Comprehensive Physiology Wiley Online Library

Endocrine Control of Potassium Balance

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Potassium Transport Along the Nephron
2 Aldosterone: Cellular Mechanisms of Action
2.1 Aldosterone Receptors
2.2 Energetics
2.3 Sodium Conductance
2.4 Hydrogen Ion Transport
2.5 Potassium Transport
2.6 Sodium–Potassium‐Adenosine Triphosphatase
2.7 Chloride Transport
3 Long‐Term Actions of Aldosterone
3.1 Potassium Excretion
3.2 Potassium Distribution
4 Other Hormonal and Nonhormonal Factors that may Affect Potassium Excretion and Distribution
4.1 Sodium Intake and Excretion
4.2 Epinephrine
4.3 Norepinephrine
4.4 Vasopressin
4.5 Insulin
4.6 Angiotensin
4.7 Thyroxin
5 Regulation of Aldosterone Secretion
6 Quantitative Assessments of the Participation of Aldosterone in Potassium Regulation
6.1 Changes in Potassium Intake
6.2 Change in Sodium Intake
6.3 Changes in Aldosterone or Mineralocorticoid Activity
6.4 Potassium Regulation over Combined Ranges of Sodium and Potassium Intake
7 Conclusion
Figure 1. Figure 1.

Renal potassium excretion plotted as a function of plasma potassium concentration under steady‐state conditions. Dogs were adrenalectomized and maintained on normal levels of intravenously infused aldosterone and methylprednisolone. [From Young 248 with permission.]

Figure 2. Figure 2.

Steady‐state relationships between plasma potassium and renal potassium excretion at three levels of aldosterone (Aldo) replacement. [From Young and Paulsen 255 with permission.]

Figure 3. Figure 3.

Three‐dimensional representation of the interaction between plasma potassium and aldosterone in affecting renal potassium excretion. [From Young and Paulsen 255 with permission.]

Figure 4. Figure 4.

Effect of aldosterone (Aldo) on potassium distribution. The relationship between exchangeable potassium (Ke) and plasma potassium (Kp) is rotated downward as the rate of aldosterone replacement is increased from normal (50 μg/day) to five times normal. [From Young and Jackson 252 with permission.]

Figure 5. Figure 5.

Effect of sodium intake on the relationship between plasma potassium concentration and potassium excretion. Increasing sodium intake shifts the relationship up and to the left so that a higher rate of potassium excretion at a given level of plasma potassium would be expected as sodium intake is elevated. [From Young et al. 253 with permission.]

Figure 6. Figure 6.

Three‐dimensional representation of normalized data obtained from Figure 5. Combined effects of sodium intake and plasma potassium on potassium excretion. [From Young et al. 253 with permission.]

Figure 7. Figure 7.

Aldosterone concentration (PAC) as a function of plasma potassium at three levels of angiotensin II infusion on the fifth day of infusion. [From Young et al. 256 with permission.]

Figure 8. Figure 8.

Three‐dimensional presentation of the interaction between normalized angiotensin II concentration and plasma potassium in stimulating aldosterone. Data were obtained from those presented in Figure 7. [From Young et al. 256 with permission.]

Figure 9. Figure 9.

Simulated regulation of plasma potassium concentration over combined ranges of potassium and sodium intake under normal conditions. Grid lines on surface are in increments of 0.25 normalized units. Intake ranges simulated were from 0.25 to 4.0 normal. [From Young 251 with permission.]

Figure 10. Figure 10.

Simulated regulation of plasma potassium concentration over combined ranges of potassium and sodium intake with aldosterone concentration fixed at normal level. Therefore, this surface represents simulated potassium regulation in the absence of feedback regulation of aldosterone levels. Quantitative value of aldosterone in potassium regulation can be appreciated visually by comparing potassium regulation surfaces in this figure with those in Figure 9, in which aldosterone feedback control was normal. [From Young 251 with permission.]



Figure 1.

Renal potassium excretion plotted as a function of plasma potassium concentration under steady‐state conditions. Dogs were adrenalectomized and maintained on normal levels of intravenously infused aldosterone and methylprednisolone. [From Young 248 with permission.]



Figure 2.

Steady‐state relationships between plasma potassium and renal potassium excretion at three levels of aldosterone (Aldo) replacement. [From Young and Paulsen 255 with permission.]



Figure 3.

Three‐dimensional representation of the interaction between plasma potassium and aldosterone in affecting renal potassium excretion. [From Young and Paulsen 255 with permission.]



Figure 4.

Effect of aldosterone (Aldo) on potassium distribution. The relationship between exchangeable potassium (Ke) and plasma potassium (Kp) is rotated downward as the rate of aldosterone replacement is increased from normal (50 μg/day) to five times normal. [From Young and Jackson 252 with permission.]



Figure 5.

Effect of sodium intake on the relationship between plasma potassium concentration and potassium excretion. Increasing sodium intake shifts the relationship up and to the left so that a higher rate of potassium excretion at a given level of plasma potassium would be expected as sodium intake is elevated. [From Young et al. 253 with permission.]



Figure 6.

Three‐dimensional representation of normalized data obtained from Figure 5. Combined effects of sodium intake and plasma potassium on potassium excretion. [From Young et al. 253 with permission.]



Figure 7.

Aldosterone concentration (PAC) as a function of plasma potassium at three levels of angiotensin II infusion on the fifth day of infusion. [From Young et al. 256 with permission.]



Figure 8.

Three‐dimensional presentation of the interaction between normalized angiotensin II concentration and plasma potassium in stimulating aldosterone. Data were obtained from those presented in Figure 7. [From Young et al. 256 with permission.]



Figure 9.

Simulated regulation of plasma potassium concentration over combined ranges of potassium and sodium intake under normal conditions. Grid lines on surface are in increments of 0.25 normalized units. Intake ranges simulated were from 0.25 to 4.0 normal. [From Young 251 with permission.]



Figure 10.

Simulated regulation of plasma potassium concentration over combined ranges of potassium and sodium intake with aldosterone concentration fixed at normal level. Therefore, this surface represents simulated potassium regulation in the absence of feedback regulation of aldosterone levels. Quantitative value of aldosterone in potassium regulation can be appreciated visually by comparing potassium regulation surfaces in this figure with those in Figure 9, in which aldosterone feedback control was normal. [From Young 251 with permission.]

