Comprehensive Physiology Wiley Online Library

Genetic Regulation of Glucose Metabolism

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Glucagon and Insulin Action
1.1 Signaling from the Cell Membrane to the Nucleus
1.2 DNA Elements and Their Binding Proteins
2 Genetic Regulation of the Hepatic Gluconeogenic Enzymes
2.1 Glucose‐6‐Phosphatase
2.2 Fructose‐1,6‐Bisphosphatase
2.3 Phosphoenolpyruvate Carboxykinase
3 Genetic Regulation of the Hepatic Glycolytic Enzymes
3.1 Glucokinase
3.2 6‐Phosphofructo‐1‐Kinase
3.3 Pyruvate Kinase
3.4 6‐Phosphofructo‐2‐Kinase/Fructose‐2,6‐Bisphosphatase
4 Genetic Regulation of Other Proteins Involved in Glucose Metabolism
4.1 Glyceraldehyde‐3‐Phosphate Dehydrogenase
4.2 Tyrosine Aminotransferase
4.3 GLUT‐1 Glucose Transporter
4.4 Hexokinase II
5 Genetic Regulation of Lipogenic Enzymes
5.1 Acetyl‐CoA Carboxylase
5.2 Fatty Acid Synthase
5.3 Malic Enzyme
6 Conclusions and Perspectives
Figure 1. Figure 1.

Regulation of hepatic gene expression. Effects of insulin, cAMP, carbohydrate (CHO), fasting, refeeding, and diabetes on expression of the major hepatic genes involved in regulation of glucose metabolism. Induction (up arrow), repression (down arrow), no effect (horizontal arrow), and unknown (?) are shown. As might be predicted, the effect of fasting is identical to the effects of cAMP treatment, the effects of refeeding mimic the effects of insulin treatment, and the effect of the development of diabetes (insulin resistance) is opposite to that of insulin treatment. Although insulin and carbohydrates have opposing effects on expression of glucose‐6‐phosphatase (G6Pase), refeeding animals mimics the effect of insulin, demonstrating that, in the whole animal, the effect of insulin on this gene is dominant over the effect of carbohydrate. F16BPase, fructose‐1, 6‐bisphosphatase; PEPCK, phosphoenolpyruvate carboxy kinase; PF1K, 6‐phosphofructo‐1‐kinase; ACC, acetyl‐CoA carboxylase; FAS, fatty acid synthase.

Figure 2. Figure 2.

Signaling pathways known to be induced by insulin that may be involved in regulation of the cellular actions of this hormone. P‐Y‐/Y‐P, phosphorylated tyrosine residue; GRB2; growth factor receptor‐binding protein 2; mSOS, mammalian son of sevenless; MAP kinase, p42/p44 mitogen‐activated protein kinase; IRS‐1, insulin receptor substrate‐1; MEK, MAP kinase kinase; MAPKAPK2, MAP kinase‐activated protein kinase‐2; PKB, protein kinase B; PI, phosphatidylinositol; IGFBP, insulin like growth factor‐binding protein; G33, gene 33; GAPDH, glyceraldehyde‐3‐phosphate dehydrogenase; PEPCK, phosphoenolphyruvate carboxykinase.

Figure 3. Figure 3.

The cis/trans model of gene regulation, predicting multiple potential points of regulation, for example, at the level of expression of a trans‐acting transcription factor (1), the translocation of the factor to the nucleus (2), the binding of the transcription factor to its cognate cis‐acting DNA element (3) and its interaction with specific components of the basal transcription machinery (4).

Figure 4. Figure 4.

Hepatic substrate cycles. The key gluconeogenic and glycolytic enzymes and their reaction products are shown. The metabolic switch, fructose‐2,6‐bisphosphate, inhibits gluconeogenesis at the level of fructose‐1,6‐bisphosphatase and induces glycolysis at the level of 6‐phosphofructo‐1‐kinase. PEPCK, phosphoenolpyruvate carboxy kinase.



Figure 1.

Regulation of hepatic gene expression. Effects of insulin, cAMP, carbohydrate (CHO), fasting, refeeding, and diabetes on expression of the major hepatic genes involved in regulation of glucose metabolism. Induction (up arrow), repression (down arrow), no effect (horizontal arrow), and unknown (?) are shown. As might be predicted, the effect of fasting is identical to the effects of cAMP treatment, the effects of refeeding mimic the effects of insulin treatment, and the effect of the development of diabetes (insulin resistance) is opposite to that of insulin treatment. Although insulin and carbohydrates have opposing effects on expression of glucose‐6‐phosphatase (G6Pase), refeeding animals mimics the effect of insulin, demonstrating that, in the whole animal, the effect of insulin on this gene is dominant over the effect of carbohydrate. F16BPase, fructose‐1, 6‐bisphosphatase; PEPCK, phosphoenolpyruvate carboxy kinase; PF1K, 6‐phosphofructo‐1‐kinase; ACC, acetyl‐CoA carboxylase; FAS, fatty acid synthase.



Figure 2.

Signaling pathways known to be induced by insulin that may be involved in regulation of the cellular actions of this hormone. P‐Y‐/Y‐P, phosphorylated tyrosine residue; GRB2; growth factor receptor‐binding protein 2; mSOS, mammalian son of sevenless; MAP kinase, p42/p44 mitogen‐activated protein kinase; IRS‐1, insulin receptor substrate‐1; MEK, MAP kinase kinase; MAPKAPK2, MAP kinase‐activated protein kinase‐2; PKB, protein kinase B; PI, phosphatidylinositol; IGFBP, insulin like growth factor‐binding protein; G33, gene 33; GAPDH, glyceraldehyde‐3‐phosphate dehydrogenase; PEPCK, phosphoenolphyruvate carboxykinase.



Figure 3.

The cis/trans model of gene regulation, predicting multiple potential points of regulation, for example, at the level of expression of a trans‐acting transcription factor (1), the translocation of the factor to the nucleus (2), the binding of the transcription factor to its cognate cis‐acting DNA element (3) and its interaction with specific components of the basal transcription machinery (4).



Figure 4.

Hepatic substrate cycles. The key gluconeogenic and glycolytic enzymes and their reaction products are shown. The metabolic switch, fructose‐2,6‐bisphosphate, inhibits gluconeogenesis at the level of fructose‐1,6‐bisphosphatase and induces glycolysis at the level of 6‐phosphofructo‐1‐kinase. PEPCK, phosphoenolpyruvate carboxy kinase.

