Comprehensive Physiology Wiley Online Library

Insulin Receptor Tyrosine Kinase

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Insulin Receptor Structure
1.1 Insulin Binding
1.2 Receptor Endocytosis Motifs
1.3 Tyrosine Kinase Characteristics
2 Insulin Receptor Substrates
2.1 Pleckstrin Homology Domains
2.2 Phosphotyrosine‐Binding Domains
2.3 Src Homology 2 Domains
Figure 1. Figure 1.

Structure of the insulin receptor kinase. The insulin receptor is a heterotetrameric protein composed of two extracellular α subunits linked by disulfide bonds to each other (class I) or to the β subunits (class II). The β subunits contain multiple phosphorylation sites in three regions, including the juxtamembrane region (Tyr‐960), a regulatory region (Tyr‐1146, Tyr‐1150, and Tyr‐1151), and the C terminus (Tyr‐1316, and Tyr‐1322). The regulatory domain tyrosine residues play a major role in the activation of the receptor kinase, while those outside this domain in the juxtamembrane region mediate the association and phosphorylation of insulin receptor substrates. Residue Tyr‐960, located in an NPXY motif, interacts with the phosphotyrosine‐binding domains of Shc and the insulin receptor substrate proteins.

Figure 2. Figure 2.

Ribbon diagram of the activated tris‐phosphorylated insulin receptor kinase (IRK‐3P). Secondary structural components, α helices (red) and β sheets (blue), are labeled. The nucleotide‐binding loop is in yellow, the catalytic loop in orange, the activation loop in green, AMP‐purine nucleoside phosphorylase in black, and the peptide substrate in pink. The termini are denoted by N (amino terminus) and C (carboxyl terminus).

[From Hubbard et al. 52 with permission.]
Figure 3. Figure 3.

Space‐filling model of the comparison of the activation loop conformations in insulin receptor kinase (IRK) and the activated tris‐phosphorylated insulin receptor kinase (IRK‐3P). The activation loop is shown in green, the catalytic loop in orange, the peptide substrate in pink, and the rest of the protein as a semitransparent molecular surface. The AMP‐purine nucleoside phosphorylase is partially masked by the amino‐terminal lobe of IRK‐3P. Carbon atoms are shown in white, nitrogen in blue, oxygen in red, and phosphorus in yellow.

[From Hubbard 51 with permission.]


Figure 1.

Structure of the insulin receptor kinase. The insulin receptor is a heterotetrameric protein composed of two extracellular α subunits linked by disulfide bonds to each other (class I) or to the β subunits (class II). The β subunits contain multiple phosphorylation sites in three regions, including the juxtamembrane region (Tyr‐960), a regulatory region (Tyr‐1146, Tyr‐1150, and Tyr‐1151), and the C terminus (Tyr‐1316, and Tyr‐1322). The regulatory domain tyrosine residues play a major role in the activation of the receptor kinase, while those outside this domain in the juxtamembrane region mediate the association and phosphorylation of insulin receptor substrates. Residue Tyr‐960, located in an NPXY motif, interacts with the phosphotyrosine‐binding domains of Shc and the insulin receptor substrate proteins.



Figure 2.

Ribbon diagram of the activated tris‐phosphorylated insulin receptor kinase (IRK‐3P). Secondary structural components, α helices (red) and β sheets (blue), are labeled. The nucleotide‐binding loop is in yellow, the catalytic loop in orange, the activation loop in green, AMP‐purine nucleoside phosphorylase in black, and the peptide substrate in pink. The termini are denoted by N (amino terminus) and C (carboxyl terminus).

[From Hubbard et al. 52 with permission.]


Figure 3.

Space‐filling model of the comparison of the activation loop conformations in insulin receptor kinase (IRK) and the activated tris‐phosphorylated insulin receptor kinase (IRK‐3P). The activation loop is shown in green, the catalytic loop in orange, the peptide substrate in pink, and the rest of the protein as a semitransparent molecular surface. The AMP‐purine nucleoside phosphorylase is partially masked by the amino‐terminal lobe of IRK‐3P. Carbon atoms are shown in white, nitrogen in blue, oxygen in red, and phosphorus in yellow.

