Comprehensive Physiology Wiley Online Library

Tissue Kallikrein–Kinin System

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Perspectives
2 Kallikrein–Kinin Systems
2.1 Plasma Kallikrein–Kinin System
2.2 Tissue Kallikrein–Kinin System
3 Components of the Tissue Kallikrein–Kinin System
3.1 Tissue Kallikrein
3.2 Kallikrein Inhibitors: Kallistatin
3.3 Kininogens
3.4 Kinins and Peptidase Metabolism
3.5 Kinin Receptors
4 Tissue Kallikrein–Kinin System and Electrolyte and Water Balance in the Kidney
4.1 Localization of Kallikrein–Kinin System Components
4.2 Interrelationship of Renin–Angiotensin and Kallikrein–Kinin Systems
4.3 Regulatory and Mediatory Factors
4.4 Kinins and Electrolyte Transport
4.5 Prostaglandins and Other Intracellular Mediators
5 Tissue Kallikrein–Kinin System and Electrolyte Transport in Other Tissues
5.1 Colon and Intestinal Epithelia
5.2 Other Epithelia
6 Overview
Figure 1. Figure 1.

Schematic diagram of the plasma and tissue kallikrein–kinin systems active in the vasculature and the glandular and exocrine tissues, respectively. Pre‐ and prokallikreins act on high‐molecular‐weight (HMW) and low‐molecular‐weight (LMW) kininogens to generate bradykinin (BK) and kallidin, which act through the B2 receptor (B2R) to effect various cellular responses. Bradykinin is generated from kallidin by the action of an arginine aminopeptidase (AAP). These peptides can be further processed to their des‐Arg metabolites by the kininases carboxypeptidase N (CPN) or M (CPM). The des‐Arg kinins are active at the B1 receptor (B1R). AII of these kinins are further degraded to inactive metabolites by other kininases: angiotensin‐converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP). The kallikreins are also regulated by endogenous inhibitors, such as C1 inhibitor (C1 In.), α2‐macroglobulin (α2M), kallistatin, α1‐antitrypsin (α1AT), and protein C inhibitor (PCI).

Figure 2. Figure 2.

Schematic diagram of the exon–intron arrangement of the factor XI and plasma kallikrein (upper schema) and trypsin and tissue kallikrein (lower schema) serine protease genes. Exons encoding similar conserved regions between these two groups of serine proteases are indicated as follows: signal peptide (hatched), catalytic domains (gray). The three amino acid residues His (H), Asp (D), and Ser (S) crucial to the catalytic function of all serine proteases are indicated. The zymogen, or pro form (pro region in black), of tissue kallikrein and the active enzyme are also indicated.

Figure 3. Figure 3.

Schematic diagram of the tissue kallikrein gene family locus in the rat. Two clusters of genes form the odd (176 kb) and even (225 kb) contigs, separated by less than 75 kb. The rKLK1 gene that encodes tissue kallikrein is indicated. The CpG island preceding the odd contig may indicate a regulatory region. [From Southard‐Smith et al. 477 with permission.]

Figure 4. Figure 4.

Enzymes involved in the metabolism of bradykinin and Lys‐bradykinin or kallidin. Kallidin and bradykinin sequence including the N‐ and C‐terminal Met and Ser, respectively, within the endogenous kininogen sequence. Tissue kallikrein (TK) and plasma kallikrein (PK) cleavage sites and that of arginine aminopeptidase (AAP), aminopeptidase P (APP), and kininases I and II are indicated. ACE, angiotensin‐converting enzyme; NEP, neutral endopeptidase 24.11; CPN, carboxypeptidase N; CPM, carboxypeptidase M.

Figure 5. Figure 5.

Schematic diagram of the exon–intron arrangement of the kininogen gene and subsequent differential splicing that leads to the high‐molecular‐weight (HMW) and low‐molecular‐weight (LMW) kininogen protein products. The conserved three domains (D1D3) of the heavy chain, the bradykinin domain (D4, black), and the specific light chain domains for HMW (D5, D6, triangles) and LMW (D5, stars) kininogens are indicated.

Figure 6. Figure 6.

Schematic diagram of the exon–intron arrangement of the bradykinin receptor (B1 and B2) genes. The first two exons are 5′‐untranslated regions. The entire coding region of the seven‐transmembrane G protein–coupled kinin receptors is on the 5′ end of exon 3, followed by a large 3′‐untranslated region. The additional (dotted) exon between exons 2 and 3 indicates a fourth exon, involved in differential splicing, found in the rat gene 380.

Figure 7. Figure 7.

Schematic diagram of the different signal‐transduction pathways through which kinin‐induced intracellular responses are effected by the B1 and B2 receptors. The exact mechanisms through which kinins and some factors interact, in some cases, are unknown (?). PLC, phospholipase C; PLA, phospholipase A2; DAG, diacylglycerol; PKC, protein kinase C; MAPK, mitogen‐activated protein kinase; AA, arachidonic acid; PGs, prostaglandins; AC, adenylate cyclase; NOS, nitric oxide synthase; NO, nitric oxide; CFTR, cystic fibrosis transmembrane conductance regulator; GLUT2/4, glucose transporter 2 or 4; EGF, epidermal growth factor; PDGF, platelet‐derived growth factor; ILs, interleukins; AVP, arginine vasopressin; IP3, inositol 1, 4, 5‐trisphosphate; PIP2, phosphatidylinositol 4,5‐bisphosphate; AP‐1, activator protein‐1.

Figure 8. Figure 8.

Localization of the components of the renal kallikrein–kinin system along the nephron. GL, glomerulus; PCT, proximal convoluted tubule; PST, proximal straight tubule; MD, macula densa; DCT, distal convoluted tubule; CNT, connecting tubule; CCT, cortical collecting tubule; MCT, medullary collecting tubule. [From Katori and Majima 259 with permission.]

Figure 9. Figure 9.

Release of prokallikrein into the apical (A) and basolateral (B) serum‐free culture medium of Madin‐Darby canine kidney cells over 4 to 24 h. Prokallikrein activity is measured as active kallikrein after activation with 2.5 μg/ml trypsin at 37°C for 30 min; 1 unit = 1 pmol b‐Val‐Leu‐Arg‐7‐amino‐4‐methyl coumarin (DVLR‐AMC) hydrolyzed per minute. A/B, ratio of kallikrein activity released by the apical surface to that of the basolateral surface (n = 3). [From Abe et al. 2 with permission.]

Figure 10. Figure 10.

Potential interactions of the renin–angiotensin and tissue kallikrein systems and their opposing roles in salt and water balance and blood pressure control. Angiotensin‐converting enzyme (ACE) or kininase II is clearly an important link by the generation of angiotensin II (A II) and the degradation of the kinins. Other regulatory pathways are indicated as well as some (?) which have not been confirmed. BK, bradykinin; PGs, prostaylandins; ADH, antidiuretic hormone.

Figure 11. Figure 11.

Urinary flow rate ( in panel A) and urinary sodium excretion (UNaV in panel B) during intravenous infusion of vehicle, the renin inhibitor (3s–4s)‐4‐amino‐5‐cyclohexyl‐3‐hydroxy pentanoic acid (ACHPA)‐containing renin inhibitory peptide (ACRIP) (0.2 μg · kg−1 · min−1, E1) or the AT1‐receptor blocker losartan (100 ng · kg−1 · min−1, E2). Experimental data are shown as solid bars and control data (5% dextrose and water) as open bars for conscious dogs (n = 5) at the end of 5 days of dietary sodium depletion. *P < 0.001 compared with control or time control (TC). [From Siragy et al. 465 with permission.]

Figure 12. Figure 12.

Bradykinin levels in renal interstitial fluid of anesthetized rats consuming a 0.15% (low), 0.28% (normal), or 4.0% (high) sodium diet (n = 5). Hatched bars indicate renal cortex levels; solid bars indicate renal medulla levels. *P < 0.01 compared with normal diet; +P < 0.01 compared with corresponding medulla. [From Siragy et al. 463 with permission.]

Figure 13. Figure 13.

Urinary kallikrein excretion in normal subjects and patients with either essential hypertension or primary aldosteronism. E.U., esterase unit; Ad lib Na+, ad libitum sodium intake; UNaV, sodium excretion. [From Margolius et al. 318 with permission.]

Figure 14. Figure 14.

Direct mean arterial pressure (MAP in panel A), renal blood flow (RBF in panel B), and renal vascular resistance (RVR in panel C) in control and B2 receptor knockout (B2KO) mice fed either a regular or a high‐Na+ diet for 2 weeks. Analysis of variance for the two diets (normal, open bars; high Na+, solid bars) and two groups of mice (control and B2‐KO) shows a significant interaction between groups and diets (P < 0.001, MAP; P < 0.01, RBF; P < 0.0001, RVR). gkw, grams kidney weight. [From Alfie et al. 9 with permission.]

Figure 15. Figure 15.

Effects of continuous administration of low‐molecular‐weight kininogen (KGN) and bradykinin antagonist (Hoe 140) on urinary kinin levels, urine volume, and urinary sodium excretion in mutant brown Norway Katholiek rats (A‐C) and normal brown Norway Kitasato rats (D, E) fed 2% NaCl diets. Urinary kinin levels (A) were determined in ureteral urine of another set of animals, from those used for the urine volume and sodium excretion metabolic study (C and D), under pentobarbital anesthesia. Values are mean ± SEM and were compared between a drug‐infused and a vehicle control group: *P < 0.05, **P < 0.01, ***P < 0.001. [From Majima et al. 306 with permission.]

Figure 16. Figure 16.

Cumulative data for the change in short current circuit (SCC) caused by Lys‐bradykinin (1 μm) applied to colonic epithelia taken from four different types of mouse: wild‐type, cystic fibrosis (CF) null, CF mice in which a YAC containing the human CF gene has been introduced (YAC), and B2 receptor knockout mice (B2 r null). The final, right‐hand column shows the responses of B2 receptor knockout mice to forskolin (10 μm). The number of observations per group is given at the bottom of the figure. [From Cuthbert et al. 119 with permission.]



Figure 1.

Schematic diagram of the plasma and tissue kallikrein–kinin systems active in the vasculature and the glandular and exocrine tissues, respectively. Pre‐ and prokallikreins act on high‐molecular‐weight (HMW) and low‐molecular‐weight (LMW) kininogens to generate bradykinin (BK) and kallidin, which act through the B2 receptor (B2R) to effect various cellular responses. Bradykinin is generated from kallidin by the action of an arginine aminopeptidase (AAP). These peptides can be further processed to their des‐Arg metabolites by the kininases carboxypeptidase N (CPN) or M (CPM). The des‐Arg kinins are active at the B1 receptor (B1R). AII of these kinins are further degraded to inactive metabolites by other kininases: angiotensin‐converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP). The kallikreins are also regulated by endogenous inhibitors, such as C1 inhibitor (C1 In.), α2‐macroglobulin (α2M), kallistatin, α1‐antitrypsin (α1AT), and protein C inhibitor (PCI).



Figure 2.

Schematic diagram of the exon–intron arrangement of the factor XI and plasma kallikrein (upper schema) and trypsin and tissue kallikrein (lower schema) serine protease genes. Exons encoding similar conserved regions between these two groups of serine proteases are indicated as follows: signal peptide (hatched), catalytic domains (gray). The three amino acid residues His (H), Asp (D), and Ser (S) crucial to the catalytic function of all serine proteases are indicated. The zymogen, or pro form (pro region in black), of tissue kallikrein and the active enzyme are also indicated.



Figure 3.

Schematic diagram of the tissue kallikrein gene family locus in the rat. Two clusters of genes form the odd (176 kb) and even (225 kb) contigs, separated by less than 75 kb. The rKLK1 gene that encodes tissue kallikrein is indicated. The CpG island preceding the odd contig may indicate a regulatory region. [From Southard‐Smith et al. 477 with permission.]



Figure 4.

Enzymes involved in the metabolism of bradykinin and Lys‐bradykinin or kallidin. Kallidin and bradykinin sequence including the N‐ and C‐terminal Met and Ser, respectively, within the endogenous kininogen sequence. Tissue kallikrein (TK) and plasma kallikrein (PK) cleavage sites and that of arginine aminopeptidase (AAP), aminopeptidase P (APP), and kininases I and II are indicated. ACE, angiotensin‐converting enzyme; NEP, neutral endopeptidase 24.11; CPN, carboxypeptidase N; CPM, carboxypeptidase M.



Figure 5.

Schematic diagram of the exon–intron arrangement of the kininogen gene and subsequent differential splicing that leads to the high‐molecular‐weight (HMW) and low‐molecular‐weight (LMW) kininogen protein products. The conserved three domains (D1D3) of the heavy chain, the bradykinin domain (D4, black), and the specific light chain domains for HMW (D5, D6, triangles) and LMW (D5, stars) kininogens are indicated.



Figure 6.

Schematic diagram of the exon–intron arrangement of the bradykinin receptor (B1 and B2) genes. The first two exons are 5′‐untranslated regions. The entire coding region of the seven‐transmembrane G protein–coupled kinin receptors is on the 5′ end of exon 3, followed by a large 3′‐untranslated region. The additional (dotted) exon between exons 2 and 3 indicates a fourth exon, involved in differential splicing, found in the rat gene 380.



Figure 7.

Schematic diagram of the different signal‐transduction pathways through which kinin‐induced intracellular responses are effected by the B1 and B2 receptors. The exact mechanisms through which kinins and some factors interact, in some cases, are unknown (?). PLC, phospholipase C; PLA, phospholipase A2; DAG, diacylglycerol; PKC, protein kinase C; MAPK, mitogen‐activated protein kinase; AA, arachidonic acid; PGs, prostaglandins; AC, adenylate cyclase; NOS, nitric oxide synthase; NO, nitric oxide; CFTR, cystic fibrosis transmembrane conductance regulator; GLUT2/4, glucose transporter 2 or 4; EGF, epidermal growth factor; PDGF, platelet‐derived growth factor; ILs, interleukins; AVP, arginine vasopressin; IP3, inositol 1, 4, 5‐trisphosphate; PIP2, phosphatidylinositol 4,5‐bisphosphate; AP‐1, activator protein‐1.



Figure 8.

Localization of the components of the renal kallikrein–kinin system along the nephron. GL, glomerulus; PCT, proximal convoluted tubule; PST, proximal straight tubule; MD, macula densa; DCT, distal convoluted tubule; CNT, connecting tubule; CCT, cortical collecting tubule; MCT, medullary collecting tubule. [From Katori and Majima 259 with permission.]