References
 1. Agius, L., and M. Peak. Binding and translocation of glucokinase in hepatocytes. Biochem. Soc. Trans. 25: 145–150, 1997.
 2. Akimoto, K., R. Takahashi, S. Moriya, N. Nishioka, J. Takayanagi, K. Kimura, Y. Fukui, S.‐I. Osada, K. Mizuno, S.‐I. Hirai, A. Kazlauskas, and S. Ohno. EGF or PDGF receptors activate atypical PKC λ through PI 3‐kinase. EMBO. J. 15: 788–798, 1996.
 3. Alessi, D. R., S. R. James, C. P. Downes, A. B. Holmes, P. R. J. Gaffney, C. B. Reese, and P. Cohen. Characterisation of a 3‐phospho‐inositide‐dependent protein kinase which phosphorylates and activates PKBa. Curr. Biol. 7: 261–269, 1997.
 4. Alexander‐Bridges, M., C. Buggs, L. Giere, M. Denaro, B. Kahn, M. White, V. Sukhatme, and N. Nasrin. Models of insulin action on metabolic and growth responses. Mol. Cell. Biochem. 109: 99–105, 1992.
 5. Alexander‐Bridges, M., L. Ercolani, X. F. Kong, and N. Nasrin. Identification of a core motif that is recognised by three members of the HMG class of transcriptional regulators: IRE‐ABP, SRY, and TCF‐1α. J. Cell. Biochem. 48: 129–135, 1992.
 6. Alexander‐Bridges, M., N. K. Mukhopadhyay, U. Jhala, M. Denaro, X.‐F. Kong, J. Avruch, and J. Maller. Growth factor‐activated kinases phosphorylate IRE‐ABP. Biochem. Soc. Trans. 20: 691–693, 1992.
 7. Allred, J. B., and K. E. Reilly. Short‐term regulation of acetyl CoA carboxylase in tissues of higher animals. Prog. Lipid Res. 35: 371–386, 1996.
 8. Altschuler, D. L., S. N. Peterson, M. C. Ostrowski, and E. G. Lepetina. cAMP‐dependent activation of Rap1b. J. Biol. Chem. 270: 10373–10376, 1995.
 9. Angrand, P.‐O., C. Coffinier, and M. C. Weiss. Response of the PEPCK gene to glucocorticoids depends on the integrity of the cAMP pathway. Cell Growth Differ. 5: 957–966, 1994.
 10. Argaud, D., T. L. Kirby, C. B. Newgard, and A. J. Lange. Stimulation of G‐6‐Pase gene expression by glucose and fructose‐2,6‐bisphosphate. J. Biol. Chem. 272: 12854–12861, 1997.
 11. Argaud, D., A. J. Lange, T. C. Becker, D. A. Okar, M. R. el‐Maghrabi, C. B. Newgard, and S. J. Pilkis. Adenovirus‐mediated overexpression of liver phosphofructokinase/bisphosphatase in gluconeogenic rat hepatoma cells. J. Biol. Chem. 270: 24229–24236, 1995.
 12. Argaud, D., Q. Zhang, W. Pan, S. Maitra, S. J. Pilkis, and A. J. Lange. Regulation of rat liver glucose‐6‐phosphatase gene expression in different nutritional and hormonal states. Diabetes 45: 1563–1571, 1996.
 13. Auger, K. R., L. A. Serunian, S. P. Soltoff, P. Libby, and L. C. Cantley. PDGF‐dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57: 167–175, 1989.
 14. Avruch, J., X.‐F. Zhang, and J. M. Kyriakis. Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem. Sci. 19: 279–283, 1994.
 15. Babadjanova, G., B. Allolio, F. Beuschlein, A. Chuchalin, and M. Reinke. Polymorphism of the glycogen synthase gene and NIDDM in the Russian population. Metabolism, 46, 121–122, 1997.
 16. Backer, J. M., M. G. Myers, S. E. Shoelson, D. J. Chin, X.‐J. Sun, M. Miralpeix, P. Hu, B. Margolis, E. Y. Skolnik, J. Schlessinger, and M. F. White. PI‐3 kinase is activated by association with IRS‐1 during insulin stimulation. EMBO. J. 11: 3469–3479, 1992.
 17. Band, C. J., and B. I. Posner. PI 3‐kinase and p7OS6 kinase are required for insulin but not bisperoxovanadium 1,10‐phenanthroline inhibition of IGFBP gene expression. J. Biol. Chem. 272: 138–145, 1997.
 18. Baumann, H., G. P. Jahreis, K. K. Morella, K.‐A. Won, S. C. Pruitt, and V. E. Jones. Transcriptional regulation through cytokine and glucocorticoid response elements of rat acute phase plasma protein genes by C/EBP and JunB. J. Biol. Chem. 266: 20390–20399, 1991.
 19. Bazin, R., and M. Lavau. Development of hepatic and adipose tissue lipogenic enzymes and insulinemia during suckling and weaning on to a high‐fat diet in Zucker rats. J. Lipid Res. 23: 839–849, 1982.
 20. Bedoya, F. J., F. M. Matschinsky, T. Shimizu, J. J. O'Neil, and M. C. Appel. Differential regulation of glucokinase activity in pancreatic islets and liver of the rat. J. Biol. Chem. 261: 10760–10764, 1986.
 21. Bell, G. I., S. J. Pilkis, I. T. Weber, and K. S. Polonsky. Glucokinase mutations, insulin secretion, and diabetes mellitus. Annu. Rev. Physiol. 58: 171–186, 1996.
 22. Bergot, M.‐O., M.‐J. M. Diaz‐Guerra, N. Puzenat, M. Raymondjean, and A. Kahn. Cis‐regulation of the L‐type pyruvate kinase gene promoter by glucose, insulin and cAMP. Nucleic. Acids. Res. 20: 1871–1878, 1992.
 23. Bonadonna, R. C., S. Del Prato, E. Bonora, M. P. Saccomani, G. Gulli, A. Natali, S. Frascerra, N. Pecori, E. Ferrannini, D. Bier, C. Cobelli, and R. A. De Fronzo. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes 45: 915–925, 1996.
 24. Borch‐Johnson, K., and T. Deckert. Complications of diabetes: the changing scene. In: International Textbook of Diabetes Mellitus, edited by K. G. M. M. Alberti, P. Zimmet, R. A. De Fronzo and H. Keen. New York Wiley, 1997, 65, p. 1283–1292.
 25. Borrelli, E., J. P. Montmayeur, N. S. Foulkes, and P. Sassone‐Corsi. Signal transduction and gene control: the cAMP pathway. Crit. Rev. Oncog. 3: 321–338, 1992.
 26. Bottacchi, E., and S. Di Donato. Skeletal muscle NAD+(P) and NADP+‐dependent malic enzyme in Friedreich's ataxia. Neurology 33: 712–716, 1983.
 27. Bray, G. A., and D. A. York. Leptin and clinical medicine: a new piece in the puzzle of obesity. J. Clin. Endocrinol. Metab. 82: 2771–2776, 1997.
 28. Bray, G. A., and D. A. York. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol. Rev. 59: 719–809, 1979.
 29. Brindle, P., T. Nakajima, and M. Montminy. Multiple PKA‐regulated events are required for transcriptional induction by cAMP. Proc. Natl. Acad. Sci. U.S.A 92: 10521–10525, 1995.
 30. Brown, K. S., S. S. Kalinowski, J. R. Megill, S. K. Durham, and K. A. Mookhtiar. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Diabetes 46: 179–186, 1997.
 31. Brown, M. L., L. S. Wise, and C. S. Rubin. The molecular basis for a cytosolic malic enzyme mutation. J. Biol. Chem. 263: 4494–4499, 1988.
 32. Brown, S., M. Maloney, and W. B. Kinlaw. “Spot 14” protein functions at the pretranslational level in the regulation of hepatic metabolism by thyroid hormone and glucose. J. Biol. Chem. 272: 2163–2166, 1997.
 33. Brownsey, R. W., R. Zhande, and A. N. Boone. Isoforms of acetyl‐CoA carboxylase: structures, regulatory properties and metabolic functions. Biochem. Soc. Trans. 25: 1232–1238, 1997.
 34. Bruning, J. C., J. Winnay, S. Bonner‐Wier, S. I. Taylor, D. Accili, and C. R. Kahn. Development of a novel polygenic model of DM2 in mice heterozygous for IR and IRS‐1 null alleles. Cell 88: 561–572, 1997.
 35. Burgering, B. M. T., and J. L. Bos. Regulation of Ras‐mediated signaling: more than one way to skin a cat. Trends Biochem. Sci. 20: 18–22, 1995.
 36. Calkhoven, C. F., and G. Ab. Multiple steps in the regulation of transcription factor level and activity. Biochem. J. 317: 329–342, 1996.
 37. Caro, J. F., M. K. Sinha, J. W. Kolaczynski, P. L. Zhang, and R. V. Considine. Leptin: the tale of an obesity gene. Diabetes 45: 1455–1462, 1996.
