khandan‐Nia, M. J. Myers, M. A. Ghatei, and S. R. Bloom. Effect of a new oral somatostatin analog (SDZ C0611) on gastric emptying, mouth to cecum transit time and pancreatic and gut hormone release in normal male subjects. J. Clin. Endocrinol. Metab. 78: 329–336, 1994.
 214. Nillni, E. A., K. A., Sevarino, and I. M. D. Jackson. Processing of proTRH to its intermediate products occurs before the packing into secretory granules of transfected AtT‐20 cells. Endocrinology 132: 1271–1277, 1993.
 215. Nishi, S., Y., Seino, H. Ishida, M. Seno, T. Taminato, H. Sakurai, and H. Imura. Vagal regulation of insulin, glucagon, and somatostatin secretion in vitro in the rat. J. Clin. Invest. 79: 1191–1196, 1987.
 216. Noe, B. D., and J. Spiess. Posttranslational processing of anglerfish islet somatostatin. In: Somatostatin. Adv. Exp. Med. Biol., edited by Y. C. Patel and G. S. Tannenbaum. New York: Plenum, 1985, vol. 188, p. 123–140.
 217. Ogryzko, V. V., R. L., Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959, 1996.
 218. Ohlsson, H., K., Karlsson, and H. Edlund. IPF‐1, a human homeodomain‐containing transactivator of the insulin gene. EMBO J. 12: 4251–4259, 1993.
 219. Olchovsky, D., J. F., Bruno, T. L. Wood, M. C. Gelato, J. W. Leidy, Jr., J. M. Gilbert, Jr., and M., Berelowitz. Altered pituitary growth hormone (GH) regulation in streptozotocin‐diabetic rats: a combined defect of hypothalamic somatostatin and GH‐releasing factor. Endocrinology 126: 53–61, 1990.
 220. Orci, L.. Macro‐ and micro‐domains in the endocrine pancreas. Diabetes 31: 538–565, 1982.
 221. Orci, L., D., Baetens, M. P. Dubois, and C. Rufener. Evidence for the D‐cell of the pancreas secreting somatostatin. Horm. Metab. Res. 7: 400–402, 1975.
 222. Orci, L., D., Baetens, C. Rufener, M. Amherdt, M. Ravazzola, P. Studer, F. Malaisse‐Lagae, and R. H. Unger. Hypertrophy and hyperplasia of somatostatin‐containing D‐cells in diabetes. Proc. Natl. Acad. Sci. U.S.A. 73: 1338–1342, 1976.
 223. Orci, L., and A. Perrelet. The morphology of the A cell. In: Glucagon: Physiology, Pathophysiology, and Morphology of Pancreatic A Cells, edited by R. H. Unger and L. Orci. New York: Elsevier, 1981, p. 3–36.
 224. Orci, L., M., Ravazzola, M. J. Storch, R. G. W. Anderson, J. D. Vassali, and A. Perrelet. Proteolytic maturation of insulin is a post‐Golgi event which occurs in acidifying clathrin‐coated secretory vesicles. Cell 49: 865–868, 1987.
 225. Orci, L., and R. H. Unger. Functional subdivision of islets of Langerhans and possible role of D cells. Lancet ii: 1243–1246, 1975.
 226. Pan, M. G., T., Florio, and P. J. S. Stork. G protein activation of a hormone‐stimulated phosphatase in human tumor cells. Science 256: 1215–1217, 1992.
 227. Papachristou, D. N., J. ‐L., Liu, and Y. C. Patel. Cysteamine‐induced reduction in tissue somatostatin immunoreactivity is associated with alterations in somatostatin mRNA. Regul. Pept. 49: 237–247, 1994.
 228. Papachristou, D. N., J.‐L., Liu, and Y. C. Patel. Glucocorticoids regulate somatostatin gene expression in normal tissues and in a somatostatin producing tumor cell line (1027B2). Endocrinology 134: 2259–2266, 1994.
 229. Papachristou, D. N., K., Pham, H. H. Zingg, and Y. C. Patel. Tissue‐specific alterations in somatostatin mRNA accumulation in streptozocin‐induced diabetes. Diabetes 38: 752–757, 1989.
 230. Patel, Y. C.. Radioimmunoassay of somatostatin related peptides. In: Methods in Diabetes Research, edited by S. L. Pohl and J. Larner. New York: Wiley, 1984, p. 307–327.
 231. Patel, Y. C.. General aspects of the biology and function of somatostatin. In: Basic and Clinical Aspects of Neuroscience, edited by C. Weil, E. E. Muller, and M. O. Thorner. Berlin: Springer‐Verlag, 1992, vol. 4, p. 1–16.
 232. Patel, Y. C.. Somatostatin. In: Principles and Practice of Endocrinology and Metabolism (3rd ed.), edited by K. Becker. Philadelphia: Lippincott, 2000 (in press).
 233. Patel, Y. C.. Molecular pharmacology of somatostatin receptor subtypes. J. Endocrinol. Invest. 20: 348–367, 1997.
 234. Patel, Y. C., Somatostatin and its receptor family frontiers in neuroendocrinology 20: 157–198, 1999.
 235. Patel, Y. C., M., Amherdt, and L. Orci. Somatostatin secretion from monolayer cultures of neonatal rat pancreas. Endocrinology 104: 676–679, 1979.