[From Hubbard 51 with permission.]
References
 1. Andersen, A. S. T. Kjeldsen, F. C. Wiberg, P. M. Christensen, J. S. Rasmussen, K. Norris, K. B. Møller, and N. P. H. Moller. Changing the insulin receptor to possess insulin‐like growth factor I ligand specificity. Biochemistry 29: 7363–7366, 1990.
 2. Andersen, A. S., T. Kjeldsen, F. C. Wiberg, H. Vissing, L. Schaffer, J. S. Rasmussen, P. De Meyts, and N. P. Møller. Identification of determinants that confer ligand specificity on the insulin receptor. J. Biol. Chem. 267: 13681–13686, 1992.
 3. Avruch, J., R. A. Nemenoff, P. J. Blackshear, M. W. Pierce, and R. Osathanondh. Insulin‐stimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membranes. Comparison to epidermal growth factor‐stimulated phosphorylation. J. Biol. Chem. 257: 15162–15166, 1982.
 4. Backer, J. M., Kahn, D. A., Cahill, A., and M. F. White. Receptor‐mediated internalization of insulin requires a 12‐amino acid sequence in the juxtamembrane region of the insulin receptor beta‐subunit. J. Biol. Chem. 265: 16450–16454, 1990.
 5. Backer, J. M., M. G. Myers, Jr, S. E. Shoelson, D. J. Chin, X. J. Sun, M. Miralpeix, P. Hu, B. Margolis, E. Y. Skolnik, J. Schlessinger, and M. F. White. Phosphatidylinositol 3'‐kinase is activated by association with IRS‐1 during insulin stimulation. EMBO J. 11: 3469–3479, 1992.
 6. Backer, J. M., M. G. Myers, Jr, X. J. Sun, D. J. Chin, S. E. Shoelson, M. Miralpeix, and M. F. White. Association of IRS‐1 with the insulin receptor and the phosphatidylinositol 3'‐kinase. Formation of binary and ternary signaling complexes in intact cells. J. Biol. Chem. 268: 8204–8212, 1992.
 7. Baltensperger, K., R. E. Lewis, C. W. Woon, P. Vissavajjhala, A. H. Ross, and M. P. Czech. Catalysis of serine and tyrosine autophosphorylation by the human insulin receptor. Proc. Natl. Acad. Sci. U.S.A. 89: 7885–7889, 1992.
 8. Bandyopadhyay, D., A. Kusari, K. A. Kenner, F. Liu, J. Chernoff, T. A. Gustafson, and J. Kusari. Protein‐tyrosine phosphatase IB complexes with the insulin receptor in vivo and is tyrosine‐phosphorylated in the presence of insulin. J. Biol. Chem. 272: 1639–1645, 1997.
 9. Baron, A. D., O. G. Kolterman, R. Prager, G. R. Freidenberg, R. R. Henry, W. T. Garvey, and J. M. Olefsky. Mechanisms of insulin resistance in obese and type II diabetic subjects. In: Diabetes Mellitus: Pathophysiology and Therapy, edited by W. Creuzfeldt and P. Lefebvre. New York: Springer‐Verlag, 1988 p. 107–126.
 10. Berhanu, P., C. Anderson, M. Hickman, and T. P. Ciarald. Insulin signal transduction by a mutant insulin receptor lacking the NPEY sequence. Evidence for an alternative mitogenic signaling pathway that is independent of Shc phosphorylation. J. Biol. Chem. 272: 22884–22890, 1997.
 11. Bruning, J. C., J. Winnay, B. Cheatham, and C. R. Kahn. Differential signaling by insulin receptor substrate 1 (IRS‐1) and IRS‐2 in IRS‐1‐deficient cells. Mol. Cell. Biol. 17: 1513–1521, 1997.
 12. Burks, D. J., S. Pons, H. Towery, J. Smith‐Hall, M. G. Myers, Jr, L. Yenush, and M. F. White. Heterologous pleckstrin homology domains do not couple IRS‐1 to the insulin receptor. J. Biol. Chem. 272: 27716–22721, 1997.
 13. Carpentier, J. L.. The cell biology of the insulin receptor. Diabetologia 32: 627–635, 1989.
 14. Chou, C. K., T. J. Dull, D. S. Russell, R. Gherzi, D. Lebwohl, A. Ullrich, and O. M. Rosen. Human insulin receptors mutated at the ATP‐binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J. Biol. Chem. 262: 1842–1847, 1987.
 15. Clark, S., and N. Konstantopoulos. Insulin receptor autophosphorylation and exogenous substrate phosphorylation: role of receptor C‐terminus and effects of mild reduction. Biochem. Biophys. Res. Commun. 200: 330–337, 1994.
 16. Cobb, M. H., B. C. Sang, R. Gonzalez, E. Goldsmith, and L. Ellis. Autophosphorylation activates the soluble cytoplasmic domain of the insulin receptor in an intermolecular reaction. J. Biol. Chem. 264: 18701–18706, 1989.
 17. Cohen, G. B., R. Ren, and D. Baltimore. Modular binding domains in signal transduction proteins. Cell 80: 237–248, 1995.
 18. Cooper, J. A., and A. Kashishian. In vivo binding properties of SH2 domains from GTPase‐activating protein and phosphatidylinositol 3‐kinase. Mol. Cell. Biol. 13: 1737–1745, 1993.
 19. Cuatrecasas, P.. Insulin‐receptor interactions in adipose tissue cells: direct measurement and properties. Proc. Natl. Acad. Sci. U.S.A. 68: 1264–1268, 1971.
 20. Czech, M. P.. The nature and regulation of the insulin receptor: structure and function. Annu. Rev. Physiol. 47: 357–381, 1985.
 21. De Meyts, P. Insulin receptors: experimental validation of the negative cooperativity concept. In: Hormones and Cell Regulation, edited by J. Dumont and J. Nunez. Amsterdam: Elsevier, 1980 vol. 4, p. 107–121.
 22. De Meyts, P. The structural basis of insulin and insulin‐like growth factor‐I receptor binding and negative co‐operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 2: S135–S148, 1994.
 23. De Meyts, P., E. Van Obberghen, J. Roth, A. Wollmer, and D. Brandenburg. Mapping of the residues responsible for the negative cooperativity of the receptor‐binding region of insulin. Nature 273: 504–509, 1978.