Figure 9.

Release of prokallikrein into the apical (A) and basolateral (B) serum‐free culture medium of Madin‐Darby canine kidney cells over 4 to 24 h. Prokallikrein activity is measured as active kallikrein after activation with 2.5 μg/ml trypsin at 37°C for 30 min; 1 unit = 1 pmol b‐Val‐Leu‐Arg‐7‐amino‐4‐methyl coumarin (DVLR‐AMC) hydrolyzed per minute. A/B, ratio of kallikrein activity released by the apical surface to that of the basolateral surface (n = 3). [From Abe et al. 2 with permission.]



Figure 10.

Potential interactions of the renin–angiotensin and tissue kallikrein systems and their opposing roles in salt and water balance and blood pressure control. Angiotensin‐converting enzyme (ACE) or kininase II is clearly an important link by the generation of angiotensin II (A II) and the degradation of the kinins. Other regulatory pathways are indicated as well as some (?) which have not been confirmed. BK, bradykinin; PGs, prostaylandins; ADH, antidiuretic hormone.



Figure 11.

Urinary flow rate ( in panel A) and urinary sodium excretion (UNaV in panel B) during intravenous infusion of vehicle, the renin inhibitor (3s–4s)‐4‐amino‐5‐cyclohexyl‐3‐hydroxy pentanoic acid (ACHPA)‐containing renin inhibitory peptide (ACRIP) (0.2 μg · kg−1 · min−1, E1) or the AT1‐receptor blocker losartan (100 ng · kg−1 · min−1, E2). Experimental data are shown as solid bars and control data (5% dextrose and water) as open bars for conscious dogs (n = 5) at the end of 5 days of dietary sodium depletion. *P < 0.001 compared with control or time control (TC). [From Siragy et al. 465 with permission.]



Figure 12.

Bradykinin levels in renal interstitial fluid of anesthetized rats consuming a 0.15% (low), 0.28% (normal), or 4.0% (high) sodium diet (n = 5). Hatched bars indicate renal cortex levels; solid bars indicate renal medulla levels. *P < 0.01 compared with normal diet; +P < 0.01 compared with corresponding medulla. [From Siragy et al. 463 with permission.]



Figure 13.

Urinary kallikrein excretion in normal subjects and patients with either essential hypertension or primary aldosteronism. E.U., esterase unit; Ad lib Na+, ad libitum sodium intake; UNaV, sodium excretion. [From Margolius et al. 318 with permission.]



Figure 14.

Direct mean arterial pressure (MAP in panel A), renal blood flow (RBF in panel B), and renal vascular resistance (RVR in panel C) in control and B2 receptor knockout (B2KO) mice fed either a regular or a high‐Na+ diet for 2 weeks. Analysis of variance for the two diets (normal, open bars; high Na+, solid bars) and two groups of mice (control and B2‐KO) shows a significant interaction between groups and diets (P < 0.001, MAP; P < 0.01, RBF; P < 0.0001, RVR). gkw, grams kidney weight. [From Alfie et al. 9 with permission.]



Figure 15.

Effects of continuous administration of low‐molecular‐weight kininogen (KGN) and bradykinin antagonist (Hoe 140) on urinary kinin levels, urine volume, and urinary sodium excretion in mutant brown Norway Katholiek rats (A‐C) and normal brown Norway Kitasato rats (D, E) fed 2% NaCl diets. Urinary kinin levels (A) were determined in ureteral urine of another set of animals, from those used for the urine volume and sodium excretion metabolic study (C and D), under pentobarbital anesthesia. Values are mean ± SEM and were compared between a drug‐infused and a vehicle control group: *P < 0.05, **P < 0.01, ***P < 0.001. [From Majima et al. 306 with permission.]



Figure 16.

Cumulative data for the change in short current circuit (SCC) caused by Lys‐bradykinin (1 μm) applied to colonic epithelia taken from four different types of mouse: wild‐type, cystic fibrosis (CF) null, CF mice in which a YAC containing the human CF gene has been introduced (YAC), and B2 receptor knockout mice (B2 r null). The final, right‐hand column shows the responses of B2 receptor knockout mice to forskolin (10 μm). The number of observations per group is given at the bottom of the figure. [From Cuthbert et al. 119 with permission.]

