Comprehensive Physiology Wiley Online Library

The Prevention and Correction of Hypoglycemia

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Systemic Glucose Balance
1.1 Postabsorptive State
1.2 Postprandial State
1.3 Exercise
1.4 Other Conditions
2 Physiological Responses to Hypoglycemia
2.1 Hormonal, Neural and Substrate Responses
2.2 Symptoms, Cognitive Dysfunction and Signs
2.3 Glycemic Thresholds
2.4 Impact of Substrates other than Glucose
3 Physiological Actions of Glucoregulatory Factors
3.1 Regulatory Factor: Insulin
3.2 Counterregulatory Factors
4 Integrated Physiology of Glucose Counterregulation
4.1 Correction of Hypoglycemia
4.2 Prevention of Hypoglycemia
4.3 Insight from Pathophysiology
4.4 Hierarchy of the Redundant Glucose‐Counterregulatory Factors
5 Summary
Figure 1. Figure 1.

Maintenance of systemic glucose balance through regulation of endogenous glucose production and glucose utilization by insulin‐sensitive tissues prevents hypoglycemia and assures a continuous supply of glucose to the brain in the fed and fasted state.

Figure 2. Figure 2.

Neurogenic (autonomic) and neuroglycopenic symptoms of hypoglycemia in healthy humans. Among the neurogenic symptoms sweaty, hungry and tingling are cholinergic while shaky/tremulous, heart pounding and nervous/anxious are adrenergic. See text for discussion. Mean (± SE) subject scores for awareness of hypoglycemia (blood sugar low) during euglycemia (EU) and hypoglycemia (HYPO) alone (solid column), with combined α‐and β‐adrenergic blockade (ADB, cross‐hatched column) and with panautonomic blockade (PAB, stippled column) with both adrenergic and cholinergic antagonists are also shown. *p < 0.001 EU vs. HYPO alone. + p < 0.001 HYPO alone vs. PAB.

[Data from Towler et al. 245. Figure from Cryer 63, reproduced with permission of the American Diabetes Association.]
Figure 3. Figure 3.

Mean (± SE) arterialized venous glycemic thresholds for decrements in insulin secretion (determined by measurement of plasma C‐peptide concentrations), increments in plasma glucagon, epinephrine, growth hormone and cortisol concentrations, symptoms and hypoglycemic cognitive dysfunction during decrements in the plasma glucose concentration in normal humans.

[Drawn from data in Schwartz et al. 227 (solid columns), Mitrakou et al. 180 (open columns) and Fanelli et al. 95 (cross‐hatched columns).]
Figure 4. Figure 4.

Mechanisms of the hyperglycemic effect of epinephrine.

[From Cryer 61, reproduced with permission of the American Diabetes Association.]
Figure 5. Figure 5.

Mean (±SE) plasma insulin and glucose concentrations and rates of glucose utilization (disappearance, Rd) and glucose production (appearance, Ra) before and after rapid intravenous injection of regular insulin (0.1 U/kg) in healthy human subjects.

[Modified from Garber et al. 113, reproduced with permission of the American Society for Clinical Investigation.]
Figure 6. Figure 6.

Mean (± SE) plasma epinephrine (E), norepinephrine (NE), glucagon, cortisol and growth hormone concentrations before and after rapid intravenous injection of regular insulin (0.1 U/kg) in healthy human subjects.

[Modified from Garber et al. 113, reproduced with permission of the American Society for Clinical Investigation.]
Figure 7. Figure 7.

Summary of studies of the mechanisms of the correction of brief hypoglycemia. Plasma glucose curves during insulin‐induced hypoglycemia in healthy humans during control studies (solid curves, same in all panels) and as modified (dashed curves) by: (A) somatostatin infusion (glucagon + growth hormone [GH] deficiency); (B) somatostatin + growth hormone replacement (glucagon deficiency); (C) somatostatin + glucagon replacement (GH deficiency); (D) phentolamine and propranolol infusion (combined α and β‐adrenergic blockade) or studies performed in bilaterally adrenalectomized individuals (epinephrine deficiency); (E) somatostatin + phentolamine and propranolol (glucagon deficiency + α and β‐adrenergic blockade); (F) somatostatin infusion in bilaterally adrenalectomized individuals (glucagon + epinephrine deficiency). Insulin was injected intravenously at time 0 min. Interventions were started at time 0 min. and stopped at time 90 min (i.e., between the vertical lines in each panel).

[Curves derived from data in Clarke et al. 48, Gerich et al. 6 117 and Rizza et al. 204. Figure from Cryer 58, reproduced with permission of the American Diabetes Association.]
Figure 8. Figure 8.

Mean (± SE) plasma glucose, glucagon, growth hormone, cortisol, epinephrine and norepinephrine concentrations before and after rapid intravenous injection of regular insulin (0.05 U/kg) in healthy humans in a control study (solid symbols and continuous lines) and during infusion of somalostatin (SRIF) (open symbols and interrupted lines).

[Figure from Gerich et al. 117, reproduced with permission of the American Physiological Society.]
Figure 9. Figure 9.

Mean (± SE) plasma glucose, glucagon, norepinephrine and growth hormone concentrations before and after rapid intravenous injection of regular insulin (0.05 U/kg) during infusion of saline (closed symbols and continuous lines) or somatostatin (SRIF) (open symbols and interrupted lines) in bilaterally adreneralectomized and glucocorticoid‐and mineralocorticoid‐pretreated human subjects.

[Figure from Gerich et al. 117, reproduced with permission of the American Physiological Society.]
Figure 10. Figure 10.

Mean (± SE) plasma glucose concentrations and rates of glucose production, utilization and clearance during brief hypoglycemia produced by the intravenous injection of regular insulin (left) and during prolonged hypoglycemia produced by the subcutaneous infusion of regular insulin (right) in healthy humans. Note the different time scales.

Figure from De Feo et al. 74, reproduced with permission of the American Diabetes Association.
Figure 11. Figure 11.

Summary of studies of the roles of glucagon, catecholamines, cortisol and growth hormone in defense against prolonged hyperinsulinemia and slowly developing hypoglycemia in healthy humans.

[Drawn from data in De Feo et al. 75, 76, 77 and 78. Figure from Gerich 116, reproduced with permission of the American Diabetes Association.]
Figure 12. Figure 12.

Mean (± SE) plasma glucose concentrations and rates of glucose production and utilization during subcutaneous insulin infusions in healthy humans during increments in counterregulatory hormones (open symbols) and in the isolated absence of an increment in glucagon (solid symbols).

[Figure from De Feo et al. 75, reproduced with permission of the American Physiological Society.]
Figure 13. Figure 13.

Mean (± SE) plasma glucose concentrations and rates of glucose production and utilization during subcutaneous insulin infusions in healthy humans during increments in counterregulatory hormones (open symbols) and during combined α‐and β‐adrenergic blockade (solid symbols).

Figure from De Feo et al. 76, reproduced with permission of the American Physiological Society.
Figure 14. Figure 14.

Mean (± SE) plasma glucose concentrations and rates of glucose production and utilization during subcutaneous insulin infusions in healthy humans during increments in counterregulatory hormones (open symbols) and in the isolated absence of an increment in cortisol (solid symbols).

[Figure from De Feo et al. 77, reproduced with permission of the American Physiological Society.]
Figure 15. Figure 15.

Mean (± SE) plasma glucose concentrations and rates of glucose production and utilization during subcutaneous insulin infusions in healthy humans during increments in counterregulatory hormones (open symbols) and in the isolated absence of an increment in growth hormone (closed symbols).

[Figure from De Feo et al. 78, reproduced with permission of the American Physiological Society.]
Figure 16. Figure 16.

Mean (± SE) plasma glucose concentrations during intravenous insulin infusions in healthy subjects (controls, closed circles) and in patients with hypopituitarism (hypopit) without pretreatment (open circles) or with pretreatment with cortisol and growth hormone (open squares).

[Figure from Boyle and Cryer 24, reproduced with permission of the American Physiological Society.]
Figure 17. Figure 17.

Mean (± SE) plasma glucose concentrations, rates of glycogenolysis and gluconeogenesis and glycogenolysis and gluconeogenesis as percent of total glucose production during prolonged hypoglycemia in healthy humans.

[Figure from Lecavalier et al. 161, reproduced with permission of the American Physiological Society.]
Figure 18. Figure 18.

Composite of studies of the mechanisms of the prevention of hypoglycemia. Mean (± SE) plasma glucose concentrations are shown. Upper Left: Glucose levels during infusion of somatostatin (SRIF) with partial insulin replacement alone (closed symbols) and with combined α‐and β‐adrenergic blockade with propranolol (PRP) and phentolamine (PTL) (open symbols) after an overnight fast in normal humans. [Data from Rosen et al. 212]. Upper Right: Glucose levels after overnight (closed symbols) and 3‐day (open symbols) fasts during insulin replacement in a dose estimated to produce portal insulin levels after the 3‐day fast comparable to those after the overnight fast (Ins Alone), continued insulin replacement plus somatostatin infusion to produce glucagon deficiency (↓G), combined α‐and β‐adrenergic blockade alone (↓α/β), and adrenergic blockade plus glucagon deficiency produced by insulin replacement and somatostatin infusion (↓α/β+↓ G) in normal humans. [Data from Boyle et al. 27]. Lower Left: Glucose levels before and after oral glucose (75 g) ingestion in normal humans (between the continuous lines) and bilaterally adrenalectomized humans without intervention (open symbols, Epinephrine Deficient) and with somatostatin infusion with partial insulin replacement (both starting at 220 min.) to produce glucagon deficiency (closed symbols, Epinephrine + Glucagon Deficient). [Data from Tse et al. 246]. Lower Right: Glucose levels before (open columns) and after (closed columns) 60 min of moderate (60% of peak VO2) cycle exercise in normal humans with no intervention (control), somatostatin infusion with insulin and glucagon replacement at fixed, basal rates throughout (Clamp, No; gD Insulin or Glucagon), somatostatin infusion with insulin and glucagon replacement in altered doses during exercise to approximate the decrements in insulin and increments in glucagon that occurred during the control study (Clamp with ↓ Insulin and ↑ Glucagon), α‐and β‐adrenergic blockade alone (Adrenergic Blockade), and somatostatin infusion with insulin and glucagon replacement at fixed, basal rates plus adrenergic blockade (Clamp, No Δ Insulin or Glucagon + Adrenergic Blockade). Data from Hirsch et al. 140 and Marker et al. 170.

Figure from Cryer 63, reproduced with permission of the American Diabetes Association.
Figure 19. Figure 19.

Hormonal, neural and substrate factors that regulate systemic glucose balance. The arrows to the left of each factor indicate the directional effect of that factor on glucose production. The arrows to the right of each factor indicate the directional effect of that factor on glucose utilization.

Figure 20. Figure 20.

