Comprehensive Physiology Wiley Online Library

Glucagon Signal‐Transduction Mechanisms

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Glucagon Receptor
2 Regulation of Gs
3 Regulation of Adenylate Cyclase
4 Regulation of cAmp‐Dependent Protein Kinase
5 Substrates of cAmp‐Dependent Protein Kinase
6 Mechanisms of Calcium Mobilization Induced by Glucagon
7 Summary
Figure 1. Figure 1.

Putative structure of glucagon receptor, showing the extracellular N‐terminal tail, the intracellular C‐terminal tail, and the seven transmembrane domains (I‐VII).

Figure 2. Figure 2.

Operating scheme for heterotrimeric G proteins. In the resting state, the G protein consists of associated α, β, and γ subunits. Activation of the receptor by agonist leads to promotion of GTP‐GDP exchange on the α subunit. The GTP‐liganded α subunit then dissociates from the αγ complex. The free subunits then interact with effector proteins for example, adenylyate cyclase, to control their activity. Due to the intrinsic GTPase of the α subunit, GTP is hydrolyzed to GDP and the GDP‐liganded α subunit reassociates with the βγ complex to reform the heterotrimeric G protein. In the continued presence of agonist and active receptor, the cycle is repeated and the changes in effector activity are maintained. Pi, inorganic phosphate.

Figure 3. Figure 3.

Schematic representation of the structure of adenylate cyclase. Cylinders represent membrane‐spanning regions, and M1 and M2 are the first and second sets of these regions, respectively. C1a and C1b represent the first large cytoplasmic domain and C2a and C2b the second such intracellular domain. Bold sections indicate regions of high sequence homology among different cyclases. The N terminus (N) and a glycosylation site are also shown.

Figure 4. Figure 4.

Putative structure of cAMP‐dependent protein kinase, showing a regulatory subunit dimer and two catalytic subunits. The regulatory subunits show the two separate cAMP‐bindings sites (A and B), the autoinhibitory domain (including the autophosphorylation site for the type II enzyme), and the dimerization domain. The catalytic subunits show the binding sites for ATP and protein substrate.



Figure 1.

Putative structure of glucagon receptor, showing the extracellular N‐terminal tail, the intracellular C‐terminal tail, and the seven transmembrane domains (I‐VII).



Figure 2.

Operating scheme for heterotrimeric G proteins. In the resting state, the G protein consists of associated α, β, and γ subunits. Activation of the receptor by agonist leads to promotion of GTP‐GDP exchange on the α subunit. The GTP‐liganded α subunit then dissociates from the αγ complex. The free subunits then interact with effector proteins for example, adenylyate cyclase, to control their activity. Due to the intrinsic GTPase of the α subunit, GTP is hydrolyzed to GDP and the GDP‐liganded α subunit reassociates with the βγ complex to reform the heterotrimeric G protein. In the continued presence of agonist and active receptor, the cycle is repeated and the changes in effector activity are maintained. Pi, inorganic phosphate.



Figure 3.

Schematic representation of the structure of adenylate cyclase. Cylinders represent membrane‐spanning regions, and M1 and M2 are the first and second sets of these regions, respectively. C1a and C1b represent the first large cytoplasmic domain and C2a and C2b the second such intracellular domain. Bold sections indicate regions of high sequence homology among different cyclases. The N terminus (N) and a glycosylation site are also shown.



Figure 4.

Putative structure of cAMP‐dependent protein kinase, showing a regulatory subunit dimer and two catalytic subunits. The regulatory subunits show the two separate cAMP‐bindings sites (A and B), the autoinhibitory domain (including the autophosphorylation site for the type II enzyme), and the dimerization domain. The catalytic subunits show the binding sites for ATP and protein substrate.