References
 1. Abd Alla, S., W. Muller‐Esterl, and U. Quitterer. Two distinct Ca2+ influx pathways activated by the bradykinin B2 receptor. Eur. J. Bichem. 241: 498–506, 1996.
 2. Abe, M., F., Nakamura, F. Tan, P. A. Deddish, K. J. Colley, R. P. Becker, R. A. Skidgel, and E. G. Erdos. Expression of rat kallikrein and epithelial polarity in transfected Madin‐Darby canine kidney cells. Hypertension 26: 891–898, 1995.
 3. Abelous, J. E., and E. Bardier. Les substances hypotensives de Purine humaine normale. C. R. Soc. Biol. (Paris) 66: 511–512, 1909.
 4. Adachi, K., M., Majima, M. Katori, and M. Nishijima. Oxytocin‐induced natriuresis mediated by the renal kallikrein–kinin system in anesthetized male rats. Jpn. J. Pharmacol. 67: 243–252, 1995.
 5. Ader, J.‐L., D. M., Pollock, M. I. Butterfield, and W. J. Arendshorst. Abnormalities in kallikrein excretion in spontaneously hypertensive rats. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F396–F403, 1985.
 6. Ader, J.‐L., F., Pradduade, T. Tran‐Van, C. Emond, I. Tack, D. Regoli, and J. P. Girolami, Direct effects of bradykinin on glomerular filtration and proximal tubule reabsorption in rat kidney. In: Recent Progress on Kinins. Agents and Actions Supplements, edited by G. Bonner, H. Fritz, B. Schoelkens, G. Dietze, and K. Luppertz. Basel: Birkhauser Verlag, 1992, vol. 38/III, p. 128–133.
 7. Ahmed, A., R. A., Ferriani, and S. K. Smith. Activation of human endometrial phospholipase D by bradykinin. Cell. Signal. 7: 599–609, 1995.
 8. Albano, J. D., S. K., Campbell, A. Farrer, and J. G. Millar. Gender differences in urinary kallikrein excretion in man: variation throughout the menstrual cycle. Clin. Sci. (Colch.) 86: 227–231, 1994.
 9. Alfie, M. E., S. I., Sigmon, S. I. Pompsiello, and O. A. Carretero. Effect of high salt intake in mutant mice lacking bradykinin‐B2 receptors. Hypertension 29: 483–487, 1997.
 10. Alla, S. A., U., Quitterer, S. Grigoriev, A. Maidhof, M. Haasemann, K. Jarnagin, and W. Muller‐Esterl. Extracellular domains of the bradykinin B2 receptor involved in ligand binding and agonist sensing defined by antipeptide antibodies. J. Biol. Chem. 271: 1748–1755, 1996.
 11. Angermann, A., H.‐P., Rahn, T. Hektor, G. Fertig, and M. Kemme. Purification and characterization of human salivary‐gland prokallikrein from recombinant baculovirus‐infected insect cells. Eur. J. Biochem. 206: 225–233, 1992.
 12. Asakai, R., E. W., Davie, and D. W. Chung. Organization of the gene for human Factor XI. Biochemistry 26: 7221–7228, 1987.
 13. Auerswald, E. A., D., Rossler, R. Mentele, and I. Assfalg‐Machleidt. Cloning, expression and characterization of human kininogen domain 3. FEBS Lett. 321: 93–97, 1993.
 14. Avigdor, S., F., Alhenc‐Gelas, and J. Bouhnik. Effects of thyroid hormones on urinary and renal kallikreins. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E430–E434, 1992.
 15. Aviv, R., K., Gurbanov, A. Hoffman, S. Blumberg, and J. Winaver. Urinary neutral endopeptidase 24.11 activity—modulation by chronic salt loading. Kidney Int. 47: 855–860, 1995.
 16. Bachvarov, D. R., E., Saint‐Jacques, J. F. Larrivee, L. Levesque, F. Rioux, G. Drapeau, and F. Marceau. Cloning and pharmacological characterization of the rabbit bradykinin B2 receptor. J. Pharmacol. Exp. Ther. 275: 1623–1630, 1995.
 17. Baird, A. W., D. H., Miller, D. A. Schwartz, and H. S. Margolius. Enhancement of kallikrein production and kinin sensitivity in T84 cells by growth in nude mouse. Am. J. Physiol. 261 (Cell Physiol. 30): C822–C827, 1991.
 18. Baker, A. R., and J. Shine. Human kidney kallikrein: cDNA cloning and sequence analysis. DNA 4: 445–450, 1985.
 19. Barabe, J., J.‐N., Drouin, D. Regoli, and W. K. Park. Receptors for bradykinin in intestinal and uterine smooth muscle. Can. J. Physiol. Pharmacol. 55: 1270–1285, 1977.
 20. Barajas, L., K., Powers, O. A. Carretero, A. G. Scicli, and T. Ingami. Immunocytochemical localization of renin and kallikrein in the rat renal cortex. Kidney Int. 29: 965–970, 1986.
 21. Barden, A., R., Vandongen, and L. J. Beilen. Increases in urinary kallikrein activity and prostanoid synthesis after dietary potassium supplementation. Clin. Exp. Pharmacol. Physiol. 14: 565–572, 1987.
 22. Barlow, J. W., L. E., Raggatt, C. C. Drinkwater, I. G. Lyons, and R. I. Richards. Differential binding of thyroid hormone receptors to mouse glandular kallikrein gene promotors: evidence for mutiple binding regions in the mGK‐6 gene. J. Mol. Endocrinol. 3: 79–84, 1989.
 23. Bascands, J. L., M. E. M., Castano, G. Bompart, C. Pecher, M. Gaucher, and J. P. Girolami. Postnatal maturation of the kallikrein–kinin system in the rat kidney—from enzyme activity to receptor gene expression. J. Am. Soc. Nephrol. 7: 81–89, 1996.
 24. Bascands, J. L., C., Edmond, C. Pecher, D. Regoli, and J. P. Girolami. Bradykinin stimulates production of inositol (1, 4, 5) triphosphate in cultured mesangial cells of the rat via a B2‐kinin receptor. Br. J. Pharmacol. 102: 962–966, 1991.
 25. Bascands, J. L., J. P., Girolami, C. Pecher, J. P. Moatti, Y. Manuel, and J. M. Suc. Compared effects of a low and high sodium diet on the renal and urinary concentration of kallikrein in normal rats. J. Hypertens. 5: 311–315, 1987.
 26. Bascands, J. L., C., Pecher, G. Cabos, and J. P. Girolami. B2‐kinin receptor like binding in rat glomerular membranes. Biochem. Biophys. Res. Commun. 158: 99–104, 1989.
 27. Bascands, J. L., C., Pecher, and J. P. Girolami. Indirect inhibition by bradykinin of cyclic AMP generation in isolated rat glomeruli and mesangial cells. Mol. Pharmacol. 44: 818–826, 1993.
 28. Bascands, J. L., C., Pecher, S. Rouad, C. Emond, J. Leung Tack, M. J. Bastie, R. Burch, D. Regoli, and J. P. Girolami. Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F548–F556, 1993.
 29. Bathon, J. M., F. H., Chilton, W. C. Hubbard, M. C. Towns, N. J. Solan, and D. Proud. Mechanisms of prostanoid synthesis in human synovial cells—cytokine–peptide synergism. Inflammation 20: 537–554, 1996.
 30. Bathon, J. M., J. C., Croghan, D. W. MacGlashan, and D. Proud. Bradykinin is a potent and relatively selective stimulus for cytosolic calcium elevation in human synovial cells. J. Immunol. 153: 2600–2608, 1994.
 31. Bathon, J. M., and D. Proud. Bradykinin antagonists. Annu. Rev. Pharmacol. Toxicol. 31: 129–162, 1991.
 32. Baussant, T., A., Michaud, J. Bouhnik, F. Savoie, F. Alhenc‐Gelas, and P. Corvol. Effect of dexamethasone on kininogen production by a rat hepatoma cell line. Biochem. Biophys. Res. Commun. 154: 1160–1166, 1988.
 33. Beaubien, G., I., Rosinski‐Chupin, M. G. Mattei, M. Mbikay, M. Chretien, and N. G. Seidah. Gene structure and chromosomal localization of plasma kallikrein. Biochemistry 30: 1628–1635, 1991.
 34. Bedi, G. S.. Purification of rat urinary kallikrein. Prep. Biochem. 22: 239–256, 1992.
 35. Bellini, C., C., Ferri, A. Piccoli, A. Carlomagno, L. Di Francesco, M. S. Bonavita, A. Santucci, and F. Balsano. The influence of salt sensitivity on the blood pressure response to exogenous kallikrein in essential hypertensives. Nephron 65: 28–35, 1993.
 36. Berg, T., R. A., Bradshaw, O. A. Carretero, J. Chao, L. Chao, J. A. Clements, M. Fahnestock, H. Fritz, F. Gauthier, R. J. MacDonald, H. S. Margolius, B. J. Morris, R. I. Richards, and A. G. Scicli, A common nomenclature for members of the tissue (glandular) kallikrein gene families. In: Recent Progress on Kinins. Agents and Actions Supplements, edited by H. Fritz, W. Muller‐Esterl, M. Jochum, A. Roscher, and K. Luppertz. Basel: Birkhauser Verlag, 1992, vol. 38/I, p. 19–25.
 37. Berg, T., L., Johansen, H. Bergundhaugen, L. J. Hansen, J. K. Reddy, and K. Poulsen. Demonstration of kallikrein in a rat pancreatic acinar cell carcinoma. Cancer Res. 45: 226–234, 1985.
 38. Berg, T., H., Schoyen, I. Wassdal, R. Hull, V. P. Gerskowitch, and K. Toft. Characterization of a new kallikrein‐like enzyme (KLP‐S3) of the rat submandibular gland. Biochem. J. 281: 819–828, 1992.
 39. Berry, T. D., S. J., Hasstedt, S. C. Hunt, L. L. Wu, J. B. Smith, K. O. Ash, H. Kuida, and R. R. Williams. A gene for high urinary kallikrein may protect against hypertension in Utah kindreds. Hypertension 13: 3–8, 1989.
 40. Bhoola, K. D., J., Bewley, D. M. Crothers, M. I. Cingi, and C. D. Figueroa. Kinin receptors on epithelial cells and smooth muscle of the trachea. Adv. Exp. Med. Biol. 247A: 421–427, 1989.
 41. Bhoola, K. D., and P. A. Dieppe. Kinins: inflammation‐signalling peptides in joint disease. Eur. J. Rheumatol. Inflamm. 11: 66–75, 1991.
 42. Bhoola, K. D., and G. Dorey. Kallikrein trypsin‐like proteases and amylase in mammalian submaxillary glands. Br. J. Pharmacol. 43: 784–793, 1971.
 43. Bhoola, K. D., C. D., Figueroa, and K. Worthy. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol. Rev. 44: 1–80, 1992.
 44. Bicknell, C., S., Campbell, D. Waller, and J. Albano. The acute effects of intravenous frusemide on the renal kallikrein kinin system in man: relationship to dose. Immunopharmacology 32: 122–124, 1996.
 45. Bode, W., Z., Chen, K. Barrels, C. Kutzbach, G. Schmidt‐Kastner, and H. Bartunik. Refined 2A x‐ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin‐like serine protease. J. Mol. Biol. 164: 237–282, 1983.
 46. Bompart, G., I., Tack, J.‐L. Bascands, and J.‐P. Girolami. Intracellular Ca2+ depletion and Ca2+ channel blockers increase renal kallikrein secretion. Eur. J. Pharmacol. 278: 225–231, 1995.
 47. Bonner, G., R., Autenrieth, M. Marin‐Grez, W. Rascher, and F. Gross. Effects of sodium loading, deoxycorticosterone acetate and corticosterone on urinary kallikrein excretion. Horm. Res. 14: 87–94, 1981.
 48. Bonner, G., D., Beck, M. Deeg, M. Marin‐Grez, and F. Gross. Effects of frusemide on the renal kallikrein–kinin system of the rat. Clin. Sci. (Colch.) 63: 447–453, 1982.
 49. Bonner, G., B., Thieven, H. Rutten, R. Chrosch, and W. Krone. Renal kallikrein is a determinant of salt sensitivity. J. Hypertens. Suppl. 11: S210–S211, 1993.
 50. Borkowski, J. A., R. W., Ransom, G. R. Seabrook, M. Trumbauer, H. Chen, R. G. Hill, C. D. Strader, and J. F. Hess. Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J. Biol. Chem. 270: 13706–13710, 1995.
 51. Boucher, R., J., Asselin, and J. Genest. A new enzyme leading to the direct formation of angiotensin II. Circ. Res. 34/35 (Suppl. I): 203–209, 1974.
 52. Brady, J. M., and R. J. MacDonald. The expression of two kallikrein gene family members in the rat kidney. Arch. Biochem. Biophys. 278: 342–349, 1990.
 53. Brandan, E., M., Rojas, N. Loyarte, and F. Zambrano. Golgi complex function in the excretion of renal kallikrein. Proc. Soc. Exp. Biol. Med. 171: 221–231, 1982.
 54. Brandtzaeg, P., K. M., Gautvik, K. Nustad, and J. V. Pierce. Rat submandibular kallikreins: purification and cellular localization. Br. J. Pharmacol. 56: 155–176, 1976.
 55. Brann, D. W., L., Greenbaum, V. B. Mahesh, and X. Gao. Changes in kininogens and kallikrein in the plasma, brain and uterus during pregnancy in the rat. Endocrinology 136: 46–51, 1995.
 56. Brayden, D. J., A. W., Cuthbert, and C. M. Lee. Human eccrine sweat gland epithelial cultures express ductal characteristics. J. Physiol. (Lond.) 405: 657–675, 1988.
 57. Briggs, J., M., Marin‐Grez, B. Steipe, G. Schubert, and J. Schnermann. Inactivation of atrial natriuretic substance by kallikrein. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16) F480–F484, 1984.
 58. Brillard‐Bourdet, M., T., Moreau, and F. Gauthier. Substrate specificity of tissue kallikreins: importance of an extended site. Biochim. Biophys. Acta 1246: 47–52, 1995.
 59. Brown, J. F., B. J. R., Whittle, and P. J. Hanson. Bradykinin stimulates PGE2 release in cell fractions isolated from the gastric mucosa via a B1 receptor. Biochem. Soc. Trans. 20: 276s, 1992.
 60. Burch, R. M., and J. Axelrod. Dissociation of bradykinin‐stimulated arachidonic acid release from inositol phosphate formation in Swiss 3T3 fibroblasts. Evidence for a G‐protein‐coupled phospholipase A2. Proc. Natl. Acad. Sci. U.S.A. 84: 6374–6378, 1987.
 61. Burton, J., The design and testing of specific inhibitors of tissue kallikrein: role of the enzyme in blood pressure regulation. In: Peptides: Chemistry and Biology, edited by G. R. Marshall. Leiden: Escom, 1988, p. 647–649.
 62. Busse, R., and I. Fleming. Molecular responses of endothelial tissue to kinins. Diabetes 45: S8–S13, 1996.
 63. Butt, S. K., L. G., Dawson, and J. M. Hall. Bradykinin receptors in the rabbit urinary bladder: induction of responses, smooth muscle contraction, and phosphatidylinositol hydrolysis. Br. J. Pharmacol. 114: 612–617, 1995.
 64. Campbell, D. J., A., Kladis, and A. M. Duncan. Bradykinin peptides in kidney, blood and other tissues of the rat. Hypertension 21: 155–165, 1993.
 65. Cardin, A. C., K. R., Witt, J. Chao, H. S. Margolius, V. H. Donaldson, and R. L. Jackson. Degradation of apolipoprotein B‐100 of human plasma low density lipoproteins by tissue and plasma kallikreins. J. Biol. Chem. 259: 8522–8526, 1984.
 66. Carone, F. A., T. N., Pullman, S. N. Oparil, and S. Nakamura. Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubules. Am. J. Physiol. 230: 1420–1424, 1976.