 24. Dickens, M., and J. M. Tavare. Analysis of the order of autophosphorylation of human insulin receptor tyrosines 1158, 1162, and 1163. Biochem. Biophys. Res. Commun. 186: 244–250, 1992.
 25. Di Cola, G., M. H. Cool, and D. Accili. Hypoglycemic effect of insulin‐like growth factor‐1 in mice lacking insulin receptors. J. Clin. Invest. 99: 2538–2544, 1997.
 26. Di Guglielmo, G. M., P. G. Drake, P. C. Baass, F. Authier, B. I. Posner, and J. J. Bergeron. Insulin receptor internalization and signalling. Mol. Cell. Biochem. 182: 59–63, 1998.
 27. Dong, L. Q., H. Du, S. G. Porter, L. F., Kolakowski, A. V. Lee, J. Mandarino, J. Fan, D. Yee, and F. Liu. Cloning, chromosome localization, expression, and characterization of an src homology 2 and pleckstrin homology domain‐containing insulin receptor binding protein hGrb 10gamma. J. Biol. Chem. 272: 29104–29112, 1997.
 28. Ebina, Y., L. Elllis, K. Jarnigan, M. Edery, L. Graf, E. Causer, U.‐H. Ou, R. Masiarz, Y. W. Kan, I. D. Goldfine, R. A. Roth, and W. J. Rutter. The human insulin receptor cDNA: the structural basis for hormone‐activated transmembrane signalling. Cell 40: 747–758, 1985.
 29. Eck, M. J., S. Dhe‐Paganon, T. Trub, R. T. Nolte, and S. E. Shoelson. Structure of the IRS‐1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85: 695–705, 1996.
 30. Ellis, L., E. Clauser, D. O. Morgan, M. Edery, R. A. Roth, and W. J. Rutter. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin‐stimulated kinase activity and uptake of 2‐deoxyglucose. Cell 45: 721–732, 1986.
 31. Ellis, L., and B. A. Levine. Use of recombinant baculoviruses and 1H nuclear magnetic resonance to study tyrosine phosphorylation by a soluble insulin receptor protein‐tyrosine kinase. Methods Enzymol. 200: 660–669, 1991.
 32. Fabry, M., E. Shaefer, L. Ellis, E. Kojro, F. Fahrenholz, and D. Brandenburg. Detection of a new hormone contact site within the insulin receptor ectodomain by the use of a novel photoreactive insulin. J. Biol. Chem. 267: 8950–8956, 1992.
 33. Faria, T. N., V. A. H. Blakesly, B. Kato, H. Stannard, D. LeRoith, and C. T. Roberts, Jr.. Role of the carboxyl‐terminal domains of the insulin and insulin‐like growth factor I receptors in receptor function. J. Biol. Chem. 269: 13922–13928, 1994.
 34. Feener, E. P., J. M. Backer, G. L. King, P. A. Wilden, X. J. Sun, C. R. Khan, and M. F. White. Insulin stimulates serine and tyrosine phosphorylation in the juxtamembrane region of the insulin receptor. J. Biol. Chem. 268: 11256–11264, 1993.
 35. Feener, E. P., T. Shiba, K. Q. Hu, P. A. Wilden, M. F. White, and G. L. King. Characterization of phorbolester‐stimulated serine phosphorylation of the human insulin receptor. Biochem. J. 303: 43–50, 1994.
 36. Ferguson, K. M., M. A. Lemmon, J. Schlessinger, and P. B. Sigler. Crystal structure at 2.2 °A resolution of the pleckstrin homology domain from human dynamin. Cell 79: 199–209, 1994.
 37. Frantz, J. D., S. Giorgetti‐Peraldi, E. A. Ottinger, and S. E. Shoelson. Human Grb‐IRbeta/Grb10. Splice variants of an insulin and growth factor receptor‐binding protein with PH and SH2 domains. J. Biol. Chem. 272: 2659–2667, 1997.
 38. Frattali, A. L., J. L. Treadway, and J. E. Pessin. Transmembrane signaling by the human insulin receptor kinase: relationship between intramolecular β subunit trans and cis autophosphorylation and substrate kinase activation. J. Biol. Chem. 267: 19521–19528, 1992.
 39. Giorgetti, S., R. Ballotti, A. Kowalski‐Chauvel, S. Tartare, and E. Van Obberghen. The insulin and insulin‐like growth factor‐1 receptor substrate IRS‐1 associates with and activates phosphatidylinositol 3‐kinase in vitro. J. Biol. Chem. 268: 7358–7364, 1993.
 40. Giorgetti, S., P. G. Pelicci, G. Pelicci, and E. Van Obberghen. Involvement of Src‐homology/collagen (SHC) proteins in signaling through the insulin receptor and the insulin‐like‐growth‐factor‐I‐receptor. Eur. J. Biochem. 223: 195–202, 1994.
 41. Gustafson, T. A., W. He, A. Craparo, C. D. Schaub, and T. J. O'Neill. Phosphotyrosine‐dependent interaction of Shc and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non‐SH2 domain. Mol. Cell. Biol 15: 2500–2508, 1995.
 42. Haft, C. R., and S. I. Taylor. Deletion of 343 amino acids from the carboxyl terminus of the beta‐subunit of the insulin receptor inhibits insulin signaling. Biochemistry 33: 9143–9151, 1994.
 43. Hamer, I., C. R. Haft, J. P. Paccaud, C. Maeder, S. Taylor, and J. L. Carpentier. Dual role of a dileucine motif in insulin receptor endocytosis. J. Biol. Chem. 272: 21685–21691, 1997.
 44. Hansen, H., U. Svensson, J. Zhu, L. Laviola, F. Giorgino, G. Wolf, R. J. Smith, and H. Riedel. Interaction between the Grb10 SH2 domain and the insulin receptor carboxyl terminus. J. Biol. Chem. 271: 8882–8886, 1996.
 45. He, W., A. Craparo, Y. Zhu, T. J. O'Neill, L. M. Wang, J. H. Pierce and T. A. Gustafson. Interaction of insulin receptor substrate‐2 (IRS‐2) with the insulin and insulin‐like growth factor I receptors. Evidence for two distinct phosphotyrosine‐dependent interaction domains within IRS‐2. J. Biol. Chem. 271: 11641–11645, 1996.
 46. Herrera, R., L. Petruzzelli, N. Thomas, H. N. Bramson, E. T. Kaiser, and O. M. Rosen. An antipeptide antibody that specifically inhibits insulin receptor autophosphorylation and protein kinase activity. Proc. Natl. Acad. Sci. U.S.A. 82: 7899–7903, 1985.