 236. Patel, Y. C., M., Amherdt, and L. Orci. Quantitative electron microscopic autoradiography of insulin, glucagon and somatostatin binding sites on islets. Science 217: 1155–1156, 1982.
 237. Patel, Y. C., D. P., Cameron, A. Bankier, F. Malaisse‐Lagae, M. Ravazzola, P. Studer, and L. Orci. Changes in somatostatin concentration in pancreas and other tissues of streptozotocin diabetic rats. Endocrinology 103: 917–923, 1978.
 238. Patel, Y. C., D. P., Cameron, Y. Stefan, F. Malaisse‐Lagae, and L. Orci. Somatostatin: widespread abnormality in tissues of spontaneously diabetic mice. Science 198: 930–931, 1977.
 239. Patel, Y. C., and A. S. Galanopoulou. Processing and intracellular targetting of prosomatostatin derived peptides: the role of mammalian endoproteases. In: Somatostatin and Its Receptors, Ciba Foundation Symposium 190. Chichester Wiley, 1995, p. 26–50.
 240. Patel, Y. C., A. S., Galanopoulou, S. N. Rabbani, J.‐L. Liu, M. Ravazzola, and M. Amherdt. Somatostatin‐14, somatostatin‐28, and prosomatostatin[1–10] are independently and efficiently processed from prosomatostatin in the constitutive secretory pathway in islet somatostatin tumor cells (1027 B2). Mol. Cell. Endocrinol. 131: 183–194, 1997.
 241. Patel, Y. C., M. T. Greenwood, R. Panetta et al. The somatostatin receptor family. Life Sci. 57: 1249–1265, 1995.
 242. Patel, Y. C., M., Greenwood, R. Panetta, N. Hukovic, S. Grigorakis, L. A. Robertson, and C. B. Srikant. Molecular biology of somatostatin receptor subtypes. Metabolism 45: 31–38, 1996.
 243. Patel, Y. C., and W. O'Neil. Peptides derived from cleavage of prosomatostatin at carboxy and amino terminal segments: characterization of tissue and secreted forms in the rat. J. Biol. Chem. 263: 745–751, 1988.
 244. Patel, Y. C., R., Panetta, E. Escher, M. Greenwood, and C. B. Srikant. Expression of multiple somatostatin receptor genes in AtT‐20 cells: evidence for a novel somatostatin‐28 selective receptor subtype. J. Biol. Chem. 269: 1506–1509, 1994.
 245. Patel, Y. C., D. N., Papachristou, H. H. Zingg, and E. M. Farkas. Regulation of islet somatostatin secretion and gene expression: selective effects of adenosine 3′,5′ monophosphate and phorbol easters in normal islets of Langerhans and in a somatostatin‐producing rat islet clonal cell line 1027B2. Endocrinology 128: 1754–1762, 1991.
 246. Patel, Y. C., I., Pierzchala, M. Amherdt, and L. Orci. Effects of cysteamine and antibody to somatostatin on islet cell function in vitro. J. Clin. Invest. 75: 1249–1255, 1985.
 247. Patel, Y. C., M., Ravazzola, M. Amherdt, and L. Orci. Somatostatin‐14 like antigenic sites in fixed islet D‐cells are unaltered by cysteamine. Endocrinology 120: 1663–1667, 1987.
 248. Patel, Y. C., and S. Reichlin. Somatostatin in hypothalamus, extra‐hypothalamic brain and peripheral tissues of the rat. Endocrinology 102: 523–530, 1978.
 249. Patel, Y. C., and C. B. Srikant. Somatostatin mediation of adeno‐hypophysial secretion. Annu. Rev. Physiol. 48: 551–567, 1985.
 250. Patel, Y. C., and C. B. Srikant. Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr1–5). Endocrinology 135: 2814–2817, 1994.
 251. Patel, Y. C., and C. B. Srikant. Somatostatin receptors. Trends Endocrinol. Metab. 8: 398–405, 1997.
 252. Patel, Y. C., M. L. Sri Prakash, D. N. Papachristou, E. M. Farkas, and K. Pham. Insulin is a potent inhibitor of somatostatin secretion and mRNA accumulation in a somatostatin‐producing islet tumor cell line, [abstract]. Diabetes 37 (Suppl. 1): 101A, 1988.
 253. Patel, Y. C., and G. S. Tannenbaum. Somatostatin. Adv. Exp. Med. Biol. 188, 1985.
 254. Patel, Y. C., and G. S. Tannenbaum. Somatostatin. Basic and clinical aspects. Metabolism (Suppl.) Volume 39 No 9 Suppl. 2 1990 1990.
 255. Patel, Y. C., A., Warszynska, J.‐L. Liu, G. Kent, D. N. Papachristou, and S. C. Patel. Differential stimulation of somatostatin but not neuropeptide Y gene expression by quinolinic acid in cultured cortical neurons. J. Neurochem. 65: 998–1006, 1995.
 256. Patel, Y. C., and G. C. Weir. Increased somatostatin content of islets from streptozotocin diabetic rats. Clin. Endocrinol. (Oxf.) 5: 191–194, 1976.