 67. Carretero, O. A., V. M., Amin, T. Ocholik, A. G. Scicli, and J. Koch. Urinary kallikrein in rats bred to susceptibility and resistance to the hypertensive effect of salt: a new radioimmunoassay for its direct determination. Circ. Res. 42: 727–731, 1978.
 68. Carretero, O. A., and A. G. Scicli, Kinins as regulators of blood flow and blood pressure. In: Hypertension: pathophysiology, diagnosis and management, edited by J. Laragh and B. M. Brenner. New York: Raven, 1990, p. 805–817.
 69. Chagas, J. R., L., Juliano, and E. S. Prado. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal. Biochem. 192: 419–425, 1991.
 70. Chagas, J. R., F. C. V., Portaro, I. Y. Flirata, P. C. Almeida, M. A. Juliano, L. Juliano, and E. S. Prado. Determinants of the unusual cleavage specificity of lysyl‐bradykinin‐releasing kallikreins. Biochem. J. 306: 63–69, 1995.
 71. Chai, K. X., J., Chao, and L. Chao. Molecular cloning and sequence analysis of the mouse kallikrein‐binding protein gene. Biochim. Biophys. Acta 1129: 127–130, 1991.
 72. Chai, K. X., L. M., Chen, J. Chao, and L. Chao. Kallistatin: a novel human serine proteinase inhibitor. Molecular cloning, tissue distribution and expression in Escherichia coli. J. Biol. Chem. 268: 24498–24505, 1993.
 73. Chai, K. X., J. X., Ma, S. R. Murray, J. Chao, and L. Chao. Molecular cloning and analysis of the rat kallikrein‐binding protein gene. J. Biol. Chem. 266: 16029–16036, 1991.
 74. Chai, K. X., A., Ni, D. Wang, D. C. Ward, J. Chao, and L. Chao. Genomic DNA sequence, expression, and chromosomal localization of the human B1 receptor gene BDKRB1. Genomics 31: 51–57, 1996.
 75. Chai, K. X., D. C., Ward, J. Chao, and L. Chao. Molecular cloning, sequence analysis, and chromosomal localization of the human protease inhibitor 4 (kallistatin) gene (PI4). Genomics 23: 370–378, 1994.
 76. Chao, C., P., Madeddu, C. Wang, Y. Liang, L. Chao, and J. Chao. Differential regulation of kallikrein, kininogen and kallikrein‐binding protein in hypertensive rats induced by nitric oxide synthesis inhibition. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F78–F86, 1996.
 77. Chao, J., K. X., Chai, L. M. Chen, W. Xiong, S. Chao, C. Woodley‐Miller, L. X. Wang, H. S. Lu, and L. Chao. Tissue‐kallikrein‐binding protein is a serpin. I. Purification, characterization and distribution in normotensive and spontaneously hypertensive rats. J. Biol. Chem. 265: 16394–16401, 1990.
 78. Chao, J., and L. Chao. Biochemistry, regulation and potential function of kallistatin. Biol. Chem. Hoppe‐Seyler 376: 705–713, 1995.
 79. Chao, J., L., Chao, and H. S. Margolius. Isolation of tissue kallikrein in rat spleen by monoclonal antibody‐affinity chromatography. Biochim. Biophys. Acta 801: 244–249, 1984.
 80. Chao, J., and H. S. Margolius. Differential effects of testosterone, thyroxine and Cortisol on rat submandibular gland versus renal kallikrein. Endocrinology 113: 2221–2225, 1983.
 81. Chao, J., A., Schmaier, L. M. Chen, R. Yang, and L. Chao. Kallistatin a novel human tissue kallikrein inhibitor: expression in blood cells and abnormal plasma level in human disease, sepsis and preeclampsia. J. Lab. Clin. Med. 127: 612–620, 1995.
 82. Chao, J., K., Shimamoto, and H. S. Margolius. Measurement of rat urinary plasminogen activator (esterase A) by direct radioimmunoassay in urine and tissue. Hoppe Seyler Z. Physiol. Chem. 365: 1137–1144, 1984.
 83. Chao, J., C., Swain, S. Chao, W. Xiong, and L. Chao. Tissue distribution and kininogen gene expression after acute phase inflammation. Biochim. Biophys. Acta 964: 329–339, 1988.
 84. Chao, J., D. M., Tillman, M. Wang, H. S. Margolius, L. Chao, and I. D. Chapman. Identification of a new tissue kallikrein‐binding protein. Biochem. J. 239: 325–331, 1986.
 85. Chapman, I. D., J. T., Leach, and K. D. Bhoola. Studies on renal and urinary kallikrein in spontaneously hypertensive rats. Adv. Exp. Med. Biol. 198B: 219–224, 1986.
 86. Chen, L.‐M., P., Chung, L. Chao, and J. Chao. Differential regulation of kininogen gene expression by estrogen and progesterone in vivo. Biochim. Biophys. Acta 1131: 145–151, 1992.
 87. Chen, L.‐M., J.‐X. Ma, Y.‐M. Liang, L. Chao, and J. Chao. Tissue kallikrein‐binding protein reduces blood pressure in transgenic mice. J. Biol Chem. 271: 27590–27594, 1996.
 88. Chen, L.‐M., S. R., Murray, K. X. Chai, L. Chao, and J. Chao. Molecular cloning and characterization of a novel transcript in colon and its distribution in human tissues. Braz. J. Med. Biol. Res. 27: 1829–1838, 1994.
 89. Chen, L.‐M., G. P., Richards, L. Chao, and J. Chao. Molecular cloning, purification and in situ hybridization of human colon kallikrein. Biochem. J. 307: 481–486, 1995.
 90. Chen, L.‐M., Q., Song, L. Chao, and J. Chao. Cellular localization of tissue kallikrein and kallistatin mRNAs in human kidney. Kidney Int. 48: 690–697., 1995.
 91. Chen, Z., and W. Bode. Refined 2.5A x‐ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor. J. Mol. Biol. 164: 283–311, 1983.
 92. Cheronis, J. C., E. T., Whalley, K. T. Nguyen, S. R. Eubanks, L. G. Allen, M. J. Duggan, S. D. Loy, K. A. Bonham, and J. K. Blodgett. A new class of bradykinin antagonists: synthesis and in vitro activity of bissuccinimidoalkane peptide dimers. J. Med. Chem. 35: 1563–1572, 1992.
 93. Christiansen, S. C., D., Proud, and C. G. Cochrane. Detection of tissue kallikrein in the bronchoalveolar lavage of asthmatic subjects. J. Clin. Invest. 79: 188–197, 1987.
 94. Clark, K. J., and A. W. Murray. Evidence that the bradykinin‐induced activation of phospholipase D and of the mitogen‐activated protein kinase cascade involve different protein kinase C isoforms. J. Biol. Chem. 270: 7097–7103, 1995.
 95. Clements, J. A.. The glandular kallikrein family of enzymes: tissue‐specific expression and hormonal regulation. Endocr. Rev. 10: 393–419, 1989.
 96. Clements, J. A.. The human kallikrein gene family: a diversity of expression and function. Mol. Cell. Endocrinol. 99: C1–C6, 1994.
 97. Clements, J. A., The molecular biology of the kallikreins and their roles in inflammation. In: The Kinin System, edited by S. G. Farmer. London: Academic, 1997, p. 71–97.
 98. Clements, J. A., P. J., Fuller, M. McNally, I. Nikolaidis, and J. W. Funder. Estrogen regulation of kallikrein gene expression in the rat anterior pituitary. Endocrinology 119: 268–273, 1986.
 99. Clements, J. A., B. A., Matheson, and J. W. Funder. Tissue‐specific regulation of the expression of rat kallikrein gene family members by thyroid hormone. Biochem. J. 3: 745–750, 1990.
 100. Clements, J. A., B. A., Matheson, D. R. Wines, J. M. Brady, R. J. MacDonald, and J. W. Funder. Androgen dependence of specific kallikrein gene family members expressed in the rat prostate. J. Biol. Chem. 31: 16132–16137, 1988.
 101. Clements, J. A., and A. Mukhtar. Glandular kallikreins and prostate‐specific antigen are expressed in the human endometrium. J. Clin. Endocrinol. Metab. 78: 1536–1539, 1994.
 102. Clements, J. A., A., Mukhtar, A. Ehrlich, and P. Fuller, A re‐evaluation of the tissue‐specific pattern of expression of the rat kallikrein gene family. In: Recent Progress on Kinins. Agents and Actions Supplements, edited by H. Fritz, W. Muller‐Esterl, M. Jochum, A. Roscher, and K. Luppertz. Basel: Birkhauser Verlag, 1992, vol. 38/I, p. 34–41.
 103. Clements, J. A., A., Mukhtar, A. Ehrlich, and B. Yap. Kallikrein gene expression in the human uterus. Braz. J. Med. Biol. Res. 27: 1855–1863, 1994.
 104. Clements, J. A., A., Mukhtar, A. M. Holland, A. Ehrlich, and P. J. Fuller. Kallikrein gene expression in the rat ovary: localization to the granulosa cell. Endocrinology 136: 1137–1144, 1995.
 105. Clements, J. A., A., Mukhtar, K. Verity, M. Pullar, P. McNeill, J. Cummins, and P. J. Fuller. Kallikrein gene expression in human pituitary tissues. Clin. Endocrinol. 44: 223–231, 1996.
 106. Colina‐Chourio, J., J. C., McGiff, M. P. Miller, and A. Nasjletti. Possible influence of intrarenal generation of kinins on prostaglandin release from the rabbit perfused kidney. Br. J. Pharmacol. 58: 165–172, 1976.
 107. Colman, R. W., Y. T., Wachtfogel, U. Kucich, G. Weinbaum, S. Hahn, R. A. Pixley, C. F. Scott, A. De Agostini, D. Burger, and M. Scapira. Effect of cleavage of the heavy chain of human plasma kallikrein on its functional properties. Blood 65: 311–318, 1985.
 108. Corthorn, J., and G. Valdes. Variations in uterine kallikrein during cycle and early pregnancy in the rat. Biol. Reprod. 50: 1261–1264, 1994.
 109. Couture, R. J. Mizrahi, D. Regoli, and G. Devroede. Peptides and the human colon: an in vitro pharmacological study. Can. J. Physiol. Pharmacol. 59: 957–964, 1981.
 110. Coyne, D. W., and A. R. Morrison, Kinins: biotransformation and cellular mechanisms of action. In: Hormones, Autacoids and the Kidney, edited by S. Goldfarb and F. Ziyadeh. New York: Churchill Livingstone, 1991, p. 263–280.
 111. Croxatto, H. R., X., Figueroa, J. Roblero, R. Albertini, R. Silva, and M. P. Boric. A fragment of human kininogen containing bradykinin blunts the diuretic effect of atrial natriuretic peptide. Proc. Soc. Exp. Biol. Med. 212: 128–134, 1996.
 112. Cumming, A. D., T., Walsh, D. Wojtacha, S. Fleming, D. Thomson, and D. A. Jenkins. Expression of tissue kallikrein in human kidney. Clin. Sci. (Colch.) 87: 5–11, 1994.
 113. Currie, M. G., D. M., Geller, J. Chao, H. S. Margolius, and P. Needleman. Kallikrein activation of a high molecular weight atrial peptide. Biochem. Biophys. Res. Commun. 120: 461–466, 1984.
 114. Cuthbert, A. W., C., Egleme, H. Greenwood, M. E. Hickman, and S. C. Kirkland. Calcium‐ and cylic AMP–dependent chloride secretion in human colonic epithelia. Br. J. Pharmacol. 91: 503–515, 1987.
 115. Cuthbert, A. W., M. J., Evans, W. H. Colledge, L. J. MacVinish, and R. Ratcliff. Kinin‐stimulated chloride secretion requires the participation of CFTR chloride channels. Braz. J. Med. Biol, Res. 27: 1905–1910, 1994.
 116. Cuthbert, A. W., A. M., George, and L. MacVinish. Kinin effects on electrogenic ion transport in primary cultures of pig renal papillary collecting tubule cells. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F439–F447, 1985.
 117. Cuthbert, A. W., P. V., Halushka, D. Kessel, H. S. Margolius, and W. C. Wise. Kinin effects on chloride secretion do not require eicosanoid synthesis. Br. J. Pharmacol. 83: 549–554, 1984.
 118. Cuthbert, A. W., P. V., Halushka, H. S. Margolius, and J. A. Spayne. Role of calcium ions in kinin‐induced chloride secretion. Br. J. Pharmacol. 82: 587–595, 1984.
 119. Cuthbert, A. W., C., Huxley, and F. J. Hess. Removal and restoration of epithelial chloride secretory activity of kinins by gene manipulation, Immunopharmacology 33: 217–222, 1996.
 120. Cuthbert, A. W., and L. J. MacVinish, Diversity of kinin effects on transporting epithelia. In: Kinins V, edited by A. Keishe, H. Moriya, and S. Fuji. New York: Plenum, 1989, p. 105–111.
 121. Cuthbert, A. W., L. J., MacVinish, and R. Henderson, Chloride conductance in cultured colonic epithelium induced by kinins. In: Recent Progress on Kinins, edited by G. Bonner, H. Fritz, Th. Unger, A. Roscher, and K. Luppertz. Basel: Birkhauser Verlag, 1992, p. 65–72.
 122. Cuthbert, A. W., and H. S. Margolius. Kinins stimulate net chloride secretion by the rat colon. Br. J. Pharmacol. 75: 587–598, 1982.
 123. Danielson, E. M., J. P., Vyas, and A. J. Kenny. A neutral endopeptidase in the microvillar membrane of pig intestine. Biochem. J. 191: 545–548, 1980.
 124. Data, J. L., A., Rane, J. Gerkens, G. R. Wilkinson, A. S. Nies, and R. A. Branch. The influence of indomethacin on the pharmacokinetics, diuretic response and hemodynamics of furosemide in the dog. J. Pharmacol. Exp. Ther. 206: 431–438, 1978.
 125. DeBlois, D., J., Bouthillier, and F. Marceau. Effects of glucocorticoids, monokines, and growth factors on the spontaneously developing responses of the rabbit isolated aorta to des‐Arg9‐bradykinin. Br. J. Pharmacol. 93: 969–977, 1988.
 126. Deddish, P. A., R. A., Skidgel, and E. G. Erdos. Enhanced Co2+ activation and inhibitor binding of carboxypeptidase M at low pH. Similarity to carboxypeptidase H (enkephalin convertase). Biochem. J. 261: 289–291, 1989.
 127. Deddish, P. A., R. A., Skidgel, V. B. Kriho, X‐Y. Li, R. P. Becker, and E. G. Erdos. Carboxypeptidase M in cultured Madin‐Darby canine kidney (MDCK) cells. Evidence that carboxypeptidase M has a phophatidylinositol glycan anchor. J. Biol. Chem. 265: 15083–15089, 1990.
 128. De La Cadena, R. A., Y. T. Wachtfogel, and R. W. Colman, Contact activation pathway: inflammation and coagulation. In: Hemostasis and Thrombosis: Basic Principles and Clinical Practice, edited by R. W. Colman, J. Hirsh, V. J. Marder, and E. W. Salzman. Philadelphia: Lippincott, 1994, p. 219–240.
 129. Deperthes, D., E. R., Gauthier, P. Chapdelaine, C. Lazure, R. R. Tremblay, and J. Y. Dube. Identification of glandular kallikrein in dog pancreas and determination of its tissue distribution. Biochim. Biophys. Acta 1243: 291–294, 1995.
 130. de Saint‐Vis, B., L. Cupillard, D. Pandrau‐Garcia, S. Ho, N. Renard, G. Grouard, V. Duvert, X. Thomas, J. P. Galizzi, J. Banchereau, and S. Saeland. Distribution of carboxypeptidase M on lymphoid and myeloid cells parallels the other zinc‐dependent proteases CD10 and CD13. Blood 86: 1098–1105, 1995.