 38. Cifuentes, M. E., C. Espinet, A. J. Lange, S. J. Pilkis, and Y. Hod. Hormonal control of 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase gene expression in rat hepatoma cells. J. Biol. Chem. 266: 1557–1563, 1991.
 39. Cline, G. W., D. L. Rothamn, I. Magnusson, L. D. Katz, and G. I. Shulman. 13C‐nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with IDDM. J. Clin. Invest. 94: 2369–2376, 1994.
 40. Cognet, M., Y. C. Lone, S. Vaulont, A. Kahn, and J. Marie. Structure of the rat L‐type pyruvate kinase gene. J. Mol. Biol. 196: 11–25, 1987.
 41. Cole, M. D.. The myb and myc nuclear oncogenes as transcriptional activators. Curr. Opin. Cell Biol. 2: 502–508, 1990.
 42. Coleman, D. L.. The influence of genetic background on the expression of mutations at the diabetes (db) locus in the mouse. VI: Hepatic malic enzyme activity is associated with diabetes severity. Metabolism 41: 1134–1136, 1992.
 43. Colosia, A. D., A. J. Marker, A. J. Lange, M. R. El‐Maghrabi, D. K. Granner, A. Tauler, J. Pilkis, and S. J. Pilkis. Induction of rat liver 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase mRNA by refeeding and insulin. J. Biol. Chem. 263: 18669–18677, 1988.
 44. Bodzioch, M., E. Orso, J. Klucken, T. Langmann, A. Bottcher, W. Diederich, et al. The gene encoding ATP‐binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 22: 347–351, 1999.
 45. Consoli, A.. Role of liver in pathophysiology of NIDDM. Diabetes Care 15: 430–441, 1992.
 46. Cook, S., and F. McCormick. Inhibition by cAMP of Ras‐dependent activation of Raf. Science 262: 1069–1072, 1993.
 47. Cooney, G. J., and E. A. Newsholme. The maximum capacity of glycolysis in brown adipose tissue and its relationship to control of the blood glucose concentration. FEBS Lett. 148: 198–200, 1982.
 48. Corton, J. M., and D. G. Hardie. Regulation of lipid biosynthesis by the AMPK and its role in the hepatocellular response to stress. Prog. Liver. Dis. 14: 69–99, 1996.
 49. Croniger, C., M. Trus, K. Lysek‐Stupp, H. Cohen, Y. Liu, G. J. Darlington, V. Poli, R. W. Hanson, and L. Reshef. Role of the isoforms of C/EBP in the initiation of PEPCK gene transcription at birth. J. Biol. Chem. 272: 26306–26312, 1997.
 50. Daniel, S., and K.‐H. Kim. Sp1 mediates glucose activation of the acetyl‐CoA carboxylase promoter. J. Biol. Chem. 271: 1385–1392, 1996.
 51. Daniel, S., S. Zhang, A. A. De Paoli‐Roach, and K.‐H. Kim. Dephosphorylation of Sp1 by PP1 is involved in the glucose‐mediated activation of the ACC gene. J. Biol. Chem. 271: 14692–14697, 1996.
 52. Decaux, J. F., B. Antoine, and A. Kahn. Regulation of the expression of the L‐type pyruvate kinase gene in adult hepatocytes in primary culture. J. Biol. Chem. 264: 11584–11590, 1989.
 53. de Groot, R. P., and P. Sassone‐Corsi. Hormonal control of gene expression: multiplicity and versatility of cAMP‐responsive nuclear regulators. Mol. Endocrinol. 7: 145–153, 1993.
 54. Denhardt, D. T.. Signal‐transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signaling. Biochem. J. 318: 729–747, 1996.
 55. Denton, R. M.. Early events in insulin actions. Adv. Cycl. Nucl. Prot. Phos. Res. 20: 293–341, 1986.
 56. Denton, R. M., and J. M. Tavare. Does mitogen‐activated‐protein kinase have a role in insulin action? The cases for and against. Eur. J. Biochem. 227: 597–611, 1995.
 57. Diaz Guerra, M.‐J. M., M.‐O. Bergot, A. Martinez, M.‐H. Cuif, A. Kahn, and M. Raymondjean. Functional characterization of the L‐type PK gene glucose response complex. Mol. Cell. Biol. 13: 7725–7733, 1993.
 58. Dietrich, J. B.. Tyrosine aminotransferase: a transaminase among others? Cell. Mol. Biol. 38: 95–114, 1992.
 59. Dugail, I., A. Quignard‐Boulange, R. Bazin, X. Le Liepvre, and M. Lavau. Adipose‐tissue specific increase in GAPDH activity and mRNA amounts in suckling pre‐obese Zucker rats. Biochem. J. 254: 483–487, 1988.
 60. Dunaway, G. A., G. L.‐Y. Leung, J. R. Thrasher, and M. D. Cooper. Turnover of hepatic phosphofructokinase in normal and diabetic rats. J. Biol. Chem. 253: 7460–7463, 1978.
 61. Dupriez, V. J., and G. G. Rousseau. Glucose response elements in a gene that codes for 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase. DNA Cell Biol. 16: 1075–1085, 1997.
 62. El Khadir‐Mounier, C., N. Le Fur, F. S. Powell, C. Diot, P. Langlois, J. Mallard, and M. Douaire. Cloning and characterisation of the 5′ end and promoter region of the chicken ACC gene. Biochem. J. 314: 613–619, 1996.
 63. el‐Maghrabi, M. R., A. J. Lange, L. Kummel, and S. J. Pilkis. The rat fructose‐1,6‐bisphosphatase gene. Structure and regulation of expression. J. Biol. Chem. 266: 2115–2120, 1991.
 64. el‐Maghrabi, M. R., J. Pilkis, A. J. Marker, A. D. Colosia, G. D'angelo, B. A. Fraser, and S. J. Pilkis. cDNA sequence of rat liver fructose‐1,6‐bisphosphatase and evidence for down‐regulation of its mRNA by insulin. Proc. Natl. Acad. Sci. U.S.A. 85: 8430–8434, 1988.
 65. Engstrom, L.. The regulation of liver pyruvate kinase by phosphorylation‐dephosphorylation. Curr. Top. Cell. Regul. 13: 28–51, 1978.
 66. Exton, J. H., and C. R. Park. Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused livers of rats. J. Biol. Chem. 242: 2622–2636, 1967.
 67. Faber, S., R. M. O'Brien, E. Imai, D. K. Granner, and R. Chalkley. Dynamic aspects of DNA/protein interactions in the transcriptional initiation complex and the hormone‐responsive domains of the PEPCK promoter in vivo. J. Biol. Chem. 268: 24976–24985, 1993.
 68. Ferre, T., A. Pujol, E. Riu, F. Bosch, and A. Valera. Correction of diabetic alterations by glucokinase. Proc. Natl. Acad. Sci. U.S.A. 93: 7225–7230, 1996.
 69. Flakoll, P., M. G. Carlson, and A. Cherrington. Physiologic action of insulin. In Diabetes Mellitus: A Fundamental and Clinical Text, edited by D. Le Roith, S. I. Taylor, and J. M. Olefsky. New York: Lippincott‐Raven, 1996, p. 121–132.
 70. Foster, J. D., B. A. Pederson, and R. C. Nordlie. Glucose‐6‐phosphatase structure, regulation, and function: an update. Proc. Soc. Exp. Biol. Med. 215: 314–332, 1997.
 71. Frenkel, R.. Regulation and physiological functions of malic enzymes. Curr. Top. Cell. Regul. 9: 157–181, 1975.
 72. Furuta, H., N. Iwasaki, N. Oda, Y. Horikawa, K. Yamagata, N. Yano, J. Sugahiro, H. Ohgawara, Y. Omori, Y. Iwamoto, and G. I. Bell. Organization and partial sequence of the hepatocyte nuclear factor‐4/MODY1 gene and identification of a missense mutation, R127W, in a Japanese family with MODY. Diabetes 46: 1652–1657, 1997.
 73. Ganss, R., F. Weih, and G. Schutz. The cAMP and the glucocorticoid dependent enhancers are targets for insulin repression of tyrosine aminotransferase gene transcription. Mol. Endocrinol. 8: 895–903, 1994.
 74. Garcia de Herreros, A., and M. J. Birnbaum. The regulation of glucose transporter gene expression in 3T3 adipocytes. J. Biol. Chem. 264: 9885–9890, 1989.
 75. Garcia‐Jimenez, C., B. Benito, T. Jolin, and P. Santisteban. Insulin regulation of malic enzyme gene expression in rat liver: evidence for nuclear proteins that bind to two putative insulin response elements. Mol. Endocrinol. 8: 1361–1369, 1994.