 47. Holgado‐Madruga, M., D. R. Emlet, D. K. Moscatello, A. K. Godwin, and A. J. Wong. A grb2‐associated docking protein in EGF‐and insulin‐receptor signalling. Nature 379: 560–564, 1996.
 48. Hone, J., H. J. Accili, H. Psiachou, J. Alghband‐Zadeh, S. Mitton, E. Wertheimer, L. Sinclair, and S. I. Taylor. Homozygosity for null allele of the insulin receptor gene in a patient with leprechaunism. Hum. Mutat. 6: 17–22, 1995.
 49. Hsuan, J. J., J. Downward, S. Clark, and M. D. Waterfield. Proteolytic generation of constitutive tyrosine kinase activity of the human insulin receptor. Biochem. J. 259: 519–527, 1989.
 50. Hua, Q. X., S. E. Shoelson. M. Kochoyan, and M. A. Weiss. Receptor binding redefined by a structural switch in a mutant human insulin. Nature 354: 238–241, 1991.
 51. Hubbard, S. R.. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16: 5572–5581, 1997.
 52. Hubbard, S. R., L. Wei, L. Ellis, and W. A. Hendrickson. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372: 749–754, 1994.
 53. Ingley, E., and B. A. Hemmings. Pleckstrin homology (PH) domains in signal transduction. J. Cell. Biochem. 56: 436–443, 1994.
 54. Isakoff, S. J., Y. P. Yu, Y. C. Su, P. Blaikie, V. Yajnik, E. Rose, K. M. Weidner, M. Sachs, B. Margolis, and E. Y. Skolnik. Interaction between the phosphotyrosine binding domain of Shc and the insulin receptor is required for Shc phosphorylation by insulin in vivo. J. Biol. Chem. 271: 3959–3962, 1996.
 55. Jacobs, S., E. Hazum, and P. Cuatrecasas. The subunit structure of rat liver insulin receptor. J. Biol. Chem. 255: 6937–6940, 1980.
 56. Jacobs, S., E. Hazum, Y. Schecter, and P. Cuatrecasas. Insulin receptor: covalent labeling and identification of subunits. Proc. Natl. Acad. Sci. U.S.A. 76: 4918–4921, 1979.
 57. Kaburagi, Y., S. Satoh, H. Tamemoto, R. Yamamoto‐Honda, K. Tobe, K. Veki, T. Yamauchi, E. Kono‐Sugita, H. Sekihara, S. Aizawa, S. W. Cushman, Y. Akanuma, Y. Yazaki, and T. Kadowaki. Role of the insulin receptor substrate‐1 and pp 60 in the regulation of insulin‐induced glucose transport and GLUT4 translocation in primary adipocytes. J. Biol. Chem. 272: 25839–25844, 1997.
 58. Kahn, C. R., M. F. White, S. E. Shoeson. The insulin receptor and its substrate: molecular determinants of early events in insulin action. Recent Prog. Horm. Res. 48: 291–339, 1993.
 59. Kaliman, P., V. Baron, F. Alengrin, Y. Takata, N. J. Webster, J. M. Olefsky, and E. Van Obberghen. The insulin receptor C‐terminus is involved in regulation of the receptor kinase activity. Biochemistry 32: 9539–9544, 1993.
 60. Kasuga, M., F. A. Karlson, and C. R. Kahn. Insulin stimulates the phosphorylation of the 95,000‐dalton subunit of its own receptor. Science 215: 185–187, 1982.
 61. Kasuga, M., Y. Zick, D. L. Blithe, M. Crettaz, and C. R. Kahn. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell‐free system. Nature 298: 667–669, 1982.
 62. Kasuga, M., Y. Zick, D. L. Blithe, F. A. Karlsson, H. U. Haring, and C. R. Kahn. Insulin stimulation of phosphorylation of the beta subunit of the insulin receptor. J. Biol. Chem. 257: 9891–9894, 1982.
 63. Keller, S. R., R. Aebersold, C. W. Garner, and G. E. Lienhard. The insulin‐elicited 160 kDa phosphotyrosine protein in mouse adipocytes is an insulin receptor substrate 1: identification by cloning. Biochim. Biophys. Acta 1172: 323–326, 1993.
 64. Keller, S. R., K. Kitegawa, R. Aebersold, G. E. Lienhard, and C. W. Garner. Isolation and characterization of the 160,000‐Da phosphotyrosyl protein, a putative participant in insulin signaling. J. Biol. Chem. 266: 12817–12820, 1991.
 65. Kenner, K. A., E. Anyanwu, J. M. Olefsky, and J. Kusari. Protein tyrosine phosphatase 1B is a negative regulator of insulin‐ and insulin‐like growth factor‐I‐stimulated signaling. J. Biol. Chem. 271: 19810–19816, 1996.
 66. Kenner, K. A., D. E. Hill, J. M. Olefsky, and J. Kusari. Regulation of protein tyrosine phosphatases by insulin and insulin‐like growth factor I. J. Biol. Chem. 268: 25455–25462, 1993.
 67. Kono, T., and F. W. Barham. The relationship between the insulin binding capacity of fat cells and the cellular response to insulin. J. Biol. Chem. 246: 6210–6216. 1971.
 68. Kristenson, C., F. C. Wiberg, L. Schäffer, and A. S. Andersen. Expression and characterization of a 70‐kDa fragment of the insulin receptor that binds insulin. J. Biol. Chem. 273: 17780–17786, 1998.
 69. Kuhne, M. R., Z. Zhoa, and G. E. Lienhard. Evidence against dephosphorylation of insulin‐elicited phosphotyrosine proteins in vivo by the phosphatase PTP2C. Biochem. Biophys. Res. Commun. 211: 190–197, 1995.
 70. Laminet, A. A., G. Apell, L. Conroy, and W. M. Kavanaugh. Affinity, specificity, and kinetics of the interaction of the Shc phosphotyrosine binding domain with asparagine‐x‐x‐phosphoryrosine motifs of growth factor receptors. J. Biol. Chem. 271: 264–269, 1996.
 71. Lammers, R., A. Gray, J. Schlessinger, and A. Ulrich. Differential signalling potential of insulin and IGF‐1‐receptor cytoplasmic domains. EMBO J. 8: 1369–1375, 1989.
 72. Lamonthe, B., D. Bucchini, J. Jami, and R. L. Joshi. Reexamining interaction of the SH2 domains of Syp and Gap with insulin and IGF‐I receptors in the two‐hybrid system. Gene 182: 77–80, 1996.