Mean (± SE) plasma glucose concentrations, rates of glucose production (Ra) and utilization (Rd), plasma C‐peptide and peripheral insulin concentrations, calculated rates of insulin secretion and estimated hepatic portal insulin concentrations in healthy humans during a control study (shaded area) and during infusions of insulin in a dose of 0.6 mU.kg−1.min−1 (3.6 pM.kg−1.min−1) from 0 to 80 min followed, from 80 to 180 min, by doses of 0.0 (closed circles), 0.1 (open circles), 0.2 (closed squares), 0.4 (open squares) or 0.6 (closed triangles) mU.kg.−1.min−1 (0.0, 0.6, 1.2, 2.4 and 3.6 pM.kg−1.min−1 respectively). The numbers in the glucose concentration panel refer to the latter insulin infusion doses.

[From Heller and Cryer 131, reproduced with permission of the American Physiological Society.]
Figure 21. Figure 21.

Mean (± SE) plasma glucagon, epinephrine, norepinephrine, cortisol and growth hormone concentrations in healthy humans during a control study (shaded areas) and during infusions of insulin in a dose of 0.6 mgN.kg−1.min−1 (3.6 pM.kg−1.min−1) form 0 to 80 min followed, from 80 to 180 min, by doses of 0.0 (closed circles), 0.1 (open circles), 0.2 (closed squares), 0.4 (open squares) or 0.6 (closed triangles) U.kg−1.min−1 (0.0, 0.6, 1.2, 2.4 and 3.6 gmM.kg−1.min−1 respectively).

[From Heller and Cryer 131, reproduced with permission of the American Physiological Society.]
Figure 22. Figure 22.

Schematic representation of the physiology of glucose counterregulation in healthy humans.



Figure 1.

Maintenance of systemic glucose balance through regulation of endogenous glucose production and glucose utilization by insulin‐sensitive tissues prevents hypoglycemia and assures a continuous supply of glucose to the brain in the fed and fasted state.



Figure 2.

Neurogenic (autonomic) and neuroglycopenic symptoms of hypoglycemia in healthy humans. Among the neurogenic symptoms sweaty, hungry and tingling are cholinergic while shaky/tremulous, heart pounding and nervous/anxious are adrenergic. See text for discussion. Mean (± SE) subject scores for awareness of hypoglycemia (blood sugar low) during euglycemia (EU) and hypoglycemia (HYPO) alone (solid column), with combined α‐and β‐adrenergic blockade (ADB, cross‐hatched column) and with panautonomic blockade (PAB, stippled column) with both adrenergic and cholinergic antagonists are also shown. *p < 0.001 EU vs. HYPO alone. + p < 0.001 HYPO alone vs. PAB.

[Data from Towler et al. 245. Figure from Cryer 63, reproduced with permission of the American Diabetes Association.]


Figure 3.

Mean (± SE) arterialized venous glycemic thresholds for decrements in insulin secretion (determined by measurement of plasma C‐peptide concentrations), increments in plasma glucagon, epinephrine, growth hormone and cortisol concentrations, symptoms and hypoglycemic cognitive dysfunction during decrements in the plasma glucose concentration in normal humans.

[Drawn from data in Schwartz et al. 227 (solid columns), Mitrakou et al. 180 (open columns) and Fanelli et al. 95 (cross‐hatched columns).]


Figure 4.

Mechanisms of the hyperglycemic effect of epinephrine.

[From Cryer 61, reproduced with permission of the American Diabetes Association.]


Figure 5.

Mean (±SE) plasma insulin and glucose concentrations and rates of glucose utilization (disappearance, Rd) and glucose production (appearance, Ra) before and after rapid intravenous injection of regular insulin (0.1 U/kg) in healthy human subjects.

[Modified from Garber et al. 113, reproduced with permission of the American Society for Clinical Investigation.]


Figure 6.

Mean (± SE) plasma epinephrine (E), norepinephrine (NE), glucagon, cortisol and growth hormone concentrations before and after rapid intravenous injection of regular insulin (0.1 U/kg) in healthy human subjects.

[Modified from Garber et al. 113, reproduced with permission of the American Society for Clinical Investigation.]


Figure 7.

Summary of studies of the mechanisms of the correction of brief hypoglycemia. Plasma glucose curves during insulin‐induced hypoglycemia in healthy humans during control studies (solid curves, same in all panels) and as modified (dashed curves) by: (A) somatostatin infusion (glucagon + growth hormone [GH] deficiency); (B) somatostatin + growth hormone replacement (glucagon deficiency); (C) somatostatin + glucagon replacement (GH deficiency); (D) phentolamine and propranolol infusion (combined α and β‐adrenergic blockade) or studies performed in bilaterally adrenalectomized individuals (epinephrine deficiency); (E) somatostatin + phentolamine and propranolol (glucagon deficiency + α and β‐adrenergic blockade); (F) somatostatin infusion in bilaterally adrenalectomized individuals (glucagon + epinephrine deficiency). Insulin was injected intravenously at time 0 min. Interventions were started at time 0 min. and stopped at time 90 min (i.e., between the vertical lines in each panel).

[Curves derived from data in Clarke et al. 48, Gerich et al. 6 117 and Rizza et al. 204. Figure from Cryer 58, reproduced with permission of the American Diabetes Association.]


Figure 8.

Mean (± SE) plasma glucose, glucagon, growth hormone, cortisol, epinephrine and norepinephrine concentrations before and after rapid intravenous injection of regular insulin (0.05 U/kg) in healthy humans in a control study (solid symbols and continuous lines) and during infusion of somalostatin (SRIF) (open symbols and interrupted lines).

[Figure from Gerich et al. 117, reproduced with permission of the American Physiological Society.]


Figure 9.

Mean (± SE) plasma glucose, glucagon, norepinephrine and growth hormone concentrations before and after rapid intravenous injection of regular insulin (0.05 U/kg) during infusion of saline (closed symbols and continuous lines) or somatostatin (SRIF) (open symbols and interrupted lines) in bilaterally adreneralectomized and glucocorticoid‐and mineralocorticoid‐pretreated human subjects.

[Figure from Gerich et al. 117, reproduced with permission of the American Physiological Society.]


Figure 10.

Mean (± SE) plasma glucose concentrations and rates of glucose production, utilization and clearance during brief hypoglycemia produced by the intravenous injection of regular insulin (left) and during prolonged hypoglycemia produced by the subcutaneous infusion of regular insulin (right) in healthy humans. Note the different time scales.

Figure from De Feo et al. 74, reproduced with permission of the American Diabetes Association.


Figure 11.

Summary of studies of the roles of glucagon, catecholamines, cortisol and growth hormone in defense against prolonged hyperinsulinemia and slowly developing hypoglycemia in healthy humans.

[Drawn from data in De Feo et al. 75, 76, 77 and 78. Figure from Gerich 116, reproduced with permission of the American Diabetes Association.]


Figure 12.

Mean (± SE) plasma glucose concentrations and rates of glucose production and utilization during subcutaneous insulin infusions in healthy humans during increments in counterregulatory hormones (open symbols) and in the isolated absence of an increment in glucagon (solid symbols).

[Figure from De Feo et al. 75, reproduced with permission of the American Physiological Society.]


Figure 13.

Mean (± SE) plasma glucose concentrations and rates of glucose production and utilization during subcutaneous insulin infusions in healthy humans during increments in counterregulatory hormones (open symbols) and during combined α‐and β‐adrenergic blockade (solid symbols).

Figure from De Feo et al. 76, reproduced with permission of the American Physiological Society.


Figure 14.

Mean (± SE) plasma glucose concentrations and rates of glucose production and utilization during subcutaneous insulin infusions in healthy humans during increments in counterregulatory hormones (open symbols) and in the isolated absence of an increment in cortisol (solid symbols).

[Figure from De Feo et al. 77, reproduced with permission of the American Physiological Society.]


Figure 15.

Mean (± SE) plasma glucose concentrations and rates of glucose production and utilization during subcutaneous insulin infusions in healthy humans during increments in counterregulatory hormones (open symbols) and in the isolated absence of an increment in growth hormone (closed symbols).

[Figure from De Feo et al. 78, reproduced with permission of the American Physiological Society.]


Figure 16.

Mean (± SE) plasma glucose concentrations during intravenous insulin infusions in healthy subjects (controls, closed circles) and in patients with hypopituitarism (hypopit) without pretreatment (open circles) or with pretreatment with cortisol and growth hormone (open squares).

[Figure from Boyle and Cryer 24, reproduced with permission of the American Physiological Society.]


Figure 17.

Mean (± SE) plasma glucose concentrations, rates of glycogenolysis and gluconeogenesis and glycogenolysis and gluconeogenesis as percent of total glucose production during prolonged hypoglycemia in healthy humans.

[Figure from Lecavalier et al. 161, reproduced with permission of the American Physiological Society.]


Figure 18.

Composite of studies of the mechanisms of the prevention of hypoglycemia. Mean (± SE) plasma glucose concentrations are shown. Upper Left: Glucose levels during infusion of somatostatin (SRIF) with partial insulin replacement alone (closed symbols) and with combined α‐and β‐adrenergic blockade with propranolol (PRP) and phentolamine (PTL) (open symbols) after an overnight fast in normal humans. [Data from Rosen et al. 212]. Upper Right: Glucose levels after overnight (closed symbols) and 3‐day (open symbols) fasts during insulin replacement in a dose estimated to produce portal insulin levels after the 3‐day fast comparable to those after the overnight fast (Ins Alone), continued insulin replacement plus somatostatin infusion to produce glucagon deficiency (↓G), combined α‐and β‐adrenergic blockade alone (↓α/β), and adrenergic blockade plus glucagon deficiency produced by insulin replacement and somatostatin infusion (↓α/β+↓ G) in normal humans. [Data from Boyle et al. 27]. Lower Left: Glucose levels before and after oral glucose (75 g) ingestion in normal humans (between the continuous lines) and bilaterally adrenalectomized humans without intervention (open symbols, Epinephrine Deficient) and with somatostatin infusion with partial insulin replacement (both starting at 220 min.) to produce glucagon deficiency (closed symbols, Epinephrine + Glucagon Deficient). [Data from Tse et al. 246]. Lower Right: Glucose levels before (open columns) and after (closed columns) 60 min of moderate (60% of peak VO2) cycle exercise in normal humans with no intervention (control), somatostatin infusion with insulin and glucagon replacement at fixed, basal rates throughout (Clamp, No; gD Insulin or Glucagon), somatostatin infusion with insulin and glucagon replacement in altered doses during exercise to approximate the decrements in insulin and increments in glucagon that occurred during the control study (Clamp with ↓ Insulin and ↑ Glucagon), α‐and β‐adrenergic blockade alone (Adrenergic Blockade), and somatostatin infusion with insulin and glucagon replacement at fixed, basal rates plus adrenergic blockade (Clamp, No Δ Insulin or Glucagon + Adrenergic Blockade). Data from Hirsch et al. 140 and Marker et al. 170.