References
 1. Abrahamsen, N. K., Lundgren, and E. Nishimura. Regulation of glucagon receptor mRNA in cultured primary rat hepatocytes by glucose and cAMP. J. Biol. Chem. 270: 15853–15857, 1995.
 2. Abrahamsen, N., and E. Nishimura. Regulation of glucagon and glucagon‐like peptide‐1 receptor messenger ribonucleic acid expression in cultured rat pancreatic islets by glucose, cyclic adenosine 3î,5î‐monophosphate, and glucocorticoids. Endocrinology 136: 1572–1578, 1995.
 3. Alexander, M. C., J. L. Palmer, R. H. Pointer, L. Koujian, and J. Avruch. The role of cAMP‐dependent protein kinase in the glucagon‐stimulated phosphorylation of ATP‐citrate lyase. Biochim. Biophys. Acta 674: 37–17, 1981.
 4. Alousi, A. A., J. R. Jasper, P. A. Insel, and H. J. Motulsky. Stoichiometry of receptor‐Gs‐adenylate cyclase interactions. FASEB J. 5: 2300–2303. 1991.
 5. Altin, J. G., and F. L. Bygrave. Synergistic stimulation of Ca2+ uptake by glucagon and Ca2+‐mobilizing hormones in the perfused rat liver. Biochem. J. 238: 653–661, 1986.
 6. Altin, J. G., and F. L. Bygrave. Ca2+ uptake stimulated by the synergist action of glucagon and Ca2+‐mobilizing agents in the perfused rat liver occurs through the action of a unidirectional Ca2+ influx pathway. Biochem. Biophys. Res. Commun. 142: 745–753, 1987.
 7. Antonelli, M., L. Birnbaumer, J. E. Allende, and J. Olate. Human‐Xenopus chimeras of Gsα reveal a new region important for its activation of adenylyl cyclase. FEBS Lett. 340: 249–254, 1994.
 8. Assimacopoulos‐Jeannet, F. D., P. F. Blackmore, and J. H. Exton. Studies on α‐adrenergic activation of hepatic glucose output. Studies on role of calcium in α‐adrenergic activation of phosphorylase. J. Biol. Chem. 252: 2662–2669, 1977.
 9. Beebe, S. J., R. Holloway, S. R. Rannels, and J. D. Corbin. Two classes of cAMP analogs which are selective for the two different cAMP‐binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes. J. Biol. Chem. 259: 3539–3547, 1984.
 10. Beebe, S. J., P. Salomonsky, T. Jahnsen, and Y. Li. The Cγ subunit is a unique isozyme of the cAMP‐dependent protein kinase. J. Biol. Chem. 267: 25505–25512, 1992.
 11. Belfrage, P., G. Frederikson, H. Olsson, and P. Shalfors. Regulation of adipose tissue lipolysis through reversible phosphorylation of hormone‐sensitive lipase. Adv. Cycl. Nucl. Prot. Phosph. Res. 17: 351–359, 1984.
 12. Berlot, C. H., and H. R. Bourne. Identification of effector‐activating residues of Gsα. Cell 68: 911–922, 1992.
 13. Berman, D. M., and A. G. Gilman. Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273: 1269–1272, 1998.
 14. Bird, G. St. J, G. M. Burgess, and J. W. Putney, Jr.. Sulfhydryl reagents and cAMP‐dependent kinase increase the sensitivity of the inositol‐1,4.5–trisphosphate receptor in hepatocytes. J. Biol. Chem. 268: 17917–17923, 1993.
 15. Blackmore, P. F., F. T. Brumley, J. L. Marks, and J. H. Exton. Studies on α‐adrenergic activation of hepatic glucose output. Relationship between α‐adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells. J. Biol. Chem. 253: 4851–4858, 1978.
 16. Blackmore, P. F., and J. H. Exton. Studies on the hepatic calcium‐mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J. Biol. Chem. 261: 11056–11063, 1986.
 17. Brandt, D. R., and E. M. Ross. GTPase activity of the stimulatory GTP‐binding regulatory protein of adenylate cyclase. Gs. Accumulation and turnover of enzyme‐nucleotide intermediates. J. Biol. Chem. 260: 266–272, 1985.
 18. Buggy, J. J., R. O. Heurich, M. MacDougall, K. A. Kelley, J. N. Livingston, H. Yoo‐Warren, and A. J. Rossomando. Role of the glucagon receptor COOH‐terminal domain in glucagon‐mediated signaling and receptor internalization. Diabetes 46: 1400–1405, 1997.
 19. Buggy, J. J., J. N Livingston, D. U. Rabin, and H. Yoo‐Warren. Glucagon and glucagon‐like peptide I receptor chimeras reveal domains that determine specificity of glucagon binding. J. Biol. Chem. 270: 7474–7478, 1995.
 20. Bullock, B. P., R. S. Heller, and J. F. Habener. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon‐like peptide‐1 receptor. Endocrinology 137: 2968–2978, 1996.
 21. Burcelin, R., J. Li, and M. J. Charron. Cloning and sequence analysis of the murine glucagon receptor‐encoding gene. Gene 164: 305–310, 1995.
 22. Burcelin, R., C. Mrejen, J. F. Decaux, S. H. De Mouzon, J. Girard and M. J. Charron. In vivo and in vitro regulation of hepatic glucagon receptor mRNA concentration by glucose metabolism. J. Biol. Chem. 273: 8088–8093, 1998.
 23. Burgess, G. M., G. St. J. Bird, J. F. Obie, and J. W. Putney, Jr.. The mechanism for synergism between phospholipase C‐ and adenylylcyclase‐linked hormones in liver. Cyclic AMP‐dependent kinase augments inositol trisphosphate‐mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J. Biol. Chem. 266: 4772–4871, 1991.
 24. Bygrave, F. L., A. Gamberucci, R. Fulceri, and A. Benedetti. Evidence that stimulation of plasma‐membrane Ca2+ inflow is an early action of glucagon and dibutyryl cyclic AMP in rat hepatocytes. Biochem. J. 292: 19–22, 1993.
 25. Campos, R. V., Y. C. Lee, and D. J. Drucker. Divergent tissue‐specific and developmental expression of receptors for glucagon and glucagon‐like peptide‐1 in the mouse. Endocrinology 134: 2156–2164, 1994.
 26. Capiod, T., J. Noel, L. Combetes, and M. Claret. Cyclic AMP‐evoked oscillations of intracellular [Ca2+] in guinea‐pig hepatocytes. Biochem. J. 275: 277–280, 1991.