References
 1. Ahmad, M., and R. M. Medford. Evidence for the regulation of Na+, K+‐ATPase alpha 1 gene expression through the interaction of aldosterone and cAMP‐inducible transcriptional factors. Steroids 60: 147–152, 1995.
 2. Al Awqati, Q.. Effect of aldosterone on the coupling between H+ transport and glucose oxidation. J. Clin. Invest. 60: 1240–1247, 1977.
 3. Angeli, M., A. M., Moura, and M. Worcel. Interaction between aldosterone and vasopressin on vascular smooth muscle permeability to sodium. J. Steroid Biochem. 30: 477–478, 1988.
 4. Asher, C., and H. Garty. Aldosterone increases apical Na+ permeability of toad bladder by two different mechanisms. Proc. Natl. Acad. Sci. U.S.A. 85: 7413–7417, 1988.
 5. Barlet, C., and A. Doucet. Triiodothyronine enhances renal response to aldosterone in the rabbit collecting tubule. J. Clin. Invest. 79: 629–631, 1987.
 6. Barlet‐Bas, C., and A. Doucet. Aldosterone and sodium induce kidney Na+, K+‐ATPase in vitro by two different mechanisms. Prog. Clin. Biol. Res. 268B: 339–344, 1988.
 7. Barlet‐Bas, C., C. Khadouri, S. Marsy, and A. Doucet. Sodium‐independent in vitro induction of Na+, K+‐ATPase by aldosterone in renal target cells: permissive effect of triiodothyronine. Proc. Natl. Acad. Sci. U.S.A. 85: 1707–1711, 1988.
 8. Barlow, R. J., M. A., Connell, B. J. Levendig, S. S. Gear, and F. J. Milne. A comparative study of urinary sodium and potassium excretion in normotensive urban black and white South African males. S. Afr. Med. J. 62: 939–941, 1982.
 9. Beauwens, R., V., Beaujean, M. Zizi, M. Rentmeesters, and J. Crabbe. Increased chloride permeability of amphibian epithelia treated with aldosterone. Pflugers Arch. 407: 620–624, 1986.
 10. Benediktsson, R., B. R., Walker, and C. R. Edwards. Cellular selectivity of aldosterone action: role of 11 beta‐hydroxysteroid dehydrogenase. Curr. Opin. Nephrol. Hypertens. 4: 41–46, 1995.
 11. Benos, D. J., C. M., Fuller, V. G. Shlyonsky, B. K. Berdiev, and I. I. Ismailov. Amiloride‐sensitive Na+ channels: insights and outlooks. News Physiological Sci 12: 55–61, 1997.
 12. Beron, J., L., Mastroberardino, A. Spillman, and F. Verrey. Aldosterone modulates sodium kinetics of Na+, K+‐ATPase containing an alpha 1 subunit in A6 kidney cell epithelia. Mol. Biol. Cell. 6: 261–267, 1995.
 13. Beron, J., and F. Verrey. Aldosterone induces early activation and late accumulation of Na+, K+‐ATPase at surface of A6 cells, Am. J. Physiol. 266 (Cell Physiol. 35): C1278–1290, 1994.
 14. Bia, M. J., and R. A. DeFronzo. Extrarenal potassium homeostasis. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F257–F268, 1981.
 15. Bia, M. J., D., Lu, K. Tyler, and R. A. DeFronzo. β‐Adrenergic control of extrarenal potassium disposal—a β2 mediated phenomenon. Nephron 43: 117–122, 1986.
 16. Biagi, B., T., Kubota, M. Sohtell, and G. Giebisch. Intracellular potentials in rabbit proximal tubules perfused in vitro. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F200–F210, 1981.
 17. Bindels, R. J., A. M., Enggersen, A. Hartog, and B. L. Blazer‐Yost. Aldosterone‐induced proteins in primary cultures of rabbit renal cortical collecting system. Biochim. Biophys. Acta 1284: 63–68, 1996.
 18. Blazer‐Yost, B. L., Y., Fesseha, and M. Cox. Aldosterone‐mediated Na+ transport in renal epithelia: time‐course of induction of a potential regulatory component of the conductive Na+ channel. Biochem. Int. 26: 887–892, 1992.
 19. Blevins, R. D., A. J., Whiffy, M. Rubenfire, and J. J. Maciejko. Dopamine and dobutamine induce hypokalemia in anesthetized dogs. J. Cardiovasc. Pharmacol. 13: 662–666, 1989.
 20. Bloomer, H. A., F. C. Rector, Jr., and D. W., Seldin. The mechanism of potassium reabsorption in the proximal tubule of the rat. J. Clin. Invest. 42: 227–285, 1963.
 21. Blot‐Chabaud, M., F., Jaisser, J. P. Bonvalet, and N. Farman. Effect of cell sodium on Na+, K+‐ATPase‐dependent sodium efflux in cortical collecting tubule of rabbits under different aldosterone status. Biochim. Biophys. Acta 1022: 126–128, 1990.
 22. Blot‐Chabaud, M., F., Wanstok, J. P. Bonvalet, and N. Farman. Cell sodium‐induced recruitment of Na+, K+‐ATPase pumps in rabbit cortical collecting tubules is aldosterone‐dependent. J. Biol. Chem. 265: 11676–11681, 1990.
 23. Brilla, C. G., G., Zhou, L. Matsubara, and K. T. Weber. Collagen metabolism in cultured adult cardiac fibroblasts: response to angiotensin II and aldosterone. J. Mol. Cell. Cardiol. 26: 809–820, 1994.
 24. Broillet, M. C., A., Berger, and J. D. Horisberger. Early effects of aldosterone on the basolateral potassium conductance in A6 cells. Pflugers Arch. 424: 91–93, 1993.
 25. Brown, M. J., D. C., Brown, and M. B. Murphy. Hypokalemia from β2‐receptor stimulation by circulating epinephrine. N. Engl. J. Med. 309: 1414–1419, 1983.
 26. Campbell, S. E., J. S., Janicki, and K. T. Weber. Temporal differences in fibroblast proliferation and phenotype expression in response to chronic administration of angiotensin II or aldosterone. J. Mol. Cell. Cardiol. 27: 1545–1560, 1995.
 27. Canessa, C. M., L., Schile, G. Buell, B. Thoreus, I. Gantschi, J. D. Horisberger, and B. C. Rossier. Amiloride‐sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463–467, 1994.
 28. Christ, M., K., Douwes, C. Eisen, G. Bechtner, K. Theisen, and M. Wehling. Rapid effects of aldosterone on sodium transport in vascular smooth muscle cells. Hypertension 25: 117–123, 1995.
 29. Christ, M., C., Meyer, K. Sippel, and M. Wehling. Rapid aldosterone signaling in vascular smooth muscle cells: involvement of phospholipase C, diacylglycerol and protein kinase C alpha. Biochem. Biopbys. Res. Commun. 213: 123–129, 1995.
 30. Civan, M. M., A., Oler, K. Peterson‐Yantorno, K. George, and T. G. O'Brien. Ca2+‐independent form of protein kinase C may regulate Na+ transport across frog skin. J. Membr. Biol. 121: 37–50, 1991.
 31. Clauss, W.. Segmental action of aldosterone on water and electrolyte transport across rabbit colon in vivo. Comp. Biochem. Physiol. A Physiol. 81: 873–877, 1985.
 32. Clauss, W., B., Hoffmann, R. Krattenmacher, and W. Van Driessche. Current‐noise analysis of Na absorption in the embryonic coprodeum: stimulation by aldosterone and thyroxine. Am. J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 34): R1100–R1108, 1993.
 33. Cofre, G., and J. Crabbe. Stimulation of active sodium transport by the isolated colon of the toad, Bufo marinus. Nature 207: 1299–1300, 1965.
 34. Cooper, G. J., and M. Hunter,. role of de novo protein synthesis and calmodulin in rapid activation of Na+, H+‐exchange of aldosterone in frog diluting segment. J. Physiol. (Lond.) 491: 219–223, 1996.
 35. Cortas, N., E., Abras, and M. Walser. Aldosterone response in turtle bladder is associated with an increase in ATP. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F512–F514, 1983.
 36. Courty, N., N., Farman, J. P. Bonvalet, and M. Blot‐Chabaud. Synergistic action of vasopressin and aldosterone on basolateral Na+, K+‐ATPase in the cortical collecting duct. J. Membr. Biol. 145: 99–106, 1995.