Figure from Cryer 63, reproduced with permission of the American Diabetes Association.


Figure 19.

Hormonal, neural and substrate factors that regulate systemic glucose balance. The arrows to the left of each factor indicate the directional effect of that factor on glucose production. The arrows to the right of each factor indicate the directional effect of that factor on glucose utilization.



Figure 20.

Mean (± SE) plasma glucose concentrations, rates of glucose production (Ra) and utilization (Rd), plasma C‐peptide and peripheral insulin concentrations, calculated rates of insulin secretion and estimated hepatic portal insulin concentrations in healthy humans during a control study (shaded area) and during infusions of insulin in a dose of 0.6 mU.kg−1.min−1 (3.6 pM.kg−1.min−1) from 0 to 80 min followed, from 80 to 180 min, by doses of 0.0 (closed circles), 0.1 (open circles), 0.2 (closed squares), 0.4 (open squares) or 0.6 (closed triangles) mU.kg.−1.min−1 (0.0, 0.6, 1.2, 2.4 and 3.6 pM.kg−1.min−1 respectively). The numbers in the glucose concentration panel refer to the latter insulin infusion doses.

[From Heller and Cryer 131, reproduced with permission of the American Physiological Society.]


Figure 21.

Mean (± SE) plasma glucagon, epinephrine, norepinephrine, cortisol and growth hormone concentrations in healthy humans during a control study (shaded areas) and during infusions of insulin in a dose of 0.6 mgN.kg−1.min−1 (3.6 pM.kg−1.min−1) form 0 to 80 min followed, from 80 to 180 min, by doses of 0.0 (closed circles), 0.1 (open circles), 0.2 (closed squares), 0.4 (open squares) or 0.6 (closed triangles) U.kg−1.min−1 (0.0, 0.6, 1.2, 2.4 and 3.6 gmM.kg−1.min−1 respectively).

[From Heller and Cryer 131, reproduced with permission of the American Physiological Society.]


Figure 22.

Schematic representation of the physiology of glucose counterregulation in healthy humans.