 76. Gehnrich, S. C., N. Gekakis, and H.‐S. Sul. Liver (B‐type) phosphofructokinase mRNA. J. Biol. Chem. 263: 11755–11759, 1988.
 77. Girard, J., P. Ferre, and F. Foufelle. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu. Rev. Nutr. 17: 325–352, 1997.
 78. Girard, J., D. Perdereau, F. Foufelle, C. Prip‐Buus, and P. Ferre. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J. 8: 36–42, 1994.
 79. Glass, C. K., D. W. Rose, and M. G. Rosenfeld. Nuclear receptor coactivators. Curr. Opin. Cell. Biol. 9: 222–232, 1997.
 80. Gonzalez, G. A., and M. R. Montminy. cAMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine‐133. Cell 59: 675–680, 1989.
 81. Gonzalez‐Manchon, C., M. Ferrer, M. S. Ayuso, and R. Parrilla. Cloning, sequencing and functional expression of a cDNA encoding a NADP+‐dependent malic enzyme from human liver. Gene 159: 255–260, 1995.
 82. Goraya, T. Y., S. P. Kessler, P. Stanton, R. W. Hanson and C. S. Ganes. The cyclic AMP response elements of the genes for angiotensin‐converting enzyme and phosphoenolpyruvate carboxykinase (GTP) can mediate transcriptional activation by CREMτ and CREMα. J. Biol. Chem. 270: 19078–19084, 1995.
 83. Goswami, R., R. Lacson, E. Yang, R. Sam, and T. Unterman. Functional analysis of glucocorticoid and insulin response sequences in the rat insulin‐like growth factor‐binding protein‐1 promoter. Endocrinology 134: 736–743, 1994.
 84. Grange, T., J. Roux, G. Rigaud, and R. Pictet. Cell‐type specific activity of two glucocorticoid responsive units of the rat TAT gene is associated with multiple binding sites for C/EBP and a novel liver‐specific nuclear factor. Nucleic Acids. Res. 19: 131–139, 1991.
 85. Granner, D. K., and R. M. O'Brien. Molecular physiology and genetics of DM2. Diabetes Care 15: 369–395, 1992.
 86. Granner, D. K., and R. M. O'Brien. Regulation of transcription by insulin. In: The Hormonal Regulation of Gene Transcription, edited by P. Cohen and J. G. Foulkes, New York: Elsevier, 1991, p. 309–332.
 87. Granner, D. K., and S. Pilkis. The genes of hepatic glucose metabolism. J. Biol. Chem. 265: 10173–10176, 1990.
 88. Haber, B. A., S. Chin, E. Chuang, W. Buikhuisen, A. Naji, and R. Taub. High levels of glucose‐6‐phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes. J. Clin. Invest. 95: 832–841, 1995.
 89. Hafner, S., H. S. Adler, H. Mischak, P. Janosch, G. Heidecker, A. Wolfman, S. Pippig, M. Lohse, M. Ueffing, and W. Kolch. Mechanism of inhibition of raf‐1 by PKA. Mol. Cell. Biol. 14: 6696–6703, 1994.
 90. Hani, E. H., H. Zouali, A. Philippi, J. C. Beaudoin, N. Vionnet, P. Passa, F. Demenais, and P. Froguel. Indication for genetic linkage of the PEPCK (PCK1) gene region on chromosome 20q to DM2. Diabetes Metab. 22: 451–154, 1996.
 91. Hanson, R. W., and Y. M. Patel. PEPCK: the gene and the enzyme. Adv. Enzymol. 69: 203–281, 1994.
 92. Hardie, D. G., and D. Carling. The AMPK—fuel gauge of the mammalian cell. Eur. J. Biochem. 246: 259–273, 1997.
 93. Hariharan, N., D. Farrelly, D. Hagan, D. Hillyer, C. Arbeeny, T. Sabrah, A. Treloar, K. Brown, S. Kalinowski, and K. Mookhtiar. Expression of human hepatic glucokinase in transgenic mice liver results in decreased glucose levels and reduced body weight. Diabetes 46: 11–16, 1997.
 94. Harri, M. N., and J. Valtola. Comparison of the effects of physical exercise, cold acclimation and repeated injections of isoprenaline on rat muscle enzymes. Acta Physiol. Scand. 95: 391–399, 1975.
 95. Hart, L. M., R. P. Stolk, R. J. Heine, D. E. Grobbee, F. E. van der Does, and J. A. Maassen. Association of the insulin receptor variant Met‐985 with hyperglycemia and NIDDM in Netherlands: a population‐based study. Am. J. Hum. Genet. 59: 1119–1125, 1996.
 96. Hasegawa, J.‐i., K. Osatomi, R.‐F. Wu, and K. Uyeda. A novel factor binding to the glucose response elements of liver pyruvate kinase and fatty acid synthase genes. J. Biol. Chem. 274: 1100–1107, 1999.
 97. Hillgartner, F. B., L. M. Salati, and A. G. Goodridge. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol. Rev. 75: 46–76, 1995.
 98. Hoeffler, J. P., T. E. Meyer, Y. Yun, J. L. Jameson, and J. F. Habener. cAMP‐responsive DNA‐binding protein: structure based on a cloned placental cDNA. Science 242: 1430–1433, 1988.
 99. Imai, E., J. N. Miner, J. A. Mitchell, K. R. Yamamoto, and D. K. Granner. Glucocorticoid receptor‐cAMP response element‐binding protein interaction and the response of the PEPCK gene to glucocorticoids. J. Biol. Chem. 268: 5353–5356, 1993.
 100. Imai, E., P.‐E. Stromstedt, P. G. Quinn, J. Carlstedt‐Duke, J.‐A. Gustafsson, and D. K. Granner. Characterization of a complex glucocorticoid response unit in the PEPCK gene. Mol. Cell. Biol. 10: 4712–4719, 1990.
 101. Iynedjian, P. B., D. Jotterand, T. Nouspikel, M. Asfari, and P.‐R. Pilot. Transcriptional induction of the glucokinase gene by insulin in cultured liver cells and its repression by the glucagon‐cAMP system. J. Biol. Chem. 264: 21824–21829, 1989.
 102. Jacoby, D. B., N. D. Zilz, and H. C. Towle. Sequences within the 5′‐flanking region of the S14 gene confer responsiveness to glucose in primary hepatocytes. J. Biol. Chem. 264: 17623–17626, 1989.
 103. Janknecht, R., and T. Hunter. Transcriptional control: versatile molecular glue. Curr. Biol. 6: 951–954, 1996.
 104. Janknecht, R., and A. Nordheim. Regulation of the c‐fos promoter by the ternary complex factor Sap‐1a and its coactivator CBP. Oncogene 12: 1961–1969, 1996.
 105. Jones, J. P., and G. L. Dohm. Regulation of glucose transporter GLUT‐4 and hexokinase II gene transcription by insulin and epinephrine. Am. J. Physiol. 273 (Endocrinol. Metab. 36): E682–7, 1997.
 106. Jump, D. B., S. D. Clarke, A. Thelen, and M. Liimatta. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 35: 1076–1084, 1994.
 107. Kahn, B. B., G. I. Schulman, R. A. De Fronzo, S. W. Cushman, and L. Rossetti. Normalisation of blood glucose in diabetic rats with phlorizin treatment reverses insulin‐resistant glucose transport in adipose cells without restoring glucose transporter gene expression. J. Clin. Invest. 87: 561–570, 1991.
 108. Kahn, C. R.. Insulin action, diabetogenes and the cause of type II diabetes. Diabetes 43: 1066–1084, 1994.
 109. Karin, M., Z.‐G. Liu, and E. Zandi. AP‐1 function and regulation. Curr. Opin. Cell Biol. 9: 240–246, 1997.
 110. Kato, G. J., and C. V. Dang. Function of the c‐myc oncoprotein. FASEB J. 6: 3065–3072, 1992.
 111. Katsurada, A., N. Iritani, H. Fukada, Y. Matsumura, T. Noguchi, and T. Tanaka. Effects of insulin and fructose on transcriptional and post‐transcriptional regulation of malic enzyme synthesis in diabetic rat liver. Biochim. Biophys. Acta 1004: 103–107, 1989.
 112. Kaytor, E. N., H. Shih, and H. C. Towle. Carbohydrate regulation of hepatic gene expression. J. Biol. Chem. 272: 7525–7531, 1997.
 113. Kelley, D. E., M. A. Mintun, S. C. Watkins, J. A. Simoneau, F. Jadali, A. Fredrickson, J. Beattie, and R. Theriault. The effect of non‐insulin‐dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J. Clin. Invest. 97: 2705–2713, 1996.
 114. Kolb, A., S. Busby, H. Buc, S. Garges, and S. Adhya. Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62: 749–795, 1993.