 131. Devault, A., C., Lazure, C. Nault, H. LeMoual, N. G. Seidah, M. Chretien, P. Kahn, J. Powell, A. Beaumont, B. P. Roques, P. Crine, and G. Boileau. Amino acid sequence of rabbit kidney neutral endopeptidase 24. 11 (enkephalinase) deduced from a complementary DNA. EMBO J. 6: 1317–1322, 1987.
 132. Dixon, B. S., R. V., Sharma, and M. J. Dennis. The bradykinin B2 receptor is a delayed early response gene for platelet‐derived growth factor in arterial smooth muscle cells. J. Biol. Chem. 271: 13324–13332, 1996.
 133. Dragovic, T., D. E., Schraufnagel, R. P. Becker, M. Sekosan, E. G. Votta‐Velis, and E. G. Erdos. Carboxypeptidase M activity is increased in bronchoalveolar lavage in human lung disease. Am. J. Respir. Crit. Care Med. 152: 760–764, 1995.
 134. Ecke, S., I., Geiger, I. Resch, L. Jerabeck, M. Stingl, M. Maler, and B. R. Binder. Inhibition of tissue kallikrein by protein C inhibitor. Evidence for identity of protein C inhibitor with the kallikrein binding protein. J. Biol. Chem. 267: 7048–7052, 1992.
 135. El‐Dahr, S. S., and J. Chao. Spatial and temporal expression of kallikrein and its mRNA during nephron maturation. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F705–F711, 1992.
 136. El‐Dahr, S. S., and S. Dipp. Molecular aspects of kallikrein and kininogen in the maturing kidney. Ped. Nephrol. 7: 646–651, 1993.
 137. El‐Dahr, S. S., S., Dipp, I. V. Yosipiv, and W. H. Baricos. Bradykinin stimulates c‐fos expression, AP‐1 DNA binding activity and proliferation of rat glomerular mesangial cells. Kidney Int. 50: 1850–1855, 1996.
 138. El‐Dahr, S. S., I. V., Yosipiv, L. Lewis, and K. D. Mitchell. Role of bradykinin B‐2 receptor in the developmental changes in renal hemodynamics in the neonatal rat. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F786–F792, 1995.
 139. El‐Dahr, S. S., I. V., Yosipiv, D. G. Muchant, and R. L. Chevalier. Salt intake modulates the developmental expression of renal kallikrein and bradykinin B2 receptors. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 41): F425–F431, 1996.
 140. Elmoujahed, A., N., Gutman, M. Brillard, and F. Gauthier. Substrate specificity of two kallikrein family gene products isolated from the rat submaxillary gland. FEBS Lett. 265: 137–140, 1990.
 141. El‐Thaher, T. S., G. S., Bailey, M. T. Wilson, M. Osborne, and G. R. Moore. A 1H‐NMR study of the interactions between rat tissue kallikrein and two peptide inhibitors. Biochim. Biphys. Acta 1160: 235–238, 1992.
 142. Enjyoji, K., H., Kato, I. Hayashi, S. Oh‐Ishi, and S. Iwanaga. Purification and characterization of rat T‐kininogens isolated from plasma of adjuvant‐treated rats. Identification of three types of T‐kininogens. J. Biol. Chem. 263: 973–979, 1988.
 143. Erdos, E. G. Kininases, In: Handbook of experimental pharmacology supplement Bradykinin, Kallidin and Kallikrein, edited by E. G. Erdos. Berlin: Springer‐Verlag, 1979, p. 427–487.
 144. Erdos, E. G., A. G., Renfrew, E. M. Sloane, and J. R. Wohler. Enzymatic studies on bradykinin and similar peptides. Ann. N.Y. Acad. Sci. 104: 222–235, 1963.
 145. Erdos, E. G., W. W., Schulz, J. T. Gafford, and R. Defendini. Neutral metalloendopeptidase in human male genital tract. Comparison to angiotensin I converting enzyme. Lab. Invest. 52: 437–447, 1985.
 146. Erdos, E. G., and R. A. Skidgel. Neutral endopeptidase 24. 11‐enkephalinase and related regulators of peptide hormones. FASEB J. 3: 145–151, 1989.
 147. Erdos, E. G., and R. A. Skidgel, Metabolism of bradykinin by peptidases in health and disease. In: The Kinin System, edited by S. G. Farmer. London: Academic, 1997, p. 111–142.
 148. Espana, F., E., Fink, J. Sanchezcuenca, J. Gilabert, A. Estelles, and K. Witzgall. Complexes of tissue kallikrein with protein C inhibitor in human semen and urine. Eur. J. Biochem. 234: 641–649, 1995.
 149. Espana, F., J., Gilabert, A. Estelles, A. Romeo, J. Aznar, and A. Cabo. Functionally active protein C inhibitor/plasminogen activator inhibitor‐3 (PCI/PAI‐3) is secreted in seminal vesicles, occurs at high concentrations in human seminal plasma and complexes with prostate‐specific antigen. Thromb. Res. 64: 309–320, 1991.
 150. Espey, L. L., D. H., Miller, and H. S. Margolius. Ovarian increase in kinin generating capacity in PMSG/hCG‐primed immature rat. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E362, 1986.
 151. Evans, B. A., C. C., Drinkwater, and R. I. Richards. Mouse glandular kallikrein genes. Structure and partial sequence analysis of the kallikrein gene locus. J. Biol. Chem. 262: 8027–8034, 1987.
 152. Evans, B. A., Z. X., Yun, J. A. Close, G. W. Tregear, N. Kitamura, S. Nakanishi, D. F. Callen, E. Baker, V. J. Hyland, G. R. Sutherland, and R. I. Richards. Structure and chromosomal localization of the human renal kallikrein gene. Biochemistry 27: 3124–3129, 1988.
 153. Fahnestock, M., J. E., Woo, G. A. Lopez, J. Snow, D. A. Walz, M. J. Arici, and W. C. Morley. β‐NGF‐endopeptidase: structure and activity of a kallikrein encoded by the gene mGK‐22. Biochemistry 30: 3443–3450, 1991.
 154. Farmer, S. G., and R. M. Burch. Biochemical and molecular pharmacology of kinin receptors. Annu. Rev. Pharmacol. Toxicol. 32: 511–536, 1992.
 155. Fejes‐Toth, G., T., Zahajszky, and J. Filep. Effect of vasopressin on renal kallikrein excretion. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F388–F392, 1980.
 156. Fenoy, F. J., and R. J. Roman. Effect of kinin receptor antagonists on renal hemodynamic and natriuretic responses to volume expansion. Am. J. Hypertens. 263: R1136–R1140, 1992.
 157. Ferri, C., C., Bellini, A. Carlomagno, A. Perrone, and A. Santucci. Urinary kallikrein and salt sensitivity in essential hypertensive males. Kidney Int. 46: 780–788, 1994.
 158. Fichtner, J., H. C. B., Graves, K. Thatcher, C. Yemoto, and L. M. D. Shortliffe. Prostate specific antigen releases a kinin‐like substance on proteolysis of seminal fluid that stimulates smooth muscle contraction. J. Urol. 155: 738–742, 1996.
 159. Fiedler, F.. Pig pancreatic kallikreins A and B. Methods Enzymol. 45: 289–303, 1976.
 160. Fiedler, F., Enzymology of glandular kallikreins. In: Handbook of Experimental Pharmacology. Supplement Bradykinin, Kallidin and Kallikrein. edited by E. G. Erdos. New York: Springer‐Verlag, 1979, vol. 25 p. 103–161.
 161. Fiedler, F.. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin. Eur. J. Biochem. 163: 303–312, 1987.
 162. Figueroa, C. D., K. D., Bhoola, A. G. Maclver, and J. C. MacKenzie. An ontogenic study of renal tissue kallikrein in Okamoto spontaneously hypertensive rats: comparisons with human hypertensive nephropathy. Nephrol. Dial. Transplant. 7: 516–525, 1992.
 163. Figueroa, C. D., I., Caorsi, and C. P. Vio. Visualization of renal kallikrein in luminal and basolateral membranes. Effect of the tissue processing method. J. Histochem. Cytochem. 32: 1238–1240, 1984.
 164. Figueroa, C. D., I., Caorsi, J. Subiabre, and C. P. Vio. Immunoreactive kallikrein localization in the rat kidney: an immuno‐electron‐microscopic study. J. Histochem. Cytochem. 32: 117–121, 1984.
 165. Figueroa, C. D., C. B., Gonzalez, S. Grigoriev, S. A. Alla, M. Haasemann, K. Jarnagin, and W. Muller‐Esterl. Probing for the bradykinin B2 receptor in rat kidney by antipeptide and anti‐ligand antibodies. J. Histochem. Cytochem. 43: 137–148, 1995.
 166. Figueroa, C. D., C. B., Gonzalez, W. Muller‐Esterl, and K. D. Bhoola, Cellular localization of human kininogens. In: Recent Progress on Kinins. Agents and Actions Supplements, edited by H. Fritz, W. Muller‐Esterl, M. Jochum, A. Roscher, and K. Luppertz. Basel: Birkhauser Verlag, 1992, vol. 38/I, p. 617–626.
 167. Figueroa, C. D., L. M., Henderson, J. Kaufmann, R. A. De La Cadena, R. W. Colman, W. Muller‐Esterl, and K. D. Bhoola. Immunovisualization of high (HK) and low (LK) molecular weight kininogens on isolated human neutrophils. Blood 79: 754–759, 1992.
 168. Figueroa, C. D., A. G., Maclver, J. C. MacKenzie, and K. D. Bhoola. Localization of immunoreactive kininogen and tissue kallikrein in the human nephron. Histochemistry 89: 437–442, 1988.
 169. Figueroa, C. D., A. G., Maclver, J. C. Mackenzie, and K. D. Bhoola. Identification of a tissue kallikrein in human polymorphonuclear leucocytes. Br. J. Haematol. 72: 321–328, 1989.
 170. Figueroa, C. D., A., Marchant, D. Menzel, U. Novoa, C. B. Gonzalez, and W. Muller‐Esterl. Rat bradykinin B2 receptor—immunochemical characterization and immunovisualization in epithelial and smooth muscle cells. Immunopharmacology 33: 85–89, 1996.
 171. Finotti, P., A., Facchinetti, and P. Palatini. Mechanism of Na+/K+‐ATPase activation by trypsin and kallikrein. Biochim. Biophys. Acta 1039: 123–129, 1990.
 172. Flynn, G. A., J. F., French, and R. C. Dage, Dual inhibitors of angiotensin‐converting enzyme and neutral endopeptidase: design and therapeutic rationale. In: Hypertension: Pathology, Diagnosis and Management, edited by J. H. Laragh and B. M. Brenner. New York: Raven, 1995, p. 3099–3114.
 173. Frazer, R., J. J., Brown, A. F. Lever, P. A. Mason, and J. I. S. Robertson. Control of aldosterone secretion. Clin. Sci. (Colch.) 56: 389–399, 1979.
 174. Frewin, D. B., D. J., McConnel, and J. A. Downey. Is a kininogenase necessary for human sweating? Lancet II: 744, 1973.
 175. Frey, E. K.. Zusammenhange zwischen Herzarbeit and Nierentatigkeit. Arch. Klin. Chir. 142: 663, 1926.
 176. Frey, P., R., Forand, T. Maciag, and E. M. Shooter. The biosynthetic precursor of epidermal growth factor and the mechanism of its processing. Proc. Natl. Acad. Sci. U.S.A. 76: 6294–6298, 1979.
 177. Fukushima, D., N., Kitamura, and S. Nakanishi. Nucleotide sequence of cloned cDNA for human pancreatic kallikrein. Biochemistry 24: 8037–8043, 1985.
 178. Fuller, P. J., J. A., Clements, I. Nikolaidis, M. Hiwatari, and J. W. Funder. Expression of the renal kallikrein gene in mineralocorticoid‐treated and genetically hypertensive rats. J. Hypertens. 4: 427–433, 1986.
 179. Fuller, P. J., J. A., Clements, P. L. Whitfield, and J. W. Funder. Kallikrein gene expression in the rat anterior pituitary. Mol. Cell. Endocrinol. 39: 99–105, 1985.
 180. Fuller, P. J., and J. W. Funder. The cellular physiology of glandular kallikrein. Kidney Int. 29: 953–964, 1986.
 181. Fuller, P. J., B. A., Matheson, R. J. MacDonald, K. Verity, and J. A. Clements. Kallikrein gene expression in estrogen‐induced pituitary tumors. Mol. Cell. Endocrinol. 60: 225–232, 1988.
 182. Fuller, P. J., K., Verity, B. A. Matheson, and J. A. Clements. Kallikrein gene expression in the rat gastrointestinal tract. Biochem. J. 264: 133–136, 1989.
 183. Gafford, J. T., R. A., Skidgel, E. G. Erdos, and L. B. Hersh. Human kidney “enkephalinase”, a neutral endopeptidase that cleaves active peptides. Biochemistry 22: 3265–3271, 1983.
 184. Gaginella, T. S., and J. F. Kachur. Kinins as mediators of intestinal secretion. Am. J. Pbysiol. 256: 1–15, 1989.
 185. Gao, X., L. M., Greenbaum, V. B. Mahesh, and D. W. Brann. Characterization of the kinin system in the ovary during ovulation in the rat. Biol. Reprod. 47: 945–951, 1992.
 186. Garci‐Perez, A., and W. L. Smith. Apical‐basolateral membrane asymmetry in canine cortical collecting tubule cells. J. Clin. Invest. 74: 63–74, 1984.
 187. Gauthier, E. R., P., Chapdelaine, R. R. Tremblay, and J. Y. Dube. Characterization of rhesus monkey prostate specific antigen cDNA. Biochim. Biophys. Acta 1174: 207–210, 1993.
 188. Gauthier, E. R., C., Dumas, P. Chapdelaine, R. R. Tremblay, and J. Y. Dube. Characterization of canine pancreas kallikrein cDNA. Biochim. Biophys. Acta 1218: 102–104, 1994.
 189. Gavras, I., and H. Gavras, The use of ACE inhibitors in hypertension. In: Angiotensin Converting Enzyme Inhibitors, edited by J. B. Kostis and E. A. DeFelice. New York: Alan R. Liss, 1987, p. 93–122.
 190. Geiger, M., K., Huber, J. Wojita, L. Stingl, F. Espana, J. H. Griffin, and B. R. Binder. Complex formation between urokinase and plasma protein C inhibitor in vitro and in vivo. Blood 74: 722–728, 1989.
 191. Geiger, R., and B. Clausnitzner. Isolation of enzymatically active tissue kallikrein from human seminal plasma by immunoaffinity chromatography. Hoppe‐Seyler Z. Physiol. Chem. 362: 229–231, 1981.
 192. Geiger, R., U., Stuckstedte, B. Clausnitzner, and H. Fritz. Progressive inhibition of human glandular (urinary) kallikrein by human serum and identification of the progressive anti‐kallikrein as α1‐antitrypsin (α1‐proteinase inhibitor). Hoppe‐Seyler Z. Physiol. Chem. 362: 317–325, 1981.
 193. Gilboa, N., U., Rudofsky, and A. Magro. Urinary and renal kallikrein in hypertensive fawn‐hooded (FH/Wjd) rats. Lab. Invest. 50: 72–78, 1984.
 194. Gill, J. R., Jr., and F. C., Bartter. Evidence for a prostaglandin‐independent defect in chloride reabsorption in the loop of Henle as a proximal cause of Bartter's syndrome. Am. J. Med. 65: 766–772, 1978.
 195. Girolami, J. P., F., Praddaude, J. L. Ader, T. Tranvan, J. P. Eche, and S. P. Suc. Bilateral urinary kallikrein excretion in the Goldblatt hypertensive rats. Eur. Heart J. 4: 67–72, 1983.
 196. Gordon, C., and V. Schwartz. cAMP, bradykinin and sweat gland function. J. Physiol. (Lond.) 213: 68–69, 1971.
 197. Granger, J. P., and J. E. Hall. Acute and chronic actions of bradykinin on renal function and arterial pressure. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 19): F87–F92, 1985.