 27. Carruthers, C. J. L., C. G. Unson, H. N. Kim, and T. P. Sakmar. Synthesis and expression of a gene for the rat glucagon receptor. Replacement of an aspartic acid in the extracellular domain prevents glucagon binding. J. Biol. Chem. 269: 29321–29328, 1994.
 28. Cassel, D., and Z. Sellinger. Catecholamine‐stimulated GTPase activity in turkey erythrocyte membranes. Biochim. Biophys. Acta 452: 538–551, 1976.
 29. Charest, R., P. F. Blackmore, B. Berthon, and J. H. Exton. Changes in free cytosolic Ca2+ in hepatocytes following α1‐adrenergic stimulation. Studies on Quin‐2–loaded hepatocytes. J. Biol. Chem. 258: 8769–8773, 1983.
 30. Charest, R., V. Prpic, J. H. Exton, and P. F. Blackmore. Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiontensin II and its relationship to changes in cytosolic free Ca2+. Biochem. J. 227: 79–90, 1983.
 31. Chen, J.‐L. J., D. F. Babcock, and H. A. Lardy. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 75: 2234–2238, 1978.
 32. Chicchi, G. G., M. P. Graziano, G. Koch, P. Hey, K. Sullivan, P. P. Vicario, and M. A. Cascieri. Alterations in receptor activation and divalent cation activation of agonist binding by deletion of intracellular domains of the glucagon receptor. J. Biol. Chem. 272: 7765–7769, 1997.
 33. Christophe, J.. Glucagon receptors: from genetic structure and expression to; effector coupling and biological responses. Biochem. Biophys. Acta 1241: 45–57, 1995.
 34. Cleg, C. H., G. C. Cadd, and G. S. McKnight. Genetic characterization of a brain‐specific form of the type I regulatory subunit of cAMP‐dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 85: 3707–3707, 1988.
 35. Coleman, D. E., A. M. Berghuis, E. Lee, M. E. Linder, A. G. Gilman, and S. R. Sprang. Structures of active conformations of Giα and the mechanism of GTP hydrolysis. Science 265: 1405–1412, 1994.
 36. Combettes, L., B. Berthon, A. Binet, and M. Claret. Glucagon and vasopressin interactions on Ca2+ movements in isolated hepatocytes. Biochem. J. 237: 675–683, 1986.
 37. Conklin, B. R., Z. Farfel, K. D. Lustig, D. Julius, and H. R. Bourne. Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363: 274–276, 1993.
 38. Conklin, B. R., P. Herzmark, S. Ishida, T. A. Voyno‐Yasenetskaya, Y. Sun, Z. Farfel, and H. R. Bourne. Carboxyl‐terminal mutations of Gqα and Gsα that alter the fidelity of receptor activation. Mo. Pharmacol. 50: 885–890, 1996.
 39. Corbin, J. D., S. L. Keely, and C. R. Park. The distribution and dissociation of cyclic adenosine 3′: 5′‐monophosphate‐dependent protein kinases in adipose, cardiac, and other tissues. J. Biol. Chem. 250: 218.
 40. Corbin, J. D., P. H. Sugden, L. West, D. A. Flock‐hart, T. M. Lincoln, and D. McCarthy. Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3': 5'‐monophosphate‐dependent protein kinase. J. Biol. Chem. 253: 3997–4003, 1078.
 41. Creba, J. A., C. P. Downes, P. T. Hawkins, G. Brewster, R. H. Michell, and C. J. Kirk. Rapid breakdown of phosphatidylinositol 4‐phosphate and phosphatidylinositol 4,5‐bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+‐mobilizing hormones. Biochem. J. 212: 733–747, 1983.
 42. Cypress, A. M., C. G. Unson, C‐R Wu, and T. P. Sakmar. Two cytoplasmic loops of the glucagon receptor are required to elevate cAMP or intracellular calcium. J. Biol. Chem. 274: 19455–19464, 1999.
 43. Dessauer, C. W., T. T. Scully, and A. G. Gilman. Interactions of forskolin and ATP with the cytosolic domains of mammalian adenylyl cyclase. J. Biol. Chem. 272: 22272–22277, 1997.
 44. Doskeland, S. O.. Evidence that rabbit muscle protein kinase has two kinetically distinct binding sites for adenosine 3': 5'‐cyclic monophosphate. Biochem. Biophys. Res. Commun. 83: 542–549, 1978.
 45. Elbein, S. C., and M. D. Hoffman. Role of mitochondrial DNA tRNA leucine and glucagon receptor missense mutations in Utah white diabetic patients. Diabetes Care 19: 507–508, 1996.
 46. Erlichman, J., R. Rosenfeld, and O. M. Rosen. Phosphorylation of a cyclic adenosine 3': 5'‐monophosphate‐dependent protein kinase from bovine cardiac muscle. J. Biol. Chem. 249: 5000–5003, 1974.
 47. Exton, J. H.. Mechanisms of action of glucagon. In: Hormones and Their Actions, edited by B. A. Cooke, R. J. B. King, and H. J. van der Molen. New York: Elsevier, 1988 pt. II, p. 231–264.
 48. Ferris, C. D., R. L. Huganir, D. S. Bredt, A. M. Cameron, and S. H. Snyder. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin‐dependent protein kinase in reconstituted lipid vesicles. Proc. Natl. Acad. Sci. U.S.A. 88: 2232–2235, 1991.
 49. Flockhart, D. A., D. M. Watterson, and J. D. Corbin. Studies on functional domains of the regulatory subunit of bovine heart adenosine 3': 5'‐monophosphate‐dependent protein kinase. J. Biol. Chem. 255: 4435–4440, 1980.
 50. Fujisawa, T., H. Ikegami, E. Yamato, K. Takekawa, Y. Nagagawa, Y. Hamada, H. Ueda, M. Fukuda, and T. Ogihara. A mutation in the glucagon receptor gene (Gly40Ser): heterogeneity in the association with diabetes mellitus. Diabetologia 38: 983–985, 1995.
 51. Gonzalez, G. A., and M. R. Montminy. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675–680, 1989.
 52. Gonzalez, G. A., K. K. Yamamoto, W. H. Fischer, D. Karr, P. Menzel, W. Biggs III, W. W. Vale, and M. R. Montminy. A cluster of phosphorylation sites on the cyclic AMP‐regulated nuclear factor CREB predicted by its sequence. Nature 337: 749–752, 1989.
 53. Gough, S. C. L., P. J. Saker, L. E. Pritchard, T. R. Merriman, M. E. Merriman, B. R. Rowe, S. Kumar, T. Aitman, A. H. Barnett, R. C. Turner, S. C. Bain, and J. A. Todd. Mutation of the glucagon receptor gene and diabetes mellitus in the UK: association or founder effect? Hum. Mol. Genet. 4: 1609–1612, 1995.