 37. Crabbe, J., V., Beaujean, and O. Devuyst. Stimulation by aldosterone of a conductive chloride pathway in toad skin. Biol. Cell 66: 173–177, 1989.
 38. Crabbe, J., and W. Nagel. Analysis of cellular reaction to glucose of toad skin treated with aldosterone. Pflugers Arch. 393: 130–132, 1982.
 39. Cushman, W. C., and H. G. Langford. Urinary electrolyte differences in black and white hypertensives [abstract]. Clin. Sci. 31: 843A, 1983.
 40. DeFronzo, R. A., P., Felig, E. Ferrannini, and J. Wahren. Effect of graded doses of insulin on splanchnic and peripheral potassium metabolism in man. Am. J. Physiol. 238 (Endocrinol. Metab. 1): E421–E427, 1980.
 41. DeFronzo, R. A., R. S., Sherwin, M. Dillingham, R. Hendler, W. V. Tamborlane, and P. Felig. Influence of basal insulin and glucagon secretion on potassium and sodium metabolism. J. Clin. Invest. 61: 472–479, 1978.
 42. Denton, D., Hunger for salt, an anthropological, physiological, and medical analysis. New York: Springer‐Verlag, 1982, p. 573–575.
 43. DeWeer, P., and J. Crabbe. The role of nucleic acids in the sodium‐retaining action of aldosterone. Biochim. Biophys. Acta 155: 280–289, 1968.
 44. Doi, Y., and Y. Marunaka. Amiloride‐sensitive and HCO3‐‐dependent ion transport activated by aldosterone and vasotocin in A6 cells. Am. J. Physiol. 268 (Cell Physiol. 37): C762–C770, 1995.
 45. Doolan, C. M., and B. J. Harvey. Modulation of cytosolic protein kinase C and calcium ion activity by steroid hormones in rat distal colon. J. Biol. Chem. 271: 8763–8767, 1996.
 46. Duchatelle, P., A., Ohara, B. N. Ling, A. E. Kemendy, K. E. Kokko, P. S. Matsumoto, and D. C. Eaton. Regulation of renal epithelial sodium channels. Mol. Cell. Biochem. 114: 27–34, 1992.
 47. Eaton, S. B., and M. Konner. Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 312: 283–289, 1985.
 48. Edmonds, C. J., and C. L. Willis. Aldosterone and thyroid hormone interaction on sodium and potassium transport pathways of rat colonic epithelium. J. Endocrinol. 124: 47–52, 1990.
 49. Eiam‐Ong, S., N. A., Kurtzman, and S. Sabatini. Regulation of collecting tubule adenosine triphosphatases by aldosterone and potassium. J. Clin. Invest. 91: 2385–2392, 1993.
 50. El Mernissi, G., C. Barlet‐Bas, C. Khadouri, L. Cheval, S. Marsy, and A. Doucet. Short‐term effect of aldosterone on vasopressin‐sensitive adenylate cyclase in the rat collecting tubule. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F821–F826, 1993.
 51. El Mernissi, G., and A. Doucet. Short‐term effects of aldosterone on renal sodium transport and tubular Na+, K+‐ATPase in the rat. Pflugers Arch. 399: 139–146, 1983.
 52. El Mernissi, G., and A. Doucet. Short‐term effects of aldosterone and dexamethasone on Na+, K+‐ATPase along the rabbit nephron. Pflugers Arch. 399: 147–151, 1983.
 53. Escoubet, B., C. Coureau, J. P. Bonvalet, and N. Farman. Noncoordinate regulation of epithelial Na channel and Na pump subunit mRNAs in kidney and colon by aldosterone. Am. J. Physiol. 272: C1482–C1491, 1997.
 54. Falchuk, M. Z., and G. W. Sharp. On the role of the tricarboxylic acid cycle in the stimulation of sodium transport by aldosterone. Biochim. Biophys. Acta 153: 706–714, 1968.
 55. Farman, N., J. P., Bonvalet, and J. R. Seckl. Aldosterone selectively increases Na+, K+‐ATPase alpha 3 subunit mRNA expression in rat hippocampus. Am. J. Physiol. 266 (Cell Physiol. 35): C423–C428, 1994.
 56. Fidelman, M. L., and C. O. Watlington. Insulin and aldosterone on Na+ and K+ transport in cultured kidney cells (A6). Endocrinology 115: 1171–1178, 1984.
 57. Fujii, Y., and A. I. Katz. Direct Na+, K+ pump stimulation by K+ in cortical collecting tubules: a mechanism for early renal K adaptation. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F279–F284, 1989.
 58. Fujii, Y., F., Takemoto, and A. I. Katz. Early effects of aldosterone on Na+, K+ pump in rat cortical collecting tubules. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F40–F45, 1990.
 59. Fuller, C. M., M. S., Awayda, M. P. Arrate, A. L. Bradford, R. G. Morris, C. M. Canessa, B. C. Rossier, and D. J. Benos. Cloning of a bovine renal epithelial channel subunit. Am. J. Physiol. 269 (Cell Physiol. 38): C641–C654, 1995.
 60. Fuller, C. M., and D. J. Benos. Triple‐barrel organization of ENaC, a cloned epithelial Na+ channel. J. Biol. Chem. 271: 807–816, 1996.
 61. Furuya, H., K., Tabei, S. Muto, and Y. Asano. Effect of insulin on potassium secretion in rabbit cortical collecting duct. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F30–F35, 1992.
 62. Garcia‐Filho, E., G., Malnic, and G. Giebisch. Effects of changes in electrical potential difference on tubular potassium transport. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F235–F246, 1980.
 63. Garty, H., I. S., Edelman, and B. Lindemann. Metabolic regulation of apical sodium permeability in toad urinary bladder in the presence and absence of aldosterone. J. Membr. Biol. 74: 15–24, 1983.
 64. Geering, K., M., Giradet, C. Bron, J. P. Kraehenbuhl, and B. C. Rossier. Hormonal regulation of Na+, K+‐ATPase biosynthesis in the toad bladder. Effect of aldosterone and 3,5,3′‐triiodo‐L‐thyronine. J. Biol. Chem. 257: 10338–10343, 1982.
 65. Geheb, M., R., Alvis, E. Hercker, and M. Cox, Mineralocorti‐coid‐specificity of aldosterone‐induced protein synthesis in giant toad (Bufo marinus) urinary bladders. 214: 29–35, 1983.
 66. Geheb, M., G., Huber, E. Hercker, and M. Cox. Aldosterone‐induced proteins in toad urinary bladders. Identification and characterization using two dimensional polyacrylamide gel electrophoresis. Biochem. J. 256: 11716–11723, 1981.
 67. Geiger, H., U., Bahner, M. Palkovits, E. Nicklas, C. Hugo, and A. Heidland. Effects of aldosterone and dexamethasone on a trial natrivretic peptide levels in pre optic and hypothalamic nuclei of adrenalectomized and intact rats. Neuroendocrinology 53: 63–68, 1991.
 68. Gesek, F. A.. Stimulation of alpha 2‐adrenergic receptors increases Na+, K+‐ATPase activity in distal convoluted tubule cells. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F561–F568, 1993.
 69. Gesek, F. A.. α2‐adrenergic receptors activate phospholipase C in renal epithelial cells. Mol. Pharmacol. 50: 407–414, 1996.
 70. Giebisch, G., Renal potassium transport. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1978, vol. IV A, p. 215–298.
 71. Giebisch, G. H., The proximal nephron. In: Physiology of Membrane Disorders, edited by T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil. New York: Plenum, 1978, p. 629–660.
 72. Giebisch, G. H., Cell models of potassium transport in the renal tubule. In: Current Topics in Membrane and Transport, edited by G. Giebisch. Orlando, FL: Academic, 1987, vol. 28, p. 133–183.
 73. Godoy, C. M., and S. Cukierman. Diacylglycerol‐induced activation of protein kinase C attenuates Na currents by enhancing inactivation from the closed state. Pflugers Arch. 429: 245–252, 1994.