 257. Patel, Y. C., and T. Wheatley. In vivo and in vitro plasma disappearance and metabolism of somatostatin‐28 and somatostatin‐14 in the rat. Endocrinology 112: 220–225, 1983.
 258. Patel, Y. C., T., Wheatley, D. Fitz‐Patrick, and G. Brock. A sensitive radioimmunoassay for immunoreactive somatostatin in extracted plasma: measurement and characterization of portal and peripheral plasma in the rat. Endocrinology 107: 306–313, 1979.
 259. Patel, Y. C., T., Wheatley, F. Malaisse‐Lagae, and L. Orci. Elevated portal and peripheral blood concentration of immunoreactive somatostatin in spontaneously diabetic (BBL) Wistar rats: suppression with insulin. Diabetes 29: 757–761, 1980.
 260. Patel, Y. C., T., Wheatley, and C. Ning. Multiple forms of immunoreactive somatostatin: comparison of distribution in neural and nonneural tissues and portal plasma of the rat. Endocrinology 109: 1943–1949, 1981.
 261. Patel, Y. C., T., Wheatley, and H. H. Zingg. Increased blood somatostatin concentration in strepozotocin diabetic rats. Life Sci. 27: 1563–1570, 1980.
 262. Patel, Y. C., H. H., Zingg, and C. B. Srikant. Somatostatin‐14 like immunoreactive forms in the rat: characterization, distribution and biosynthesis. In: Somatostatin. Adv. Exp. Med. Biol. edited by Y. C. Patel and G. S. Tannenbaum. New York: Plenum, 1985, vol. 188, p. 71–87.
 263. Patton, G. S., E., Ipp, R. E. Dobbs, L. Orci, W. W. Vale, and R. H. Unger. Pancreatic immunoreactive somatostatin release. Proc. Natl. Acad. Sci. U.S.A. 74: 2140–2143, 1977.
 264. Peeters, T. L., Y., Depraetere, and G. R. Vantrappen. Simple extraction method and radioimmunoassay for somatostatin in human plasma. Clin. Chem. 27: 888–891, 1981.
 265. Pelletier, G., R., Leclerc, A. Arimura, and A. V. Schally. Immunohistochemical localization of somatostatin in the rat pancreas. J. Histochem. Cytochem. 23: 699–701, 1975.
 266. Penman, E., J. A. H., Wass, S. Medbak, L. Morgan, J. M. Lewis, G. M. Besser, and L. H. Rees. Response of circulating immunoreactive somatostatin to nutritional stimuli in normal subjects. Gastroenterology 81: 692–699, 1981.
 267. Philippe, J.. Somatostatin inhibits insulin‐gene expression through a posttranscriptional mechanism in a hamster islet cell line. Diabetes 42: 244–249, 1993.
 268. Pictet, R., and W. J. Rutter. Development of the embryonic endocrine pancreas. In: Handbook of Physiology. Endocrinology. Endocrine Pancreas, edited by D. F. Steiner and N. Freinkel. Washington, D.C.: Am. Physiol. Soc., 1972, sect. 7, vol. I, p. 25–66.
 269. Polak, J. M., A. G. E., Pearse, L. Grimelius, S. R. Bloom, and A. Arimura. Growth‐hormone release–inhibiting hormone in gastrointestinal and pancreatic D‐cells. Lancet i: 1220–1222, 1975.
 270. Polonsky, K., J., Jaspan, M. Berelowitz, W. Pugh, A. Moossa, and N. Ling. The in vivo metabolism of somatostatin‐28: possible relationship between diminished metabolism and enhanced biological action. Endocrinology 111: 1698–1703, 1982.
 271. Polonsky, K. S., J. B., Jaspan, M. Berelowitz, D. S. Emmanouel, J. Dhorajiwala, and A. R. Moossa. Hepatic and renal metabolism of somatostatin‐like immunoreactivity. J. Clin. Invest. 68: 1149–1157, 1981.
 272. Pradayrol, L., H., Jornvall, V. Mutt, and A. Ribet. N‐terminally extended somatostatin: the primary structure of somatostatin 28. FEBS Lett. 109: 55–58, 1980.
 273. Quinn, P. G.. Distinct activation domains within cAMP response element–binding protein (CREB) mediate basal and cAMP‐stimulated transcription. J. Biol. Chem. 268: 16999–17009, 1993.
 274. Rabbani, S. N., and Y. S. Patel. Measurement and characterization of somatostatin‐14‐like immunoreactivity in human urine. J. Clin. Endocrinol. Metab. 66: 1050–1055, 1988.
 275. Rabbani, S. N. and Y. C., Patel. Peptides derived by processing of rat prosomatostatin near the amino terminus: characterization, tissue distribution and release. Endocrinology 126: 2054–2061, 1990.
 276. Ravazzola, M., R., Benoit, N. Ling, and L. Orci. Prosomatostatin derived antrin is present in gastric D cells and in portal blood. J. Clin. Invest. 83: 362–366, 1989.
 277. Raynor, K., A. M., O'Carroll, H. Kong, Y. Yasuda, L. M. Mahan, G. I. Bell, and T. Reisine. Characterization of cloned somatostatin receptors SSTR4 and SSTR5. Mol. Pharmacol. 44: 385–392, 1993.