 54. Granner, D., and S. Pilkis. The genes of hepatic glucose metabolism. J. Biol. Chem. 265: 10173–10176, 1990.
 55. Gudermann, T., F. Kalkbrenner, and G. Schultz. Diversity and selectivity of receptor‐G protein interaction. Annu. Rev. Pharmacol. Toxicol. 36: 429–459, 1996.
 56. Guzman, M., and M. J. H. Geelen. Regulation of fatty acid oxidation in mammalian liver. Biochim. Biophys. Acta 1167: 227–241, 1993.
 57. Hager, J., L. Hansen, C. Vaisse, N. Vionnet, A. Philippi, W. Poller, G. Velho, C. Carcassi, L. Contu, C. Julier, F. Cambien, P. Passa, M. Lathrop, W. Kindsvogel, F. Demenais, E. Nishimura, and P. Froguel. A missense mutation in the glucagon receptor gene is associated with non‐insulin‐dependent diabetes mellitus. Nat. Genet. 9: 299–304, 1995.
 58. Hajnoczky, G., E. Gao, T. Nomura, J. B. Hoek, and A. P. Thomas. Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5–trisphosphate‐induced Ca2+ mobilization in permeabilized hepatocytes. Biochem. J. 293: 413–422, 1993.
 59. Hamm, H. E., D. Deretic, A. Arendt, P. A. Hargrave, B. Koenig, and K. P. Hofmann. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 241: 832–835, 1988.
 60. Hansen, L. H., N. Abrahamsen, J. Hager, L. Jelinek, W. Kindsvogel, P. Froguel, and E. Nishimura. The Gly40Ser mutation in the human glucagon receptor gene associated with NIDDM results in a receptor with reduced sensitivity to glucagon. Diabetes 45: 725–730, 1996.
 61. Hansen, L. H., N. Abrahamsen, and E. Nishimura. Glucagon receptor mRNA distribution in rat tissues. Peptides 16: 1163–1166, 1995.
 62. Harris, B. A., J. D. Robishaw, S. M. Mumby, and A. G. Gilman. Molecular cloning of complementary DNA for the alpha subunit of the G protein that stimulates adenylate cyclase. Science 229: 1274–1277, 1985.
 63. Hart, L. M., R. P. Stolk, J. J. Jansen, D. E. Grobbee, H. H. P. J. Lemkes, and J. A. Maassen. Absence of the Gly40‐Ser mutation in the glucagon receptor among diabetic patients in the Netherlands. Diabetes Care 18: 1400–1401, 1995.
 64. Heller, R. S., T. J. Kieffer, and J. F. Habener. Point mutations in the first and third intracellular loops of the glucagon‐like pepetide‐1 receptor alter intracellular signaling. Biochem. Biophys. Res. Commun. 223: 624–632, 1996.
 65. Herberg, J. T., J. Codina, K. A. Rich, F. J. Rojas, and R. Iyengar. The hepatic glucagon receptor. Solubilization, characterization, and development of an affinity adsorption assay for the soluble receptor. J. Biol. Chem. 259: 9285–9294, 1984.
 66. Heurich, R. P., J. J. Buggy, M. T. Vandenberg, and A. J. Rossomando. Glucagon induces a rapid and sustained phosphorylation of the human glucagon receptor in Chinese hamster ovary cells. Biochem. Biophys. Res. Commun. 220: 905–910, 1996.
 67. Hildebrandt, J. D., J. Codina, R. Risinger, and L. Birnbaumer. Identification of a γ subunit associated with the adenylyl cyclase regulatory proteins Ns and Ni. J. Biol. Chem. 259: 2039–2042, 1984.
 68. Ho, M.‐F., H. N. Bramson, D. E. Hansen, J. R. Knowles, and E. T. Kaiser. Stereochemical course of the phospho group transfer catalyzed by cAMP‐dependent protein kinase. J. Am. Chem. Soc. 110: 2680–2681, 1988.
 69. Holland, R., D. G. Hardie, R. A. Clegg, and V. A. Zammit. Evidence that glucagon‐mediated inhibition of acetyl‐CoA carboxylase in isolated adipocytes occurs as a result of increased phosphorylation of the enzyme by cyclic AMP‐dependent protein kinase. Biochem. J. 226: 139–149, 1985.
 70. Holland, R., L. A. Witters, and D. G. Hardie. Glucagon inhibits fatty acid synthesis in isolated hepatocytes via phosphorylation of acetyl‐COA carboxylase by cyclic AMP‐dependent protein kinase. Eur. J. Biochem. 140: 325–333, 1984.
 71. Holst, J. J.. Glucagon, glucagon‐like peptide‐1 and their receptors: an introduction. Acta Physiol. Scand. 157: 309–315, 1996.
 72. Houston, B., and H. G. Nimmo. Effects of phosphorylation on the kinetic properties of rat liver ATP‐citrate lyase. Biochim. Biophys. Acta 844: 233–239, 1985.
 73. Huang, X., M. Orho, M. Lehto, and L. Groop. Lack of association between the Gly40Ser polymorphism in the glucagon receptor gene and NIDDM in Finland. Diabetologia 38: 1246–1248, 1995.
 74. Hunter, T., and M. Karin. The regulation of transcription by phosphorylation. Cell 70: 375–387, 1992.
 75. Hurley, J. H.. Structure, mechanism and regulation of mammalian adenylyl cyclase. J. Biol. Chem. 274: 7599–7602, 1999.
 76. Insel, P. A., L. C. Mahan, H. J. Motulsky, L. M. Stoolman, and A. M. Koachman. Time‐dependent decreases in binding affinity of agonists for β‐adrenergic receptors of intact S49 lymphoma cells. A mechanism of desensitization. J. Biol. Chem. 258: 13597–13605, 1983.
 77. Itoh, H., and A. G. Gilman. Expression and analysis of Gsα mutants with decreased ability to activate adenylylcyclase. J. Biol. Chem. 266: 16226–16231, 1991.
 78. Itoh, H., T. Kozasa, S. Nagata, S. Nakamura, T. Katada, M. Ui, S. Iwai, E. Ohtsuka, H. Kawasaki, K. Suzuki, and Y. Kaziro. Molecular cloning and sequence determination of cDNAs for α‐subunits of the guanine nucleotide‐binding proteins Gs, Gj, and Go from rat brain. Proc. Natl. Acad. Sci. U.S.A. 83: 3776–3780, 1986.
 79. Iyengar, R., K. A. Rich, J. T. Herberg, R. T. Premont, and J Codina. Glucagon receptor‐mediated activation of Gs is accompanied by subunit dissociation. J. Biol. Chem. 263: 15348–15353, 1988.