 74. Good, D. W., and F. S. Wright. Luminal influences of potassium secretion: sodium concentration and fluid flow rate. Am. J. Physiol. 236: (Renal Fluid Electrolyte Physiol. 5): F192–F205, 1979.
 75. Grantham, J. J., C. M. Lowe, M. Dellasega, B. R. Cole. Effect of hypotonic medium on K and Na content of proximal renal tubules. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 3): F42–F49, 1977.
 76. Grin, C. E., F. C., Luft, J. Z. Miller, et al, Racial differences in blood pressure in Evans county Georgia: relationship to sodium and potassium intake and to plasma renin activity. J. Chronic Dis. 33: 87–94, 1980.
 77. Halevy, J., E. L., Boulpaep, H. J. Binder, and J. P. Hayslett. Aldosterone increases the maximum turnover rate of the sodium pump. Pflugers Arch. 410: 476–480, 1987.
 78. Halevy, J., M. E., Budinger, J. P. Hayslett, and H. J. Binder. Role of aldosterone in the regulation of sodium and chloride transport in the distal colon of sodium‐depleted rats. Gastroenterology 91: 1227–1233, 1986.
 79. Halm, D. R., and S. T. Halm. Aldosterone stimulated K+ secretion prior to onset of Na+ absorption in guinea pig distal colon. Am. J. Physiol. 266 (Cell Physiol. 35): C552–C558, 1994.
 80. Handler, J. A., A. S., Preston, and J. Orloff. The effect of aldosterone on glycolysis in the urinary bladder of the toad. J. Biol. Chem. 244: 3194–3199, 1969.
 81. Hayhurst, R. A., and R. G. O'Neil. Time‐dependent actions of aldosterone and amiloride on Na+, K+‐ATPase of cortical collecting duct. Am. J. Physiol. 254 (Cell Physiol. 32): F689–F696, 1988.
 82. Hiatt, J., L., Morgenstern, M. B. Davidson, G. Bonorris, and A. Miller. Role of insulin in the transfer of infused potassium to tissue. Harm. Metab. Res. 5: 84–88, 1973.
 83. Horisberger, J. D.. Early effects of aldosterone on apical and basolateral membrane conductances of TBM cells. Am. J. Physiol. 263 (Cell Physiol. 32): C384–C388, 1992.
 84. Hunter, M., A. G., Lopes, E. L. Boulpaep, and G. Giebisch. Single‐channel recordings of calcium‐activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc. Natl. Acad. Sci. U.S.A. 81: 4237–4239, 1984.
 85. Hutchinson, J. H., and G. A. Porter. Accelerated RNA turnover in toad urinary bladder epithelial cells during early aldosterone action. Physiol. Chem. Phys. 7: 453–464, 1975.
 86. Ikeda, U., R., Hyman, T. W. Smith, and R. M. Medford. Aldosterone‐mediated regulation of Na+, K+‐ATPase gene expression in adult and neonatal rat cardiocytes. J. Biol. chem. 266: 12058–12066, 1991.
 87. Ikeda, U., T. Kanbe, I. Nakayama, Y. Kawahara, M. Yoko‐yama, and K. Shimada. Aldosterone inhibits nitric oxide synthesis in rat vascular smooth muscle cells induced by interleukin 1 beta. Eur. J. Pharmacol. 290: 69–73, 1995.
 88. Illek, B., H., Fischer, and W. Clauss. Aldosterone regulation of basolateral potassium channels in alveolar epithelium. Am. J. Physiol. 259 (Lung Cell. Mol. Physiol. 28): L230–L237, 1990.
 89. Ismailov, I. I., M. S., Awayda, B. K. Berdiev, J. K. Bubisn, J. E. Lucas, C. M. Fuller and D. J. Benos. Triple‐barrel organization of ENaC, a cloned Epithelial Na+ channel. J. Biol. Chem. 271: 807–816, 1996.
 90. Ismailov, I. I., and D. J. Benos. Effects of phosphorylation on channel function. Kidney Int. 48: 1167–1179, 1995.
 91. Ismailov, I. I., J. H., McDuffie, S. Sariban‐Sohraby, J. P. Johnson, and D. J. Benos. Carboxyl methylation activates purified renal amiloride sensitive Na+ channels in planar lipid bilayers. J. Biol. Chem. 269: 22193–22197.
 92. Johnson, J. P., D. P., Jones, and W. P. Wiesmann. Hormonal regulation of Na+, K+‐ATPase in cultured epithelial cells. Am. J. Physiol. 251 (Cell Physiol. 20): C186–C190, 1986.
 93. Kashgarian, M., T., Ardito, D. H. Hirsch, and J. P. Hayslett. Response of collecting tubule cells to aldosterone and potassium loading. Am. J. Physiol. 253: (Renal Fluid Electrolyte Physiol. 22): F8–F14, 1987.
 94. Katz, A. I.. Renal Na–K‐ATPase: its role in tubular sodium and potassium transport. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F207–F219, 1982.
 95. Kemendy, A. E., T. R., Kleyman, and D. C. Eaton. Aldosterone alters the open probability of amiloride‐blockable sodium channel in A6 epithelia. Am. J. Physiol. 263 (Cell Physiol. 32): C825–C837, 1992.
 96. Khuri, R. N., M., Wiederholt, N. Strieder, and G. Giebisch. Effects of flow rate and potassium intake on distal tubular potassium transfer. Am. J. Physiol. 228: 1249–1261, 1975.
 97. Khuri, R., M., Wiederholt, N. Strieder, and G. Giebisch. Effects of graded solute diuresis on renal tubular sodium transport in the rat. Am. J. Physiol. 228: 1262–1268, 1975.
 98. Kirchberger, M. A. L. C. Chen, and G. W. Sharp. Further studies on the effect of aldosterone on glucose metabolism in toad bladder. Biochem. Biophys. Acta. 241: 861–875, 1971.
 99. Kirchberger, M. A. D. G. Martin, A. Leaf, and G. W. Sharp. The effect of aldosterone on glucose metabolism in toad bladder. Biochem. Biopbys. Acta. 165: 22–31, 1968.
 100. Klaerke, D. A., H. Wiener, T. Zeuthen, and P. L. Jorgensen. Regulation of Ca2+‐activated K+ channel from distal colon by phosphorylation and dephosphorylation. J. Membr. Biol. 151: 11–18, 1996.
 101. Klein, M., R. F., Stupisnski, S. Nettler, T. Smith, and G. Oshiro. Comparison of the effects of cetamolol and atenolol on epinephrine‐ and isoproterenol‐induced hypokalemia in anesthetized dogs. J. Cardiovasc. Pharmacol. 13: 118–124, 1989.
 102. Kleyman, T. R., B., Coupaye‐Gerard, and S. A. Ernst. Aldosterone does not alter apical cell surface expression of epithelial Na+ channels in the amphibian A6 cell line. J. Biol. Chem. 267: 9622–9628, 1992.
 103. Koeppen, B., and G. Giebisch. Cellular electrophysiology of potassium transport in the mammalian cortical collecting tubule. Pflugers Arch. 405: 5143–5146, 1985.
 104. Koeppen, B. M., K. W., Beyenbach, and S. I. Helmann. Single‐channel currents in renal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F380–F384, 1984.
 105. Koeppen, B. M., B. A., Biagi, and G. H. Giebisch. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F35–F47, 1983.
 106. Koeppen, B. M., and G. Giebisch, Mineralocorticoid regulation of sodium and potassium transport by the cortical collecting duct. In: Society of General Physiology Series. Regulation and Development of Membrane Transport Processes, edited by J. S. Graves New York: Wiley, 1984, p. 89–104.
 107. Kohler, W., S., Bertschin, T. Woodtli, T. Resink, and P. Erne. Does aldosterone‐induced cardiac fibrosis involve direct effects of cardiac fibroblasts. J. Vasc. Res. 33: 315–326, 1996.
 108. Kokko, K. E., P. S., Matsumoto, B. N. Ling, and D. C. Eaton. Effects of prostaglandin E2 on amiloride‐blockable Na+ channels in a distal nephron cell line (A6). Am. J. Physiol. 267 (Cell Physiol. 36): C1414–C1425, 1994.
 109. Koren, W., I. Y., Postnov, and Y. V. Postnov. Increased Na+,H+‐exchange in red blood cells of patients with primary hyperaldosteronism. Hypertension 29: 587–589, 1997.