 115. Kuhne, M. R., T. Pawson, G. E. Leinhard, and G. S. Feng. The insulin receptor substrate‐1 associates with the SH2‐containing phosphotyrosine phosphatase Syp. J. Biol. Chem. 268: 11479–11481, 1993.
 116. Lalli, E., and P. Sassone‐Corsi. Signal transduction and gene regulation: the nuclear response to cAMP. J. Biol. Chem. 269: 17359–17362, 1994.
 117. Lamas, M., L. Monaco, E. Zazopoulos, E. Lalli, K. Tamai, L. Penna, C. Mazzucchelli, F. Nantel, N. S. Foulkes, and P. Sassone‐Corsi. CREM: a master switch in the transcriptional response to cAMP. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351: 561–567, 1996.
 118. Lange, A. J., C. Espinet, R. Hall, M. R. el‐Maghrabi, A. M. Vargas, R. J. Miksicek, D. K. Granner, and S. J. Pilkis. Regulation of gene expression of rat skeletal muscle/liver 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase. Isolation and characterization of a glucocorticoid response element in the first intron of the gene. J. Biol. Chem. 276: 15673–15680, 1992.
 119. Lange A J, el‐Maghrabi M R, Pilkis S J.. Isolation of bovine liver 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase cDNA: bovine liver and heart forms of the enzyme are separate gene products. Arch Biochem Biophys. 290: 258–63, 1991.
 120. Lee, C. H., W. Li, R. Nishimura, M. Zhou, A. G. Batzer, M. G. J. Myers, M. F. White, J. Schlessinger, and E. Y. Skolnik. Nck associates with the SH2 domain‐docking protein IRS‐1 in insulin‐stimulated cells. Proc. Natl. Acad. Sci. U.S.A. 90: 11713–11717, 1993.
 121. Lefrancois‐Martinez, A.‐M., M.‐J. M. Diaz‐Guerra, V. Vallet, A. Kahn, and B. Antoine. Glucose‐dependent regulation of the L‐pyruvate kinase gene in a hepatoma cell line is independent of insulin and cAMP. FASEB J. 8: 89–96, 1994.
 122. Lei, K.‐J., L. L. Shelly, C.‐J. Pan, J. B. Sidbury, and J. Y. Chou. Mutations in the glucose‐6‐phosphatase gene that cause glycogen storage disease type 1a. Science 262: 580–583, 1993.
 123. Lemaigre, F. P., and G. G. Rousseau. Transcriptional control of genes that regulate glycolysis and gluconeogenesis in adult liver. Biochem. J. 303: 1–14, 1994.
 124. Lenhard, J. M., D. B. Kassal, W. J. Rocque, L. Hamacher, W. D. Holmes, I. Patel, C. Hoffman, and M. Luther. Phosphorylation of a cAMP‐specific phosphodiesterase (HSPDE4B2B) by MAP kinase. Biochem. J. 316: 751–758, 1996.
 125. Lin, R. C., and E. J. Davis. Malic enzymes of rabbit heart mitochondria. J. Biol. Chem. 249: 3867–3875, 1974.
 126. Liu, J., E. A. Park, A. L. Gurney, W. J. Roesler, and R. W. Hanson. cAMP induction of PEPCK gene transcription is mediated by multiple promoter elements. J. Biol. Chem. 266: 19095–19102, 1991.
 127. Liu, Z., K. S. Thompson, and H. C. Towle. Carbohydrate regulation of the rat L‐type pyruvate kinase gene requires two nuclear factors: LF‐A1 and a member of the c‐myc family. J. Biol. Chem. 268: 12787–12795, 1993.
 128. Loeber, G., A. A. Infante, I. Maurer‐Fogy, E. Krystek, and M. B. Dworkin. Human NAD+‐dependent mitochondrial malic enzyme. J. Biol. Chem. 266: 3016–3021, 1991.
 129. Lopez‐Casillas, F., D. H. Bai, X. C. Luo, I. S. Kong, M. A. Hermodson, and K. H. Kim. Structure of the coding sequence and primary amino acid sequence of acetyl‐coenzyme A carboxylase. Proc. Natl. Acad. Sci. U.S.A. 85: 5784–5788, 1988.
 130. Lopez‐Casillas, F., X. C. Luo, I. S. Kong, and K. H. Kim. Characterization of different forms of rat mammary gland acetyl‐coenzyme A carboxylase mRNA: analysis of heterogeneity in the 5′ end. Gene 83: 311–319, 1989.
 131. Lopez‐Casillas, F., M. V. Ponce‐Castaneda, and K. H. Kim. Acetyl‐coenzyme A carboxylase mRNA metabolism in the rat liver. Metabolism 41: 201–207, 1992.
 132. Lopez‐Casillas, F., M. V. Ponce‐Castaneda, and K. H. Kim. In vivo regulation of the activity of the two promoters of the rat acetyl coenzyme‐A carboxylase gene. Endocrinology 129: 1049–1058, 1991.
 133. Lucas, P. C., and D. K. Granner. Hormone response domains in gene transcription. Annu. Rev. Biochem. 61: 1131–1173, 1992.
 134. Luo, X., K. Park, F. Lopez‐Casillas, and K.‐H. Kim. Structural features of the ACC gene: mechanisms for the generation of mRNAs with 5′ end heterogeneity. Proc. Natl. Acad. Sci. U.S.A. 86: 4042–4046, 1989.
 135. Magnuson, M. A.. Glucokinase gene structure. Diabetes 39: 523–527, 1990.
 136. Magnuson, M. A., T. L. Andreone, R. L. Printz, S. Koch, and D. K. Granner. Rat glucokinase gene: structure and regulation by insulin. Proc. Natl. Acad. Sci. U.S.A. 86: 4838–4842, 1989.
 137. Mandarino, L. J., R. L. Printz, K. A. Cusi, P. Kinchington, R. M. O'Doherty, H. Osawa, C. Sewell, A. Consoli, D. K. Granner, and R. A. De Fronzo. Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle. Am. J. Physiol. 269 (Endocrinol. Metab. 32): E701–E708, 1995.
 138. Mandella, R. D., and L. A. Sauer. The mitochondrial malic enzymes. J. Biol. Chem. 250: 5877–5884, 1975.
 139. Marcu, K. B., S. A. Bossone, and A. J. Patel. myc function and regulation. Annu. Rev. Biochem. 61: 809–860, 1992.
 140. Mariash, C. N., C. R. McSwigan, H. C. Towle, H. L. Schwartz, and J. H. Oppenheimer. Glucose and triiodothyronine both induce malic enzyme in the rat hepatocyte culture. J. Clin. Invest. 68: 1485–1490, 1981.
 141. Massillon, D., N. Barzilai, W. Chen, M. Hu, and L. Rossetti. Glucose regulates in vivo G‐6‐Pase gene expression in the liver of diabetic rats. J. Biol. Chem. 271: 9871–9874, 1996.
 142. Massillon, D., N. Barzilai, M. Hawkins, D. Prus‐Werheimer, and L. Rossetti. Induction of hepatic glucose‐6‐phosphatase gene expression by lipid infusion. Diabetes 46: 153–157, 1997.
 143. Mattevi, A., M. Bolognesi, and G. Valentini. The allosteric regulation of pyruvate kinase. FEBS Lett. 389: 15–19, 1996.
 144. McGarry, J. D.. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258: 766–70, 1992.
 145. Messina, J. L.. Inhibition and stimulation of c‐myc gene transcription by insulin in rat hepatoma cells. J. Biol. Chem. 266: 17995–18001, 1991.
 146. Metz, R., and E. Ziff. cAMP stimulates the C/EBP‐related transcription factor rNFIL‐6 to translocate to the nucleus and induce c‐fos transcription. Genes Dev. 5: 1754–1766, 1991.
 147. Mischak, H., T. Seitz, P. Janosch, M. Eulitz, H. Steen, M. Schellerer, A. Philipp, and W. Kolch. Negative regulation of raf‐1 by phosphorylation of ser‐621. Mol. Cell. Biol. 16: 5409–5418, 1996.
 148. Mithieux, G.. New knowledge regarding glucose‐6‐phosphatase gene and protein and their roles in the regulation of glucose metabolism. Eur. J. Endocrinol. 136: 137–145, 1997.
 149. Morrison, D. K., and R. E. Cutler, Jr.. The complexity of Rafl regulation. Curr. Opin. Cell Biol. 9: 174–179, 1997.
 150. Moustaid, N., R. S. Beyer, and H. S. Sul. Identification of an insulin response element in the fatty acid synthase promoter. J. Biol. Chem. 269: 5629–5634, 1994.
 151. Mueckler, M.. Facilitative glucose transporters. Eur. J. Biochem. 219: 713–725, 1994.
 152. Murakami, T., T. Nishiyama, T. Shirotani, Y. Shinohara, M. Kan, K. Ishii, F. Kanai, S. Nakazura, and Y. Ebina. Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. J. Biol. Chem. 267: 9300–9306, 1992.