 73. Lavan, B. E., V. R. Fantin, E. T. Chang, W. S. Lane, S. R. Keller, and G. E. Lienhard. A novel 160‐kDa phosphotyrosine protein in insulin‐treated embryonic kidney cells is a new member of the insulin receptor substrate family. J. Biol. Chem. 272: 21403–21407, 1997.
 74. Lavan, B. E., W. S. Lane, and G. E. Lienhard. The 60‐kDa phosphotyrosine protein in insulin‐treated adipocytes is a new member of the insulin receptor substrate family. J. Biol. Chem. 272: 11439–11443, 1997.
 75. Lee, J., T. O'Hare, P. F. Pilch, and S. Shoelson. Insulin receptor autophosphorylation occurs asymmetrically. J. Biol. Chem. 268: 4092–4098, 1993.
 76. Levine, B. A., J. M. Tavare, E. Alejos, B. Clack, and N. Sayed. Autophosphorylation of soluble insulin receptor protein‐tyrosine kinases. 1H NMR spectral changes observed during phosphorylation of mobile tyrosine residues. J. Biol. Chem. 266: 13405–13410, 1991.
 77. Levy‐Toledano, R., D. Accili, and S. I. Taylor. Deletion of COOH‐terminal 113 amino acids impairs processing and internalization of human insulin receptor: comparison of receptors expressed in CHO and NIH‐3T3 cells. Biochim. Biophys. Acta 1220: 1–14, 1993.
 78. Lewis, R. E., G. P. Wu, R. G. MacDonald and M. P. Czech. Insulin‐sensitive phosphorylation of serine 1293/1294 on the human insulin receptor by a tightly associated serine kinase. J. Biol. Chem. 265: 947–954, 1990.
 79. Macias, M. J., A. Musacchio, H. Ponstingl, M. Nilges, M. Saraste, and H. Oschkinat. Structure of the pleckstrin homology domain from beta‐spectrin. Nature 369: 675–677, 1994.
 80. Maegawa, H., J. M. Olefsky, S. Thies, D. Boyd, A. Ullrich, and D. A. McClain. Insulin receptors with defective tyrosine kinase inhibit normal receptor function at the level of substrate phosphorylation. J. Biol. Chem. 263: 12629–12637, 1988.
 81. Maegawa, H., S. Ugi, M. Adachi, Y. Hinoda, R. Kikkawa, A. Yachi, Y. Shigeta, and A. Kashiwagi. Insulin receptor kinase phosphorylates protein tyrosine phosphatase containing src homology 2 regions and modulates its PTPase activity in vitro. Biochem. Biophys. Res. Commun. 199: 780–785, 1994.
 82. Maegawa, H., S. Ugi, O. Ishibashi, R. Tachikawa‐Ide, N. Takahara, Y. Tanaka, Y. Takagi, R. Kikkawa, Y. Shigeta, and A. Kashiwagi. Src homology 2 domains of protein tyrosine phosphatase are phosphorylated by insulin receptor kinase and bind to the COOH‐terminus of insulin receptors in vitro. Biochem. Biophys. Res. Commun. 194: 208–214, 1993.
 83. Marshall, S., A. Green, and J. M. Olefsky. Evidence for recycling of insulin receptors in isolated rat adipocytes. J. Biol. Chem. 256: 11464–11470, 1981.
 84. Massague, J., and M. P. Czech. Role of disulfides in the subunit structure of the insulin receptor. J. Biol. Chem. 257: 6729–6738, 1982.
 85. Massague, J., P. F. Pilch, and M. P. Czech. Electrophoretic resolution of three major insulin receptor structures with unique sub‐unit stoichiometries. Proc. Natl. Acad. Sci. U.S.A. 77: 7137–7141, 1980.
 86. Massague, J., P. F. Pilch, and M. P. Czech. A unique proteolytic cleavage site on the β subunit of the insulin receptor. J. Biol. Chem. 256: 3182–3190, 1981.
 87. Mayer, B. J., R. Ren, K. L. Clark, and D. Baltimore. A putative modular domain present in diverse signaling proteins. Cell 73: 629–630, 1993.
 88. Morris, A. J., S. S. Martin, T. Haruta, J. G. Nelson, P. Vollenweider, T. A. Gustafson. M. Mueckler, D. W. Rose, and J. M. Olefsky. Evidence for an insulin receptor substrate 1 independent insulin signaling pathway that mediates insulin‐responsive glucose transporter (GLUT4) translocation. Proc. Natl. Acad. Sci. U.S.A. 93: 8401–8406, 1996.
 89. Morrison, B. D., and J. E. Pessin. Insulin stimulation of the insulin receptor kinase can occur in the complete β subunit autophosphorylation. J. Biol. Chem. 262: 2861–2868, 1987.
 90. Musacchio, A., T. Gibson, P. Rice, J. Thompson, and M. Saraste. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18: 343–348, 1993.
 91. Myers, M. G., J. M. Backer, K. Siddle, and M. F. White. The insulin receptor functions normally in Chinese hamster ovary cells after truncation of the C terminus. J. Biol. Chem. 266: 10616–10623, 1991.
 92. Myers, M. G., Jr., T. C. Grammer, J. Brooks, E. M. Glasheen, L. M. Wang, X. J. Sun, J. Blenis, J. H. Pierce, and M. F. White. The pleckstrin homology domain in insulin receptor substrate‐1 sensitizes insulin signaling. J. Biol. Chem. 270: 11715–11718, 1995.
 93. Myers, M. G., Jr., X. J. Sun, B. Cheatham, B. R. Jachna, E. M. Glasheen, J. M. Backer, and M. F. White. IRS‐1 is a common element in insulin and insulin‐like growth factor‐1 signaling to the phosphatidylinositol 3'‐kinase. Endocrinology 132: 1421–1430, 1993.
 94. Nemenoff, R. A., Y. C. Kwok, G. I. Shulman, B. J. Blackshear, R. Osathanondh, and J. Avruch. Insulin stimulated tyrosine protein kinase: characterization and relation to the insulin receptor. J. Biol. Chem. 259: 5058–5065, 1984.
 95. Obermeir, A., R. Lammers, K. H. Wiesmuller, G. Jung, J. Schlessinger, and A. Ullrich. Identification of Trk binding sites for SHC and phosphatidylinositol 3'‐kinase and formation of a multimeric signaling complex. J. Biol. Chem. 268: 22963–22966, 1993.