 278. Reardon, D. B., S. L., Wood, D. L. Brautigan, G. I. Bell, P. Dent, and T. W. Sturgill. Activation of a protein tyrosine phosphate and inactivation of Raf‐1 by somatostatin. Biochem. J. 314: 401–404, 1996.
 279. Redmon, J. B., H. C., Towie, and R. P. Robertson. Regulation of human insulin gene transcription by glucose, epinephrine, and somatostatin. Diabetes 43: 546–551, 1994.
 280. Reichlin, S.. Somatostatin. IV. Engl. J. Med. 309: 1495–1501, 1556–1563, 1983.
 281. Reichlin, S. (ed.). Somatostatin Basic and Clinical Status. New York: Plenum, 1987.
 282. Reisine, T., and G. I. Bell. Molecular biology of somatostatin receptors. Endocr. Rev. 16: 427–142, 1995.
 283. Reisine, T. D., and J. Axelrod. Prolonged somatostatin treatment desensitizes somatostatin's inhibition of receptor‐mediated release of adrenocorticotropin hormone and sensitizes adenylate cyclase. Endocrinology 113: 811–813, 1983.
 284. Renstrom, E., W. ‐G., Ding, K. Bokvist, and P. Rorsman. Neurotransmitter‐induced inhibition of exocytosis in insulin‐secreting β cells by activation of calcineurin. Neuron 17: 513–522, 1996.
 285. Reubi, J.‐C., J., Rivier, M. Perrin, M. Brown, and W. Vale. Specific high affinity binding sites for somatostatin‐28 on pancreatic B‐cells: differences with brain somatostatin receptors. Endocrinology 110: 1049–1051, 1982.
 286. Robbins, J. R., and S. Reichlin. Somatostatin biosynthesis by cerebrocortical cells in monolayer culture. Endocrinology 113: 574–581, 1983.
 287. Rogers, K. V., L., Vician, R. A. Steiner, and D. K. Clifton. The effect of hypophysectomy and growth hormone administration on preprosomatostatin messenger ribonucleic acid in the periventricular nucleus of the rat hypothalamus. Endocrinology 122: 586–590, 1988.
 288. Rohrer, S. P., E. T., Birzin, R. T. Mosley, S. C. Berk, S. M. Hutchins, D.‐M. Shen, Y. Xiong, E. C. Hayes, R. M. Parmar, F. Foor, S. W. Mitra, S. J. Degrado, M. Shu, J. M. Klopp, S. J. Cai, A. Blake, W. W. S. Chan, A. Pasternak, L. Yang, A. A. Patchett, R. G. Smith, K. T. Chapman, J. M. Schaeffer. Rapid identification of subtype‐selective agonists of the somatostatin receptor through combinatorial chemistry. Science 282: 737–740, 1998.
 289. Roth, A., H.‐J., Kreienkamp, W. Meyerhof, et al. Phosphorylation of four amino acid residues in the carboxyl terminus of the rat somatostatin receptor subtype 3 is crucial for its desensitization and internalization. J. Biol. Chem. 38: 23,769–23,774, 1997.
 290. Rouiller, D., V., Schusdziarra, V. Harris, and R. H. Unger. Release of pancreatic and gastric somatostatin‐like immunoreactivity in response to the octapeptide of cholecystokinin, secretin gastric inhibitory polypeptide, and gastrin‐17 in dogs. Endocrinology 107: 524–529, 1980.
 291. Rufener, C., M., Amherdt, M. P. Dubois, and L. Orci. Ultrastructural immunocytochemical localization of somatostatin D‐cells in rat pancreatic monolayer culture. J. Histochem. Cytochem. 23: 966–969, 1975.
 292. Ruggere, M. D., and Y. C. Patel. Hepatic metabolism of somatostatin‐14 and somatostatin‐28: immunochemical characterization of the metabolic fragments and comparison of cleavage sites. Endocrinology 117: 88–96, 1985.
 293. Ruggere, M. D., and Y. C. Patel. Somatostatin metabolism by the isolated rat lung. Endocrinology 117: 1870–1873, 1985.
 294. Ruggere, M. D., and Y. C. Patel. Impaired hepatic metabolism of somatostatin‐14 and somatostatin −28 in spontaneously diabetic BB rats. Endocrinology 115: 244–248, 1984.
 295. Ruggere, M. D., and Y. C. Patel. Somatostatin, glucagon, and insulin secretion from perfused pancreas of BB rats. Am. J. Physiol. 247: (Endocrinol. Metab. 10): E221–E227, 1984.
 296. Ruggere, M. D., and Y. C. Patel. Hypersecretion of gastric somatostatin in spontaneously diabetic BB rats. Diabetes 36: 849–852, 1987.
 297. Sacks, H., and L. C. Terry. Clearance of immunoreactive somatostatin by perfused rat liver. J. Clin. Invest. 67: 419–430, 1981.
 298. Sacks, H. S., L. C., Terry, R. K. Wright, and F. B. Stentz. Somatostatin metabolism: differences in clearance of N‐terminal and central portions of molecule during perfusion of rat liver. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G226–G234, 1984.
 299. Samols, E., J., Stagner, R. B. L. Ewart, and V. Marks. The order of islet microvascular cellular perfusion is B → A → D in the perfused rat pancreas. J. Clin. Invest. 82: 350–354, 1988.