 198. Greenbaum, L. M., and H. Okamoto. T‐kinin and T‐kininogen. Methods Enzymol. 163: 272–282, 1988.
 199. Greene, L. A., E. M., Shooter, and S. Varon. Enzymatic activities of mouse nerve growth factor and its subunits. Proc. Natl. Acad. Sci. U.S.A. 60: 1383–1388, 1968.
 200. Grenier, F. C., T. E., Rollins, and W. L. Smith. Kinin‐induced prostaglandin synthesis by renal papillary collecting tubule cells in culture. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F94–F104, 1981.
 201. Grider, J., J., Falcone, E. Kilpatrick, C. Ott, and B. Jackson. Effect of bradykinin on NaCI transport in the medullary thick ascending limb of the rat. Eur. J. Pharmacol. 287: 101–104, 1995.
 202. Gros, C., N., Noel, A. Souque, J.‐C. Schwartz, D. Danvy, J.‐C. Plaquevent, P. Duhamel, J.‐M. Lecomte, and J. Bralet. Mixed inhibitors of angiotensin‐converting enzyme (EC 3.4.15.1) and enkephalinase (EC 3.4.24.11): rational design, properties and potential cardiovascular applications of glycopril and alatriopril. Proc. Natl. Acad. Sci. U.S.A. 88: 4210–4214, 1991.
 203. Gutman, N., T., Moreau, F. Alhenc‐Gelas, T. Baussant, A. Elmoujahed, S. Akpona, and F. Gauthier. T‐kinin release from T‐kininogen by rat submaxillary gland endopeptidase K. Eur. J. Biochem. 171: 577–582, 1988.
 204. Gutowski, S., A., Smrcka, L. Nowak, D. G. Wu, M. Simon, and P. C. Sternweis. Antibodies to the αq subfamily of guanine nucleotide binding regulatory protein a subunits attenuate activation of phosphatidylinositol‐4, 5‐biphosphate hydrolysis by hormones. J. Biol. Chem. 266: 20519–20524, 1991.
 205. Haasemann, M., C. D., Figueroa, L. Henderson, S. Grigoriev, S. A. Alla, C. B. Gonzalez, I. Dunia, J. Hoebeke, K. Jarnagin, J. Cartaud, K. D. Bhoola, and W. Muller‐Esterl. Distribution of bradykinin B2 receptors in target cells of kinin action—visualization of the receptor protein in A431 cells, neutrophils and kidney sections. Braz. J. Med. Biol. Res. 27: 1739–1756, 1994.
 206. Hagiwara, Y., M., Kojima, I. Hayashi, and S. Oh‐Ishi. Demonstration of derivation of rat urinary bradykinin from plasma low‐molecular weight kininogen: a study using kininogen‐deficient rats. Biochem. Biophys. Res. Commun. 204: 1219–1224, 1994.
 207. Hall, J. M., and K. M. Morton, The pharmacology and immunopharmacology of kinin receptors. In: The Kinin System, edited by S. G. Farmer. London: Academic, 1997, p. 9–44.
 208. Halushka, P. V., H., Wohltmann, P. J. Privitera, G. Hurwitz, and H. S. Margolius. Banter's syndrome. Urinary prostaglandin E‐like material and kallikrein; indomethacin effects. Ann. Intern. Med. 87: 281–286, 1977.
 209. Hasan, A. A. K., D. B., Cines, J. Zhang, and A. H. Schmaier. The C‐terminus of bradykinin and N‐terminus of the light chain of kininogens comprise an endothelial cell binding domain. J. Biol. Chem. 269: 31822–31830, 1994.
 210. Hatala, M. A., and C. A. Powers. Development of the sex difference in glandular kallikrein and prolactin levels in the anterior pituitary of the rat. Biol. Reprod. 38: 846–852, 1988.
 211. Hayashi, I., S., Hoshiko, O. Makabe, and S. Oh‐Ishi. A point mutation of alanine 163 to threonine is responsible for the defective secretion of high molecular weight kininogen by the liver of brown Norway Katholiek rats. J. Biol. Chem. 268: 17219–17224, 1993.
 212. Hembree, T. N., and L. M. F. Leeb‐Lundberg. Regulation of bradykinin B2 receptors by the ras oncogene: evidence for multiple mechanisms. J. Cell. Physiol 169: 248–255, 1996.
 213. Hermann, A., A., Braun, C. D. Figueroa, W. Muller‐Esterl, H. Fritz, and J. Rehbock. Expression and cellular localization of kininogens in the human kidney. Kidney Int. 50: 79–84, 1996.
 214. Herwald, H., A. A. K., Hasan, J. Godovac‐Zimmermann, A. H. Schmaier, and W. Muller‐Esterl. Identification of an endothelial cell binding site on kininogen domain D3. J. Biol. Chem. 270: 14634–14642, 1995.
 215. Herzig, M. C. S., N. R., Nash, M. Connolly, D. J. Kyle, and L. M. F. Leeb‐Lundberg. The N terminus of bradykinin when bound to the human bradykinin B2 receptor is adjacent to extracellular Cys (20) and Cys (277) in the receptor. J. Biol. Chem. 271: 29746–29751, 1996.
 216. Hess, J. F., Molecular pharmacology of kinin receptors. In: The Kinin System, edited by S. G. Farmer. London: Academic, 1997, p. 45–56.
 217. Hess, J. F., J. A., Borkowski, G. S. Young, C. D. Strader, and R. W. Ransom. Cloning and pharmacological characterization of a human bradykinin (BK‐2) receptor. Biochem. Biophys. Res. Commun. 184: 260–268, 1992.
 218. Hial, V., H. R., Keiser, and J. J. Pisano. Origin and content of methionyl‐lysl‐bradykinin, lysl‐bradykinin, and bradykinin in human urine. Biochem. Pharmacol. 25: 2499–2503, 1976.
 219. Hibino, T., S., Isaki, H. Kimura, M. Izaki, and S. Kon. Partial purification of plasma and tissue kallikreins in psoriatic epidermis. J. Invest. Dermatol. 90: 505–510, 1988.
 220. Hibino, T., T., Takemura, and K. Sato. Human eccrine sweat contains tissue kallikrein and kininase II. J. Invest. Dermatol. 102: 214–220, 1994.
 221. Higashida, H., R. A., Streaty, W. Klee, and M. Nirenberg. Bradykinin activated transmembrane signals coupled via No or Ni to production of inositol 1, 4, 5‐triphosphate, a second messenger in NG 108–15 neuroblastoma‐glioma hybrid cells. Proc. Natl. Acad. Sci. U.S.A. 83: 942–946, 1986.
 222. Higashiyama, S., I. Ohkubo, H. Ishiguro, and M. Sasaki. Heavy chain of human high molecular weight and low molecular weight kininogens binds to calcium ions. Biochemistry 26: 7450–7458, 1987.
 223. Hilme, E., H., Herlitz, E. Gyzander, and L. Hansson. Urinary kallikrein excretion is low in malignant essential hypertension. J. Hypertens. 10: 869–874, 1992.
 224. Hock, F. J., K., Wirth, U. Albus, W. Linz, H. J. Gerhards, G. Weimer, S. Henke, G. Breipohl, W. Konig, and J. Knolle. Hoe 140, a new potent and long acting bradykinin‐antagonist: in vitro studies. Br. J. Pharmacol. 102: 769–773, 1991.
 225. Hofmann, W., and R. Geiger. Human tissue kallikrein. I. Isolation and characterization of human pancreatic kallikrein from duodenal juice. Hoppe‐Seyler Z. Physiol. Chem. 364: 413–423, 1983.
 226. Hojima, Y., C., Moriwaki, and H. Moriya. Isolation of dog, rat and hog pancreatic kallikreins by preparative disc electrophoresis and their properties. Chem. Pharm. Bull. (Tokyo) 23: 1128–1136, 1975.
 227. Hojima, Y., J. V., Pierce, and J. J. Pisano. Purification and characterisation of multiple forms of human plasma prekallikrein. J. Biol. Chem. 260: 400–406, 1985.
 228. Holland, O. B., J. M., Chud, and H. Braunstein. Urinary kallikrein excretion in essential and mineralocorticoid hypertension. J. Clin. Invest. 65: 347–356, 1980.
 229. Horowitz, D., H. S., Margolius, and H. R. Keiser. Effects of dietary potassium and race on urinary excretion of kallikrein and aldosterone in man. J. Clin. Endocrinol. Metab. 47: 296–299, 1978.
 230. Hosoi, K., K., Kurihara, and T. Ueha. Bradykinin‐stimulated transient modulation of epidermal growth factor receptors in A‐431 human epidermoid carcinoma cells. J. Cell. Physiol. 157: 1–12, 1993.
 231. Hosoi, K., S., Tsunasawa, K. Kurihara, H. Aoyama, T. Ueha, T. Murai, and F. Sakiyama. Identification of mK1, a true tissue (glandular) kallikrein of mouse submandibular gland: tissue distribution and a comparison of kinin‐releasing activity with other submandibular kallikreins. J. Biochem. 115: 137–143, 1994.
 232. Hunt, S. C., S. J., Hasstedt, L. L. Wu, and R. R. Williams. A gene–environmental interaction between inferred kallikrein genotype and potassium. Hypertension 22: 161–168, 1993.
 233. Hutchinson, F. N., S. K., Webster, and A. A. Jaffa. Altered renal kallikrein and renin gene expression in nephrotic rats and modulation by converting enzyme inhibition. J. Clin. Invest. 92: 1073–1079, 1993.
 234. Ideishi, M., M., Ikeda, and K. Arakawa. Direct angiotensin II formation by rat submandibular gland kallikrein. J. Biochem. (Tokyo) 102: 859–868, 1987.
 235. Ikemoto, F., B. G., Song, M. Tominga, Y. Kanayama, and K. Yamamoto. Angiotensin‐converting enzyme in the rat kidney. Activity, distribution and response to angiotensin‐converting enzyme inhibitors. Nephron 55 (Suppl. 1): 3–9, 1990.
 236. Imai, M., and R. Nakamura. Function of distal convoluted and connecting tubules studied by isolated nephron segments. Kidney Int. 22: 465–472, 1982.
 237. Inglis, J. D., and R. E. Hill. The murine Spi‐2 proteinase inhibitor locus: a multigene family with a hypervariable reactive site domain. EMBO J. 10: 255–261, 1991.
 238. Inoue, H., K., Fukui, and Y. Miyake. Identification and structure of the rat true tissue kallikrein gene expressed in the kidney. J. Biochem. (Tokyo) 105: 834–840, 1989.
 239. Isami, S., H., Kishikawa, E. Araki, M. Uehara, K. Kaneko, T. Shirotani, M. Todaka, S. Ura, S. Motoyoshi, K. Matsumoto, N. Miyamura, and M. Shichiri. Bradykinin enhances Glut4 translocation through the increase of insulin receptor tyrosine kinase in primary adipocytes—evidence that bradykinin stimulates the insulin signalling pathway. Diabetologia 39: 412–420, 1996.
 240. Issandou, M., and J. M. Darbon. DesArg9 bradykinin modulates DNA synthesis, phospholipase C, and protein kinase C in cultured mesangial cells. J. Biol. Chem. 266: 21037–21043, 1991.
 241. Iwai, N., M., Matsunaga, T. Kita, M. Tei, and C. Kawai. Detection of low molecular weight kininogen messenger RNA in human kidney. J. Hypertens. Suppl. 6: 399–400, 1988.
 242. Jacobsen, S.. Separation of two different substrates for plasma kinin‐forming enzymes. Nature 210: 98–99, 1966.
 243. Jaffa, A. A., D. H., Miller, G. S. Bailey, J. Chao, H. S. Margolius, and R. K. Mayfield. Abnormal regulation of renal kallikrein in experimental diabetes. Effects of insulin on prokallikrein synthesis and activation. J. Clin. Invest. 80: 1651–1659, 1987.
 244. Jaffa, A. A., D. H., Miller, R. H. Silva, H. S. Margolius, and R. K. Mayfield. Regulation of renal kallikrein synthesis and activation by glucocorticoids. Kidney Int. 38: 212–218, 1990.
 245. Jaspard, E., L., Wei, and F. Alhenc‐Gelas. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I–converting enzyme (kininase II). Studies with bradykinin and other natural peptides. J. Biol. Chem. 268: 9496–9503, 1993.
 246. Jiang, Y. P., W., Muller‐Esterl, and A. H. Schmaier. Domain 3 of kininogens contain a cell binding site and a site that modifies thrombin activation of platelets. J. Biol. Chem. 267: 3712–3717, 1992.
 247. Johnson, A. R., R. A., Skidgel, J. T. Gafford, and E. G. Erdos. Enzymes in placental microvilli: angiotensin I converting enzyme, angiotensinase A, carboxypeptidase and neutral endo‐peptidase (enkephalinase?). Peptides 5: 789–796, 1984.
 248. Jones, T. H., B. L., Brown, and P. R. M. Dobson. Bradykinin stimulates phosphoinositide metabolism and prolactin secretion in rat anterior pituitary cells. J. Mol. Endocrinol. 2: 47–53, 1989.
 249. Jones, T. H., C. D., Figueroa, C. Smith, D. R. Cullen, and K. D. Bhoola. Characterization of a tissue kallikrein in human prolactin‐secreting adenomas. J. Endocrinol. 124: 327–331, 1990.
 250. Kachur, J. F., W., Allbee, and T. S. Gaginella. Effect of bradykinin and des‐Arg9 bradykinin ion transport across normal and inflamed rat colon. Gastroenterology 90: 1481, 1986.
 251. Kakizuka, A., N., Kitamura, and S. Nakanishi. Localization of DNA sequences governing alternative mRNA production of rat kininogen genes. J. Biol. Chem. 263: 3884–3892, 1988.
 252. Kamada, M., K., Aoki, M. Ikekita, K. Kizuki, H. Moriya, M. Kamo, and A. Tsugita. Generation of alpha‐ and beta‐kallikreins from porcine pancreatic prokallikrein by the action of trypsin. Chem. Pharm. Bull. (Tokyo) 36: 4891–4899, 1988.
 253. Kamada, M., N., Furuhata, T. Yamaguchi, M. Ikekita, K. Kizuki, and H. Moriya. Observations of tissue prokallikrein activation by some serine proteases, arginine esterases in rat submandibular gland. Biochem. Biophys. Res. Commun. 166: 231–237, 1990.
 254. Kaplan, A. P., and M. Silverberg. The coagulation–kinin pathway of human plasma. Blood 70: 1–16, 1987.
 255. Kariya, K., A., Yamauchi, S. Hattori, Y. Tsuda, and Y. Okada. The disappearance rate of intraventricular bradykinin in the brain of the conscious rat. Biochem. Biophys. Res. Commun. 107: 1461–1466, 1982.
 256. Kasai, Y., L., Churchill, C. Vio, and J. McGiff. Prostaglandin related dependency of kallikrein release by the isolated perfused kidney. Federation Proc. 43: 651, 1984.
 257. Kato, H., K., Enjyoji, T. Miyata, I. Hayashi, S. Oh‐Ishi, and S. Iwanaga. Demonstration of arginyl‐bradykinin moiety in rat HMW kininogen: direct evidence for liberation of bradykinin by rat glandular kallikreins. Biochem. Biophys. Res. Commun. 127: 289–295, 1985.
 258. Kato, H., S. Nagasawa., and S., Iwanaga. HMW and LMW kininogens. Methods Enzymol. 80: 172–198, 1981.
 259. Katori, M., and M. Majima. Pivotal role of renal kallikrein–kinin system in the development of hypertension and approaches to new drugs based on this relationship. Jpn. J. Pharmacol. 70: 95–128, 1996.
 260. Katori, M., M., Majima, S. S. J. Mohsin, M. Hanazuka, and S. Mizokami, Essential role of kallikrein–kinin system in suppression of blood pressure rise during the developmental stage of hypertension induced by deoxycorticosteroid acetate‐salt in rats. In: Recent Progress on Kinins. Agents and Actions Supplements, edited by H. Fritz, W. Muller‐Esterl, M. Jochum, A. Roscher, and K. Luppertz. Basel: Birkhauser Verlag, 1992, vol. 38/III, p. 235–242.