 96. O'Neill, T. J., A. Craparo, and T. A. Gustafson. Characterization of an interaction between insulin receptor substrate 1 and the insulin receptor by using the two‐hybrid system. Mol. Cell. Biol. 14: 6433–6442, 1994.
 97. O'Neill, T. J., D. W. Rose, T. S. Pillay, K. Hotta, J. M. Olefsky, and T. A. Gustafson. Interaction of a Grb‐IR splice variant (a human Grb 10 homology) with the insulin and insulin‐like growth factor I receptors. Evidence for a role in mitogenic signaling. J. Biol. Chem. 271: 22506–22513, 1996.
 98. Ong, S. H., Y. P. Lim, B. C. Low, and G. R. Guy. SHP2 associates directly with tyrosine phosphorylated p90 (SNT) protein in FGF‐stimulated cells. Biochem. Biophys. Res. Commun. 238: 261–266, 1997.
 99. Pang, D. T., and J. A. Shafer. Evidence that insulin receptor from human placenta has a high affinity for only one molecule of insulin. J. Biol. Chem. 259: 8589–8596, 1984.
 100. Pelicci, G., L. Lanfrancone, F. Grignani, J. McGlade, F. Cavallo, G. Forni, I. Nicoletti, F. Grignanai, T. Pawson, and P. G. Pelicci. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70: 93–104, 1992.
 101. Plich, P. F., and M. P. Czech. The subunit structure of the high affinity insulin receptor. J. Biol. Chem. 255: 1722–1731, 1980.
 102. Pronk, G. J., J. McGlade, G. Pelicci, T. Pawson, and J. L. Bos. Insulin‐induced phosphorylation of the 46‐ and 52‐kDa Shc proteins. J. Biol. Chem. 268: 5748–5753, 1993.
 103. Pronk, G. J., R. H. Medema, B. M. T. Burgering, R. Clark, F. McCormick, and J. L. Bos. Interaction between the p21ras GTPase activating protein and the insulin receptor. J. Biol. Chem. 267: 24058–24063, 1992.
 104. Rafaeloff, R., B. A. Maddux, A. Brunetti, P. Sbraccia, C. K. Sung, R. Patel, D. M. Hawley, and I. D. Goldfine. Transmembrane signalling by insulin via an insulin receptor mutated at tyrosines 1158, 1162, and 1163. Biochem. Biophys. Res. Commun. 179: 912–918, 1991.
 105. Rajagopalan, M., J. L. Neidigh, and D. A. McClain. Amino acid sequences Gly‐Pro‐Leu‐Tyr and Asn‐Pro‐Gly‐Tyr in the submembraneous domain of the insulin receptor are required for normal endocytosis. J. Biol. Chem. 266: 23068–23073, 1991.
 106. Ravichandran, K. S., M. M. Zhou, J. C. Pratt, J. E. Harlan, S. F. Walk, S. W. Fesik, and S. J. Burakoff. Evidence for a requirement for both phospholipid and phosphotyrosine binding via the Shc phosphotyrosine‐binding domain in vivo. Mol. Cell. Biol. 17: 5540–5549, 1997.
 107. Ricketts, W. A., D. W. Rose, S. E. Shoelson, and J. M. Olefsky. Functional roles of the Shc phosphotyrosine binding and Src homology 2 domains in insulin and epidermal growth factor signaling. J. Biol. Chem. 271: 26165–26169, 1996.
 108. Rocchi, S., S. Tartare‐Deckert, D. Sawka‐Verhelle, A. Gamha, and E. Van Obberghen. Interaction of SH2‐containing protein tyrosine phosphatase 2 with the insulin receptor and the insulin‐like growth factor‐I receptor: studies of the domains involved using the yeast two‐hybrid system. Endocrinology 137: 4944–4952, 1996.
 109. Ronnet, G. V., V. P. Knutson, R. A. Kohanski, T. L. Simpson, and M. D. Lane. Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3‐L1 adipocytes. J. Biol. Chem. 259: 4566–4575, 1984.
 110. Rosen, O. M., R. Herrera, Y. Olowe, L. M. Petruzzelli, and M. H. Cobb. Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc. Natl. Acad. Sci. U.S.A. 80: 3237–3240, 1983.
 111. Roth, J.. Methods for assessing immunologic and biologic properties of iodinated peptide hormones. Methods Enzymol. 37: 223–233, 1975.
 112. Rothenberg, P. L., W. S. Lane, A. Karasik, J. M. Backer, M. F. White, and C. R. Kahn. Purification and partial sequence analysis of pp 185, the major cellular substrate of the insulin receptor tyrosine kinase. J. Biol. Chem. 266: 8302–8311, 1991.
 113. Sasaoka, T., B. Draznin, J. W. Leitner, W. J. Langlois, and J. M. Olefsky. Shc is the predominant signaling molecule coupling insulin receptors to activation of guanine nucleotide releasing factor and p21ras‐GTP formation. J. Biol. Chem. 269: 10734–10738, 1994.
 114. Sasaoka, T., H. Ishihara, T. Sawa, M. Ishiki, H. Morioka, T. Immura, I. Usui, Y. Takata, and M. Kobayashi. Functional importance of amino‐terminal domain of Shc for interaction with insulin and epidermal growth factor receptors in phosphorylation‐independent manner. J. Biol. Chem. 271: 20082–20087, 1996.
 115. Sasaoka, T., W. J. Langlois, J. W. Leitner, B. Draznin, and J. M. Olefsky. The signaling pathway coupling epidermal growth factor receptors to activation of p21ras. J. Biol. Chem. 269: 32621–32625, 1994.
 116. Sasaoka, T., D. W. Rose, B. H. Jhun, A. R. Saltiel, B. Draznin, and J. M. Olefsky. Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin‐like growth factor‐1, and epidermal growth factor. J. Biol. Chem. 269: 13689–13694, 1994.
 117. Sawka‐Verhelle, D., S. Tartare‐Deckert, M. F. White, and E. Van Obberghen. Insulin receptor substrate‐2 binds to the insulin receptor through its phosphotyrosine‐binding domain and through a newly identified domain comprising amino acids 591–786. J. Biol. Chem. 271: 5980–5983, 1996.
 118. Seely, B. L., P. A. Satubs, D. R. Reichart, P. Berhanu, K. L. Mi‐larski, A. R. Saltiel, J. Kusari, and J. M. Olefsky. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45: 1379–1385, 1996.