 300. Samols, E., and J. I. Stagner. Islet somatostatin‐microvascular, paracrine and pulsatile regulation. Metabolism 39 (Suppl. 2): 55–60, 1990.
 301. Samols, E., and G. C. Weir. Adrenergic modulation of pancreatic A, B, and D cells. J. Clin. Invest. 63: 230–238, 1979.
 302. Samols, E., G. C., Weir, R. Ramseur, J. A. Day, and Y. C. Patel. Modulation of pancreatic somatostatin by adrenergic and cholinergic agonism and by hyper‐ and hypoglycemic sulfonamides. Metabolism 27: 1219–1221, 1978.
 303. Scarborough, D. E.. Somatostatin regulation by cytokines. Metabolism (Suppl. 2139): 108–111, 1990.
 304. Schafer, M. K. H., R., Day, W. E. Cullinan, M. Chretien, N. G. Seidah, and S. J. Watson. Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. J. Neurosci. 13: 1258–1279, 1993.
 305. Schnabel, E., R. E., Mains, and M. G. Farquhar. Proteolytic processing of pro‐ACTH/endorphin begins in the Golgi complex of pituitary corticotropes and AtT‐20 cells. Mol. Endocrinol. 3: 1223–1235, 1989.
 306. Schuit, F. C., M. P., Derde, and D. G. Pipeleers. Sensitivity of rat pancreatic A and B cells to somatostatin. Diabetologia 32: 207–212, 1989.
 307. Schusdziarra, V., R. E., Dobbs, V. Harris, and H. Unger. Immunoreactive somatostatin levels in plasma of normal and alloxan diabetic dogs. FEBS Lett. 81: 69–72, 1977.
 308. Schusdziarra, V., V., Harris, and R. H. Unger. Half‐life of somatostatin‐like immunoreactivity in canine plasma. Endocrinology 104: 109–110, 1979.
 309. Schusdziarra, V., D., Rouiller, A. Arimura, and R. H. Unger. Antisomatostatin serum increases levels of hormones from the pituitary and gut but not from the pancreas. Endocrinology 103: 1956–1959, 1978.
 310. Schwaninger, M., G., Lux, R. Blume, E. Oetjen, H. Hidaka, and W. Knepel. Membrane depolarization and calcium influx induce glucagon gene transcription in pancreatic islet cells through the cyclic AMP‐responsive element. J. Biol. Chem. 268: 5168–5177, 1993.
 311. Schwartz, P. T., and M. Vallejo. Differential regulation of basal and cyclic adenosine 3′,5′‐monophosphate–induced somatostatin gene transcription in neural cells by DNA control elements that bind homeodomain proteins. Mol. Endocrinol. 12: 1280–1293, 1998.
 312. Schweitzer, R., S., Madamba, and G. R. Siggins. Arachidonic acid metabolites as mediators of somatostatin‐induced increase of neuronal M‐current. Nature 346: 464–466, 1990.
 313. Segers, O., M., Vroede, Y. Micholte, et al. Basal and tolbutamide‐induced plasma somatostatin in healthy subjects and in patients with diabetes and impaired glucose tolerance. Diabet. Med. 6: 232–238, 1989.
 314. Seidah, N. G., and M. Chretien. Pro‐protein convertases of subtilisin/kexin family. Methods Enzymol. 244: 175–188, 1994.
 315. Seidah, N. G., J., Hamelin, M. Mamarbachi, W. Dong, H. Tadros, M. Mbikay, M. Chretien, and R. Day. cDNA structure, tissue distribution and chromosomal localization of rat PC7 a novel mammalian proprotein convertase closest to yeast kexin like proteinases. Proc. Natl. Acad. Sci. U.S.A. 93: 9388–9393, 1996.
 316. Seino, S., Y., Seino, H. Sakurai, K. Tsuda, M. Usami, H. Kuzuya, and H. Imura. Glucose regulation of arginine‐induced pancreatic somatostatin release from the isolated perfused rat pancreas. Regul. Pept. 3: 271–279, 1982.
 317. Seino, S., Y., Seino, J. Takemura, K. Tsuda, H. Kuzuya, K. Ishikawa, T. Shimazu, and H. Imura. Somatostatin, insulin, and glucagon secretion from isolated perfused pancreas of obese rats. Am. J. Physiol. 241 (Endocrinol. Metab. 4): E146–E150, 1981.
 318. Serup, P., H. V., Petersen, E. E. Pedersen, H. Edlund, J. Leonard, J. S. Petersen, L.‐I. Larsson, and O. D. Madsen. The homeodomain protein IPF‐1/STF‐1 is expressed in a subset of islet cells and promotes rat insulin 1 gene expression dependent on an intact E1 helix‐loop‐helix factor binding site. Biochem. J. 310: 997–1003, 1995.
 319. Sevarino, K. A., and P. Stork. Multiple preprosomatostatin sorting signals mediate secretion via discrete cAMP‐ and tetradecanoyl‐phorbolacetate‐responsive pathways. J. Biol. Chem. 266: 18507–18513, 1991.
 320. Sevarino, K. A., P., Stork, R. Ventimeglia, G. Mandel, and R. H. Goodman. Processing and intracellular sorting of anglerfish and rat preprosomatostatins in mammalian endocrine cells. Cell 57: 11–19, 1989.