 153. Myers, M. G., T. C. Grammer, L.‐M. Wang, X. J. Sun, J. H. Pierce, J. Blenis, and M. F. White. IRS‐1 mediates PI 3‐kinase and p70s6k signaling during insulin, 1GF1 and IL4 stimulation. J. Biol. Chem. 269: 28783–28789, 1994.
 154. Myers, M. G., and M. F. White. Insulin signal transduction and the IRS proteins. Annu. Rev. Pharmacol. Toxicol. 36: 615–658, 1996.
 155. Nakanishi, H., K. A. Brewer, and J. H. Exton. Activation of the zeta isozyme of PKC by PI‐3,4,5‐trisphosphate. J. Biol. Chem. 268: 13–16, 1993.
 156. Nasrin, N., C. Buggs, X.‐F. Kong, J. Carnazza, M. Goebl, and M. Alexander‐Bridges. DNA‐binding properties of the product of the testis‐determining gene and a related protein. Nature 354: 317–320, 1991.
 157. Nasrin, N., L. Ercolani, M. Denaro, X.‐F. Kong, I. Kang, and M. Alexander. An insulin response element in the GAPDH gene binds a nuclear protein induced by insulin in cultured cells and by nutritional manipulations in vivo. Proc. Natl. Acad. Sci. U.S.A. 87: 5273–5277, 1990.
 158. Nitsch, D., M. Boshart, and G. Schutz. Activation of the tyrosine aminotransferase gene is dependent on synergy between liver‐specific and hormone‐responsive elements. Proc. Natl. Acad. Sci. U.S.A. 90: 5479–5483, 1993.
 159. Noguchi, T., H. Inoue, and T. Tanaka. Transcriptional and posttranscriptional regulation of L‐PK in diabetic rat liver by insulin and dietary fructose. J. Biol. Chem. 260: 14393–14397, 1985.
 160. Nouspikel, T., and P. B. Iynedjian. Insulin signalling and regulation of glucokinase gene expression in cultured hepatocytes. Eur. J. Biochem. 210: 365–373, 1992.
 161. O'Brien, R. M., M. T. Bonovich, C. D. Forest, and D. K. Granner. Signal transduction convergence: phorbol esters and insulin inhibit PEPCK gene transcription through the same 10‐base‐pair sequence. Proc. Natl. Acad. Sci. U.S.A. 88: 6580–6584, 1991.
 162. O'Brien, R. M., and D. K. Granner. PEPCK gene as a model of inhibitory effects of insulin on gene transcription. Diabetes Care 13: 327–339, 1990.
 163. O'Brien, R. M., and D. K. Granner. Regulation of gene expression by insulin. Biochem. J. 278: 609–619, 1991.
 164. O'Brien, R. M., and D. K. Granner. Regulation of gene expression by insulin. Physiol. Rev. 76: 1109–1161, 1996.
 165. O'Brien, R. M., P. C. Lucas, C. D. Forest, M. A. Magnuson, and D. K. Granner. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science 249: 533–537, 1990.
 166. O'Brien, R. M., P. L. Lucas, T. Yamasaki, E. L. Noisin, and D. K. Granner. Potential convergence of insulin and cAMP signal transduction systems at the PEPCK gene promoter through C/EBP. J. Biol. Chem. 269: 30419–30428, 1994.
 167. O'Brien, R. M., E. L. Noisin, A. Suwanichkul, T. Yamasaki, P. L. Lucas, J.‐C. Wang, D. R. Powell, and D. K. Granner. HNF3 and hormone‐regulated expression of the PEPCK and insulin‐like growth factor‐binding protein 1 genes. Mol. Cell. Biol. 15: 1747–1758, 1995.
 168. Ochs, R.. Does calcium regulate pyruvate kinase? Trends Biochem. Sci. 13: 1–2, 1988.
 169. Osawa, H., R. L. Printz, R. R. Whitesell, and D. K. Granner. Regulation of hexokinase II gene transcription and glucose phosphorylation by catecholamines, cyclic AMP, and insulin. Diabetes 44: 1426–1432, 1995.
 170. Osawa, H., R. B. Robey, R. L. Printz, and D. K. Granner. Identification and characterisation of basal and cAMP response elements in the promoter of the rat HKII gene. J. Biol. Chem. 271: 17296–17303, 1996.
 171. Osawa, H., C. Sutherland, R. B. Robey, R. L. Printz, and D. K. Granner. Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin. J. Biol. Chem. 271: 16690–16694, 1996.
 172. Oskouian, B., V. S. Rangan, and S. Smith. Transcriptional regulation of the rat fatty acid synthase gene. Biochem. J. 317: 257–265, 1996.
 173. Pape, M. E., and K. H. Kim. Effect of TNF on acetyl‐coenzyme A carboxylase gene expression and preadipocyte differentiation. Mol. Endocrinology 2: 395–403, 1988.
 174. Park, K., and K. H. Kim. Regulation of ACC gene expression. Insulin induction of ACC and differentiation of 3OA5 preadipocytes require prior cAMP action on the gene. J. Biol. Chem. 266: 12249–12256, 1991.
 175. Park, K., and K. H. Kim. The site of cAMP action in the insulin induction of gene expression of acetyl‐CoA carboxylase is AP‐2. J. Biol. Chem. 268: 17811–17819, 1993.
 176. Parker, D., K. Ferreri, T. Nakajima, V. J. La Morte, R. Evans, S. C. Koerber, C. Hoeger, and M. R. Montminy. Phosphorylation of CREB at Ser‐133 induces complex formation with CREB‐binding protein via a direct mechanism. Mol. Cell. Biol. 16: 694–703, 1996.
 177. Paulauskis, J. D., and H. S. Sul. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. J. Biol. Chem. 263: 7049–7054, 1988.
 178. Paulauskis, J. D., and H. S. Sul. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J. Biol. Chem. 264: 574–577, 1989.
 179. Pickup, J. C., and G. Williams (Eds.). Chronic Complications of Diabetes. Oxford: Blackwell, 1994.
 180. Pilkis, S. J., and D. K. Granner. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Physiol. 54: 885–909, 1992.
 181. Postic, C., A. Leturque, F. Rencurel, R. L. Printz, C. Forest, D. K. Granner, and J. Girard. The effects of hyperinsulinemia and hyperglycemia on GLUT4 and hexokinase II mRNA and protein in rat skeletal muscle and adipose tissue. Diabetes 42: 922–929, 1993.
 182. Printz, R. L., S. Koch, L. R. Potter, R. M. O'Doherty, J. J. Tiesinga, S. Moritz, and D. K. Granner. Hexokinase II mRNA and gene structure, regulation by insulin, and evolution [published erratum appears in J. Biol. Chem. 268: 9936, 1993.]. J. Biol. Chem. 268: 5209–5219, 1993.
 183. Printz, R. L., M. A. Magnuson, and D. K. Granner. Mammalian glucokinase. Annu. Rev. Nutr. 13: 463–496, 1993.
 184. Printz, R. L., H. Osawa, H. Ardehali, S. Koch, and D. K. Granner. Hexokinase II gene: structure, regulation and promoter organization. Biochem. Soc. Trans. 25: 107–112, 1997.
 185. Prip‐Buus, C, D. Perdereau, F. Foufelle, J. Maury, P. Ferre, and J. Girard. Induction of FAS gene expression by glucose in primary culture of rat hepatocytes. Dependency upon glucokinase activity. Eur. J. Biochem. 230: 309–315, 1995.
 186. Rangan, V. S., B. Oskouian, and S. Smith. Identification of an inverted CCAAT box motif in the FAS gene as an essential element for mediation of transcriptional regulation by cAMP. J. Biol. Chem. 271: 2307–2312, 1996.
 187. Roche, E., F. Assimacopoulos‐Jeannet, L. A. Witters, B. Perruchoud, G. Yaney, B. Corkey, M. Asfari, and M. Prentki. Induction by glucose of genes coding for glycolytic enzymes in a pancreatic β‐cell line (INS‐1). J. Biol. Chem. 272: 3091–3098, 1997.
 188. Rolland, V., I. Dugail, X. Le Liepvre, and M. Lavau. Evidence of increased GAPDH and fatty acid synthase promoter activities in transiently transfected adipocytes from genetically obese rats. J. Biol. Chem. 270: 1102–1106, 1995.
 189. Rolland, V., X. Le Liepvre, D. B. Jump, M. Lavau, and I. Dugail. A GC‐rich region containing Sp1 and Sp1‐like binding sites is a crucial regulatory motif for FAS gene promoter activity in adipocytes. J. Biol. Chem. 271: 21297–21302, 1996.