 80. Jahnsen, T., L. Hedin, V. J. Kidd, W. G. Beattie, S. M. Lohmann, U. Walter, J. Durica, T. Z. Schulz, E. Schiltz, M. Browner, C. B. Lawrence, D. Goldman, S. L. Ratoosh, and J. S. Richards. Molecular cloning, cDNA structure, and regulation of the regulatory subunit of type II cAMP‐dependent protein kinase from rat ovarian granulosa cells. J. Biol. Chem. 261: 12352–12361, 1986.
 81. Jelinek, L. J., S. Lok, G. B. Rosenberg, R. A. Smith, F. J. Grant, S. Biggs, P. A. Bensch, J. L. Kuijper, P. O. Shepard, C. A. Sprecher, P. J. O'Hara, D. Foster, K. M. Walker, L. H. J. Chen, P. A. McKernan, and W. Kindsvogel. Expression cloning and signaling properties of the rat glucagon receptor. Science 259: 1614–1616, 1993.
 82. Joseph, S. K., and S. V. Ryan. Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes. J. Biol. Chem. 268: 23059–23065, 1993.
 83. Kass, G. E. N., J. Llopis, S. C. Chow, S. K. Duddy, and S. Orrenius. Receptor‐operated calcium influx in rat hepatocytes. Identification and characterization using manganese. J. Biol. Chem. 265: 174S6–17492, 1990.
 84. Knighton, D. R., J. Zheng, L. F. Ten Eyck, V. A. Ashford, N.‐H. Xuong, S. S. Taylor, and J. M. Sowadski. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate‐dependent protein kinase. Science 253: 407–114, 1991.
 85. Knighton, D. R., J. Zheng, L. F. Ten Eyck, N.‐H. Xuong, S. S. Taylor, and J. M. Sowadski. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate‐dependent protein kinase. Science 253: 414–120, 1991.
 86. Komalavilas, P., and T. M. Lincoln. Phosphorylation of the inositol 1,4,5–trisphosphate receptor by cyclic GMP‐dependent protein kinase. J. Biol. Chem. 269: 8701–8707, 1994.
 87. Kraus‐Friedmann, N.. Effects of glucagon and vasopressin on hepatic Ca2+ release. Proc. Natl. Acad. Sci. U.S.A. 83: 8943–8946, 1986.
 88. Lalli, E., and P. Sassone‐Corsi. Signal transduction and gene regulation: the nuclear response to cAMP. J. Biol. Chem. 269: 17359–17362, 1994.
 89. Lambright, D. G., J. P. Noel, H. E. Hamm, and P. B. Sigler. Structural determinants for activation of the α‐subunit of a heterotrimeric G protein. Nature 369: 621–628, 1994.
 90. Lambright, D. G., J. Sondek, A. Bohm, N. P. Skiba, H. E. Hamm, and P. B. Sigler. The 2.0 °A crystal structure of a heterotrimeric G protein. Nature 379: 311–319, 1996.
 91. Landis, C. A., S. B. Masters, A. Spada, A. M. Pace, H. R. Bourne, and L. Vallar. GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340: 692–696, 1989.
 92. Laoide, B. M., N. S. Foulkes, F. Schlotter, and P. Sassone‐Corsi. The functional versatility of CREM is determined by its modular structure. EMBO J. 12: 1179–1181, 1993.
 93. Lin, S. H., M. A. Wallace, and J. N. Fain. Regulation of Ca2+‐Mg2+‐ATPase activity in hepatocyte plasma membrane by vasopressin and phenylephrine. Endocrinology 113: 2268–2275, 1973.
 94. Lok, S., J. L. Kuijper, L. L. Jelinek, J. M. Kramer, T. E. Whitmore, C. A. Sprecher, S. Mathews, F. J. Grant, S. H. Biggs, G. B. Rosenberg, P. O. Sheppard, P. J. O'Hara. D. C. Foster, and W. Kindsvogel. The human glucagon receptor encoding gene: structure, cDNA sequence and chromosomal localization. Gene 140: 203–209, 1994.
 95. Lotersztajn, S., R. M. Epand, A. Mallat, and F. Pecker. Inhibition by glucagon of the calcium pump in liver plasma membranes. J. Biol. Chem. 259: 8195–8201, 1984.
 96. Lotersztajn, S., J. Hanoune, and F. Pecker. A high affinity calciumstimulated magnesium‐dependent ATPase in rat liver plasma membranes. Dependence on an endogenous protein activator distinct from calmodulin. J. Biol. Chem. 256: 11209–11215, 1981.
 97. Lotersztajn, S., C. Pavoine, A. Mallat, D. Stengel, P. A. Insel, and F. Pecker. Cholera toxin blocks glucagon‐mediated inhibition of the liver plasma membrane (Ca2+‐Mg2+)‐ATPase. J. Biol. Chem. 262: 3114–3117, 1987.
 98. MacNeil, D. J., J. L. Occi, P. J. Hey, C. D. Strader, and M. P. Graziano. Cloning and expression of a human glucagon receptor. Biochem. Biophys. Res. Commun. 198: 328–334, 1994.
 99. Mallat, A., C. Pavoine, M. Dufour, S. Lotersztajn, D. Bataile, and F. Pecker. A glucagon fragment is responsible for the inhibition of the liver Ca2+ pump by glucagon. Nature 325: 620–622, 1987.
 100. Master, S. B., K. A. Sullivan, R. T. Miller, B. Beiderman, N. G. Lopez, J. Ramachandran, and H. R. Bourne. Carboxyl terminal domain of Gsα specifies coupling of receptors to stimulation of adenylyl cyclase. Science 241: 448–451, 1988.
 101. Mathi, S. K., Y. Chan, X. Li, and M. B. Wheeler. Scanning of the glucagon‐like peptide‐1 receptor localizes G protein‐activating determinants primarily to the N terminus of the third intracellular loop. Mol. Endocrinol. 11: 424–32, 1997.
 102. Mauger, J.‐P., and M. Claret. Mobilization of intracellular calcium by glucagon and cyclic AMP analogues in isolated rat hepatocytes. FEBS Lett. 195: 106–110, 1986.
 103. Mauger, J.‐P., J. Poggioli, and M. Claret. Synergistic stimulation of the Ca2+ influx in rat hepatocytes by glucagon and the Ca+‐linked hormones vasopressin and angiotensin II. J. Biol. Chem. 260: 11635–11642, 1985.
 104. McGarry, J. D., G. P. Mannaerts, and D. W. Foster. A possible role for malonyl‐COA in the regulation of hepatic fatty acid oxidation and hetogenesis. J. Clin. Invest. 60: 265–270, 1977.
 105. Meek, D. W., and A. J. Street. Nuclear protein phosphorylation and growth control. Biochem. J. 287: 1–15, 1992.
 106. Mixon, M. D., E. Lee, D. E. Coleman, A. M. Berghuis, A. G. Gilman, and S. R. Sprang. Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science 270: 954–960, 1995.