 321. Sharma, K., Y. C., Patel, and C. B. Srikant. Subtype selective induction of p53‐dependent apoptosis but not cell cycle arrest by human somatostatin receptor 3. Mol. Endocrinol. 10: 1688–1696, 1996.
 322. Sharma, K., Y. C., Patel, and C. B. Srikant. C‐terminal region of human somatostatin receptor 5 is required for induction of Rb and G1 cell cycle arrest. Mol. Endocrinol. 13: 82–90, 1999.
 323. Shen, L.‐P., R. L., Pictet, and W. J. Rutter. Human somatostatin. 1. Sequence of the CDNA. Proc. Natl. Acad. Sci. U.S.A. 79: 4575–4579, 1982.
 324. Shen, L. P. and W. J., Rutter. Sequence of the human somatostatin I gene. Science 224: 168–171, 1984.
 325. Sheng, M., M. A., Thompson, and M. E. Greenberg. CREB: a Ca2+‐regulated transcription factor phosphorylated by calmodulin‐dependent kinases. Science 252: 1427–1430, 1991.
 326. Sheppard, M., B., Shapiro, B. Pimstone, S. Kronheim, M. Berelowitz, and M. Gregory. Metabolic clearance and plasma half‐disappearance time of exogenous somatostatin in man. J. Clin. Endocrinol. Metab. 48: 50–53, 1979.
 327. Shoelson, S. E., K. S., Polonsky, T. Nakabayashi, J. B. Jaspan, and H. S. Tager. Circulating forms of somatostatin‐like immunoreactivity in human plasma. Am. J. Physiol. 250 (Endrocrinol. Metab. 13): E428–E434, 1986.
 328. Sims, S. M., B. T., Lussier, and J. Kraicer. Somatostatin activates an inwardly rectifying K+ conductance in freshly dispersed rat somatotrophs. J. Physiol. (Lond.) 441: 615–637, 1991.
 329. Skamene, A., and Y. C. Patel. Infusion of the graded concentrations of somatostatin in man: pharmacokinetics and differential inhibitory effects on pituitary and islet hormones. Clin. Endocrinol. (Oxf.) 20: 555–564, 1984.
 330. Smith, M. A., G., Yamamoto, and W. W. Vale. Somatostatin desensitization in rat anterior pituitary cells. Mol. Cell. Endocrinol. 37: 311–318, 1984.
 331. Sorenson, A. L., D. V., Lindell, and R. P. Elde. Glucose stimulation of somatostatin and insulin release from the isolated, perfused rat pancreas. Diabetes 29: 747–751, 1980.
 332. Sorenson, R. L., D. G., Garry, and T. C. Brelje. Structural and functional considerations of GABA in islets of Langerhans. Diabetes 40: 1365–1374, 1991.
 333. Sorenson, R. L., L. H., Grouse, and R. P. Elde. Cysteamine blocks somatostatin secretion without altering the course of insulin or glucagon release. Diabetes 32: 377–379, 1983.
 334. Srikant, C. B.. Cell cycle dependent induction of apoptosis by somatostatin analog SMS201–995 in AtT‐20 mouse pituitary tumor cells. Biochem. Biophys. Res. Commun. 209: 400–407, 1995.
 335. Srikant, C. B., K. K., Murthy, E. Escher, and Y. C. Patel. Photoaffinity labelling of the somatostatin receptor: identification of molecular subtypes. Endocrinology 130: 2937–2946, 1992.
 336. Srikant, C. B., and Y. C. Patel. Receptor binding of somatostatin‐28 is tissue specific. Nature 294: 259–260, 1981.
 337. Srikant, C. B., and S. H. Shen. Octapeptide somatostatin analog SMS 201–995 induces translocation of intracellular PTP1C to membranes in MCF‐7 human breast cancer adenocarcinoma cells. Endocrinology 137: 3461–3468, 1996.
 338. Stagner, J. I., E., Samols, and S. Bonner‐Weir. B ←| A ←| D pancreatic islet cellular perfusion in dogs. Diabetes 37: 1715–1728, 1988.
 339. Stefan, Y., S., Grasso, A. Perrelet, and L. Orci. A quantitative immunofluorescent study of the endocrine cell populations in the developing human pancreas. Diabetes 32: 293–301, 1983.
 340. Stefan, Y., L., Orci, F. Malaisse‐Lagae, A. Perrelet, Y. C. Patel, and R. H. Unger. Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes 31: 694–700, 1982.
 341. Steiner, D. F., J., Michael, R. Houghten, M. Mathieu, P. R. Gardner, M. Ravazzola, and L. Orci. Use of a synthetic peptide antigen to generate antisera reactive with a proteolytic processing site in native human proinsulin: demonstration of cleavage within clathrincoated (pro)secretory vesicles. Proc. Natl. Acad. Sci. U.S.A. 84: 6184–6188, 1987.
 342. Steiner, D. F., S. P., Smeeken, S. Ohagi, and S. J. Chan. The new enzymology of precursor processing endoproteases. J. Biol. Chem. 267: 23435–23438, 1992.
 343. Sullivan, S. J., and A. Schonbrunn. Distribution of somatostatin receptors in RINm5F cells. Endocrinology 122: 1137–1145, 1988.