 261. Kauker, M. L.. Bradykinin action on the efflux of luminal 22Na in the rat nephron. J. Pharmacol. Exp. Ther. 214: 119–123, 1980.
 262. Kennedy, C. R. J., P. R., Proulx, and R. L. Hebert. Regulation of bradykinin‐stimulated phospholipase C and arachidonic acid release by protein kinase A in MDCK‐D1 cells. Biochim. Biophys. Acta 1258: 206–214, 1995.
 263. Kennedy, C. R. J., P. R., Proulx, and R. L. Hebert. Role of PLA2, PLC and PLD in bradykinin‐induced release of arachidonic acid in MDCK cells. Am. J. Physiol. 271 (Cell Physiol. 40): C1064–C1072, 1996.
 264. Kerr, M. A., and A. J. Kenny. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem. J. 137: 477–488, 1974.
 265. Kim, W.‐S., K., Nakayama, and K. Murakami. The presence of two types of prorenin converting enzymes in mouse submandibular gland. FEBS Lett. 293: 142–144, 1991.
 266. Kimura, K., and H. Moriya. Enzyme and immunohistochemical localization of kallikrein. II. The human kidney. Histochemistry 80: 443–448, 1984.
 267. Kimura, M., T., Sueyoshi, K. Takada, K. Tanaka, T. Morita, and S. Iwanaga. Isolation and characterization of ornithokininogen. Eur. J. Biochem. 168: 493–501, 1987.
 268. Kitamura, N., H., Kitagawa, D. Fushima, Y. Takagaki, T. Miyata, and S. Nakanishi. Structural organization of the human kininogen gene and its model for evolution. J. Biol. Chem. 260: 8510–8617, 1985.
 269. Kitamura, N., Y., Takagaki, S. Furuto, T. Tanaka, H. Nawa, and S. Nakanishi. A single gene for bovine high molecular weight and low molecular weight kininogens. Nature 305: 545–549, 1983.
 270. Koolen, M. L., M. R., Daha, M. Frolich, L. A. Van Es, and P. Van Brummelen. Direct and indirect measurement of urinary kallikrein excretion in patients with essential hypertension and normotensives: relation to age and plasma renin and aldosterone levels. Eur. J. Clin. Invest. 14: 171–174, 1984.
 271. Kraut, H., E. K., Frey, and E. Werle. Der Nachweiss eines Kreislaufhormon in der Pankreasdruse. Hoppe‐Seyler Z. Physiol. Chem. 189: 97–106, 1930.
 272. Krivoy, N., Schulter, M. Karas, and W. Zidek. Generation of angiotensin II from human plasma by tissue kallikrein. Clin. Sci. (Colch.) 83: 477–482, 1992.
 273. Kumada, T., Y., Banno, H. Miyata, and Y. Nozawa. Phosphoinositide hydrolysis in Ki‐ras‐transformed fibroblasts stimulated by platelet‐derived growth factor and bradykinin. Int. J. Biochem. 26: 1049–1054, 1994.
 274. Kurabayashi, Y., M., Majima, and M. Katori. Major kininases in rat urine are neutral endopeptidase and carboxypeptidase Y‐like exopeptidase. Biomed. Res. 14: 191–201, 1993.
 275. Kurtz, T. W., and E. M. St. Lezin. Gene mapping in experimental hypertension. J. Am. Soc. Nephrol. 3: 28–34, 1992.
 276. Lauar, N., and K. D. Bhoola. Release of tissue kallikrein from the isolated perfused kidney. Adv. Exp. Med. Biol. 198A: 357–354, 1986.
 277. Lawton, W. J., and A. E. Fritz. Urinary kallikrein in normal renin essential hypertension. Circulation 56: 856–859, 1977.
 278. Leikhauf, G. D., I. F., Ueki, J. A. Nadel, and J. H. Widdicombe. Bradykinin stimulates chloride secretion and prostaglandin E2 release by canine tracheal epithelium. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F48–F55, 1985.
 279. Lemon, M., F., Fiedler, B. Forg‐Brey, C. Hirschauer, G. Leysath, and H. Fritz. The isolation and properties of pig submandibular kallikrein. Biochem. J. 177: 159–168, 1979.
 280. Levesque, L., G., Drapeau, J. H. Grose, F. Rioux, and F. Marceau. Vascular mode of action of kinin B1 receptors and development of a cellular model for the investigation of these receptors. Br. J. Pharmacol. 109: 1254–1262, 1993.
 281. Liao, J. K., and C. J. Homcy. The G proteins of the G αi and Gαq family couple the bradykinin receptor to the release of endothelium‐derived relaxing factor. J. Clin. Invest. 92: 2168–2172, 1993.
 282. Liebmann, C., A., Graness, B. Ludwig, A. Adomeit, A. Boehmer, F. D. Boehmer, B. Nurnberg, and R. Wetzker. Dual bradykinin B‐2 receptor signalling in A431 human epidermoid carcinoma cells—activation of protein kinase C is counteracted by a G(s)‐mediated stimulation of the cyclic AMP pathway. Biochem. J. 313: 109–118, 1996.
 283. Lilja, H.. A kallikrein‐like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J. Clin. Invest. 76: 1899–1903, 1985.
 284. Lin, F.‐K., C. H., Lin, C. C. Chou, K. Chen, H. S. Lu, W. Bacheller, C. Herrera, T. Jones, J. Chao, and L. Chao. Molecular cloning and sequence analysis of the monkey and human tissue kallikrein genes. Biochim. Biophys. Acta 1173: 325–328, 1993.
 285. Lipke, D. W., and K. R. Olson. Enzymes of the kallikrein–kinin system in rainbow trout. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R501–R506, 1990.
 286. Llorens‐Cortes, C., H., Huang, P. Vicart, J.‐M. Gasc, D. Paulin, and P. Corvol. Identification and characterization of neutral endopeptidase in endothelial cells from venous or arterial origins. J. Biol. Chem. 267: 14012–14018, 1992.
 287. Lopez, J. M., E., Artegea, J. A. Rodiguez, and H. Croxatto. Increased excretion of kallikrein during dexamethasone administration in normal man on low and normal salt intake. Clin. Sci. (Colch.) 65: 487–490, 1983.
 288. Lu, H. S., Y. R., Hsu, L. O. Narhi, S. Karkare, and F. K. Lin. Purification and characterization of human tissue prokallikrein and kallikrein isoforms expressed in Chinese hamster ovary cells. Protein Expr. Purif. 8: 227–237, 1996.
 289. Ma, J., D., Wang, L. Chao, and J. Chao. Cloning, sequence analysis and expression of the gene encoding the mouse bradykinin B2 receptor. Gene 149: 283–288, 1994.
 290. Ma, J., D., Wang, D. C. Ward, L. Chen, T. Dessai, J. Chao, and L. Chao. Structure and chromosomal localization of the gene encoding human bradykinin B2 receptor. Genomics 23: 362–369, 1994.
 291. Ma, J.‐X., J., Chao, and L. Chao. Identification and characterization of two promoters of rat kallikrein‐binding protein gene. Biochim. Biophys. Acta 1307: 285–293, 1996.
 292. Ma, J. X., Q., Song, H. C. Hatcher, R. K. Crouch, L. Chao, and J. Chao. Expression and cellular localization of the kallikrein–kinin system in human ocular tissues. Exp. Eye Res. 63: 19–26, 1996.
 293. Ma, J. X., Z. R., Yang, J. Chao, and L. Chao. Intramuscular delivery of rat kallikrein‐binding protein gene reverses hypotension in transgenic mice expressing tissue kallikrein. J. Biol. Chem. 270: 451–455, 1995.
 294. MacDonald, R. J., H. S., Margolius, and E. G. Erdos. Molecular biology of tissue kallikrein. Biochem. J. 253: 313–321, 1988.
 295. MacDonald, R. J., E. M., Southard‐Smith, and E. Kroon. Disparate tissue‐specific expression of members of the tissue kallikrein multigene family of the rat. J. Biol. Chem. 271: 13864–13690, 1996.
 296. Mackay, I. G., M. L., Watson, K. A. Nath, A. D. Cumming, and A. L. Muir. Urinary kallikrein and prostaglandin response to frusemide in mild hypertension. Control. Nephrol. 41: 160–162, 1984.
 297. MacNeil, T., K. K., Bierilo, J. G. Menke, and J. F. Hess. Cloning and pharmacological characterization of a rabbit bradykinin B1 receptor. Biochim. Biophys. Acta 1264: 223–228, 1995.
 298. Madeddu, P., V., Anania, P. P. Parpaglia, M. P. Demontis, M. V. Varoni, M. C. Fattaccio, and N. Glorioso. Chronic kinin receptor blockade induces hypertension in deoxycorticosterone‐treated rats. Br. J. Pharmacol. 108: 651–657, 1993.
 299. Madeddu, P., N. Glorioso, P. Pinna Parpaglia, M. P. Demontis, M. V. Varoni, M. C. Fattaccio, G. Sabino, G. Pisanu, G. Patteri, and V. Anania, Kinin antagonist blunts the diuretic effect of furosemide in deoxycorticosterone‐treated rats. In: Recent Progress on Kinins. Agents and Actions Supplements, edited by G. Bonner, H. Fritz, B. Schoelkens, G. Dietze, and K. Luppertz. Basel: Birkhauser Verlag, 1992, vol. 38/III, p. 156–162.
 300. Madeddu, P., M. V., Varoni, M. P. Demontis, P. Pinnaparpaglia, N. Gloriso, and V. Anania. Urinary kallikrein—a marker of blood pressure sensitivity to salt. Kidney Int. 49: 1422–1427, 1996.
 301. Maier, M., K. F., Austen, and J. Spragg. Kinetic analysis of the interaction of human tissue kallikrein with single‐chain human high and low molecular weight kininogens. Proc. Natl. Acad. Sci. U.S.A. 80: 3928–3932, 1983.
 302. Majima, M., Y. Ikeda, Y Y. Kuribayashi, S. Mizogami, M. Katori, and T. Aoyagi. Ebelactone B, an inhibitor of urinary carboxypeptidase Y‐like kininase, prevents the development of deoxycorticosterone acetate‐salt hypertension in rats. Eur. J. Pharmacol. 284: 1–11, 1995.
 303. Majima, M., Y., Kuribayashi, and M. Katori. A novel type of antihypertensive drugs, poststatin and ebelactone B, acting through urinary kininase inhibition. Can. J. Pharmacol. Physiol. 72 (Suppl. I): 129, 1994.
 304. Majima, M., S., Mizogami, Y. Kuribayashi, M. Katori, and S. Oh‐Ishi. Hypertension induced by a non‐pressor dose of angiotensin II in kininogen‐deficient rats. Hypertension 24: 111–119, 1994.
 305. Majima, M., C., Shima, M. Saito, Y. Kuribayashi, M. Katori, and T. Aoyagi. Poststatin, a novel inhibitor of bradykinin‐degrading enzymes in rat urine. Eur. J. Pharmacol. 232: 181–190, 1993.
 306. Majima, M., O., Yoshida, H. Mihara, T. Muto S. Mizogami, Y. Kuribayashi, M. Katori, and S. Ohishi. High sensitivity to salt in kininogen‐deficient brown Norway Katholiek rats. Hypertension 22: 705–714, 1993.
 307. Mak, J. C. W., and P. J. Barnes. Autoradiographic visualization of bradykinin receptors in human and guinea pig lung. Eur. J. Pharmacol. 194: 37–44, 1991.
 308. Malfroy, B., W.‐J., Kuang, P. H. Seeburg, A. J. Mason, and P. R. Schofield. Molecular cloning and amino acid sequence of human enkephalinase (neutral endopeptidase). FEBS Lett. 229: 206–210, 1988.
 309. Mandle, R., R. W., Colman, and A. P. Kaplan. Identification of prekallikrein and HMW kininogen as a circulating complex in human plasma. Proc. Natl. Acad. Sci. U.S.A. 73: 4179–4183, 1976.
 310. Manning, D. C., and S. H. Snyder. Bradykinin receptors localized by quantitative autoradiography in the kidney, ureter and bladder. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F909–F915, 1989.
 311. Manning, D. C., S. H., Synder, J. F. Kachur, R. J. Miller, and M. Field. Bradykinin receptor mediated Cl‐ secretion in the intestine. Nature 299: 256–259, 1982.
 312. Marceau, F., Kinin B1 receptor induction and inflammation. In: The Kinin System, edited by S. G. Farmer. London: Academic, 1997, p. 143–156.
 313. Marchetti, J., M., Imbert‐Teboul, F. Alhenc‐Gelas, J. Allegrini, J. Menard, and F. Morel. Kallikrein along the rabbit micro‐dissected nephron: a micromethod for its measurement. Effect of adrenalectomy and DOCA treatment. Pflugers Arch. 401: 27–33, 1984.
 314. Marchetti, J., S., Roseau, and F. Alhenc‐Gelas. Angiotensin I converting enzyme and kinin‐hydrolyzing enzymes along the rabbit nephron. Kidney Int. 31: 744–751, 1987.
 315. Margolius, H. S.. Kallikreins and kinins. Molecular characteristics and cellular and tissue responses. Diabetes 45 (Suppl. 1): S14–S19, 1996.
 316. Margolius, H. S., J., Chao, and T. Kaizu. The effects of aldosterone and spironolactone on renal kallikrein in the rat. Clin. Sci. (Colch.) 51 (Suppl.): 279s–282s, 1976.
 317. Margolius, H. S., D., Horowitz, R. G. Geller, R. W. Alexander, J. R. Gill, Jr., J. J. Pisano, and H. R. Keiser. Urinary kallikrein excretion in normal man. Relationships to sodium intake and sodium‐retaining steroids. Circ. Res. 35: 812–819, 1974.
 318. Margolius, H. S., D., Horowitz, J. J. Pisano, and H. R. Keiser. Urinary kallikrein excretion in hypertensive man. Relationships to sodium intake and sodium‐retaining steroids. Circ. Res. 35: 820–825, 1974.
 319. Marin‐Grez, M.. The influence of antibodies against bradykinin on isotonic saline diuresis in the rat. Pflugers Arch. 350: 231–239, 1974.
 320. Marin‐Grez, M.. The influence of tetracosactide and adrenal steroids on renal kallikrein activity and urinary kallikrein excretion in rats. Biochem. Pharmacol. 34: 4013–4017, 1985.
 321. Marin‐Grez, M., G., Bonner, and F. Gross. The influence of isotonic saline administration on the urinary excretion of kallikrein in rats. Biochem. Pharmacol. 33: 3585–3590, 1984.
 322. Marin‐Grez, M., G., Schaechtelin, and G. Bonner. Relationship between the renal kallikrein activity and the urinary excretion of kallikrein in rats. Experientia 38: 941–943, 1982.
 323. Mathews, C. J., G. T. A., McEwan, C. P. F. Redfern, E. J. Thomas, and B. H. Hirst. Bradykinin stimulation of electrogenic ion transport in epithelial layers of cultured human endometrium. Pflugers Arch. 422: 401–403, 1993.
 324. Mattson, D. L., and A. W. Cowley. Kinin actions on renal papillary blood flow and sodium excretion. Hypertension 21: 961–965, 1993.
 325. Mayfield, R. K., H. S., Margolius, G. S. Bailey, D. H. Miller, D. A. Sens, J. Squires, and D. H. Namm. Urinary and tissue kallikrein in the streptozotocin‐diabetic rat. Diabetes 34: 22–28, 1986.
 326. Mayfield, R. K., D. A., Sens, A. A. Jaffa, and H. S. Margolius. Studies of sweat kallikrein in normal human subjects. Adv. Exp. Med. Biol. 247B: 649–655, 1989.