 119. Shoelson, S. E., M. Boni‐Schnetzler, P. F. Pilch, and C. R. Kahn. Autophosphorylation within insulin receptor beta‐subunits can occur as an intramolecular process. Biochemistry 30: 7740–7746, 1991.
 120. Shoelson, S. E., S. Chatterjee, M. Chauduri, and M. F. White. YMXM motifs of IRS‐1 define substrate specificity of the insulin receptor kinase. Proc. Natl. Acad. Sci. U.S.A. 89: 2027–2031, 1992.
 121. Shoelson, S. E., M. F. White, and C. R. Kahn. Nonphosphorylatable substrate analogs selectively block autophosphorylation and activation of the insulin receptor, epidermal growth factor receptor, and pp60v‐src kinases. J. Biol. Chem. 264: 7831–7836, 1989.
 122. Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. G. Neel, R. B. Birge, J. E. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and L. C. Cantley. SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778, 1993.
 123. Sparrow, L. G., N. M. McKem, J. J. Gorman, P. M. Strike, C. P. Robinson, J. D. Bentley, and C. W. Ward. The disulfide bonds in the COOH‐terminal domains of the human insulin receptor ectodomain. J. Biol. Chem. 272: 29460–29467, 1997.
 124. Stadtmauer, L., and O. M. Rosen. Phosphorylation of synthetic insulin receptor peptides by the insulin receptor kinase and evidence that the preferred sequence containing Tyr‐1150 is phosphorylated in vivo. J. Biol. Chem. 261: 10000–10005, 1986.
 125. Staubs, P. A., D. R. Reichart, A. R. Saltiel, K. L. Milarshi, H. Maegawa, P. Berhanu, J. M. Olefsky, and B. L. Seely. Localization of the insulin receptor binding sites for the SH2 domain proteins p85, Syp, and GAP. J. Biol. Chem. 269: 27186–27192, 1994.
 126. Sun, X. J., D. L. Crimmins, M. G. Myers, Jr, M. Miralpeix, and M. F. White. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS‐1. Mol. Cell. Biol. 13: 7418–7428, 1993.
 127. Sun, X. J., M. Miralpeix, M. G. Myers, Jr, E. M. Glasheen, J. M. Backer, C. R. Kahn, and M. F. White. Expression and function of IRS‐1 in insulin signal transmission. J. Biol. Chem. 267: 22662–22672, 1992.
 128. Sun, X. J., P. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahill, B. J. Goldstein, and M. F. White. The structure of the insulin receptor substrate IRS‐1 defines a unique signal transduction protein. Nature 352: 73–77, 1991.
 129. Sun, X. J., L. M. Wang, Y. Zhang, L. Yenush, M. G. Myers,Jr, E. M. Glasheen, W. S. Lane, J. H. Pierce, and M. F. White. Role of IRS‐2 in insulin and cytokine signalling. Nature 377: 173–177, 1995.
 130. Takata, Y., N. J. Webster, and J. M. Olefsky. Mutation of the two carboxyl‐terminal tyrosines results in an insulin receptor with normal metabolic signaling but enhanced mitogenic signaling properties. J. Biol. Chem. 266: 9135–9139, 1991.
 131. Takayama, S., M. F. White, and C. R. Kahn. Phorbolester‐induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J. Biol. Chem. 263: 3440–3447, 1988.
 132. Tartare, S., I. Mothe, A. Kowalski‐Chauuvel, J.‐P. Breittmayer, R. Balloti, and E. Van Obberghen. Signal transduction by a chimeric insulin‐like growth factor‐1 (IGF‐1) receptor having the carboxyl‐terminal domain of the insulin receptor. J. Biol. Chem. 269: 11449–11455, 1994.
 133. Tavare, J. M., P. Ramos, and L. Ellis. An assessment of human insulin receptor phosphorylation and exogenous kinase activity following deletion of 69 residues from the carboxyl‐terminus of the receptor beta‐subunit. Biochem. Biophys. Res. Commun. 188: 86–93, 1992.
 134. Taylor, S. J., A. Cama, D. Accili, F. Barbetti, M. J. Quon, M. de la Luz Sierra, Y. Suzuki, E. Koller, R. Levy‐Toledano, E. Wertheimer, V. Y. Moncada, H. Kadowaki, and T. Kadowaki. Mutations in the insulin receptor gene. Endocr. Rev. 13: 566–595, 1992.
 135. Tornqvist, H. E., M. W. Pierce, A. R. Frackelton, R. A. Nemenoff, and J. Avruch. Identification of insulin receptor tyrosine residues autophosphorylated in vitro. J. Biol. Chem. 262: 10212–10219, 1987.
 136. Treadway, J. L., B. D. Morrison, I. D. Goldfine, and J. E. Pessin. Assembly of insulin/insulin‐like growth factor‐1 hybrid receptors in vitro. J. Biol. Chem. 264: 21450–21453, 1989.
 137. Tyers, M., R. A. Rachubinski, M. I. Stewart, A. M. Varrichio, R. G. L. Shorr, R. J. Haslam, and C. B. Harley. Molecular cloning and expression of the major protein kinase C substrate of platelets. Nature 333: 470–473, 1988.
 138. Ullrich, A., J. R. Bell, E. Y. Chen, R. Herrera, L. M. Petruzelli, T. J. Dull, A. Gray, L. Coussens, Y.‐C. Liao, M. Tsubokawa, A. Mason, P. H. Seeburg, C. Grunfeld, O. M. Rosen, and J. Ramachandran. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313: 756–761, 1985.
 139. Van der Geer, P, and T. Pawson. The PTB domain: a new protein module implicated in signal transduction. Trends Biochem. Sci. 20: 277–280, 1995.
 140. Van Horn, D. J., M. G. Myers, Jr, and J. M. Backer. Direct activation of the phosphatidylinositol 3'‐kinase by the insulin receptor. J. Biol. Chem. 269: 29–32, 1994.
 141. Voliovitch, H., D. G. Schindler, Y. R. Hadari, S. I. Taylor, D. Accili, and Y. Zick. Tyrosine phosphorylation of insulin receptor substrate‐1 in vivo depends upon the presence of its pleckstrin homology region. J. Biol. Chem. 270: 18083–18087, 1995.
 142. Waugh, S. M., E. E. DiBella, and P. F. Pilch. Isolation of a proteolytically derived domain of the insulin receptor containing the major site of cross‐linking/binding. Biochemistry 28: 3448–3455, 1989.