 110. Korichneva, P., M. Puceat, E. Millanvoye‐Van Brussel, G. Geraud, and G. Vassort. Aldosterone modulated both Na+, H+‐antiport and Cl‐, HCO3‐‐exchanger in cultured neonatal rat cardiac cells. J. Mol. Cell. Cardiol. 27: 2521–2528, 1995.
 111. Kurihara, K., S., Maruyama, K. Hosoi, S. Sato, T. Ueha, and E. W. Gresik. Regulation of Na+, K+‐ATPase in submandibular glands of hypophysectomized male mice by steroid and thyroid hormones. J. Histochem. Cytochem. 44: 703–711, 1996.
 112. Langford, H. G., and R. L. Watson, Electrolytes and hypertension in epidemiology and control of hypertension. In: Epidemiology and Control of Hypertension, edited by O. Paul. New York: Stratton, 1975, p. 119.
 113. Leal, T., and J. Crabbe. Effects of aldosterone on Na+, K+‐ATPase of amphibian sodium‐transporting epithelial cells (A6) in culture. J. Steroid Biochem. 34: 581–584, 1989.
 114. Lewis, S. A.. Control of Na+ and water absorption across “tight” epithelia by ADH and aldosterone. J. Exp. Biol. 106: 9–24, 1983.
 115. Lewis, S. A., D. C., Eaton, and J. M. Diamond. The mechanism of Na+ transport by rabbit urinary bladder. J. Membr. Biol. 28: 41–70, 1976.
 116. Ling, B. N., K. E., Kokko, and D. C. Eaton. Inhibition of apical Na+ channels in rabbit cortical collecting tubules by basolateral prostaglandin E2 is modulated by protein kinase C. J. Clin. Invest. 90: 1328–1334, 1992.
 117. Lytton, J., M., Westlin, and M. R. Hanley. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca2+ ATPase family of calcium pumps. J. Biol. Chem. 266: 17067–17071, 1991.
 118. Madsen, K. M., and C. C. Tisher. Cellular response to acute respiratory acidosis in rat medullary collecting duct. Am J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F670–F679, 1983.
 119. Madsen, K. M., and C. C. Tisher. Structural‐functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1–F15, 1986.
 120. Malnic, G., R. M., Klose, and G. Giebisch. Micropuncture study of renal potassium excretion in the rat. Am. J. Physiol. 206: 674–686, 1964.
 121. Malnic, G., R. M., Klose, and G. Giebisch. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am. J. Physiol. 211: 529–547, 1966.
 122. Manuli, M. A., and I. S. Edelman. Effect of high extracellular K+ on Na+, K+‐ATPase in cultured canine kidney cells. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F227–F232, 1990.
 123. Marsh, D. J., K. J., Ullrich, and G. Rumrich. Micropuncture analysis of the behavior of potassium ions in rat renal cortical tubules. Pflugers Arch. 277: 107–119, 1963.
 124. Marver, D. J., and J. P. Kokko. Renal target sites and the mechanism of action of aldosterone. Miner. Electrolyte Metab. 9: 1–18, 1983.
 125. McCabe, R. D., H. J., Cooke, and L. P. Sullivan. Potassium transport by rabbit descending colon. Am. J. Physiol. 242 (Cell Physiol. 11): C81–C86, 1982.
 126. McCabe, R. D., M. J., Smith, and T. M. Dwyer. Faecal dry weight and potassium are related to faecal sodium and plasma aldosterone in rats chronically fed varying amounts of sodium or potassium chlorides. Br. J. Nutr. 72: 325–337, 1994.
 127. McCabe, R. D., P. L., Smith, and L. P. Sullivan. Ion transport by rabbit descending colon: mechanisms of transepithelial potassium transport. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G594–G602, 1984.
 128. McMahon, E. G., and A. W. Jones. Altered chloride transport in arteries from aldosterone salt‐hypertensive rats. J. Hypertens. 6: 593–599, 1988.
 129. Menard, M. R., and S. M. Friedman. Direct measurement of sodium influx in vascular smooth muscle. Stimulation by aldosterone. Hypertension 7: 873–878, 1985.
 130. Meyer, C., M., Christ, and M. Wehling. Characterization and solubilization of novel aldosterone binding proteins in porcine liver microsomes. Eur. J. Biochem. 229: 736–740, 1995.
 131. Minuth, W. W., U., Steckelings, and P. Gross. Methylation of cytosolic proteins may be a possible biochemical pathway of early aldosterone action in cultured renal collecting duct cells. Differentiation 36: 23–34, 1987.
 132. Minuth, W. W., M., Struck, M. Zwanzig, and P. Gross. Action of aldosterone on citrate synthase in cultured renal collecting duct cells. Ren. Physiol. Biochem. 12: 85–95, 1989.
 133. Minuth, W. W., M., Zwanzig, and P. Gross. Action of aldosterone on protein expression in cultured collecting duct cells from neonatal rabbit kidney. Ren. Physiol. Biochem. 12: 213–227, 1989.
 134. Mishra, R. K., J. F., Wheldrake, and L. A. Feltham. Aldosterone stimulated aggregate RNA polymerase in rat kidney. FEBS Lett. 24: 106–108, 1972.
 135. Mohrmann, M., H. F., Cantiello, and D. A. Ausiello. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase C, and pertussis toxin. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F372–F376, 1987.
 136. Morel, F.. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F159–F164, 1981.
 137. Moura, A. M., M., Angeli, and M. Worcel. Arterial smooth muscle effects of aldosterone and vasopressin: action on ionic fluxes. J. Steroid Biochem. 24: 427–429, 1986.
 138. Nagel, W., and U. Katz. The effect of aldosterone on sodium transport and membrane conductances in toad skin (Bufo viridis). Pflugers Arch. 418: 319–324, 1991.
 139. Nash, F. D., H. H., Rostorfer, M. D. Bailie, R. L. Wathen, and E. G. Schneider. Renin release, relation to renal sodium load and dissociation from hemodynamic changes. Circ. Res. 22: 473–478, 1968.
 140. Nelson, J. A., and R. B. Nechay. Interaction of ouabain and K in vivo with respect to renal adenosine triphosphatase activity and Na reabsorption. J. Pharmacol. Exp. Ther. 176: 558–562, 1971.
 141. Niki, I., F. M., Ashcroft, and S. J. H. Ashcroft. The dependence on intracellular ATP concentration of ATP‐sensitive K+ channels and Na+,K+‐ATPase in intact HIT‐T15b‐cells. FEBS Lett. 257: 361–364, 1989.
 142. Oberleithner, H., U., Kersting, and B. Gassner. Aldosterone‐controlled linkage between Na+,H+‐exchange and K channels in fused renal epithelial cells. Ciba Found. Symp. 139: 201–219, 1988.
 143. Oberleithner, H., W., Steigner, S. Silbernagl, U. Vogel, G. Gstraunthaler, and W. Pfaller. Madin‐Darby canine kidney cells. III. Aldosterone stimulates and apical H+,K+‐pump. Pflugers Arch. 416: 540–547, 1990.
 144. Oberleithner, H., U., Vogel, U. Kersting, and W. Steigner. Madin‐Darby canine kidney cells. II. Aldosterone stimulates Na+,H+ and Cl‐, HCO3‐‐exchange. Pflugers Arch. 416: 533–539, 1990.
 145. Oberleithner, H., M., Weight, H. J. Westphale, and W. Wang. Aldosterone activates Na, H‐exchange and raises cytoplasmic pH in target cells of the amphibian kidney. Proc. Natl. Acad. Sci. U.S.A. 84: 1464–1468, 1987.
 146. Oguchi, A., U., Ikeda, T. Kanbe, Y. Tsuruya, K. Yamamoto, K. Kawakami, R. M. Medford, and K. Shimada. Regulation of Na+,K+‐ATPase gene expression by aldosterone in vascular smooth muscle cells. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H1167–H1172, 1993.
 147. Ohtomo, Y., B., Meister, T. Hokfelt, and A. Aperia. Coexisting NPY and NE synergistically regulate renal tubular Na+,K+‐ATPase activity. Kidney Int. 45: 1606–1613, 1994.