References
 1. Abumrad, N. N., R. P. Robinson, B. R. Gooch, W. W. Lacy. The effect of leucine infusion on substrate flux across the human forearm. J Surg Res 32: 453–463, 1982.
 2. Altszuler, N., R. Steele, I. Ratheb, and R. C. De Bodo. Glucose metabolism and plasma insulin level during epinephrine infusion in the dog. Am J Physiol 212: 667–82, 1967.
 3. Amiel, S. A., H. R. Archibald, G. Chusney, A. J. K. Williams, and E. A. M. Gale. Ketone infusion lowers hormonal responses to hypoglycemia: Evidence for acute cerebral utilization of a nonglucose fuel. Clin Sci 81: 189–194, 1991.
 4. Amiel, S. A., A. Maran, J. K. Powrie, A. M. Umpleby, and I. A. Macdonald. Gender differences in counterregulation to hypoglycemia. Diabetologia 36: 460–464, 1993.
 5. Amiel, S. A., R. S. Sherwin, D. C. Simonson, and W. V. Tamborlane. Effect of intensive insulin therapy on glycemic thresholds for counterregulatory hormone release. Diabetes 37: 901–907, 1988.
 6. Amiel, S. A., D. C. Simonson, W. V. Tamborlane, R. De Fronzo, and R. Sherwin. Rate of glucose fall does not affect counterregulatory hormone responses to hypoglycemia in normal and diabetic humans. Diabetes 36: 518–522, 1987.
 7. Bak, J. F., N. Møller, and O. Schmitz. Effects of growth hormone on fuel utilization and muscle glycogen synthase activity in normal humans. Am J Physiol 260: E736–E742, 1991.
 8. Bell, P. M., R. G. Firth, and R. A. Rizza. Effects of hyperglycemia on glucose production and utilization in humans. Diabetes 35: 642–648, 1986.
 9. Berk, M. A., W. E. Clutter, D. A. Skor, S. D. Shah, R. P. Gingerich, C. A. Parvin, and P. E. Cryer. Enhanced glycemic responsiveness to epinephrine in insulin dependent diabetes mellitus is the result of the inability to secrete insulin. J Clin Invest 75: 1842–1851, 1985.
 10. Berne, C., and J. Fagius. Skin nerve sympathetic activity during insulin‐induced hypoglycemia. Diabetologia 29: 855–860, 1986.
 11. Best, J. D., W. K. Ward, M. A. Pfeifer, and J. B. Halter. Lack of direct α‐adrenergic effect of epinephrine on glucose metabolism in human subjects. Am J Physiol 246: E271–E276, 1984.
 12. Biggers, D. W., S. Myers, D. Neal, R. Stinson, N. B. Cooper, J. B. Jaspan, P. E. Williams, A. D. Cherrington, and R. T. Frizzell. Role of brain in counterregulation of insulin induced hypoglycemia in dogs. Diabetes 37: 7–16, 1989.
 13. Blomqvist G., A. Gjedde, M. Gutniak, V. Grill, L. Widén, S. Stone‐Elander, and E. Hellstrand. Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycaemia on cerebral glucose utilization. Eur J Nucl Med 18: 834–837, 1991.
 14. Blomqvist, G., S. Stone‐Elander, C. Halldin, P. E. Roland, L. Widén, M. Lindqvist, G‐G. Swahn, B. Långström, and F. A. Wiesel. Positron emission tomographic measurements of cerebral glucose utilization using [1–11C]D‐glucose. J Cerebr Bl Flow Metab 10: 467–483, 1990.
 15. Bloomgarden, Z. T., J. E. Liljenquist, A. D. Cherrington, and D. Rabinowitz. Persistent stimulatory effect of glucagon on glucose production despite downregulation. J Clin Endocrinol Metab 47: 1152–1155, 1978.
 16. Bolli, G. B.. From physiology of glucose counterregulation to prevention of hypoglycemia in type I diabetes mellitus. Diab Nutr Metab 4: 333–349, 1990.
 17. Bolli, G. B., P. De Feo, P. Compagnucci, M. G. Cartechnini, G. Angeletti, F. Santeusanio, P. Brunetti, and J. E. Gerich. Abnormal glucose counterregulation in insulin‐dependent diabetes mellitus: Interaction of anti‐insulin antibodies and impaired glucagon and epinephrine secretion. Diabetes 32: 134–41, 1983.
 18. Bolli, G. B., P. De Feo, S. De Cosmo, G. Perriello, M. M. Ventura, M. Massi‐Benedetti, F. Santeusanio, J. E. Gerich, and P. Brunetti. A reliable and reproducible test for adequate glucose counterregulation in type I diabetes mellitus. Diabetes 33: 732–737, 1984.
 19. Bolli, G. B., P. De Feo, G. Periello, S. De Cosmo, M. Ventura, P. Campbell, P. Brunetti, and J. E. Gerich. Role of hepatic autoregulation in defense against hypoglycemia in humans. J Clin Invest 75: 1623–1631, 1985.
 20. Bolli, G. B., I. S. Gottesman, P. E. Cryer, and J. E. Gerich. Glucose counterregulation during prolonged hypoglycemia in normal humans. Am J Physiol 247: E206–E214, 1984.
 21. Borg, M. A., R. S. Sherwin, W. P. Borg, W. V. Tamborlane, and G. I. Shulman. Lactate perfused locally into the ventromedial hypothalamus suppresses counterregulation during systemic hypoglycemia (Abstract). Diabetes 45: 55A, 1996.
 22. Bottini, P., C. Lalli, A. Baccarelli, S. Pampanelli, M. Lepore, M. Ciofetta, P. Del Sindaco, and F. Santeusanio. Exercise‐induced increase in plasma lactate does not substitute for brain glucose during hypoglycemia (Abstract). Diabetes 47: A163, 1998.
 23. Boyle, P. J., A. Avogaro, L. Smith, D. M. Bier, A. S. Pappis, D. R. Illingworth, and P. E. Cryer. The role of growth hormone in regulating rates of lipolysis and plasma mevalonic acid concentrations during the night in normal and diabetic man. Am J Physiol 263: E168–E172, 1992.
 24. Boyle, P. J., and P. E. Cryer. Growth hormone, cortisol, or both are involved in defense against, but are not critical to recovery from, hypoglycemia. Am J Physiol 260: E395–E402, 1991.
 25. Boyle, P. J., S. B. Liggett, S. D. Shah, and P. E. Cryer. Direct muscarinic cholinergic inhibition of hepatic glucose production. J Clin Invest 82: 445–449, 1988.
 26. Boyle, P. J., R. J. Nagy, A. M. Oonnor, S. F. Kempers, R. A. Yeo, and C. Qualls. Adaptation in brain glucose uptake following recurrent hypoglycemia. Proc Natl Acad Sci USA 91: 9352–9356, 1994.
 27. Boyle, P. J., N. S. Schwartz, S. D. Shah, W. E. Clutter, and P. E. Cryer. Plasma glucose concentrations at the onset of hypoglycemic symptoms in patients with poorly controlled diabetes and in nondiabetics. N Engl J Med 318: 1487–1492, 1988.
 28. Boyle, P. J., S. D. Shah, and P. E. Cryer. Insulin, glucagon and catecholamines in the prevention of hypoglycemia during fasting in humans. Am J Physiol 256: E651–E661, 1989.
 29. Borg, W. P., M. J. During, R. S. Sherwin, M. A. Borg, M. L. Brines, and G. I. Shulman. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J Clin Invest 93: 1677–1682, 1994.
 30. Borg, W. P., R. S. Sherwin, M. J. During, M. A. Borg, and G. I. Shulman. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44: 180–184, 1995.
 31. Brodows, R. G., J. W. Ensinck, and R. G. Campbell. Mechanism of cyclic AMP response to hypoglycemia in man. Metabolism 25: 659–663, 1976.
 32. Butler, P., E. Kryshak, and R. Rizza. Mechanism of growth hormone‐induced postprandial carbohydrate intolerance in humans. Am J Physiol 260: E513–E520, 1991.
 33. Cane, P., R. Artal, and R. N. Bergman. Putative hypothalamic glucoreceptors play no essential role in the response to moderate hypoglycemia. Diabetes 35: 268–277, 1986.
 34. Cane, P., C. K. Haun, J. Evered. J. H. Youn, and R. N. Bergman. Response to deep hypoglycemia does not involve glucoreceptors in carotid perfused tissue. Am J Physiol 255: E680–E687, 1988.
 35. Capaldo, B., R. Napoli, R. Guida, P. Di Bonito, S. Antoniello, M. Auletta, F. Pardo, V. Rendina, and L. Saccà. Forearm muscle insulin resistance during hypoglycemia: Role of adrenergic mechanisms and hypoglycemia per se. Am J Physiol 268: E248–E254, 1995.
 36. Caprio, S., L. Saccà, W. V. Tamborlane, and R. S. Sherwin. Relationship between changes in glucose production and gluconeogenesis during mild hypoglycemia in humans. Metabolism 37: 707–710, 1988.
 37. Cersosimo, E., R. L. Judd, and J. M. Miles. Insulin regulation of renal glucose metabolism in conscious dogs. J Clin Invest 93: 2584–2589, 1994.
 38. Chalmers, T. M., and C. H. Keele. The nervous and chemical control of sweating. Br J Dermatol 64: 43–54, 1952.
 39. Chap, Z., T. Ishida, J. Chou, R. Lewis, C. Hartley, M. Entman, and J. B. Field. Effects of atropine and gastric inhibitory polypeptide on hepatic glucose uptake and insulin extraction in conscious dogs. J Clin Invest 76: 1174–1181, 1985.
 40. Cherrington, A. D.. The acute regulation of hepatic glucose production. In The Role of the Liver in Maintaining Glucose Homeostasis, edited by M. J. Pagliassotti, S. N. Davis, and A. D. Cherrington. Austin: R. G. Landes Company, 1994, pp 19–43.
 41. Cherrington, A. D., M. P. Diamond, D. R. Green, and P. E. Williams. Evidence for an intrahepatic contribution to the waning effect of glucagon on glucose production in the conscious dog. Diabetes 31: 917–922, 1982.
 42. Cherrington, A. D., H. Fuchs, R. W. Stevenson, P. E. Williams, K. G. M. M. Alberti, and K. E. Steiner. Effects of epinephrine on glycogenolysis and gluconeogenesis in conscious overnight fasted dogs. Am J Physiol 247: E137–E144, 1984.
 43. Cherrington, A. D., J. E. Liljenqvist, G. I. Shulman, P. E. Williams, and W. W. Lacy. Importance of hypoglycemia‐induced glucose production during isolated glucagon deficiency. Am J Physiol 236: E263–E271, 1979.
 44. Cherrington, A. D., P. E. Williams, G. I. Shulman, and W. W. Lacy. Differential time course of glucagon's effect on glycogenolysis and gluconeogenesis in the conscious dog. Diabetes 30: 180–187, 1981.
 45. Chiasson, J. L., H. Shiama, and D. T. W. Chu. Inhibitory effect of epinephrine on insulin‐stimulated glucose uptake by rat skeletal muscle. J Clin Invest 68: 706–713, 1981.
 46. Christensen, N. J., K. G. M. M. Alberti, and O. Brandsborg. Plasma catecholamines and blood substrate concentrations: Studies in insulin induced hypoglycaemia and after adrenaline infusions. Eur J Clin Invest 5: 415–423, 1975.
 47. Chu, A. C, D. K. Sindelar, D. W. Neal, E. J. Allen, E. P. Donahue, and A. D. Cherrington. Comparison of direct and indirect effects of epinephrine on hepatic glucose production. J Clin Invest 99: 1044–1056, 1997.
 48. Clarke, W. L., J. V. Santiago, L. Thomas, M. W. Haymond, E. Ben‐Galim, and P. E. Cryer. Adrenergic mechanisms in recovery from hypoglycemia in man: Adrenergic blockade. Am J Physiol 236: E147–E152, 1979.
 49. Claustre, J., L. Peyrin, R. Fitoussi, and R. Mornex. Sex differences in the adrenergic response to hypoglycemic stress in human. Psychopharmacology 67: 147–153, 1980.
 50. Clutter, W. E., D. M. Bier, S. D. Shah, and P. E. Cryer. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest 66: 94–101, 1980.
 51. Clutter, W. E., R. A. Rizza, J. E. Gerich, and P. E. Cryer. Regulation of glucose metabolism by sympathochromaffin catecholamines. Diabetes/Metab Rev 4: 1–15, 1988.