 107. Moens, K., H. Heimberg, D. Flamex, P. Huypens, E. Quartier, Z. Ling, D. Pipeleers, S. Gremlich, B. Thorens, and F. Schuit. Expression and functional activity of glucagon, glucagon‐like peptide‐1, and glucose‐dependent insulinotropic peptide receptors in rat pancreatic islet cells. Diabetes 45: 257–261, 1996.
 108. Molina C. A., N. S. Foulkes, E. Lalli, and P. Sassone‐Corsi. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 75: 875–886, 1993.
 109. Morgan, N. G., R. Charest, P. F. Blackmore, and J. H. Exton. Potentiation of α1‐adrenergic responses in rat liver by a cAMP‐dependent mechanism. Proc. Natl. Acad. Sci. U.S.A. 81: 4208–4212, 1984.
 110. Nakade, S., S. K. Rhee, H. Hamanaka, and K. Mikoshiba. Cyclic AMP‐dependent phosphorylation of an immunoaffinity‐purified homotetrameric inositol 1,4,5–trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles. J. Biol. Chem. 269: 6735–6742, 1994.
 111. Neer, E. J., C. J. Schmidt, R. Nambudripad, and T. F. Smith. The ancient regulatory‐protein family of WD‐repeat proteins. Nature 371: 297–300, 1994.
 112. Noel, J. P., H. E. Hamm, and P. B. Sigler. The 2.2 Å crystal structure of transducin‐α complexed with CTPγs. Nature 366: 654–663, 1993.
 113. Northup, J. K., M. D. Smigel, and A. G. Gilman. The guanine nucleotide activating site of the regulatory component of adenylate cyclase. Identification by ligand binding. J. Biol. Chem. 267: 11416–11423, 1982.
 114. Northup, J. K., P. C. Sternweis, and A. G. Gilman. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity, and properties of the 35,000‐dalton (β) subunit. J. Biol. Chem. 258: 11361–11368, 1983.
 115. Northup, J. K., P. C. Sternweis, M. D. Smigel, L. S. Schleifer, E. M. Ross, and A. G. Gilman. Purification of the regulatory component of adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 77: 6516–6520, 1980.
 116. Nukada, T., T. Tanabe, H. Takahashi, M. Noda, T. Hirose, S. Inayama, and S. Numa. Primary structure of the α‐subunit of bovine adenylate cyclase‐stimulating G‐protein deduced from the cDNA sequence. FEBS Lett. 195: 220–224, 1986.
 117. Ogreid, D., and S. O. Doskeland. The kinetics of association of cyclic AMP to the two types of binding sites associated with protein kinase II from bovine myocardium. FEBS Lett. 129: 287–292. 1981.
 118. Ogreid, D., R. Ekanger, R. H. Suva, J. P. Miller, and S. O. Doskeland. Comparison of the two classes of binding sites (A and B) of type I and type II cyclic‐AMP‐dependent protein kinases by using cyclic nucleotide analogs. Eur. J. Biochem. 181: 19–31, 1989.
 119. Pfeuffer, T.. GTP‐binding proteins in membranes and the control of adenylate cyclase activity. J. Biol. Chem. 252: 7224–7234, 1977.
 120. Pilkis, S. J., and D. K. Granner. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Physiol. 54: 885–909, 1992.
 121. Pittner, R. A., and J. N. Fain. Exposure of cultured hepatocytes to cyclic AMP enhances the vasopressin‐mediated stimulation of inositol phosphate production. Biochem. J. 257: 455–460, 1989.
 122. Poggioli, J., J.‐P. Mauger, and M. Claret. Effect of cyclic AMP‐dependent hormones and Ca2+‐mobilizing hormones on the Ca2+ influx and polyphosphoinositide metabolism in isolated rat hepatocytes. Biochem. J. 235: 663–669, 1986.
 123. Potter, R. L., and S. S. Taylor. The structural domains of cAMP‐dependent protein kinase I. Characterization of two sites of proteolytic cleavage and homologies to cAMP‐dependent protein kinase II. J. Biol. Chem. 255: 9706–9712, 1980.
 124. Prpic, V., P. F. Blackmore, and J. H. Exton. Phosphatidylinositol breakdown induced by vasopressin and epinephrine in hepatocytes is calcium‐dependent. J. Biol. Chem. 257: 11323–11331, 1982.
 125. Putney, J. W., Jr.. Capacitative calcium entry revisited. Cell Calcium 11: 611–624, 1990.
 126. Rangel‐Aldao, R., and O. M. Rosen. Dissociation and reassociation of the phosphorylated and nonphosphorylated forms of adenosine 3': 5'‐monophosphate‐dependent protein kinase from bovine cardiac muscle. J. Biol. Chem. 251: 3375–3380, 1976.
 127. Rangel‐Aldao, R., and O. M. Rosen. Effect of cAMP and ATP on the reassociation of phosphorylated and nonphosphorylated subunits of the cAMP‐dependent protein kinase from bovine cardiac muscle. J. Biol. Chem. 252: 7140–7145, 1977.
 128. Rannels, S. R., and J. D. Corbin. Two different intrachain cAMP binding sites of cAMP‐dependent protein kinases. J. Biol. Chem. 255: 7085–7088, 1980.
 129. Rannels, S. R., and J. D. Corbin. Studies on the function of the two intrachain cAMP binding sites of protein kinase. J. Biol. Chem. 256: 7871–7876, 1981.
 130. Ransnas, L. A., and P. A. Insel. Quantitation of the guanine nucleotide binding regulatory protein Gs in S49 cell membranes using antipeptide antibodies to αs. J. Biol. Chem. 263: 9482–9485, 1988.
 131. Ransnas, L. A., and P. A. Insel. Subunit dissociation is the mechanism for hormonal activation of the Gs protein in native membranes. J. Biol. Chem. 263: 17239–17242, 1988.
 132. Robishaw, J. D., D. W. Russell, B. A. Harris, M. D. Smigel, and A. G. Gilman. Deduced primary structure of the α‐subunit of the GTP‐binding stimulatory protein of adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 83: 1251–1255, 1986.
 133. Robishaw, J. D., M. D. Smigel, and A. G. Gilman. Molecular basis for two forms of the G protein that stimulates adenylate cyclase. J. Biol. Chem. 261: 9587–9590, 1986.
 134. Rodbell, M., L. Birnbaumer, S. L. Pohl, and H. M. J. Krans. The glucagon‐sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J. Biol. Chem. 246: 1877–1882, 1971.