 148. Okada, K., S., Ishikawa, and T. Saito. Potentiation by aldosterone of vasopressin‐induced calcium kinetics in vascular smooth muscle cells. Clin. Exp. Pharmacol. Physiol. 18: 643–648, 1991.
 149. O'Neil, R. G.. Voltage‐dependent interaction of barium and cesium with the potassium conductance of the cortical collecting duct apical cell membrane. J. Membr. Biol. 74: 165–173, 1983.
 150. O'Neil, R. G.. Aldosterone regulation of sodium and potassium transport in the cortical collecting tubule. Semin. Nephrol. 10: 365–374, 1990.
 151. O'Neil, R. G., and E. L. Boulpaep. Effect of amiloride on the apical cell membrane cation channels of a sodium‐absorbing, potassium‐secreting renal epithelium. J. Membr. Biol. 50: 365–387, 1979.
 152. Oy, Y., P. R., Smith, A. L. Bradford, D. Keeton, and D. J. Benos. Regulation of phosphorylation of purified epithelial Na channels in planar lipid bilayers. Am. J. Physiol. 265 (Cell Physiol. 34): C85–C91, 1993.
 153. Paccolat, M. P., K., Geering, H. P. Gaeggeler, and B. C. Rossier. Aldosterone regulation of Na+ transport and Na+,K+‐ATPase in A6 cells: role of growth conditions. Am. J. Physiol. 252 (Cell Physiol. 21): C468–C476, 1987.
 154. Pacha, J., G., Frindt, L. Antonian, R. B. Silver, and L. G. Palmer. Regulation of Na+ channels of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102: 25–42, 1993.
 155. Pacha, J., I., Pohlova, and Z. Zemanova. Hypothyroidism affects the expression of electrogenic amiloride‐sensitive sodium transport in rat colon. Gastroenterology 111: 1551–1557, 1996.
 156. Palmer, L. G., L., Antonian, and G. Frindt. Regulation of the Na+,K+ pump of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102: 43–57, 1993.
 157. Palmer, L. G., and G. Frindt. Amiloride‐sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc. Natl. Acad. Sci. U.S.A. 83: 2767–2770, 1987.
 158. Palmer, L. G., and N. Speez. Stimulation of apical Na+ permeability and basolateral Na+ pump of toad urinary bladder by aldosterone. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F273–F281, 1986.
 159. Pan, Y. J., and D. B. Young. Experimental aldosterone hypertension. Hypertension 4: 279–287, 1982.
 160. Park, C. S., and I. S. Edelman. Effect of aldosterone on abundance and phosphorylation kinetics of Na+,K+‐ATPase of toad urinary bladder. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F509–F516, 1984.
 161. Patterson, D. J.. Antiarrhythmic mechanisms during exercise. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 80: 1853–1862, 1996.
 162. Pellanda, A. M., H. P. Gaeggeler, J. D. Horisberger, and B. C. Rossier. Sodium‐independent effect of aldosterone on initial rate of ouabain binding in A6 cells. Am. J. Physiol. 262 (Cell Physiol. 31): C899–C906, 1992.
 163. Perrone, R. D., and S. L. Jenks. Suppression of coupled NaCl absorption by aldosterone and dexamethasone in rat distal colon in vitro. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F785–F793, 1984.
 164. Perrone, R. D., and D. E. McBride. Aldosterone and PCO2 enhance rubidium absorption in rat distal colon. Am. J. Physiol. 254 (Gastrointest. Liver Physiol. 17): G898–G906, 1988.
 165. Perrone, R. D., and D. E. McBride. Aldosterone and PCO2 enhance K+‐dependent chloride absorption in rat distal colon. Pflugers Arch. 416: 632–638, 1990.
 166. Perrone, R. D., J. P., Nye, D. E. McBride, D. J. Zahniser, J. J. Geyer, and A. A. Ucci. Aldosterone induces apical vesicles in rat distal colon. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F65–F71, 1990.
 167. Pettit, G. W., and R. L. Vick. Contribution of pancreatic insulin to extrarenal potassium homeostasis: a two‐compartment model. Am. J. Physiol. 266: 319–324, 1994.
 168. Petzel, D., M. B., Ganz, E. J. Nestler, J. J. Lewis, J. Goldenring, F. Akcicek, and J. P. Hayslett. Correlates of aldosterone‐induced increases in Cai2+ and ISC suggest that Cai2+ is the second messenger for stimulation of apical membrane conductance. J. Clin. Invest. 89: 150–156, 1992.
 169. Pratt, R. D., and J. P. Johnson. Thyroid hormone. Aldosterone antagonism in cultured epithelial cells. Biochim. Biophys. Acta 805: 405–411, 1984.
 170. Pressley, T. A., F., Ismail‐Beigi, G. G. Gick, and I. S. Edelman. Increased abundance of Na+,K+‐ATPase mRNAs in response to low external K. Am. J. Physiol. 255 (Cell Physiol. 24): C252–C260, 1988.
 171. Proverbio, F., and G. Whittembury. Cell electrical potential during enhanced Na extrusion in guinea‐pig cortex slices. J. Physiol. (London) 250: 559–578, 1975.
 172. Record, R. D., M., Johnson, S. Lee, and B. L. Blazer‐Yost. Aldosterone and insulin stimulate amiloride‐sensitive sodium transport in A6 cells by additive mechanisms. Am. J. Physiol. 271 (Cell Physiol. 40): C1079–1084, 1996.
 173. Rector, F. C., Jr., H. A. Bloomer, and D. W. Seldin. Proximal tubular reabsorption of potassium during mannitol diuresis in rats. J. Lab. Clin. Med. 63: 100–105, 1964.
 174. Reich, I. M., I. A., Skipski and W. N. Scott. Mechanisms of hormonal modulation of ion transport in the toad's urinary bladder. Subcellular localization of aldosterone‐induced proteins. Biochim. Biophys. Acta. 676: 379–385, 1981.
 175. Reid, J. L., K. F., Whyte, and A. D. Struthers. Epinephrine‐induced hypokalemia: the role of beta adrenoceptors. Am. J. Cardiol. 57: 23F–27F, 1986.
 176. Rick, R., G., Spancken, and A. Dorge. Differential effects of aldosterone and ADH on intracellular electrolytes in toad urinary bladder epithelium. J. Membr. Biol. 101: 275–282, 1988.
 177. Robert, V., J. S., Silvestre, D. Charlemagne, A. Sabri, P. Trouve, M. Wassef, B. Swynghedauw, and C. Delcayre. Biological determinants of aldosterone‐induced cardiac fibrosis in rats. Hypertension 26: 971–978, 1995.
 178. Roden, M., H., Plass, H. Vierhapper, and K. Turnheim. Endothelin 1 stimulates chloride and potassium secretion in rabbit descending colon. Pflugers Arch. 421: 163–167, 1992.
 179. Rodriguez‐Commes, J., C., Isales, L. Kalghati, J. Gasalla‐Herraiz, and J. P. Hayslett. Mechanism of insulin‐stimulated electrogenic sodium transport. Kidney Int. 46: 666–674, 1994.
 180. Rokaw, M. D., D. J., Benos, P. M. Palevsky, S. A. Cunningham, M. E. West, and J. P. Johnson. Regulation of a sodium channel‐associated G protein by aldosterone. J. Biol. Chem. 271: 4491–4496, 1996.
 181. Rossier, B.C., M., Claire, M. E. Rafestin‐Oblin, H. P. Gaeggeler, and K. Geering. Effects of thyroid hormones and aldosterone on mineralocorticoid binding sites in the toad bladder. J. Membr. Biol. 77: 25–32, 1984.
 182. Rossier, B. C., P. A., Wilce, J. F. Inciardi, F. K. Yoshimura, and I. S. Edelman. Effects of 3′‐deoxycytidine on rRNA synthesis in toad bladder: analysis of response to aldosterone. Am. J. Physiol. 232 (Cell Physiol. 1): C174–C179, 1977.
 183. Rousseau, G., and J. Crabbe. Stimulation par l'aldosterone du RNA rapidement marque dans la vessie de crapaud “Bufo marinus”. Arch. Int. Physiol. Biochim. 75: 892–893, 1967.
 184. Sandle, G. I., F., McGlone, and R. J. Davis. Electrophysiology of rat distal colon after partial nephrectomy. Implications for K transport. Pflugers Arch. 412: 172–182, 1988.