 52. Cohen, N., L. Rossetti, P. Shlimovich, M. Halberstam, M. Hu, and H. Shamoon. Counterregulation of hypoglycemia: Skeletal muscle glycogen metabolism during three hours of physiological hyperinsulinemia in humans. Diabetes 44: 423–430, 1995.
 53. Coiro, V., M. Passeri, R. Volpi, G. Rossi, L. Camellini, D. Davoli, M. Marchesi, P. Muzzetto, R. Minelli, L. Bianconi, C. Coscelli and P. Chiodera. Effect of muscarinic and nicotine‐cholinergic blockade on the glucagon response to insulin‐induced hypoglycemia in normal men. Horm Metab Res 21: 102–103, 1989.
 54. Connolly, C. C., B. A. Adkins‐Marshall, D. W. Neal, W. Pugh, J. B. Jaspan, and A. D. Cherrington. Relationship between decrements in glucose level and metabolic response to hypoglycemia in absence of counterregulatory hormones in the conscious dog. Diabetes 41: 1308–1319, 1992.
 55. Connolly, C. C., S. R. Myers, D. W. Neal, J. R. Hastings, and A. D. Cherrington. In the absence of counterregulatory hormones, the increase in hepatic glucose production during insulin‐induced hypoglycemia in the dog is initiated in the liver rather than the brain. Diabetes 45: 1805–1813, 1996.
 56. Corrall, R. J. M., B. M. Frier, N. M. Davidson, and E. B. French. Hormonal and substrate responses during recovery from hypoglycaemia in man during ã1‐selective and nonselective ã‐adrenergic blockade. Eur J Clin Invest 11: 279–283, 1981.
 57. Cryer, P. E.. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 303: 436–444, 1980.
 58. Cryer, P. E.. Glucose counterregulation in man. Diabetes 30: 261–264, 1981.
 59. Cryer, P. E.. Iatrogenic hypoglycemia as a cause of hypoglycemia‐associated autonomic failure in IDDM:A vicious cycle. Diabetes 41: 255–260, 1992.
 60. Cryer, P. E.. Glucose counterregulation: The prevention and correction of hypoglycemia in humans. Am J Physiol 264: E149–E155, 1993.
 61. Cryer, P. E.. Catecholamines, pheochromocytoma and diabetes. Diabetes Reviews 1: 309–317, 1993.
 62. Cryer, P. E.. Glucose counterregulation: The physiological mechanisms that prevent or correct hypoglycemia. In Hypoglycaemia and Diabetes, Clinical and Physiological Aspects, edited by B. M. Frier and B. M. Fisher. London: Edward Arnold, 1993, pp 34–55.
 63. Cryer, P. E.. Hypoglycemia: The limiting factor in the management of IDDM. Diabetes 43: 1378–1389, 1994.
 64. Cryer, P. E.. Diseases of the sympathochromaffin system. In Endocrinology and Metabolism, 3rd Edition, edited by P. Felig, J. D. Baxter, and L. Frohman. New York: McGraw‐Hill, 1995, pp 713–748.
 65. Cryer, P. E.. Glucagon and glucose counterregulation. In Glucagon, Volume III, edited by P. Lefebvre. Berlin: Springer‐Verlag, 1996, pp 149–158.
 66. Cryer, P. E.. Hypoglycemia: Pathophysiology, Diagnosis, and Treatment. New York: Oxford University Press, 1997.
 67. Cryer, P. E., and K. S. Polonsky. Glucose homeostasis and hypoglycemia. In Williams Textbook of Endocrinology, 9th Edition, edited by J. D. Wilson, D. W. Foster, H. M. Kronenberg and P. R. Larsen. Philadelphia: W. B. Saunders, 1998, pp 939–971.
 68. Cryer, P. E., R. A. Rizza, M. W. Haymond, and J. E. Gerich. Epinephrine and norepinephrine are cleared through beta‐adrenergic, but not alpha‐adrenergic, mechanisms in man. Metabolism 29: 1114–1117, 1980.
 69. Dagogo‐Jack, S. E., S. Craft, and P. E. Cryer. Hypoglycemia‐associated autonomic failure in insulin dependent diabetes mellitus. J Clin Invest 91: 819–826, 1993.
 70. Dagogo‐Jack, S. E., C. Rattarasarn, and P. E. Cryer. Reversal of hypoglycemia unawareness, but not defective glucose counterregulation, in IDDM. Diabetes 43: 1426–1434, 1994.
 71. Davis, S. N., A. D. Cherrington, R. E. Goldstein, J. Jacobs, and L. Price. Effects of insulin on the counterregulatory response to equivalent hypoglycemia in normal females. Am J Physiol 265: E680–E689, 1993.
 72. Davis, S. N., R. Dobbins, C. Colburn, C. Tarumi, J. Jacobs, D. Neal, and A. D. Cherrington. Effects of hyperinsulinemia on the subsequent hormonal response to hypoglycemia in conscious dogs. Am J Physiol 264: E748–E755, 1993.
 73. Davis, S., C. Shavers, D. Neal, E. Allen, and P. Williams. Hepatic hypoglycemia is unable to initiate counterregulation in conscious dogs (Abstract). Diabetes 44: 3A, 1995.
 74. De Feo, P., G. Perriello, S. De Cosmo, M. M. Ventura, P. J. Campbell, P. Brunetti, J. E. Gerich, and G. B. Bolli. Comparison of glucose counterregulation during short‐term and prolonged hypoglycemia in normal humans. Diabetes 35: 563–569, 1986.
 75. De Feo, P., G. Perriello, E. Torlone, C. Fanelli, M. M. Ventura, F. Santeusanio, P. Brunetti, J. E. Gerich, and G. B. Bolli. Evidence against important catecholamine compensation for absent glucagon counterregulation. Am J Physiol 260: E203–E212, 1991.
 76. De Feo, P., G. Perriello, E. Torlone, C. Fanelli, M. M. Ventura, F. Santeusanio, P. Brunetti, J. E. Gerich, and G. B. Bolli. Contribution of adrenergic mechanisms to glucose counterregulation in humans. Am J Physiol 261: E725–E736, 1991.
 77. De Feo, P., G. Perriello, E. Torlone, M. M. Ventura, C. Fanelli, F. Santeusanio, P. Brunetti, J. E. Gerich, and G. B. Bolli. Contribution of cortisol to glucose counterregulation in humans. Am J Physiol 257: E35–E42, 1989.
 78. De Feo, P., G. Perriello, E. Torlone, M. M. Ventura, F. Santeusanio, P. Brunetti, J. E. Gerich, and G. B. Bolli. Demonstration of a role for growth hormone in glucose counterregulation. Am J Physiol 256: E835–E843, 1989.
 79. De Feo, P., G. Perriello, F. Santeusanio, P. Brunetti, G. Bolli, and M. W. Haymond. Differential effects of insulin‐induced hypoglycaemia on the plasma branched‐chain and non‐branched‐chain amino acid concentrations in humans. Diabete Metabolisme 18: 277–282, 1992.
 80. De Fronzo, R. A., and E. Ferrannini. Regulation of intermediary metabolism during fasting and feeding. In Endocrinology, 3rd Edition, edited L. J. De Groot. Philadelphia: W. B. Saunders, 1995, pp 1389–1410.
 81. Diamond, M., L. Hallarman, L. Starich‐Zych, C. Connolly, M. Howard, W. Tamborlane, and R. Sherwin. Suppression of counterregulatory hormone response to hypoglycemia by insulin per se. J Clin Endocrinol Metab 72: 1388–1390, 1991.
 82. Diamond, M. P., R. C. Rollings, K. E. Steiner, P. E. Williams, W. W. Lacy, and A. D. Cherrington. Effect of alanine concentration independent of changes in insulin and glucagon on alanine and glucose homeostasis in the conscious dog. Metabolism 37: 28–33, 1988.
 83. Diebert, D. C, and R. A. De Fronzo. Epinephrine‐induced insulin resistance in man. J Clin Invest 65: 717–721, 1980.
 84. Dinneen, S., A. Alzaid, J. Miles, and R. Rizza. Effects of the normal nocturnal rise in cortisol on carbohydrate and fat metabolism in IDDM. Am J Physiol 268: E595–E603, 1995.
 85. DiRocco, R. J., and H. J. Grill. The forebrain is not essential for sympathoadrenal hyperglycemic response to glucoprivation. Science 204: 112–114, 1979.
 86. Donovan, C. M., J. B. Halter, and R. N. Bergman. Importance of hepatic glucoreceptors in sympathoadrenal response to hypoglycemia. Diabetes 40: 155–158, 1991.
 87. Ensinck, J. W., R. M. Walter, J. P. Palmer, R. G. Brodows, and R. G. Campbell. Glucagon responses to hypoglycemia in adrenalectomized man. Metabolism 25: 227–232, 1976.
 88. Exton, J. H.. Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes/Metab Rev 3: 168–183, 1987.
 89. Exton, J. H., and C. R. Park. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines and adenosine 3′,5′‐monophosphate on gluconeogenesis in the perfused rat liver. J Biol Chem 243: 189–196, 1968.
 90. Fagius, J., and C. Berne. Sympathetic outflow in human muscle nerves increases during hypoglycemia. Diabetes 35: 1124–1129, 1986.
 91. Fanelli, C., S. Calderone, L. Epifano, A. De Vincenzo, F. Modarelli, S. Pampanelli, G. Perriello, P. De Feo, P. Brunetti, J. E. Gerich, and G. B. Bolli. Demonstration of critical role for free fatty acids in mediating counterregulatory stimulation of gluconeogenesis and suppression of glucose utilization in humans. J Clin Invest 92: 1617–1622, 1993.
 92. Fanelli, C. G., P. De Feo, F. Porcellatti, G. Periello, E. Torlone, F. Santeusanio, P. Brunetti, and G. B. Bolli. Adrenergic mechanisms contribute to the late phase of hypoglycemic glucose counterregulation in humans by stimulating lipolysis. J Clin Invest 89: 2005–2013, 1992.
 93. Fanelli, C. G., C. S. Dence, J. Markham, T. Videen, D. S. Paramore, P. E. Cryer, and W. J. Powers. Blood‐to‐brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes mellitus. Diabetes 47: 1444–1450, 1998.
 94. Fanelli, C., A. DiVincenzo, F. Modarelli, M. Lepore, M. Ciofetta, L. Epifano, S. Pampanelli, P. Brunetti, and G. B. Bolli. Posthypoglycaemic hyperketonaemia does not contribute to brain metabolism during insulin‐induced hypoglycaemia in humans. Diabetologia 36: 1191–1197, 1993.
 95. Fanelli, C., S. Pampanelli, L. Epifano, A. M. Rambotti, M. Ciofetta, F. Modarelli, A. DiVincenzo, B. Annibale, M. Lepore, C. Lalli, P. Del Sindaco, P. Brunetti, and G. B. Bolli. Relative roles of insulin and hypoglycaemia on induction of neuroendocrine responses to, symptoms of, and deterioration of cognitive function in hypoglycaemia in male and female humans. Diabetologia 37: 797–807, 1994.
 96. Fanelli, C. G., D. S. Paramore, T. Hersehy, C. Terkamp, F. Ovalle, S. Craft, and P. E. Cryer. Impact of nocturnal hypoglycemia on hypoglycemic cognitive dysfunction in type 1 diabetes mellitus. Diabetes 47: 1920–1927, 1998.
 97. Felig, P., and M. Bergman. The endocrine pancreas: Diabetes mellitus. In Endocrinology and Metabolism, 3rd Edition, edited by P. Felig, J. D. Baxter, and L. A. Frohman. New York: McGraw‐Hill, 1995, pp 1107–1241.
 98. Fellows, I. W., T. Bennett, and I. A. Macdonald. The effect of adrenaline upon cardiovascular and metabolic functions in man. Clin Sci 69: 215–222, 1985.
 99. Ferrannini, E., E. J. Barrett, S. Bevilacqua, and R. A. De Fronzo. Effect of fatty acids on glucose production and utilization in man. J Clin Invest 72: 1737–1747, 1983.
 100. Ferraninni, E., R. A. De Fronzo, and R. S. Sherwin. Transient hepatic glucose response to glucagon in man: Role of insulin and hyperglycemia. Am J Physiol 242: E73–E81, 1982.
 101. Ferrannini, E., A. Natali, L. S. Brandi, R.S. V. Bonadonna, De, Kreutzemberg, S., Del Prato, and D. Santoro. Metabolic and thermogenic effects of lactate infusion in humans. Am J Physiol 265: E504–E512, 1993.
 102. Frandsen, H.A., S. Snitker, N. J. Christensen, and S. Madsbad. No differential effects of porcine and human insulin on muscle sympathetic nerve activity during euglycemia or hypoglycemia. Clin Physiol 16: 9–21, 1996.