 190. Rongnoparut, P., C. P. Verdon, S. C. Gehnrich, and H.‐S. Sul. Isolation and characterisation of the transcriptionally regulated mouse liver (B‐type) phosphofructokinase gene and its promoter. J. Biol. Chem. 266: 8086–8091, 1991.
 191. Rosella, G., J. D. Zajac, L. Baker, S. J. Kaczmarczyk, S. Andrikopoulos, T. E. Adams, and J. Proietto. Impaired glucose tolerance and increased weight gain in transgenic rats overexpressing a non‐insulin‐responsive PEPCK gene. Mol. Endocrinol. 9: 1396–1404, 1995.
 192. Rothman, D. L., I. Magnusson, G. Cline, D. Gerard, C. R. Kahn, R. G. Shulman, and G. I. Shulman. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non‐insulin‐dependent diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 92: 983–987, 1995.
 193. Rousseau, G. G., and L. Hue. Mammalian 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase: a bifunctional enzyme that controls glycolysis. Prog. Nucleic. Acid Res. Mol. Biol. 45: 99–127, 1993.
 194. Ruppert, S., T. J. Cole, M. Boshart, E. Schmid, and G. Schutz. Multiple mRNA isoforms of the transcription activator protein CREB: generation by alternative splicing and specific expression in primary spermatocytes. EMBO J. 11: 1503–1512, 1992.
 195. Sakagashira, S., T. Sanke, T. Hanabusa, H. Shimomura, S. Ohagi, K. Y. Kumagaye, K. Nakajima, and K. Nanjo. Missense mutation of amylin gene (S20G) in Japanese NIDDM patients. Diabetes 45: 1279–1281, 1996.
 196. Sasaki, K., and D. K. Granner. Regulation of PEPCK gene transcription by insulin and cAMP: reciprocal actions on initiation and elongation. Proc. Natl. Acad. Sci. U.S.A. 85: 2954–2958, 1988.
 197. Sauer, A., and R. T. Dauchy. Identification and properties of the nicotinamide adenine dinucleotide (phosphate)+‐dependent malic enzyme in mouse ascites tumor mitochondria. Cancer Res. 38: 1751–1756, 1978.
 198. Schmoll, D., B. B. Allan, and A. Burchell. Cloning and sequencing of the 5′ region of the human glucose‐6‐phosphatase gene: transcriptional regulation by cAMP, insulin and glucocorticoids in H4IIE hepatoma cells. FEBS Lett. 383: 63–66, 1996.
 199. Scott, D. K., J. A. Mitchell, and D. K. Granner. Identification and characterization of a second retinoic acid response element in the phosphoenolpyruvate carboxykinase gene promoter. J. Biol. Chem. 271: 6260–6264, 1996.
 200. Scott, D. K., J. A. Mitchell, and D. K. Granner. The orphan receptor COUP‐TF binds to a third glucocorticoid accessory factor element within the PEPCK gene promoter. J. Biol. Chem. 271: 31909–31914, 1996.
 201. Scott, D. K., R. M. O'Doherty, J. M. Stafford, C. B. Newgard, and D. K. Granner. The repression of hormone‐activated PEPCK gene expression by glucose is insulin‐independent but requires glucose metabolism. J. Biol. Chem. 273: 24145–24151, 1998.
 202. Scott, D. K., P.‐E. Stromstedt, J.‐C. Wang, and D. K. Granner. Further characterization of the glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. The role of the glucocorticoid receptor‐binding sites. Mol. Endocrinol. 482–491, 1998.
 203. Shibata, H., T. E. Spencer, S. A. Onate, G. Jenster, S. Y. Tsai, M.‐J. Tsai, and B. W. O'Malley. Role of co‐activators and co‐repressors in the mechanism of steroid/thyroid receptor action. Recent Prog. Horm. Res. 52: 141–165, 1997.
 204. Shih, H.‐M., Z. Liu, and H. C. Towle. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J. Biol. Chem. 270: 21991–21997, 1995.
 205. Shih, H.‐M., and H. C. Towle. Definition of the carbohydrate response element of the rat S14 gene. Context of the CACGTG motif determines the specificity of the carbohydrate regulation. J. Biol. Chem. 269: 9380–9387, 1994.
 206. Shih, H.‐M., and H. C. Towle. Definition of the carbohydrate response element of the rat S14 gene. Evidence for a common factor required for carbohydrate regulation of hepatic genes. J. Biol. Chem. 267: 13222–13228, 1992.
 207. Shikama, N., J. Lyon, and N. B. La Thangue. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7: 230–236, 1997.
 208. Shimomura, H., T. Sanke, K. Ueda, T. Hanabusa, S. Sakagashira, and K. Nanjo. A misseuse mutation of the muscle glycogen synthase gene (M416V) is associated with insulin resistance in the Japanese population. Diabetologia 40: 947–952, 1997.
 209. Shulman, R. G.. Nuclear magnetic resonance studies of glucose metabolism in non‐insulin‐dependent diabetes mellitus subjects. Mol. Med. 2: 533–540, 1996.
 210. Simpson, E. R., and R. W. Estabrook. Mitochondrial malic enzyme. Arch. Biochem. Biophys. 129: 384–395, 1969.
 211. Spiegelman, B. M., and J. S. Flier. Adipogenesis and obesity: rounding out the big picture. Cell 87: 377–389, 1996.
 212. Stoffel, M., P. Froguel, J. Takeda, H. Zouali, N. Vionnet, S. Nishi, I. T. Weber, R. W. Harrison, S. J. Pilkis, S. Lesage, M. Vaxillaire, G. Velho, F. Sun, F. Iris, P. Passa, D. Cohen, and G. I. Bell. Human glucokinase gene: isolation, characterisation, and identification of two missense mutations linked to early‐onset NIDDM. Proc. Natl. Acad. Sci. U.S.A. 89: 7698–7702, 1992.
 213. Streeper, R. S., C. A. Svitek, S. Chapman, L. E. Greenbaum, R. Taub, and R. M. O'Brien. A multicomponent IRS mediates a strong repression of mouse G‐6‐Pase gene transcription by insulin. J. Biol. Chem. 272: 11698–11701, 1997.
 214. Streeper, R. S., E. M. Eaton, D. H. Ebert, S. Chapman, C. A. Svitek, and R. M. O'Brien. Hepatocyte nuclear factor‐1 acts as an accessory factor to enhance the inhibitory action of insulin on mouse glucose‐6‐phosphatase gene transcription. Proc. Natl. Acad. Sci. U.S.A. 95: 9208–9213, 1998.
 215. Streeper, R. S., Chapman, S. C., Ayala, J. E., Svitek, C. A., Goldman, J. K., Cave, A. and O'Brien, R. M.. A Phorbol Ester Insensitive AP‐1 Motif Mediates the Stimulatory Effect of Insulin on Rat Malic Enzyme Gene Transcription. Mol. Endocrinol. 12: 1778–1791, 1998.
 216. Sun, P., and R. A. Maurer. An inactivating point mutation demonstrates that interaction of CREB with the CBP is not sufficient for transcriptional activation. J. Biol. Chem. 270: 7041–7044, 1995.
 217. Sun, X. J., D. Crimmins, L. M. G. J. Myers, M. Miralpeix, and M. F. White. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS‐1. Mol. Cell. Biol. 13: 7418–7428, 1993.
 218. Sun, X. J., P. Rothenberg, R. C. Kahn, J. M. Backer, P. A. Araki, P. A. Wilden, D. A. Cahill, B. J. Goldstein, and M. F. White. Structure of the insulin receptor substrate IRS‐1 defines a unique signal transduction protein. Nature 352: 73–77, 1991.
 219. Sun, X. J., L. M. Wang, Y. Zhang, L. P. Yenush, M. G. Myers, E. Glasheen, W. S. Lane, J. H. Pierce, and M. F. White. Role of IRS‐2 in insulin and cytokine signaling. Nature 377: 173–177, 1995.
 220. Sutherland, C., R. M. O'Brien, and D. K. Granner. New connections in the regulation of PEPCK gene expression by insulin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351: 191–199, 1996.
 221. Sutherland, C., R. M. O'Brien, and D. K. Granner. Phosphatidylinositol 3‐kinase, but not p70/p85 ribosomal S6 protein kinase, is required for the regulation of phosphoenolpyruvate carboxykinase gene expression by insulin. J. Biol. Chem. 270: 15501–15506, 1995.