 135. Rodbell, M., H. M. J. Krans, S. L. Pohl, and L. Birnbaumer. The glucagon‐sensitive adenyl cyclase system in plasma membranes of rat liver. III Binding of glucagon: method of assay and specificity. J. Biol. Chem. 246: 1861–1971, 1971.
 136. Rodbell, M., H. M. J. Krans, S. L. Pohl, and L. Birnbaumer. The glucagon‐sensitive adenyl cyclase system in plasma membranes of rat livers. IV Effects of guanyl nucleotides on binding of 125I‐glucagon. J. Biol. Chem. 246: 1872–1876, 1971.
 137. Ross, E. M., and A. G. Gilman. Reconstitution of catecholamine‐sensitive adenylate cyclase activity: interaction of solubilized components with receptor‐replete membranes. Proc. Natl. Acad. Sci. U.S.A. 74: 3715–3719, 1977.
 138. Ross, E. M., and A. G. Gilman. Resolution of some component of adenylate cyclase necessary for catalytic activity. J. Biol. Chem. 252: 6966–6969, 1977.
 139. Ross, E. M., A. C. Howlett, K. M. Ferguson, and A. G. Gilman. Reconstitution of hormone‐sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem. 253: 6401–6412, 1978.
 140. Sanchez‐Bueno, A., I. Morrero, and P. H. Cobbold. Different modulatory effects of elevated cyclic AMP on cytosolic Ca2+ spikes induced by phenylephrine or vasopressin in single rat hepatocytes. Biochem. J. 291: 163–168, 1993.
 141. Savarese, T. M., and C. M. Fraser. In vitro mutagenesis and the search for structure‐function relationships among G protein‐coupled receptors. Biochem. J. 283: 1–19, 1992.
 142. Scott, J. D., M. B. Glaccum, M. J. Zoller, M. D. Uhler, D. M. Helfman, G. S. McKnight, and E. G. Krebs. The molecular cloning of a type II regulatory subunit of the cAMP‐dependent protein kinase from rat skeletal muscle and mouse brain. Proc. Natl. Acad. Sci. U.S.A. 84: 5192–5196, 1987.
 143. Sistare, F. D., R. A. Picking, and R. C. Haynes, Jr.. Sensitivity of the response of cytosolic calcium in Quin‐2–loaded rat hepatocytes to glucagon, adenine nucleosides, and adenine nucleotides. J. Biol. Chem. 260: 12744–12747, 1985.
 144. Somogyi, R., M. Zhao, and J. W. Stucki. Modulation of cytosolic‐[Ca2+] oscillations in hepatocytes results from cross‐talk among second messengers. The synergism between the α1‐adrenergic response, glucagon and cyclic AMP, and their antagonism by insulin and diacylglycerol manifest themselves in the control of the cytosolic‐[Ca2+] oscillations. Biochem. J. 286: 869–877, 1992.
 145. Sondek, J., A. Bohm, D. G. Lambright, H. E. Hamm, and P. B. Sigler. Crystal structure of GA protein βγ dimer at 2.1 °A resolution. Nature 379: 369–374, 1996.
 146. Staddon, J. M., and R. G. Hansford. 4B‐Phorbol 12‐myristate 13‐acetate attenuates the glucagon‐induced increases in cytoplasmic free Ca2+ concentration in isolated rat hepatocytes. Biochem. J. 238: 737–743, 1986.
 147. Sternweis, P. C., J. K. Northup, M. D. Smigel, and A. G. Gilman. The regulatory component of adenylate cyclase. Purification and properties. J. Biol. Chem. 256: 11517–11526, 1981.
 148. Strader, C. D., T. M. Fong, M. P. Graziano, and M. R. Tota. The family of G‐protein‐coupled receptors. FASEB J. 9: 745–754, 1995.
 149. Studer, R. K., K. W. Snowdowne, and A. B. Borle. Regulation of hepatic glycogenolysis by glucagon in male and female rats. Role of cAMP and Ca2+ and interactions between epinephrine and glucagon. J. Biol. Chem. 259: 3596–3604, 1984.
 150. Su, Y., R. G. Dostmann, F. W. Herberg, K. Durick, N‐h. Xuong, L. Ten Eyck, S. S. Taylor, and K. I. Varughese. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 269: 807–813, 1995.
 151. Sunahara, R. K., C. W. Dessauer, and A. G. Gilman. Complexity and diversity of mammalian adenylyl cyclases. Annu. Rev. Pharmacol. Toxicol. 36: 461–480, 1996.
 152. Sunahara, R. K., C. W. Dessauer, R. E. Whisnant, C. Kleuss, and A. G. Gilman. Interaction of Gsα with the cytosolic domains of mammalian adenylyl cyclase. J. Biol. Chem. 272: 22265–22271, 1997.
 153. Sunahara, R. K., J. J. G. Tesmer, A. G. Gilman, and S. R. Sprang. Crystal structure of the adenylyl cyclase activator Gsα. Science 278: 1943–1947, 1997.
 154. Supattapone, S., S. K. Danoff, A. Theibert, S. K. Joseph, J. Steiner, and S. H. Snyder. Cyclic AMP‐dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Natl. Acad. Sci. U.S.A. 85: 8747–8750, 1988.
 155. Svoboda, M., E. Ciccarelli, M. Tastenoy, A. Cauvin, M. Stievenart, and J. Christophe. Small introns in a hepatic cDNA encoding a new glucagon‐like peptide 1‐type receptor. Biochem. Biophys. Res. Commun. 191: 479–486, 1993.
 156. Svoboda, M., E. Ciccarelli, M. Tastenoy, P. Robberecht, and J. Christophe. A cDNA construct allowing the expression of rat hepatic glucagon receptors. Biochem. Biophys. Res. Commun. 192: 135–142, 1993.
 157. Takhar, S., S. Gyomorey. R.‐C. Su, S. K. Mathi, X. Li, and M. B. Wheeler. The third cytoplasmic domain of the GLP‐l[7–36 amide] receptor is required for coupling to the adenylyl cyclase system. Endocrinology 137: 2175–2178, 1996.
 158. Tang, W.‐J., and A. G. Gilman. Construction of a soluble adenylyl cyclase activated by Gsα and forskolin. Science 268: 1769–1772, 1995.
 159. Taussig, R., and A. G. Gilman. Mammalian membrane‐bound adenylyl cyclases. J. Biol. Chem. 270: 1–4, 1995.
 160. Taussig, R., L. M. Quarmby, and A. G. Gilman. Regulation of purified type I and type II adenylylcyclases by G protein βγ subunits. J. Biol. Chem. 268: 9–12, 1993.
 161. Tesmer, J. J. G., R. K. Sunahara, A. G. Gilman, and S. R. Sprang. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with GsαGTPγS. Science 278: 1907–1916, 1997.