 103. French, E. B., and R. Kilpatrick. The role of adrenalin in hypoglycaemic reactions in man. Clin Sci 14: 639–651, 1955.
 104. Frier, B. M., R. J. M. Corrall, J. G. Ratcliffe, J. P. Ashby, and E. J. W. McClemont. Autonomic neural control mechanisms of substrate and hormonal responses to acute hypoglycaemia in man. Clin Endocrinol 14: 425–433, 1991.
 105. Frizzell, R. T., P. J. Campbell, and A. D. Cherrington. Gluconeogenesis and hypoglycemia. Diabetes/Metabolism Rev 4: 51–70, 1988.
 106. Frizzell, R. T., G. K. Hendrick, D. W. Biggers, D. B. Lacy, D. P. Donahue, D. R. Green, R. K. Carr, P. E. Williams, R. W. Stevenson, and A. D. Cherrington. Role of gluconeogenesis in sustaining glucose production during hypoglycemia caused by continuous insulin infusion in conscious dogs. Diabetes 37: 749–759, 1988.
 107. Frizzell, R. T., G. K. Hendrick, L. L. Brown, D. B. Lacy, E. P. Donahue, R. K. Carr, P. E. Williams, A. F. Parlow, R. W. Stevenson, and A. D. Cherrington. Stimulation of glucose production through hormone secretion and other mechanisms during insulin induced hypoglycemia. Diabetes 37: 1531–1541, 1988.
 108. Frizell, R. T., E. M. Jones, S. N. Davis, D. W. Biggers, S. R. Myers, C. C. Connolly, D. W. Neal, J. B. Jaspan, and A. D. Cherrington. Counterregulation during hypoglycemia is directed by widespread brain regions. Diabetes 42: 1253–1261, 1993.
 109. Frohman, L. A.. Diseases of the anterior pituitary. In Endocrinology and Metabolism, 3rd Edition, edited by P. Felig, J. D. Baxter, and L. A. Frohman. New York: McGraw‐Hill, 1995, pp 289–384.
 110. Frølund, L., H. Kehlet, N. J. Christensen, and K. G. M. M. Alberti. Effect of ketone body infusion on plasma catecholamine and substrate concentrations during acute hypoglycemia in man. J Clin Endocrinol Metab 50: 557–559, 1980.
 111. Fukuda, M., A. Tanaka, Y. Tahara, H. Ikegami, Y. Yamamoto, Y. Kumahara, and K. Shima. Correlation between minimal secretory capacity of pancreatic ã‐cells and stability of diabetic control. Diabetes 37: 81–88, 1988.
 112. Galster, A. D., W. E. Clutter, P. E. Cryer, J. A. Collins, and D. M. Bier. Epinephrine plasma thresholds for lipolytic effects in man: Measurements of fatty acid transport with [1–13C]palmitic acid. J Clin Invest 67: 1729–1738, 1981.
 113. Garber, A. J., P. E. Cryer, J. V. Santiago, M. W. Haymond, A. S. Pagliara, and D. M. Kipnis. The role of adrenergic mechanisms in the substrate and hormonal response to insulin induced hypoglycemia in man. J Clin Invest 58: 7–15, 1976.
 114. Gardemann, A., and K. Jungermann. Control of glucose balance in the perfused rat liver by the parasympathetic innervation. Biol Chem Hoppe‐Selyer 367: 559–566, 1986.
 115. Gardemann, A., G. P. Püschel, and K. Jungermann. Nervous control of liver metabolism and hemodynamics. Eur J Biochem 207: 399–411, 1992.
 116. Gerich, J. E.. Glucose counterregulation and its impact on diabetes mellitus. Diabetes 37: 1608–1617, 1988.
 117. Gerich, J., J. Davis, M. Lorenzi, R. Rizza, N. Bohannon, J. Karam, S. Lewis, R. Kaplan, T. Schultz, and P. Cryer. Hormonal mechanisms of recovery from insulin‐induced hypoglycemia in man. Am J Physiol 236: E380–E385, 1979.
 118. Gerich, J. E., M. Langlois, C. Noacco, J. Karam, and P. Forsham. Lack of glucagon response to hypoglycemia in diabetes: Evidence for an intrinsic pancreatic α‐cell defect. Science 182: 171–173, 1973.
 119. Gerich, J. E., M. Lorenzi, E. Tsalikian, and J. H. Karam. Studies on the mechanism of epinephrine‐induced hyperglycemia in man. Diabetes 25: 65–71, 1976.
 120. Goldfien, A., R. Moore, Z. Zileli, L. L. Havens, L. Boling, and G. W. Thorn. Plasma epinephrine and norepinephrine levels during insulin‐induced hypoglycemia in man. J Clin Endocrinol Metab 21: 296–303, 1961.
 121. Goldstein, R. E., D. H. Wasserman, O. P. McGuiness, D. B. Lacy, A. D. Cherrington, and N. N. Abumrad. Effects of chronic elevation in plasma cortisol on hepatic carbohydrate metabolism. Am J Physiol 264: E119–E127, 1993.
 122. Granner, D., and S. Pilkis. The genes of hepatic glucose metabolism. J Biol Chem 265: 10173–10176, 1990.
 123. Gray, D. E., H. L. A. Lickley, and M. Vranic. Physiologic effects of epinephrine on glucose turnover and plasma free fatty acid concentrations mediated independently of glucagon. Diabetes 29: 600–608, 1980.
 124. Hamilton‐Wessler, M., R. N. Bergman, J. B. Halter, R. M. Watanake, and C. M. Donovan. The role of liver glucosensors in the integrated sympathetic response induced by deep hypoglycemia in dogs. Diabetes 43: 1052–1060, 1994.
 125. Hansen, I., R. Firth, M. Haymond, P. Cryer, and R. Rizza. The role of autoregulation of hepatic glucose production in man. Diabetes 35: 186–191, 1986.
 126. Hasselbalch, S. G., G. M. Knudsen, J. Jakobsen, L. P. Hageman, S. Holm, and O. B. Paulson. Blood‐brain barrier permeability of glucose and ketone bodies during short‐term starvation in humans. Am J Physiol 268: E1161–E1166, 1995.
 127. Havel, P. J., and B. Ahren. Activation of autonomic nerves and the adrenal medulla contributes to increased glucagon secretion during moderate insulin‐induced hypoglycemia in women. Diabetes 46: 801–807, 1997.
 128. Havel, P. J., and G. J. Taborsky Jr.. The contribution of the autonomic nervous system to increased glucagon secretion during hypoglycemic stress: Update 1994. In The Endocrine Pancreas, Insulin Action and Diabetes, edited by L. E. Underwood. Bethesda: Endocrine Society, 1994, pp 201–204.
 129. Havel, P. J., and C. Valverde. Autonomic mediation of glucagon secretion during insulin‐induced hypoglycemia in rhesus monkeys. Diabetes in press.
 130. Heller, S. R., and P. E. Cryer. Reduced neuroendocrine and symptomatic response to subsequent hypoglycemia after one episode of hypoglycemia in nondiabetic humans. Diabetes 40: 223–226, 1991.
 131. Heller, S. R., and P. E. Cryer. Hypoinsulinemia is not critical to glucose recovery from hypoglycemia in humans. Am J Physiol 261: E41–E48, 1991.
 132. Heller, S. R., and I. A. Macdonald. Physiological disturbance in hypoglycaemia: Effect on subjective awareness. Clin Sci 81: 1–9, 1991.
 133. Hepburn, D. A.. Symptoms of hypoglycaemia. In Hypoglycaemia and Diabetes, Clinical and Physiological Aspects, edited by B. M. Frier and B. M. Fisher. London: Edward Arnold, 1993, pp 93–115.
 134. Hepburn, D. A., I. J. Deary, and B. M. Frier. Classification of symptoms of hypoglycaemia in insulin‐treated patients using factor analysis: Relationship to hypoglycaemia unawareness. Diabetic Med 9: 70–75, 1992.
 135. Hepburn, D. A., I. J. Deary, B. M. Frier, A. M. Patrick, J. D. Quin, and B. M. Fisher. Symptoms of acute insulin induced hypoglycemia in humans with and without IDDM: Factor analysis approach. Diabetes Care 14: 949–957, 1991.
 136. Herrera, M. G., D. Kamm, N. Ruderman, and G. F. Cahill. Nonhormonal factors in the control of gluconeogenesis. Adv Enzyme Regul 4: 225–235, 1966.
 137. Hers, H. G.. The control of glycogen metabolism in the liver. Ann Rev Biochem 45: 167–189, 1976.
 138. Hevener, A. L., R. N. Bergman, and C. M. Donovan. Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes 46: 1521–1525, 1997.
 139. Hilsted, J., H. Frandsen, J. J. Holst, N. J. Christensen, and S. L. Nielsen. Plasma glucagon and glucose recovery after hypoglycemia: The effect of total autonomic blockade. Acta Endocrinol (Copenh) 125: 466–469, 1991.
 140. Hirsch, I. B., J. C. Marker, L. Smith, R. J. Spina, C. A. Parvin, J. O. Holloszy, and P. E. Cryer. Insulin and glucagon in the prevention of hypoglycemia during exercise in humans. Am J Physiol 260: E695–E704, 1991.
 141. Hochstaedt, B. B., M. Schneebaum, and M. Shadel. Adrenocortical responsivity in old age. Gerontol Clin 3: 239–246, 1961.
 142. Hoffman, R. P., C. A. Sinkey, and E. A. Anderson. Hypoglycemia increases muscle sympathetic nerve activity in IDDM and control subjects. Diabetes Care 17: 673–680, 1994.
 143. Hvidberg, A., and P. E. Cryer. Muscarinic cholinergic antagonism does not enhance recovery from hypoglycemia in IDDM. Diabetes Care 18: 404–407, 1995.
 144. Ishiwata, K., G. Hetenyi, and M. Vranic. Effect of D‐glucose or D‐ribose on the turnover of glucose in pancreatectomized dogs maintained on a matched intraportal infusion of insulin. Diabetes 18: 820–827, 1969.
 145. Jackson, P. A., M. J. Pagliassotti, M. Shiota, D. W. Neal, S. Cardin, and A. D. Cherrington. Effects of vagal blockade on the counter‐regulatory response to hypoglycemia in the dog. Am J Physiol 273: E1178–E1188, 1997.
 146. James, D. E., J. Hiken, and J. C. Lawrence Jr.. Isoproterenol stimulates phosphorylation of the insulin‐regulatable glucose transporter in rat adipocytes. Proc Natl Acad Sci USA 86: 8368–8372, 1989.
 147. Jenkins, A. B., L. H. Storlien, D. J. Chisholm, and E. W. Kraegen. Effects of nonesterified fatty acid availability on tissue‐specific glucose utilization in rats in vivo. J Clin Invest 82: 293–299, 1988.
 148. Jezova, D., R. Kvetnansky, K. Kovacs, Z. Oprsalova, M. Vigas, and G. B. Makara. Insulin‐induced hypoglycemia activates the release of adrenocorticotropin predominantly via central and propranolol insensitive mechanisms. Endocrinology 120: 409–415, 1987.
 149. Joost, H. G., and T. M. Weber. The regulation of glucose transport in insulin sensitive cells. Diabetologia 32: 831–838, 1989.
 150. Joost, H. G., T. M. Weber, S. W. Cushman, and I. A. Simpson. Insulin‐stimulated glucose transport in rat adipose cells: Modulation of transporter intrinsic activity by isoproterenol and adenosine. J Biol Chem 261: 10033–10036, 1986.
 151. Joost, H. G., T. M. Weber, S. W. Cushman, and I. A. Simpson. Activity and phosphorylation state of glucose transporters in plasma membranes from insulin‐,isoproterenol‐ and phorbol ester‐treated rat adipose cells. J Biol Chem 262: 11261–11267, 1987.
 152. Kahn, C. R., and M. F. White. Molecular mechanism of insulin action. In Endocrinology, 3rd Edition, edited by L. J. De Groot. Philadelphia: W. B. Saunders, 1995, pp 1373–1388.
 153. Keller‐Wood, M., C. E. Wade, J. Shinsako, L. C. Keil, G. R. Van Loon, and M. F. Dallman. Insulin‐induced hypoglycemia in conscious dogs: Effect of maintaining carotid arterial glucose levels on the adrenocorticotropin, epinephrine and vasopressin responses. Endocrinology 112: 624–632, 1982.