 222. Sutherland, C., R. M. O'Brien, and D. K. Granner. Regulation of gene transcription by insulin and the search for diabetogenes. In: International Textbook of Diabetes Mellitus, edited by K. G. M. M. Alberti, P. Zimmet, R. A. De Fronzo, and H. Keen. New York: Wiley, 1997, p. 489–504.
 223. Suwanichkul, A., S. L. Morris, and D. R. Powell. Identification of an insulin‐responsive element in the promoter of the human gene for insulin‐like growth factor binding protein‐1. J. Biol. Chem. 268: 17063–17068, 1993.
 224. Suzuki, H., J. Watanabe, T. Itani, R. Ogawa, and S. Kanamura. Neuronal regulation of substrate cycle between glucose 6‐phosphate and glucose in brown adipose tissues of cold‐exposed mice. Anat. Rec. 226: 314–319, 1990.
 225. Tae, H.‐J., S. Zhang, and K.‐H. Kim. cAMP activation of CAAT enhancer‐binding protein‐beta gene expression and promoter I of acetyl‐CoA carboxylase. J. Biol. Chem 270: 21487–21494, 1995.
 226. Tarconi, F., C. Gellera, and S. Di Donato. Evidence for two distinct mitochondrial malic enzymes in human skeletal muscle: purification and properties of the NAD(P)+‐dependent enzyme. Biochim. Biophys. Acta 916: 446–454, 1988.
 227. Terauchi, Y., K. Iwamoto, H. Tamemoto, K. Komeda, C. Ishii, Y. Kanazawa, N. Asanuma, T. Aizawa, Y. Akanuma, K. Yasuda, T. Kodama, K. Tobe, Y. Yazaki, and T. Kadowaki. Development of DM2 in the double knockout mice with disruption of insulin receptor substrate‐1 and β‐cell glucokinase genes. J. Clin. Invest. 99: 861–866, 1997.
 228. Thompson, K. S., and H. C. Towle. Localization of the carbohydrate response element of the rat L‐type pyruvate kinase gene. J. Biol. Chem. 266: 8679–8682, 1991.
 229. Todaka, M., T. Nishiyama, T. Murakami, S. Saito, K. Ito, F. Kanai, M. Kan, K. Ishii, H. Hayashi, M. Shichiri, and Y. Ebina. The role of insulin in activation of two enhancers in the mouse GLUT1 gene. J. Biol. Chem. 269: 29265–29270, 1994.
 230. Toker, A., M. Meyer, K. K. Reddy, J. R. Falck, R. Aneja, S. Aneja, A. Parra, D. J. Burns, L. M. Ballas, and L. C. Cantley. Activation of PKC family members by the novel polyphosphoinositides PI‐3,4‐P2 and PI‐3,4,5‐P3. J. Biol. Chem. 269: 32358–32367, 1994.
 231. Towle, H. C.. Metabolic regulation of gene transcription in mammals. J. Biol. Chem. 270: 23235–23238, 1995.
 232. Valera, A., A. Pujol, X. Gregori, E. Riu, J. Visa, and F. Bosch. Evidence from transgenic mice that myc regulates hepatic glycolysis. FASEB J. 9: 1067–1078, 1995.
 233. Valera, A., A. Pujol, M. Pelegrin, and F. Bosch. Transgenic mice overexpressing PEPCK develop NIDDM. Proc. Natl. Acad. Sci. U.S.A. 91: 9151–9154, 1994.
 234. Vallet, V. S., A. A. Henrion, D. Bucchini, M. Casado, M. Raymondjean, A. Kahn, and S. Vaulont. Glucose‐dependent liver gene expression in upstream stimulatory factor 2 ‐/‐ mice. J. Biol. Chem. 272: 21944–21949, 1997.
 235. van den Ouweland, J. M., H. H. Lemkes, K. D. Gerbitz, and J. A. Maassen. Maternally inherited diabetes and deafness (MIDD): a distinct subtype of diabetes associated with a mitochondrial tRNA (leu)(UUR) gene point mutation. Muscle Nerve Suppl. 3: S124–130, 1995.
 236. Vaulont, S., and A. Kahn. Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J. 8: 28–35, 1994.
 237. Vaulont, S., N. Puzenat, F. Levrat, M. Cognet, A. Kahn, and M. Raymondjean. Proteins binding to the liver‐specific pyruvate kinase gene promoter. A unique combination of known factors. J. Mol. Biol. 209: 205–219, 1989.
 238. Velho, G., and P. Froguel. Maturity‐onset diabetes of the young (MODY), MODY genes and DM2. Diabetes Metab. 23: Suppl 2: 34–37, 1997.
 239. Vestergaard, H., C. Bjorbaek, T. Hansen, F. S. Larsen, D. K. Granner, and O. Pedersen. Impaired activity and gene expression of hexokinase II in muscle from NIDDMNIDDM patients. J. Clin. Invest. 96: 2639–2645, 1995.
 240. Vionnet, N. Hani, el‐H. Lesage, S. Philippi, A. Hager, J. Varret, M. Stoffel, M. Tanizawa, Y. Chi, K. C. Glaser, B. Permutt, M. A. Passa, P. Demenais, F. Demenais and P. Froguel. Genetics of NIDDM in France: Studies with 19 candidate genes in affected sib pairs. Diabetes, 46, 1062–1068, 1997
 241. Vlahos, C. J., W. F. Matter, K. Y. Hui, and R. F. Brown. A specific inhibitor of PI 3‐kinase, 2‐(4‐morpholinyl)‐8‐phenyl‐4H‐1‐benzopyran‐4‐one (LY294002). J. Biol. Chem. 269: 5241–5248, 1994.
 242. Wakil, S. J., J. K. Stoops, and V. C. Joshi. Fatty Acid Synthesis and its Regulation. Annu. Rev. Biochem. 52: 537–579, 1983.
 243. Walker, W. H., C. Girardet, and J. F. Habener. Alternative exon splicing controls a translational switch from activator to repressor isoforms of transcription factor CREB during spermatogenesis. J. Biol. Chem. 271: 20145–21050, 1996.
 244. Wang, D., and H. S. Sul. Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated. J. Biol. Chem. 270: 28716–28722, 1995.
 245. Waterman, M. R.. Biochemical diversity of cAMP‐dependent transcription of steroid hydroxylase genes in the adrenal cortex. J. Biol. Chem. 269: 27783–27786, 1994.
 246. Weernink, P. A., G. Rijksen, E. M. Mascini, and G. E. Staal. Phosphorylation of pyruvate kinase type K is restricted to the dimeric form. Biochim. Biophys. Acta 1121: 61–68, 1992.
 247. White, M. F., and C. R. Kahn. The insulin signalling system. J. Biol. Chem. 269: 1–4, 1994.
 248. Widmer, J., K. S. Fassihi, S. C. Schlichter, K. S. Wheeler, B. E. Crute, N. King, W. W. Noll, S. Daniel, J. Ha, K.‐H. Kim, and L. A. Witters. Identification of a second human ACC gene. Biochem. J. 316: 915–922, 1996.
 249. Wilson, J. E.. Hexokinases. Rev. Physiol. Biochem. Pharmacol. 126: 65–198, 1995.
 250. Xing, L., and P. G. Quinn. Three distinct regions within the constitutive activation domain of cAMP regulatory element‐binding protein (CREB) are required for transcription activation. J. Biol. Chem. 269: 28732–28736, 1994.
 251. Yki‐Jarvinen, H.. MODY genes and mutations in hepatocyte nuclear factors. Lancet 349: 516–517, 1997.
 252. Young, P., M. A. Cawthorne, A. L. Levy, and K. Wilson. Reduced maximum capacity of glycolysis in brown adipose tissue of genetically obese, diabetic (db/db) mice and its restoration following treatment with a thermogenic beta‐adrenoceptor agonist. FEBS Lett. 176: 16–20, 1984.
 253. Zelewski, M., and J. Swierczynski. Malic enzyme in human liver. Eur. J. Biochem. 201: 339–345, 1991.
 254. Zervos, A. S., J. Gyuris, and R. Brent. Mxil, a protein that specifically interacts with Max to bind Myc‐Max recognition sites. Cell 72: 223–232, 1993.
 255. Zhang, Y., N. Wat, I. M. Stratton, M. G. Warren‐Perry, M. Orho, L. Groop, and R. C. Turner. UKPDS 19: heterogeneity in NIDDM: separate contributions of IRS‐1 and beta 3‐adrenergic‐receptor mutations to insulin resistance and obesity respectively with no evidence for glycogen synthase gene mutations. Diabetologia, 39: 1505–1511, 1996.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Calum Sutherland, Richard O'Brien, Daryl K. Granner. Genetic Regulation of Glucose Metabolism. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 707-732. First published in print 2001. doi: 10.1002/cphy.cp070223