 185. Sansom, S. C., S., Angulian, S. Muto, V. Illig, G. Giebisch. K activity of CCD principal cells from normal and DOCA‐treated rabbits. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F136–142, 1989.
 186. Sansom, S. C., and R. G. O'Neil. Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F858–F868, 1985.
 187. Santella, L., and E. Carafoli. Calcium signaling in the cell nucleus. FASEB J. 11: 1091–1109, 1997.
 188. Sariban‐Sohraby, S., M., Burg, W. P. Wiesmann, P. K. Chiang, and J. P. Johnson. Methylation increases sodium transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science 225: 745–746, 1984.
 189. Sariban‐Sohraby, S., R. S., Fisher, and M. Abramow. Aldosterone‐induced GTP‐stimulated methylation of a 90 kDa polypeptide in the apical membrane of A6 epithelia. J. Biol. Chem. 268: 26613–26617, 1993.
 190. Sariban‐Sohraby, S., M., Mies, M. Abramow, and R. S. Fisher. Aldosterone stimulation of GTP hydrolysis in membrane of renal epithelia. Am. J. Physiol. 268 (Cell Physiol. 37): C557–C562, 1995.
 191. Schiffrin, E. L., D. L., Franks, and J. Gutkowska. Effect of aldosterone on vascular angiotesin II receptors in the rat. Can. J. Physiol. Pharmacol. 63: 1522–1527, 1985.
 192. Schlatter, E.. Antidiuretic hormone regulation of electrolyte transport in the distal nephron. Ren. Physiol. Biochem. 12: 65–84, 1989.
 193. Schulman, G., R., Lindemeyer, A. Barman, S. Karnik, and C. P. Bastl. Atrial natriuretic peptide inhibits mineralocorticoid receptor function in rat colonic surface cells. J. Clin. Invest. 98: 157–166, 1996.
 194. Shahedi, M., K., Laborde, L. Bussieres, and C. Sachs. Acute and early effects of aldosterone on Na+, K+‐ATPase activity in Madin‐Darby canine kidney epithelial cells. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F1021–F1026, 1993.
 195. Sharp, G. W., C. H., Coggins, N. S. Liechtenstein, and A. Leaf. Evidence for a mucosal effect of aldosterone on sodium transport in the toad bladder. J. Clin. Invest. 45: 1640–1647, 1966.
 196. Sharp, G. W., and A. Leaf. Metabolic requirements for active sodium transport stimulated by aldosterone. J. Biol. Chem. 240: 4816–4821, 1965.
 197. Sharp, G. W., N. S., Liechtenstein, and A. Leaf. Acetylcoenzyme A requirement for the stimulation of sodium of transport by aldosterone. Biochim. Biophys. Acta 111: 329–331, 1965.
 198. Smith, M., H. F., Drake, D. R. Corfield, and T. Treasure. The effects of beta blockade on dopamine and dobutamine induced hypokalemia in dogs. Intensive Care Med. 15: 452–457, 1989.
 199. Smith, P. L., and R. D. McCabe. Mechanism and regulation of transcellular potassium transport by the colon. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G445–G456, 1984.
 200. Smith, P. L., and R. D. McCabe. Potassium secretion by rabbit descending colon: effects of adrenergic stimuli. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G432–G439, 1986.
 201. Smith, P. L., S. K., Sullivan, and R. D. McCabe, Potassium absorption and secretion by the intestinal epithelium. In: Textbook of Secretory Diarrhea, edited by E. Lebenthal and M. Duffey. New York: Raven, 1990, p. 109–118.
 202. Spindler, B., L., Mastroberardino, M. Custer, and F. Verrey. Characterization of early aldosterone‐induced RNAs identified in A6 kidney epithelia. Pflugers Arch. 434: 323–331, 1997.
 203. Stanton, B.. Regulation by adrenal corticosteroids of sodium and potassium transport in loop of Henle and distal tubule of rat kidney. J. Clin. Invest. 78: 1612–1620, 1986.
 204. Stanton, B., G., Klein‐Robberhaar, J. Wade, G. Giebisch, and R. A. DeFronzo. Effects of adrenalectomy and chronic adrenal corticosteroid replacement on potassium transport in the rat kidney. J. Clin. Invest. 75: 1317–1326, 1985.
 205. Stanton, B. A.. Renal potassium transport: morphological and functional adaptations. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R989–R997, 1989.
 206. Stanton, B. A., D., Biemesderfer, J. B. Wade, and G. Giebisch. Structural and functional study of the rat distal nephron: effects of potassium adaptation and potassium depletion. Kidney Int. 19: 36–48, 1981.
 207. Sterns, R. H.. Oscillations of plasma K+ and insulin during K+ infusion in awake anephric dogs. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol.: F44–F52, 1982.
 208. Suzuki, S., N., Ozaki, J. Yoshida, S. Takamura, Y. Takeuchi, and S. Kudo. Brush border Mg2+, HCO3‐‐ATPase, supernatant carbonic anhydrase and other enzyme activities isolated from rat intestinal mucosa: effect of adrenalectomy and aldosterone administration. J. Steroid Biochem. 19: 1419–1433, 1983.
 209. Suzuki, S., S., Takamura, J. Yoshida, and N. Ozaki. Effect of aldosterone antagonists on aldosterone‐induced Mg2+, HCO3‐‐ATPase and carbonic anhydrase in rat intestinal mucosa. J. Steroid Biochem. 23: 57–66, 1985.
 210. Symonds, D. A., and T. L. Lentz. Histochemistry of the aldosterone‐stimulated urinary bladder of the toad, Bufo marinus. Anat. Rec. 168: 433–451, 1970.
 211. Szerlip, H. M., and M. Cox. Aldosterone‐induced glycoproteins: further characterization. J. Steroid Biochem. 32: 815–822, 1989.
 212. Szerlip, H. M., L., Weisberg, M. Clayman, E. Neilson, J. B. Wade, and M. Cox. Aldosterone‐induced proteins: purification and localization of GP65, 70. Am. J. Physiol. 256 (Cell Physiol. 25): C865–C872, 1989.
 213. Trachewsky, D., and S. Lawrence. Aldosterone‐induced alterations in the synthesis of renal cortical chromatin components and acetylation of histones. Proc. Soc. Exp. Biol. Med. 141: 1–20, 1972.
 214. Turnheim, K.. Intrinsic regulation of apical sodium entry in epithelia. Physiol. Rev. 71: 429–445, 1991.
 215. Ullian, M. E., and J. J. Fine. Mechanisms of enhanced angiotensin II‐stimulated signal transduction in vascular smooth muscle by aldosterone. J. Cell Physiol. 161: 201–208, 1994.
 216. Ullian, M. E., F. N., Hutchinson, D. J. Hazen‐Martin, and T. A. Morinelli. Angiotensin II‐aldosterone interactions on protein synthesis in vascular smooth muscle cells. Am. J. Physiol. 264 (Cell Physiol. 33): C1525–C1531, 1993.
 217. Ullian, M. E., J. R., Schelling, and S. L. Linas. Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension 20: 67–73, 1992.
 218. Vancura, P., G. W., Sharp, and R. A. Malt. Kinetics of RNA synthesis in toad bladder epithelium: action of aldosterone during the latent period. J. Clin. Invest. 50: 543–551, 1971.
 219. Vander, A. J.. Control of renin release. Physiol. Rev. 47: 359–382, 1967.
 220. Verrey, F.. Antidiuretic hormone action in A6 cells: effect on apical Cl‐ and Na+ conductances and synergism with aldosterone for NaCl reabsorption. J. Membr. Biol. 138: 65–76, 1994.
 221. Verrey, F., J. P., Kraehenbuhl, and B. C. Rossier. Aldosterone induces a rapid increase in the rate of Na+,K+‐ATPase gene transcription in cultured kidney cells. Mol. Endocrinol. 3: 1369–1376, 1989.