 154. Kerr, D., I. A. Macdonald, S. A. Heller, and R. B. Tattersall. A randomized double blind placebo controlled trial of the effects of metoprolol CR, atenolol and propranolol LA on the physiological responses to hypoglycaemia in nondiabetic subjects. Br J Clin Pharmacol 29: 685–694, 1990.
 155. Laakso, M., S. V. Edelman, G. Brechtel, and A. D. Baron. Effects of epinephrine on insulin‐mediated glucose uptake in whole body and leg muscle in humans: Role of blood flow. Am J Physiol 263: E199–E204, 1992.
 156. Lamarche, L., N. Yamaguchi, and F. Péronnet. Hepatic denervation reduces adrenal catecholamine secretion during insulin‐induced hypoglycemia. Am J Physiol 268: R50–51, 1995.
 157. Lamarche, L., N. Yamaguchi, and F. Péronnet. Selective hypoglycemia in the liver induces adrenomedullary counterregulatory response. Am J Physiol 270: R1307–R1316, 1996.
 158. Lautt, W. W.. Hepatic nerves: A review of their functions and effects. Can J Physiol 58: 105–123, 1980.
 159. Lautt, W. W.. Afferent and efferent neural roles in liver function. Progr Neurobiol 21: 323–348, 1983.
 160. Lecavalier, L., G. Bolli, P. Cryer, and J. Gerich. Contributions of gluconeogenesis and glycogenolysis during glucose counterregulation in normal humans. Am J Physiol 256: E844–E851, 1989.
 161. Lecavalier, L., G. B. Bolli, and J. Gerich. Glucagon‐cortisol interactions on glucose turnover and lactate gluconeogenesis in normal humans. Am J Physiol 258: E569–E575, 1990.
 162. Lee, K. U., H. K. Lee, C. S. Koh, and H. K. Min. Artificial induction of intravascular lipolysis by lipid‐heparin infusion leads to insulin resistance in man. Diabetologia 31: 285–290, 1988.
 163. Liljenquist, J. E., G. L. Mueller, A. D. Cherrington, J. M. Perry, and D. Rabinowitz. Hyperglycemia per se (insulin and glucagon withdrawn) can inhibit hepatic glucose production in man. J Clin Endocrinol Metab 48: 171–174, 1979.
 164. Lillioja, S., C. Bogardus, D. M. Mott, A. L. Kennedy, W. C. Knowler, and B. V. Howard. Relationship between insulin mediated glucose disposal and lipid metabolism in man. J Clin Invest 75: 1106–1115, 1985.
 165. Long, R. G., R. H. Albuquerque, A. Prata, A. J. Barnes, T. E. Adrian, N. D. Christofides, and S. R. Bloom. Responses of pancreatic and gastrointestinal hormones and growth hormone to oral and intravenous glucose and insulin hypoglycemia in Chagas disease. Gut 21: 772–777, 1980.
 166. Macdonald, I. A., T. Bennett, and I. W. Fellows. Catecholamines and the control of metabolism in man. Clin Sci 68: 613–619, 1985.
 167. MacGorman, L. R., R. A. Rizza, and J. E. Gerich. Physiological concentrations of growth hormone exert insulin‐like and insulin antagonistic effects on both hepatic and extrahepatic tissues in man. J Clin Endocrinol Metab 53: 556–559, 1981.
 168. Maran, A., I. Cranston, J. Lomas, I. Macdonald, and S. A. Amiel. Protection by lactate of cerebral function during hypoglycaemia. Lancet 343: 16–20, 1994.
 169. Marker, J. C., P. E. Cryer, and W. E. Clutter. Attenuated glucose recovery from hypoglycemia in the elderly. Diabetes 41: 671–678, 1992.
 170. Marker, J. C., I. B. Hirsch, L. Smith, C. A. Parvin, J. O. Holloszy, and P. E. Cryer. Catecholamines in the prevention of hypoglycemia during exercise in humans. Am J Physiol 260: E705–E712, 1991.
 171. Matschinsky, F. M.. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 45: 223–241, 1996.
 172. McCall, A. L.. Effects of glucose deprivation on glucose metabolism in the central nervous system. In Hypoglycaemia and Diabetes, Clinical and Physiological Aspects, edited by B. M. Frier and B. M. Fisher. London: Edward Arnold, 1993, pp 56–71.
 173. McGuiness, O. P., T. Fugiwara, S. Murrell, D. Bracy, N. Doss, D. O'Connor, and A. D. Cherrington. Impact of chronic stress hormone infusion on hepatic carbohydrate metabolism in the conscious dog. Am J Physiol 265: E314–E322, 1993.
 174. Meneilly, G. S., K. L. Minaker, J. B. Young, L. Landsberg, and J. W. Rowe. Counterregulatory responses to insulin‐induced glucose reduction in the elderly. J Clin Endocrinol Metab 61: 178–182, 1985.
 175. Mikines, K. J., B. Sonne, E. A. Richter, N. J. Christensen, and H. Galbo. Glucose turnover during insulin‐induced hypoglycemia in liver denervated rats. Am J Physiol 248: E327–E332, 1985.
 176. Miller, W. L., and J. B. Tyrell. The adrenal cortex. In Endocrinology and Metabolism, 3rd Edition, edited by P. Felig, J. D. Baxter, and L. A. Frohman. New York: McGraw‐Hill, 1995, pp 555–712.
 177. Mitrakou, A., C. Fanelli, T. Veneman, G. Perriello, S. Calderone, D. Platanisiotis, A. Rambotti, S. Raptis, P. Brunetti, P. Cryer, J. Gerich, and G. Bolli. Reversibility of hypoglycemia unawareness. N Engl J Med 329: 834–839, 1993.
 178. Mitrakou, A., M. Mokan, C. Ryan, T. Veneman, P. Cryer, and J. Gerich. Influence of plasma glucose rate of decrease on hierarchy of responses to hypoglycemia. J Clin Endocrinol Metab 76: 462–465, 1993.
 179. Mitrakou, A., D. Plantanisiotis, L. Vlachos, D. Mourikis, V. Nadkarni, C. Meyer, U. Chintalapudi, O. Gutierrez, M. Kreider, J. Gerich, and S. Raptis. Increased renal gluconeogenesis in insulin dependent diabetes mellitus (IDDM): Contribution to systemic glucose appearance and effect of insulin repletion (Abstract). Diabetes 45: 33A, 1996.
 180. Mitrakou, A., C. Ryan, T. Veneman, M. Mokan, T. Jenssen, I. Kiss, J. Durrant, P. Cryer, and J. Gerich. Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms and cerebral dysfunction. Am J Physiol 260: E67–E74, 1991.
 181. Møller, N., J. O. L. Jørgensen, O. Schmitz, J. Møller, J. S. Christiansen, K. G. M. M. Alberti, and H. ørskov. Effects of a growth hormone pulse on total and forearm substrate fluxes in humans. Am J Physiol 258: E86–E91, 1990.
 182. Møller, N., O. Schmitz, J. O. L. Jørgensen, J. Astrup, J. F. Bak, S. E. Christensen, K. G. M. M. Alberti, and J. Weeke. Basal‐and insulin‐stimulated substrate metabolism in patients with active acromegaly before and after adenomectomy. J Clin Endocrinol Metab 74: 1012–1019, 1992.
 183. Müller, M. J., K. J. Acheson, A. J. Burger, and E. Jequier. Evidence that hyperglycaemia per se does not inhibit hepatic glucose production in man. Eur J Appl Physiol 60: 293–299, 1990.
 184. Müller, M. J., K. J. Acheson, E. Jequier, and A. G. Burger. Effect of thyroid hormones on oxidative and nonoxidative glucose metabolism in humans. Am J Physiol 255: E146–E152, 1988.
 185. Müller, M. J., A. J. Burger, E. Ferraninni, E. Jequier, and K. J. Acheson. Glucoregulatory function of thyroid hormones: Role of pancreatic hormones. Am J Physiol 256: E101–E110, 1989.
 186. Munck, A., and A. Nàray‐Fejes‐Tòth. Glucocorticoid action. In Endocrinology, 3rd Edition, edited by L. J. De Groot. Philadelphia: W. B. Saunders, 1995, pp 1642–1656.
 187. Murayama, H., A. Hisatomi, L. Orci, G. M. Grodsky, and R. H. Unger. Insulin within islet is a physiologic glucagon release inhibitor. J Clin Invest 74: 2296–2299, 1984.
 188. Nobin, A. B. F., S. Ingemansson, and J. Jarhult. Organization and function of the sympathetic innervation of the human liver. Acta Physiol Scand 452 (Suppl.): 103–106, 1977.
 189. ørskov L., J. F. Bak, N. Abildgård, O. Schmitz, F. Anderson, E. A. Richter, C. Skjaerbaek, and N. Møller. Inhibition of muscle glycogen synthase activity and non‐oxidative glucose disposal during hypoglycaemia in normal man. Diabetologia 39: 226–234, 1996.
 190. Ovalle, F., C. G. Fanelli, D. S. Paramore, S. Craft, and P. E. Cryer. Brief twice weekly episodes of hypoglycemia reduce detection of clinical hypoglycemia in type 1 diabetes mellitus. Diabetes 47: 1472–1479, 1998.
 191. Owen, O. E., P. Felig, A. P. Morgan, J. Wahren, and G. F. Cahill Jr.. Liver and kidney metabolism during prolonged starvation. J Clin Invest 48: 574–583, 1969
 192. Owen, O. E., A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill. Brain metabolism during fasting. J Clin Invest 46: 1589–1595, 1967.
 193. Palmer, J. P., D. P. Henry, J. W. Benson, D. G. Johnson, and J. W. Ensinck. Glucagon response to hypoglycemia in sympathectomized man. J Clin Invest 57: 522–525, 1976.
 194. Palmer, J. P., P. L. Werner, P. Hollander, and J. W. Ensinck. Evaluation of the control of glucagon secretion by the parasympathetic nervous system in man. Metabolism 28: 549–552, 1979.
 195. Paramore, D. S., C. G. Fanelli, S. D. Shah, and P. E. Cryer. Forearm norepinephrine spillover during prolonged standing, hyperinsulinemia and hypoglycemia. Am J Physiol 275: E872–R881, 1998.
 196. Pardmore, D. S., C. G. Fanelli, S. D. Shah, and P. E. Cryer. Hypoglycemia per se stimulates sympathetic neural as well as adrenomadullary activity but, unlike the adrenomedullary response, the forearm sympathetic neural response is not reduced following recent hypoglycemia. Diabetes 48: 1429–1436, 1999.
 197. Pénicaud, L., M. T. Pajot, and D. A. Thompson. Evidence that receptors controlling growth hormone and hyperglycemic responses to glucoprivation are located in the hind brain. Endocrine Res 16: 461–475, 1990.
 198. Perriello, G., R. Jorde, N. Nurjhan, M. Stumvoll, G. Dailey, T. Jenssen, D. M. Bier, and J. E. Gerich. Estimation of glucose‐alanine‐lactate‐glutamine cycles in postabsorptive humans: Role of skeletal muscle. Am J Physiol 269: E443–E450, 1995.
 199. Petersen, K. F., T. Price, G. W. Cline, D. L. Rothman, and G. I. Shulman. Contribution of net hepatic glycogenolysis to glucose production during the early postprandial period. Am J Physiol 270: E186–E191, 1996.
 200. Popp, D. A., S. D. Shah, and P. E. Cryer. The role of epinephrine mediated ã‐adrenergic mechanisms in hypoglycemic glucose counterregulation and posthypoglycemic hyperglycemia in insulin‐dependent diabetes mellitus. J Clin Invest 69: 315–326, 1982.
 201. Randle, P. J., P. B. Garland, C. N. Hales, and E. A. Newsholme. The glucose fatty acid cycle. Lancet i: 785–789, 1963.
 202. Raz, I., A. Katz, and M. K. Spencer. Epinephrine inhibits insulin‐mediated glycogenesis but enhances glycolysis in human skeletal muscle. Am J Physiol 260: E430–435, 1991.
 203. Reaven, G. M., H. Chang, H. Ho, C‐Y. Jeng, and B. B. Hoffman. Lowering of plasma glucose in diabetic rats by antilipolytic agents. Am J Physiol 254: E23–E30, 1988.
 204. Ricordi, C., S. D. Shah, P. E. Lacy, W. E. Clutter, and P. E. Cryer. Delayed extra‐adrenal epinephrine secretion after bilateral adrenalectomy in rats. Am J Physiol 254: E52–E53, 1988.
 205. Rizza, R. A., P. E. Cryer, and J. E. Gerich. Role of glucagon, catecholamines and growth hormone in human glucose counterregulation. J Clin Invest 64: 62–71, 1979.