 344. Szecowka, J., V., Grill, E. Sandberg, and S. Efendic. Effect of GIP on the secretion of insulin and somatostatin and the accumulation of cyclic AMP in vitro in the rat. Acta Endocrinol. (Copenh.) 99: 416–421, 1982.
 345. Szecowka, J., E., Sandberg, and S. Efendic. The interaction of vasoactive intestinal polypeptide (VIP), glucose and arginine on the secretion of insulin, glucagon and somatostatin in the perfused rat pancreas. Diabetologia 19: 137–142, 1980.
 346. Taborsky, G. J., Jr., and J., Ensinck. Extraction of somatostatin by the pancreas. Endocrinology 112: 303–307, 1983.
 347. Taborsky, G. J.. Evidence of a paracrine role for pancreatic somatostatin in vivo. Am. J. Physiol. 245 (Endocrinol. Metab. 8): E598–E603, 1983.
 348. Taborsky, G. J., and J. W. Ensinck. Contribution of the pancreas to circulating somatostatin‐like immunoreactivity in the normal dog. J. Clin. Invest. 73: 216–223, 1984.
 349. Taniguchi, H., M., Utsumi, M. Hasegawa, T. Kobayashi, Y. Watanabe, K. Murakami, M. Seki, A. Tsutou, H. Makimura, M. Sakoda, and S. Baba. Physiologic role of somatostatin. Diabetes 26: 700–702, 1977.
 350. Tannenbaum, G. S., E., Colle, W. Gurd, and L. Wanamaker. Dynamic time course studies of the spontaneously diabetic BB Wistar rat. I. Longitudinal profiles of plasma growth hormone, insulin, and glucose. Endocrinology 109: 1872, 1981.
 351. Tannenbaum, G. S., J., Epelbaum, E. Colle, P. Brazeau, and J. B. Martin. Antiserum to somatostatin reverses starvation induced inhibition of growth hormone but not insulin secretion. Endocrinology 102: 1909–1914, 1978.
 352. Tannenbaum Shaffer, G.. Growth hormone secretory dynamics in streptozotocin diabetes: evidence of a role for endogenous circulating somatostatin. Endocrinology 108: 76–82, 1981.
 353. Tartaglia, L. A., M., Dembski, X. Weng, N. Deng, J. Culpepper, R. Devos, G. J. Richards, A. Campfield, F. T. Clark, J. Deeds, C. Muir, S. Sanker, A. Moriarty, K. J. Moore, J. S. Smutko, G. G. Mays, E. A. Woolf, C. A. Monroe, and R. I. Tepper. Identification and expression cloning of leptin receptor Ob‐R. Cell 83: 1263–1271, 1995.
 354. Tavianini, M. A., T. E. Hayes, M. D. Magazin, C. D. Minth, and J. E. Dixon. Isolation, characterization, and DNA sequence of the rat somatostatin gene. J. Biol. Chem. 259: 11798–11803, 1984.
 355. Taylor, W. L., K. J., Collier, R. J. Deschenes, H. L. Weith, and J. E. Dixon. Sequence analysis of a CDNA coding for a pancreatic precursor to somatostatin. Proc. Natl. Acad. Sci. U.S.A. 78: 6694–6698, 1981.
 356. Thermos, K., M. D., Meglasson, J. Nelson, K. M. Lounsbury, and T. Reisine. Pancreatic β‐cell somatostatin receptors. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E216–E224, 1990.
 357. Tolon, R. M., F. F. Sanchez, M. T. de los Frailes, M. J. Lorenzo, and L. Cacicedo. Effect of potassium‐induced depolarization on somatostatin gene expression in cultured fetal rat cerebrocortical cells. J. Neurosci. 14: 1053–1059, 1994.
 358. Tostivini, H., I., Likrmann, C. Bucharles, D. Vieau, Y. Coulouarn, A. Fournier, J. M. Conlon, and H. Vaudry. Occurrence of two somatostatin variants in the frog brain: characterization of the cDNAs, distribution of the mRNAs, and receptor‐binding affinities of the peptides. Proc. Nad. Acad. Sci. U.S.A. 93: 12605–12610, 1996.
 359. Tran, V. T., M. F., Beal, and J. B. Martin. Two types of somatostatin receptors differentiated by cyclic somatostatin analogs. Science 228: 492–495, 1985.
 360. Trimble, E. R., P. G., Gerber, and A. E. Renold. Effects of synthetic human pancreatic polypeptide, synthetic bovine pancreatic polypeptide, and the C‐terminal hexapeptide on pancreatic somatostatin and glucagon secretion in the rat. Diabetes 31: 178–181, 1982.
 361. Trimble, E. R., P. P. G., Gerber, and A. E. Renold. Abnormalities of pancreatic somatostatin secretion corrected by in vivo insulin treatment of streptozotocin‐diabetic rats. Diabetes 30: 865–867, 1981.
 362. Trimble, E. R., and A. E. Renold. Ventral and dorsal areas of rat pancreas: islet hormone content and secretion. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E422–E427, 1981.
 363. Tsuda, K., H., Sakurai, Y. Seino, S. Seino, K. Tanigawa, H. Kuzuya, and H. Imura. Somatostatin‐like immunoreactivity in human peripheral plasma measured by radioimmunoassay following affinity chromatography. Diabetes 30: 471–474, 1981.