 222. Verrey, F., E., Schaerer, P. Fuentes, J. P. Kraehenbuhl, and B. C. Rossier. Effects of aldosterone on Na+,K+‐ATPase transcription, mRNAs, and protein synthesis, and on transepithelial Na+ transport in A6 cells. Prog. Clin. Biol. Res. 268B: 463–468, 1988.
 223. Verrey, F., E., Schaerer, P. Zoerkler, M. P. Paccolat, K. Geering, J. P. Kraehenbuhl, and B. C. Rossier. Regulation by aldosterone of Na+,K+‐ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J. Cell Biol. 104: 1231–1237, 1987.
 224. Vilella, S., L., Guerra, C. Helmle‐Krob, and H. Murer. Aldosterone actions on basolateral Na+,H+‐exchange in Madin‐Darby canine kidney cells. Pflugers Arch. 422: 9–15, 1992.
 225. Wade, J. B., B. A., Stanton, M. J. Field, M. Kashgarian, and G. Giebisch. Morphological and physiological responses to aldosterone: time course and sodium dependence. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F88–F94, 1990.
 226. Wang, W. H., R. M., Henderson, J. Geibel, S. White, and G. Giebisch. Mechanism of aldosterone‐induced increase of K+ conductance in early distal renal tubule cells of the frog. J. Membr. Biol. 111: 277–289, 1989.
 227. Watson, J. F., J. R., Clapp, and R. W. Berliner. Micropuncture study of potassium concentration in proximal tubule of dog and rat. J. Clin. Invest. 43: 595–605, 1964.
 228. Watson, R. L., H. G., Langford, J. Abernathy, T. Y. Barnes, and M. J. Watson. Urinary electrolytes, body weight and blood pressure, pooled cross‐sectional results among four groups of adolescent females. Hypertension 2 (Suppl. 1): I‐99–I‐101, 1980.
 229. Weber, K. T., and C. G. Brilla. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin–angiotensin–aldosterone system. Circulation 83: 1849–1865, 1991.
 230. Wehling, M.. Novel aldosterone receptors: specificity‐conferring mechanism at the level of the cell membrane. Steroids 59: 160–163, 1994.
 231. Wehling, M.. Nongenomic aldosterone effects: the cell membrane as a specific target of mineralocorticoid action Steroids 60: 153–156, 1995.
 232. Wehling, M., M. M. Bauer, A. Ulsenheimer, M. Schneider, C. B. Neylon, and M. Christ. Nongenomic effects of aldosterone on intracellular pH in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 223: 181–186, 1996.
 233. Wehling, M., M., Christ, and K. Theisen. High affinity aldosterone binding to plasma membrane rich fractions from mononuclear leukocytes: is there a membrane receptor for miner‐alocorticoids? Biochem, Biophys. Res. Commun. 181: 1306–1312, 1991.
 234. Wehling, M., M., Christ, and K. Theisen. Membrane receptors for aldosterone: a novel pathway for mineralocorticoid action. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E974–E979, 1992.
 235. Wehling, M., J., Kasmayr, and K. Theisen. Fast effects of aldosterone on electrolytes in human lymphocytes are mediated by the sodium–proton exchange of the cell membrane. Biochem. Biophys. Res. Commun. 163: 961–967, 1989.
 236. Wehling, M., C. B., Neylon, M. Fullerton, A. Bobki, and J. W. Funder. Nongenomic effects of aldosterone on intracellular Ca2+ in vascular smooth muscle cells. Circ. Res. 76: 973–979, 1995.
 237. Wehling, M., and K. Theisen. Extrarenal receptor–effector mechanisms for aldosterone: the sequence of effects on the cellular electrolyte transport in human lymphocytes and their implications for disorders of the water and electrolyte balances. Acta Endocrinol. (Copenh.) 123: 385–390, 1990.
 238. Wehling, M., A. Ulsenheimer, M. Schneider, C. Neylon, and M. Christ. Rapid effects of aldosterone on free intracellular calcium in vascular smooth muscle and endothelial cells: subcellular localization of calcium elevations by single cell imaging. Biochem. Biophys. Res. Commun. 204: 475–481, 1994.
 239. Wehling, P. A., M. Caplan, M. Sutters, and G. Giebisch. Aldosterone‐mediated Na+,K+‐ATPase expression is alpha 1 isoform specific in the renal cortical collecting duct. J. Biol. Chem. 268: 23469–23476, 1993.
 240. Weigt, M., P. Dietl, S. Silbernagl, and H. Oberleithner. Activation of luminal Na+,H+‐exchange in distal nephron of frog kidney. An early response to aldosterone. Pflugers Arch. 408: 609–614, 1987.
 241. Weiner, H., J. M., Nielsen, D. A. Klaerke, and P. L. Jorgensen. Aldosterone and thyroid hormone modulate alpha 1‐, beta 1‐mRNA and Na+,K+‐pump sites in the rabbit distal colon epithelium. Ann. N.Y. Acad. Sci. 671: 461–463, 1992.
 242. Wiesmann, W. P., J. P., Johnson, G. A. Miura, and P. K. Chaing. Aldosterone‐stimulated transmethylations are linked to sodium transport. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F43–F47, 1985.
 243. Wilce, P. A., B. C., Rossier, and I. S. Edelman. Actions of aldosterone on rRNA and Na+ transport in the toad bladder. Biochemistry 15: 4286–4292, 1976.
 244. Wills, N. K., and B. Biagi. Active potassium transport by rabbit descending colon. J. Membr. Biol. 66: 41–54, 1982.
 245. Woodhall, P. B., and C. C. Tisher. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J. Clin. Invest. 52: 3095–3108, 1973.
 246. Wright, F. S., and G. Giebisch, Regulation of potassium excretion. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 1223–1249.
 247. Wright, F. S., N., Strieder, N. B. Fowler, and G. Giebisch. Potassium secretion by distal tubule after potassium adaptation. Am. J. Physiol. 221: 437–448, 1971.
 248. Young, D. B.. Relationship between plasma potassium concentration and renal potassium excretion. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. F599–F604, 1982.
 249. Young, D. B.. Analysis of long‐term potassium regulation. Endoc. Rev. 6: 24–44, 1985.
 250. Young, D. B., Quantitative analysis of steady state potassium regulation. In: Potassium, Transport: Physiology and Pathophysiology, edited by G. Giebisch. New York: Academic, 1987, p. 269–295.
 251. Young, D. B.. Quantitative analysis of steady state potassium regulation. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24) F811–F822, 1988.
 252. Young, D. B., and T. E. Jackson. Effects of aldosterone on potassium distribution. Am. J. Physiol. 243 (Regulatory Integrative Comp.: R526–R530, 1982.
 253. Young, D. B., T. E., Jackson, U. Tipayamonri, and R. C. Scott. Effects of sodium intake on steady‐state potassium excretion. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F772–F778, 1984.
 254. Young, D. B., R. E., McCaa, Y. J. Pan, and A. C. Guyton. Effectiveness of aldosterone‐sodium and potassium feedback control system. Am. J. Physiol. 23: 945–953, 1976.
 255. Young, D. B., and A. W. Paulsen. Interrelated effects of aldosterone and plasma potassium on potassium excretion. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F28–F34, 1983.
 256. Young, D. B., M. J. Smith, Jr., T. E. Jackson, and R. E. Scott. Multiplicative interaction between angiotensin II and K concentration in stimulation of aldosterone. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E328–E335, 1984.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

David B. Young, Richard D. McCabe. Endocrine Control of Potassium Balance. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 306-330. First published in print 2000. doi: 10.1002/cphy.cp070308