 206. Rizza, R. A., P. E. Cryer, M. W. Haymond, and J. E. Gerich. Adrenergic mechanisms for the effect of epinephrine on glucose production and clearance in man. J Clin Invest 65: 682–689, 1980.
 207. Rizza, R. A., and J. E. Gerich. Persistent effect of sustained hyperglucagonemia on glucose production in man. J Clin Endocrinol Metab 48: 352–355, 1979.
 208. Rizza, R. A., M. W. Haymond, P. E. Cryer, and J. E. Gerich. Differential effects of physiologic concentrations of epinephrine on glucose production and disposal in man. Am J Physiol 237: E356–E362, 1979.
 209. Rizza, R. A., M. W. Haymond, J. M. Miles, C. H. Verdonk, P. E. Cryer, and J. E. Gerich: Effect of α‐adrenergic stimulation and its blockade on glucose turnover in man. Am J Physiol 238: E467–E472, 1980.
 210. Rizza, R. A., L. Mandarino, and J. E. Gerich. Dose‐response characteristics for the effects of insulin on production and utilization of glucose in man. Am J Physiol 240: 630–639, 1981.
 211. Rizza, R. A., L. Mandarino, and J. Gerich. Cortisol‐induced insulin resistance in man: Impaired suppression of glucose production and stimulation of glucose utilization due to a post‐receptor defect of insulin action. J Clin Endocrinol Metab 54: 131–138, 1982.
 212. Rizza, R. A., L. Mandarino, and J. E. Gerich. Effects of growth hormone on insulin action in man. Diabetes 31: 663–669, 1982.
 213. Rosen, S. G., W. E. Clutter, M. A. Berk, S. D. Shah, and P. E. Cryer. Epinephrine supports the postabsorptive plasma glucose concentration, and prevents hypoglycemia, when glucagon secretion is deficient in man. J Clin Invest 73: 405–411, 1984.
 214. Rosen, S. G., W. E. Clutter, S. D. Shah, J. P. Miller, D. M. Bier, and P. E. Cryer. Direct, α‐adrenergic stimulation of glucose production in postabsorptive human subjects. Am J Physiol 245: E616–E626, 1983.
 215. Rossetti, L., A. Giaccari, N. Barzilai, K. Howard, G. Sebel, and M. Hu. Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. J Clin Invest 92: 1126–1134, 1993.
 216. Rothman, D. L., I. Magnusson, L. D. Katz, R. G. Shulman, and G. I. Shulman. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254: 573–576, 1991.
 217. Saccà, L.. Role of counterregulatory hormones in the regulation of hepatic glucose metabolism. Diabetes/Metab Rev 3: 207–229, 1987.
 218. Saccà, L., P. E. Cryer, and R. S. Sherwin. Blood glucose regulates the effects of insulin and counterregulatory hormones on glucose production in vivo. Diabetes 28: 533–536, 1979.
 219. Saccà, L., R. Hendler, and R. S. Sherwin. Hyperglycemia inhibits glucose production in man independent of changes in glucoregulatory hormones. J Clin Endocrinol Metab 47: 1160–1163, 1979.
 220. Saccà, L., G. Morrone, M. Cicala, G. Corso, and B. Ungaro. Influence of epinephrine, norepinephrine and isoproterenol on glucose homeostasis in normal man. J Clin Endocrinol Metab 50: 680–684, 1980.
 221. Saccà, L., C. Vigorito, M. Cicala, G. Corso, and R. S. Sherwin. Role of gluconeogenesis in epinephrine‐stimulated hepatic glucose production in humans. Am J Physiol 245: E294–302, 1983.
 222. Saccà, L., C. Vigorito, M. Cicala, B. Ungaro, and R. S. Sherwin. Mechanisms of epinephrine‐induced glucose intolerance in normal humans. J Clin Invest 69: 284–293, 1982.
 223. Saleh, T., and P. E. Cryer. Hormonal, metabolic and hemodynamic responses to central and peripheral cholinergic amplification in humans. Endocrinol Metab 2: 25–31, 1995.
 224. Samols, E., J. I. Stagner, R. B. L. Ewart, and V. Marks. The order of islet microvascular cellular perfusion is B→A→D in the perfused rat pancreas. J Clin Invest 82: 350–353, 1988.
 225. Santiago, J. V., W. L. Clarke, S. D. Shah, and P. E. Cryer. Epinephrine, norepinephrine, glucagon, and growth hormone release in association with physiological decrements in the plasma glucose concentration in normal and diabetic man. J Clin Endocrinol Metab 51: 877–883, 1980.
 226. Sasaki, K., A. Matsuhaski, S. Murabayashi, K. Aoyagi, T. Baha, M. Matsunaga, and K. Takebe. Hormonal response to insulin induced hypoglycemia in patients with Shy‐Drager syndrome. Metabolism 32: 977–981, 1983.
 227. Schramm, V. A., H. J. Pusch, H. Franke, and I. Haubitz. Hormonal adaptive capacity in old age: Behavior of hormonal parameters after insulin hypoglycemia in young and old patients. Fortschr Med 99: 1255–1260, 1981.
 228. Schwartz, N. S., W. E. Clutter, S. D. Shah, and P. E. Cryer. Glycemic thresholds for activation of glucose counterregulatory systems are higher than the threshold for symptoms. J Clin Invest 79: 777–781, 1987.
 229. Schwartz, T. W.. Pancreatic polypeptide: A hormone under vagal control. Gastroenterology 85: 1411–1425, 1983.
 230. Schwenk, W. F., and M. W. Haymond. Decreased uptake of glucose by human forearm during infusion of leucine, isoleucine, or threonine. Diabetes 36: 199–204, 1987.
 231. Shah, S. D., T. F. Tse, W. E. Clutter, and P. E. Cryer. The human sympathochromaffin system. Am J Physiol 247: E380–E384, 1984.
 232. Shamoon, H., R. Hendler, and R. S. Sherwin. Altered responsiveness to cortisol, epinephrine and glucagon in insulin‐infused juvenile‐onset diabetics. Diabetes 29: 284–291, 1980.
 233. Shamoon, H., R. Hendler, and R. S. Sherwin. Synergistic interactions among anti‐insulin hormones in the pathogenesis of stress hyperglycemia in humans. J Clin Endocrinol Metab 52: 1235–1241, 1981.
 234. Sherwin, R. S.. Effect of starvation on the turnover and metabolic response to leucine. J Clin Invest 61: 1471–1481, 1978.
 235. Shulman, G. I., J. E. Liljenquist, P. E. Willims, W. W. Lacy, and A. D. Cherrington. Glucose disposal during insulinopenia in somatostatin treated dogs: The roles of glucose and glucagon. J Clin Invest 62: 487–491, 1978.
 236. Siesjö, B. K., and F. Bengtsson. Calcium fluxes, calcium antagonists, and calcium‐related pathology in brain ischemia, hypoglycemia and spreading depression: A unifying hypothesis. J Cereb Bl Flow Metab 9: 127–140, 1989.
 237. Silverberg, A. B., S. D. Shah, M. W. Haymond, and P. E. Cryer. Norepinephrine: Hormone and neurotransmitter in humans. Am J Physiol 234: E252–E256, 1978.
 238. Smith, U., and I. Lager. Insulin‐antagonist effects of counterregulatory hormones: Clinical and mechanistic aspects. Diabetes/Metab Rev 5: 511–525, 1989.
 239. Sokoloff L.. Circulation and energy metabolism of the brain. In Basic Neurochemistry, edited by G. Siegel, B. Agranoff, R. W. Albers, and P. Molinoff. New York: Raven Press, 1989, pp 565–590.
 240. Soskin, S., and R. Levine. Carbohydrate Metabolism, 2nd Edition. Chicago: University of Chicago Press, 1952, pp 277–293.
 241. Starke, A., S. Grundy, J. D. McGary, and R. H. Unger. Correction of hyperglycemia by inducing renal malabsorption of glucose restores the glucagon response to glucose in insulin deficient dogs: Implications for human diabetes. Proc Natl Acad Sci USA 82: 1544–1546, 1985.
 242. Stevenson, R. W., K. E. Steiner, C. C. Connolly, H. Fuchs, K. G. M. M. Alberti, P. E. Williams, and A. D. Cherrington. Dose‐related effects of epinephrine on glucose production in conscious dogs. Am J Physiol 260: E363–370, 1991.
 243. Struthers, A. D., D. C. Brown, M. J. Brown, B. Shumer, and S. R. Bloom. Selective α2 receptor blockade facilitates the insulin response to adrenaline but not to glucose in man. Clin Endocrinol 23: 539–546, 1985.
 244. Stumvoll, M., U. Chintalapudi, G. Perriello, S. Welle, O. Gutierrez, and J. Gerich. Uptake and release of glucose by the human kidney. J Clin Invest 96: 2528–2533, 1995.
 245. Thompson, C. J., and P. H. Baylis. Endocrine changes during insulin‐induced hypoglycaemia. In Hypoglycaemia and Diabetes, Clinical and Physiological Aspects, edited by B. M. Frier and B. M. Fisher. London: Edward Arnold, 1993, pp 116–131.
 246. Towler, D. A., C. E. Havlin, S. Craft, and P. E. Cryer. Mechanisms of awareness of hypoglycemia: Perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms. Diabetes 42: 1791–1798, 1993.
 247. Tse, T. F., W. E. Clutter, S. D. Shah, and P. E. Cryer. Mechanisms of postprandial glucose counterregulation in man: Physiologic roles of glucagon and epinephrine vis‐à‐vis insulin in the prevention of hypoglycemia late after glucose ingestion. J Clin Invest 72: 278–286, 1983.
 248. Tse, T. F., W. E. Clutter, S. D. Shah, J. P. Miller, and P. E. Cryer. Neuroendocrine responses to glucose ingestion in man: Specificity, temporal relationships and quantitative aspects. J Clin Invest 721: 270–277, 1983.
 249. Unger, R. H., and L. Orci. Glucagon secretion, alpha cell metabolism and glucagon action. In Endocrinology, 3rd Edition, edited by L. J. De Groot. Philadelphia: W. B. Saunders, 1995, pp 1337–1353.
 250. Veneman, T., A. Mitrakou, M. Mokan, P. Cryer, and J. Gerich. Effect of hyperketonemia and hyperlacticacidemia on symptoms, cognitive dysfunction, and counterregulatory hormone responses during hypoglycemia in normal humans. Diabetes 43: 1311–1317, 1994.
 251. Veneman, T., A. Mitrakou, A. Mokan, P. Cryer, and J. Gerich. Activation of the sympathetic nervous system precedes activation of the parasympathetic nervous system during hypoglycemia. Diab Nutr Metab 7: 131–134, 1994.
 252. Vigas, M., P. Tatar, J. Jurcovicovia, and D. Jezova. Glucoreceptors located in different areas mediate the hypoglycemia‐induced release of growth hormone, prolactin and adrenocorticotropin in man. Neuroendocrinology 51: 365–368, 1990.
 253. Waern, A. U., C. Berne, L. Wibell, and H. Lithell. Short term influence of a postsynaptic α‐adrenoceptor blocking drug (prazosin) on carbohydrate metabolism. Acta Med Scand 665 (Suppl.): 75–77, 1982.
 254. Wahren, J., P. Felig, E. Cerasi, and R. Luft. Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J Clin Invest 51: 1870–1878, 1972.
 255. White, N. H., D. A. Skor, P. E. Cryer, D. M. Bier, L. Levandoski, and J. V. Santiago. Identification of type I diabetic patients at increased risk for hypoglycemia during intensive therapy. N Engl J Med 308: 485–491, 1983.
 256. Wieloch, T.. Hypoglycemia‐induced neuronal damage prevented by an N‐methyl‐D‐aspartate antagonist. Science 230: 681–683, 1985.
 257. Williamson, J. R., R. A. Kreisberg, and P. W. Felts. Mechanism for the stimulation of gluconeogenesis by fatty acids in the perfused rat liver. Proc Natl Acad Sci USA 56: 247–254, 1966.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Philip E. Cryer. The Prevention and Correction of Hypoglycemia. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 1057-1092. First published in print 2001. doi: 10.1002/cphy.cp070235