 143. Wedekind, F., K. Baer‐Pontzen, S. Bala‐Mohan, D. Choli, H. Zahn, and D. Brandenburg. Hormone binding site of the insulin receptor: analysis using photoaffinity‐mediated avidin complexing. Biol. Chem. Hoppe Seyler 370: 251–258, 1989.
 144. Wei, L., S. R. Hubbard, W. A. Hendrickson, and L. Ellis. Expression, characterization, and crystallization of the catalytic core of the human insulin receptor protein‐tyrosine kinase domain. J. Biol. Chem. 270: 8122–8130, 1995.
 145. White, M. F.. The IRS‐1 signaling system. Curr. Opin. Genet. Dev. 4: 47–54, 1994.
 146. White, M. F., and C. R. Kahn. The insulin signaling system. J. Biol. Chem. 269: 1–4, 1994.
 147. White, M. F., J. N. Livingston, and J. M. Backer. Mutation of the insulin receptor at tyrosine 960 inhibits insulin signal transmission but does not affect its tyrosine kinase activity. Cell 54: 641–649, 1988.
 148. White, M. F., R. Maron, and C. R. Kahn. Insulin rapidly stimulates tyrosine phosphorylation of a M, 185,000 protein in intact cells. Nature 318: 183–186, 1985.
 149. White, M. F., S. E. Shoelson, H. Keutmann, and C. R. Kahn. A cascade of tyrosine autophosphorylation in the β‐subunit activates the insulin receptor. J. Biol. Chem. 263: 2969–2980, 1988.
 150. Wilden, P. A., J. M. Backer, C. R. Kahn, D. A. Cahill, G. J. Schroeder, and M. F. White. The insulin receptor with phenylalanine replacing tyrosine‐1146 provides evidence for separate signals regulating cellular metabolism and growth. Proc. Natl. Acad. Sci. U.S.A. 87: 3358–3362, 1990.
 151. Wilden, P. A., K. Siddle, E. Haring, J. M. Backer, M. F. White, and C. R. Kahn. The role of insulin receptor kinase domain autophosphorylation in receptor‐mediated activities. Analysis with insulin and anti‐receptor antibodies. J. Biol. Chem. 267: 13719–13727, 1992.
 152. Williams, P. F., D. C. Mynarcik, G. Q. Yu, and J. Whittaker. Mapping of an NH2‐terminal ligand binding site of the insulin receptor by alanine scanning mutagenesis. J. Biol. Chem. 270: 3012–3016, 1995.
 153. Wolf, G., T. Trub, E. Ottinger, L. Groninga, A. Lynch, M. F. White, M. Miyazaki, J. Lee, and S. E. Shoelson. PTB domains of IRS‐1 and Shc have distinct but overlapping binding specificities. J. Biol. Chem. 270: 27407–27410, 1995.
 154. Yamamoto‐Honda, R., T. Kadowaki, K. Momomura. Normal insulin receptor substrate‐1 phosphorylation in autophosphorylation‐defective truncated insulin receptor. Evidence that phosphorylation of substrates might be sufficient for certain biological effects evoked by insulin. J. Biol. Chem. 268: 16859–16865, 1993.
 155. Yamauchi, K., and J. E. Pessin. Insulin receptor substrate‐1 (IRS1) and Shc compete for a limited pool of Grb2 in mediating insulin downstream signaling. J. Biol. Chem. 269: 31107–31114, 1994.
 156. Yenush, L., K. J. Makati, J. Smith‐Hall, O. Ishibashi, M. G. Myers, Jr, and M. F. White. The pleckstrin homology domain is the principal link between the insulin receptor and IRS‐1. J. Biol. Chem. 271: 24300–24306, 1996.
 157. Yip, C. C., H. Hsu, R. G. Patel, D. M. Hawley, B. A. Maddux, and I. D. Goldfine. Localization of the insulin‐binding site to the cysteine‐rich region of the insulin receptor alpha‐subunit. Biochem. Biophys. Res. Commun. 157: 321–329, 1988.
 158. Yip. C. C, and M. L. Moule. Insulin receptor: its subunit structure determined by photoaffinity labeling. Federation. Proc. 42: 2842–2845, 1983.
 159. Yip, C. C., C. W. T. Yeung, and M. L. Moule. Photoaffinity labeling of insulin receptor of rat adipocyte plasma membrane. J. Biol. Chem. 253: 1743–1745, 1978.
 160. Yip, C. C., C. W. T. Yeung, and M. L. Moule. Photoaffinity labeling of receptor proteins of liver plasma membrane preparations. Biochemistry 19: 70–76, 1980.
 161. Yokote, K., S. Mori, K. Hansen, J. McGlade, T. Pawson, C. H. Helson, and C.‐L. Welsh. Direct interaction between Shc and the platelet‐derived growth factor beta‐receptor. J. Biol. Chem. 269: 15337–15343, 1994.
 162. Yonezawa, K., and R. A. Roth. Assessment of the in situ tyrosine kinase activity of mutant insulin receptors lacking tyrosine autophosphorylation sites 1162 and 1163. Mol. Endocrinol 5: 194–200, 1991.
 163. Yoon, H. S., P. J. Hajduk, A. M. Petros, E. T. Olejniczak, R. P. Meadows, and S. W. Fesik. Solution structure of a pleckstrin‐homology domain. Nature 369: 672–675, 1994.
 164. Zhou, M. M., B. Huang, E. T. Olejniczak, R. P. Meadows, S. B. Shuker, M. Miyazaki, T. Trub, S. E. Shoelson, and S. W. Fesik. Structural basis for IL‐4 receptor phosphopeptide recognition by the IRS‐1 PTB domain. Nat. Struct. Biol. 3: 388–393, 1996.
 165. Zhou, M. M., K. S. Ravichandran, E. T. Olejniczak, A. M. Petros, R. P. Meadows, M. Sattler, J. E. Harlan, W. S. Wade, S. J. Burakoff, and S. W. Fesik. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378: 584–592, 1995.
 166. Zick, Y., M. Kasuga, C. R. Kahn, and J. Roth. Characterization of insulin‐mediated phosphorylation of the insulin receptor in a cell‐free system. J. Biol. Chem. 258: 75–80, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Michael P. Czech, Barbara Van Renterghem, Mark W. Sleeman. Insulin Receptor Tyrosine Kinase. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 399-411. First published in print 2001. doi: 10.1002/cphy.cp070211