 162. Thorens, B., A. Porret, L. Bühler, S.‐P. Deng, P. Morel, and C. Widmann. Cloning and functional expression of the human islet GLP‐1 receptor. Demonstration that exendin‐4 is an agonist and exendin‐ (9–39) an antagonist of the receptor. Diabetes 42: 1678–1682, 1993.
 163. Thorens, B., and C. Widmann. Signal transduction and desensitization of the glucagon‐like peptide‐1 receptor. Acta Physiol. Scand. 157: 317–319, 1996.
 164. Uhler, M. D., D. F. Carmichael, D. C. Lee, J. C. Chrivia, E. G. Krebs, and G. S. McKnight. Isolation of cDNA clones coding for the catalytic subunit of mouse cAMP‐dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 83: 1300–1304, 1986.
 165. Uhler, M. D., J. C. Chrivia, and G. S. McKnight. Evidence for a second isoform of the catalytic subunit of cAMP‐dependent protein kinase. J. Biol. Chem. 261: 15360–15363, 1986.
 166. Unson, C. G., A. M. Cypess, H. N. Kim, P. K. Goldsmith, C. J. L. Carruthers, R. B. Merrifield, and T. P. Sakmar. Characterization of deletion and truncation mutants of the rat glucagon receptor. Seven transmembrane segments are necessary for receptor transport to the plasma membrane and glucagon binding. J. Biol. Chem. 270: 27720–27727, 1996.
 167. Unson, C. G., A. M. Cypess, C.‐R. Wu, P. K. Goldsmith, R. B. Merrifield, and T. P. Sakmar. Antibodies against specific extracellular epitopes of the glucagon receptor block glucagon binding. Proc. Natl. Acad. Sci. U.S.A. 93: 310–315, 1996.
 168. Van Dop, C., M. Tsubokawa, H. R. Bourne, and J. Ramachandran. Amino acid sequence of retinal transducin at the site of ADP‐ribosylation by cholera toxin. J. Biol. Chem. 259: 696–699, 1984.
 169. Wakelam, M. J. O, G. J. Murphy, V. J. Hruby, and M. D. Houslay. Activation of two signal‐transduction systems in hepatocytes by glucagon. Nature 323: 68–71, 1986.
 170. Wall, M. A., D. E. Coleman, E. Lee, J. A. Iniguez‐Liuhi, B. A. Posner, A. G. Gilman, and S. R. Sprang. The structure of the G protein heterotrimer Giα1β1γ2. Cell 83: 1047–1058, 1995.
 171. Watson, A. J., A. Katz, and M. I. Simon. A fifth member of the mammalian G‐protein β‐subunit family. J. Biol. Chem. 269: 22150–22156, 1994.
 172. Wei, Y., and S. Mojsov. Tissue‐specific expression of the human receptor for glucagon‐like peptide‐I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 358: 219–224, 1995.
 173. Whipps, D. E., A. E. Armston, H. J. Pryor, and A. P. Halestrap. Effects of glucagon and Ca2+ on the metabolism of phosphatidylinositol 4‐phosphate and phosphatidylinositol 4,5‐bisphosphate in isolated rat hepatocytes and plasma membranes. Biochem. J. 241: 835–845, 1987.
 174. Whitehouse, S., J. K. R. Feramisco, J. E. Casnellie, E. G. Krebs, and D. A. Walsh. Studies on the kinetic mechanism of the catalytic subunit of the cAMP‐dependent protein kinase. J. Biol. Chem. 258: 3693–3701, 1983.
 175. Widmann, C., W. Dolci, and B. Thorens. Agonist‐induced internalization and recycling of the glucagon‐like peptide‐1 receptor in transfected fibroblasts and in insulinomas. Biochem. J. 310: 203–214, 1995.
 176. Widmann, C., W. Dolci, and B. Thorens. Desensitization and phosphorylation of the glucagon‐like peptide‐1 (GLP‐1) receptor by GLP‐1 and 4‐phorbol 12‐myristate 13‐acetate. Mol. Endocrinol. 10: 62–75, 1996.
 177. Widmann, C., W. Dolci, and B. Thorens. Heterologous desensitization of the glucagon‐like peptide‐1 receptor by phorbol esters requires phosphorylation of the cytoplasmic tail at four different sites. J. Biol. Chem. 271: 19957–19963, 1996.
 178. Wilmen, A., B. Goke, and R. Goke. The isolated N‐terminal extracellular domain of the glucagon‐like peptide‐1 (GLP)‐1 receptor has intrinsic binding activity. FEBS Lett. 398: 43–47, 1996.
 179. Witters, L. A., E. M. Kowaloff, and J. Avruch. Glucagon regulation of protein phosphorylation. Identification of acetyl coenzyme A carboxylase as a substrate. J. Biol. Chem. 254: 245–248, 1979.
 180. Witters, L. A., D. Moriarty, and D. B. Martin. Regulation of hepatic acetylcoenzyme A carboxylase by insulin and glucagon. J. Biol. Chem. 254: 6644–6649, 1979.
 181. Yamamoto, K. K., G. A. Gonzalez, W. H. Biggs III, and M. R. Montminy. Phosphorylation‐induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334: 494–98, 1988.
 182. Yan, S.‐Z., D. Hahn, Z.‐H. Huang, and W.‐J. Tang. Two cytoplasmic domains of mammalian adenylyl cyclase form a Gsα and forskolin‐activated enzyme in vitro J. Biol. Chem. 271: 10941–10945, 1996.
 183. Yan, S.‐Z., Z.‐H. Huang, V. D. Rao, J. H. Hurley, and W.‐J. Tang. Three discrete regions of mammalian adenylyl cyclase form a site for Gsα activation. J. Biol. Chem. 272: 18849–18854, 1997.
 184. Yoo‐Warren, H., A. G. Willse, N. Hancock, J. Hull, M. McCaleb, and J. N. Livingston. Regulation of rat glucagon receptor expression. Biochem. Biophys. Res. Commun. 205: 347–353, 1994.
 185. Zetterqvist, O., U. Ragnarsson, and L. Engstrom. Substrate specificity of cyclic AMP‐dependent protein kinase. In: Peptides and Protein Phosphorylation, edited by B. E. Kemp. Orlando FL: CRC, 1990 p. 171–188.
 186. Zhang, G., Y. Lui, A. E. Ruoho, and J. H. Hurley. Structure of the adenylyl cyclase catalytic core. Nature 386: 247–253, 1997.
 187. Zhu, X., S. Gilbert, M. Birnbaumer, and L. Birnbaumer. Dual signaling potential is common among Gs‐coupled receptors and dependent on receptor density. Mol. Pharmacol. 46: 460–69, 1994.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

J. H. Exton. Glucagon Signal‐Transduction Mechanisms. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 435-450. First published in print 2001. doi: 10.1002/cphy.cp070213