 364. Vallejo, M. C. P. Miller, and J. F. Habener. Somatostatin gene transcription regulated by a bipartite pancreatic islet D‐cell‐specific enhancer coupled synergetically to a cAMP response element. J. Biol. Chem. 267: 12868–12875, 1992.
 365. Vallejo, M., and J. F. Habener. Repression of somatostatin gene transcription mediated by two promoter silencer elements. Mol. Cell Endocrinol. 113: 61–72, 1995.
 366. Vallejo, M., L., Penchuk, and J. F. Habene. Somatostatin gene upstream enhancer element activated by a protein complex consisting of CREB, Isl‐1‐like, and α‐CBF‐like transcriptional factors. J. Biol. Chem. 267: 12876–12884, 1992.
 367. Vasquez, B., V., Harris, and R. H. Unger. Extraction of somatostatin from human plasma on octadecylsilyl silica. J. Clin. Endocrinol. Metab. 55: 807–809, 1982.
 368. Viana, F., and B. Hille. Modulation of high voltage–activated calcium channels by somatostatin in acutely isolated rat amygdaloid neurons. J. Neurosci. 16: 6000–6011, 1996.
 369. Wang, H. L., C., Bogen, T. Reisine, and M. Dichter. Somatostatin‐14 and somatostatin‐28 induce opposite effects on potassium currents in rat neocortical neurons. Proc. Natl. Acad. Sci. U.S.A. 86: 9616–9620, 1989.
 370. Wasada, T., B., Howard, R. E. Dobbs, and R. H. Unger. Evidence for a role of FFA in the regulation of somatostatin secretion in normal and alloxan diabetic dogs. J. Clin. Invest. 66: 511–516, 1980.
 371. Weir, G., and S. Bonner‐Weir. Pancreatic somatostatin. In: Somatostatin. Adr. Exp. Med. Biol., edited by Y. C. Patel and G. S. Tannenbaum. New York: Plenum, 1985, p. 403–423.
 372. Weir, G. C., E., Samols, S. Loo, Y. C. Patel, and K. H. Gabbay. Somatostatin and pancreatic polypeptide secretion: effects of glucagon, insulin, and arginine. Diabetes 28: 35–40, 1979.
 373. Werner, H., Y. Koch, F. Baldino Jr., and I. Gozes. Steroid regulation of somatostatin mRNA in the rat hypothalamus. J. Biol. Chem. 263: 7666–7674, 1988.
 374. White, R. E., A., Schonbrunn, and D. L. Armstrong. Somatostatin stimulates Ca2+‐activated K+ channels through protein dephosphorylation. Nature 351: 570–573, 1991.
 375. Wollheim, C. B., B. P., Winiger, S. Ullrich, et al. Somatostatin inhibition of hormone release: effects on cytosolic Ca++ and interference with distal secretory events. Metabolism 39 (Suppl. 11): 101–104, 1990.
 376. Xu, H., and D. Shields. Prohormone processing in the trans‐Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells. J. Cell Biol. 122: 1169–1184, 1993.
 377. Yamada, Y., S. R., Post, K. Wang, H. S. Tager, G. E. Bell, and S. Seino. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc. Natl. Acad. Sci. U.S.A. 89: 251–255, 1992.
 378. Zabel, B. U., S. L., Naylor, A. Y. Sakaguchi, G. I. Bell, and T. B. Shows. High resolution chromosomal localization of human genes for amylase, proopiomelanocortin, somatostatin and a DNA fragment (D351) by in situ hybridization. Proc. Natl. Acad. Sci. U.S.A. 80: 6932–6936, 1983.
 379. Zeggari, M., J. P., Esteve, I. Rauly, C. Cambillan, H. Mazarguil, M. Dufresne, L. Pradayrol, J.‐A. Chayvialle, N. Vaysse, and C. Susini. Copurification of a protein tyrosine phosphatase with activated somatostatin receptors from rat pancreatic acinar membranes. Biochem. J. 303: 441–448, 1994.
 380. Zern, R. T., L. B., Foster, J. A. Blalock, and J. M. Feldman. Characteristics of the dopaminergic and noradrenergic systems of the pancreatic islets. Diabetes 28: 185–189, 1979.
 381. Zhang, H.‐J., J. B., Redmon, J. M. Andresen, and R. P. Robertson. Somatostatin and epinephrine decrease insulin messenger ribonucleic acid in HIT cells through a pertussis toxin–sensitive mechanism. Endocrinology 129: 2409–2414, 1991.
 382. Zhang, Y., R., Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432, 1994.
 383. Zingg, H. H., R. H., Goodman, and J. F. Habener. Developmental expression of the rat somatostatin gene. Endocrinology 115: 90–94, 1984.
 384. Zingg, H. H., and Y. C. Patel. Biosynthesis of immunoreactive somatostatin by hypothalamic neurons in culture. J. Clin. Invest. 70: 1101–1109, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Yogesh C. Patel, Jun‐Li Liu, Aristea Galanopoulou, Dimitri N. Papachristou. Production, Action, and Degradation of Somatostatin. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 267-302. First published in print 2001. doi: 10.1002/cphy.cp070209