 327. McAllister, B. S., L. M. F., Leeb‐Lunberg, M. A. Javors, and M. S. Olson. Bradykinin receptors and signal transduction pathways in human fibroblasts: integral role for extracellular calcium. Arch. Biochem. Biophys. 304: 294–301, 1993.
 328. McCaa, R. E., J. E., Hall, and C. S. McCaa. The effects of angiotensin I–converting enzyme inhibitors on arterial blood pressure and urinary sodium excretion. Role of the renin–angiotensin and kallikrein–kinin systems. Circ. Res. 43 (Suppl. 1): 32–39, 1978.
 329. McEachern, A. E., E. R., Shelton, S. Bhakta, R. Obernolte, C. Bach, P. Zuppan, J. Fujisaki, R. W. Aldrich, and K. Jarnagin. Expression cloning of a rat B2 bradykinin receptor. Proc. Natl. Acad. Sci. U.S.A. 88: 7724–7728, 1991.
 330. McGiff, J. C.. Interactions of prostaglandins with the kallikrein–kinin and renin–angiotensin systems. Clin. Sci. (Colch.) 59: 105s–116s, 1980.
 331. McGwire, G. B., and R. A. Skidgel. Extracellular conversion of epidermal growth factor (EGF) to des‐Arg53‐EGF by carboxy‐peptidase M. J. Biol. Chem. 270: 17154–17158, 1995.
 332. McIntyre, P., E., Phillips, E. Skidmore, M. Brown, and M. Webb. Cloned murine bradykinin receptor exhibits a mixed B1 and B2 pharmacological selectivity. Mol. Pharmacol. 44: 346–355, 1993.
 333. McPartland, R. P., D. L., Sustaric, and J. P. Rapp. Evidence for an androgen‐dependent urinary arginine esterase in the rat: separation from other urinary arginine esterases including kallikrein. Endocrinology 108: 1634–1638, 1981.
 334. Meloni, F. J., E. G., Gustafson, and A. H. Schmaier. High molecular weight kininogen binds to platelet by its heavy and light chains and when bound has altered susceptibility to kallikrein cleavage. Blood 79: 1233–1244, 1992.
 335. Menashi, S., R., Fridman, S. Desrivieres, H. Lu, Y. Legrand, and C. Soria. Regulation of 92‐kDa gelatinase activity B in the extracellular matrix by tissue kallikrein. Ann. N. Y. Acad. Sci. 732: 466–468, 1994.
 336. Menke, J. G., J. A., Borkowski, K. K. Bierilo, T. MacNeil, A. W. Derrick, K. A. Schneck, R. W. Ransom, C. D. Strader, D. L. Linemeyer, and J. F. Hess. Expression cloning of a human B1 receptor. J. Biol. Chem. 269: 21583–21586, 1994.
 337. Mersey, J. H., G. H., Williams, R. Emanuel, R. G. Dluhy, P. Y. Wong, and T. J. Moore. Plasma bradykinin levels and urinary kallikrein excretion in normal renin essential hypertension. J. Clin. Endocrinol. Metab. 48: 642–647, 1979.
 338. Mertz, J. I., J. A., Haas, T. J. Berndt, J. C. Burnett, and F. G. Knox. Effects of bradykinin on renal interstitial pressures and proximal tubule resorption. Am. J. Physiol. 247: F82–F85, 1984. (Renal Fluid Electrolyte Physiol. 16)
 339. Miller, D. H., A. W., Baird, S. Bennet, M. Haluska, M. Sasaguri, H. Schomer, and H. S. Margolius, Regulation of brady‐kinin‐induced chloride secretion in a human epithelial cell line. In: Recent Progress on Kinins. Agents and Action Supplements, edited by G. Bonner, H. Fritz, T. Unger, A. Roscher, and K. Luppertz. Basel: Birkhauser Verlag, 1992, vol. 38/II, p. 81–86.
 340. Miller, D. H., J., Chao, and H. S. Margolius. Tissue kallikrein synthesis and its modification by testosterone or low dietary sodium. Biochem. J. 218: 237–243, 1984.
 341. Miller, D. H., J. G., Lindley, and H. S. Margolius. Tissue kallikrein levels and synthesis rates are not changed by an acute physiological dose of aldosterone. Proc. Soc. Exp. Biol. Med. 180: 121–125, 1985.
 342. Mills, I. H., G., Lee, and A. A. Brownlee. Urinary kallikrein in the rat—stimulation with angiotensin infusion but depression with increasing sodium concentration. J. Physiol. (Lond.) 481: 425–437, 1994.
 343. Mindroiu, T., O. A., Carretero, D. Walz, and A. G. Scicli. Tissue kallikrein processes small proenkephalin peptides. Biochim. Biophys. Acta. 1076: 9–14, 1991.
 344. Misumi, J., F., Alhenc‐Gelas, M. Marre, J. Marchetti, P. Corvol, and J. Menard. Regulation of kallikrein and renin release by the isolated perfused rat kidney. Kidney Int. 24: 58–65, 1983.
 345. Mitsas, J. A., S. B., Levy, R. Holle, R. P. Frigon, and R. A. Stone. Urinary kallikrein activity in the hypertension of renal parenchymal disease. N. Engl. J. Med. 299: 162–165, 1978.
 346. Miyashita, A.. Urinary kallikrein determination and its physiological role in human kidney. Jpn. J. Urol. 62: 507–518, 1971.
 347. Moriya, H., M., Ikekita, and K. Kizuki. Some aspects of carbohydrate contents in glandular kallikrein. Adv. Exp. Med. Biol. 156A: 309–315, 1983.
 348. Mukai, H., W. R., Fitzgibbon, G. Bozeman, H. S. Margolius, and D. W. Ploth. Bradykinin B2 receptor antagonist increases chloride and water absorption in rat medullary collecting duct. Am. J. Physiol. 271 (Regulatory Integrative Comp. Physiol. 40): R352–R360, 1996.
 349. Muller‐Esterl, W.. Kininogens, kinins and kinships. Thromb. Haemost. 61: 2–6, 1989.
 350. Murone, C., R. B., Perich, I. Schlawe, W. Muller‐Esterl, F. A. O. Mendelsohn, and S. Y. Chai. Localization of brady‐kinin B‐2 receptors in sheep uterus. Immunopharmacology 33: 108–112, 1996.
 351. Murray, S. R., J., Chao, F. Lin, and L. Chao. Kallikrein multigene families and the regulation of their expression. J. Cardiovasc. Pharmacol. 15 (Suppl. 6): S7–S16, 1990.
 352. Mutt, V., and S. I. Said. Structure of porcine vasoactive intestinal octacosapeptide. The amino‐acid sequence. Use of kallikrein in its determination. Eur. J. Biochem. 42: 581–589, 1974.
 353. Nagae, A., M., Abe, R. P. Becker, P. A. Deddish, R. A. Skidgel, and E. G. Erdos. High concentration of carboxypeptidase M in lungs: presence of the enzyme in alveolar type I cells. Am. J. Respir. Cell Mol. Biol. 9: 221–229, 1993.
 354. Nagae, A., P. A., Deddish, R. P. Becker, C. H. Anderson, M. Abe, R. A. Skidgel, and E. G. Erdos. Carboxypeptidase M in brain and peripheral nerves. J. Neurochem. 59: 2201–2212, 1992.
 355. Nardone, J., C., Gerald, L. Rimawi, L. Song, and P. G. Hogan. Identification of a B2 bradykinin receptor expressed by PC12 phaeochromocytoma cells. Proc. Natl. Acad. Sci. U.S.A. 91: 4412–4416, 1994.
 356. Nasjletti, A., A., Erman, L. M. Cagen, D. P. Brooks, J. T. Crofton, L. Share, and P. G. Baer. High potassium intake selectively increases urinary PGF2α excretion in the rat. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F382–F388, 1985.
 357. Neurath, H., The diversity of proteolytic enzymes. In: Proteolytic Enzymes—A Practical Approach, edited by R. J. Beynon and J. S. Bond. Oxford: Oxford University Press, 1989, p. 1–13.
 358. Nishii, M., M., Takaoka, M. Nakamura, Y. Takenobu, and S. Morimoto. Purification and partial characterisation of a thiol proteinase activating prokallikrein from the rat kidney cortex. Biochem. Biophys. Acta 990: 138–143, 1989.
 359. Noda, Y., Y., Takada, and E. G. Erdos. Activation of human and rabbit prokallikrein by serine and metalloproteases. Kidney Int. 27: 630–635, 1985.
 360. Noda, Y., K., Yamada, R. Igic, and E. G. Erdos. Regulation of rat urinary and renal kallikrein and prokallikrein by corticosteroids. Proc. Natl. Acad. Sci. U.S.A. 80: 3059–3063, 1983.
 361. Nolly, H., A., Scicli, G. Scicli, and O. A. Carretero. Characterization of a kininogenase from rat vascular tissue resembling tissue kallikrein. Circ. Res. 56: 816–821, 1985.
 362. Novotny, E. A., D. L., Bednar, M. A. Connolly, J. R. Connor, and T. M. Stormann. Mutation of aspartate residues in the third extracellular loop of the rat B‐2 bradykinin receptor decreases affinity for bradykinin. Biochem. Biophys. Res. Commun. 201: 523–530, 1994.
 363. Obika, L. F. O.. Urinary kallikrein excretion during potassium chloride infusion in potassium‐adapted rats: effect of amiloride. Clin. Sci. (Colch) 77: 21–27, 1989.
 364. Ole‐Moiyoi, O., G. S., Pinkus, J. Spragg, and K. F. Austen. Identification of human glandular kallikrein in the beta cell of the pancreas. N. Engl. J. Med. 300: 1289–1294, 1979.
 365. Ole‐Moiyoi, O., D. C., Seldin, J. Spragg, G. Pinkus, and K. F. Austen. Sequential cleavage of pro‐insulin by human pancreatic kallikrein and a human pancreatic kinase. Proc. Natl. Acad. Sci. U.S.A. 76: 3612–3616, 1979.
 366. Omata, K., O. A., Carretero, S. Itoh, and A. G. Scicli. Active and inactive kallikrein in rabbit connecting tubules and urine during low and normal sodium intake. Kidney Int. 24: 714–718, 1983.
 367. Omata, K., O. A., Carretero, A. G. Scicli, and B. A. Jackson. Localization of active and inactive kallikrein (kininogenase activity) in the microdissected rabbit nephron. Kidney Int. 22: 602–607, 1982.
 368. Orstavik, T. B., P., Brandtzaeg, K. Nustad, and J. V. Pierce. Immunohistochemical localization of kallikrein in human pancreas and salivary glands. J. Histochem. Cytochem. 28: 557–562, 1980.
 369. Orstavik, T. B., and T. Ingami. Localization of kallikrein in the rat kidney and its anatomical relationship to renin. J. Histochem. Cytochem. 30: 385–390, 1982.
 370. Orstavik, T. B., K., Nustad, P. Brandtzaeg, and J. V. Pierce. Cellular origin of urinary kallikreins. J. Histochem. Cytochem. 24: 1037–1039, 1976.
 371. Overlack, A., K. O., Stumpe, H. M. Muller, R. Kolloch, and M. Higuchi. Interactions of diuretics with the renal kallikrein–kinin and prostaglandin systems. Klin. Wochenschr. 60: 1223–1228, 1982.
 372. Overlack, A., K. O., Stumpe, C. Ressel, and F. Kruck. Low urinary kallikrein excretion and elevated blood pressure normalized by orally applied kallikrein in essential hypertension. Clin. Sci. (Colch.) 57: 263–265, 1979.
 373. Oza, N. B., J. H., Schwartz, M. D. Goud, and N. G. Levinsky. Rat aortic smooth muscle cells in culture express kallikrein, kininogen and bradykinase activity. J. Clin. Invest. 85: 597–600, 1990.
 374. Pages, G., J. F., Rouayrenc, V. Rossi, G. Le Cam, M. Mariller, J. Szpirer, C. Szpirer, G. Levan, and A. Le Cam. Primary structure and assignment to chromosome 6 of three related rat genes encoding liver serine protease inhibitors. Gene 94: 273–282, 1990.
 375. Pan, Z. K., B. L., Zuraw, C.‐C. Lung, E. R. Prossnitz, D. D. Browning, and R. D. Ye. Bradykinin stimulates NF‐κB activation and interleukin 1β gene expression in cultured human fibroblasts. J. Clin. Invest. 98: 2042–2049, 1996.
 376. Park, J., R., Freedman, C. Bach, C. Yee, M. Rohrwild, H. Kaminishi, W. Muller‐Esterl, and K. Jarnagin. Bradykinin B2 receptors in humans and rats: cDNA structures, possible alternative splicing, and homology searching for subtypes. Braz. J. Med. Biol. Res. 27: 1707–1724, 1994.
 377. Penschow, J. D., and J. P. Coghlan. Sites of glandular kallikrein gene expression in fetal mice. Mol. Cell. Endocrinol. 88: 23–30, 1992.
 378. Penschow, J. D., and J. P. Coghlan. Cellular and sub‐cellular location of kallikrein gene products induced in outer medullary tubules by furosemide treatment. Nephrology 2: 263–271, 1996.
 379. Penschow, J. D., C. C., Drinkwater, J. Haralambidis, and J. P. Coghlan. Sites of expression and induction of glandular kallikrein gene expression in mice. Mol. Cell. Endocrinol. 81: 135–146, 1991.
 380. Pesquero, J. B., C. J., Lindsey, K. Zeh, A. C. M. Paiva, D. Ganten, and M. Bader. Molecular structure and expression of rat bradykinin B2 receptor gene. Evidence for alternative splicing. J. Biol. Chem. 269: 26920–26925, 1994.
 381. Pesquero, J. B., J. L., Pesquero, S. M. Oliveira, A. A. Roscher, R. Metzger, D. Ganten, and M. Bader. Molecular cloning and functional characterization of a mouse bradykinin B1 receptor gene. Biochem. Biophys. Res. Commun. 220: 219–225, 1996.
 382. Peters, J., S., Takahashi, M. Tada, and Y. Miyake. mGK‐6‐derived true tissue kallikrein is synthesized, processed, and targeted through a regulated secretory pathway in mouse pituitary AtT‐20 cells. J. Biochem. 111: 643–648, 1992.
 383. Pickles, R. J., and A. W. Cuthbert. Relationship of anion secretory activity to intracellular Ca2+ in response to lyslbradykinin and histamine in a cultured human colonic epithelium. Eur. J. Pharmacol. 199: 77–91, 1991.
 384. Poblete, M. T., N. J., Reynolds, C. D. Figueroa, J. L. Burton, W. Muller‐Esterl, and K. D. Bhoola. Tissue kallikrein and kininogen in human sweat glands and psoriatic skin. Br. J. Dermatol. 124: 236–241, 1991.
 385. Poe, M., J. K., Wu, J. R. Florance, J. A. Rodkey, C. D. Bennett, and K. Hoogsteen. Purification and properties of renin and γ‐renin from the mouse submaxillary gland. J. Biol. Chem. 258: 2209–2216, 1983.
 386. Ponchon, P., and J. L. Elghozi. Contribution of the renin–angiotensin and kallikrein–kinin systems to short‐term variability of blood pressure in two‐kidney, one‐clip hypertensive rats. Eur. J. Pharmacol. 297: 61–70, 1996.
 387. Powell, S. J., G., Slynn, C. Thomas, B. Hopkins, I. Briggs, and A. Graham. Human bradykinin B2 receptor: nucleotide sequence analysis and assignment to chromosome 14. Genomics 15: 435–438, 1993.
 388. Powers, C. A.. Anterior pituitary glandular kallikrein: trypsin activation and estrogen regulation. Mol. Cell. Endocrinol. 46: 163–174, 1986.
 389. Powers, C. A., and M. A. Hatala. Dopaminergic regulation of the estrogen‐induced kallikrein in the rat anterior pituitary. Neuroendocrinology 44: 462–469, 1986.
 390. Powers, C. A., and M. A. Hatala. Prolactin proteolysis by glandular kallikrein: in vitro reaction requirements and cleavage sites and detection of processed prolactin in vivo. Endocrinology 127: 1916–1927, 1990.
 391. Powers, C. A., and A. Nasjletti. A novel kinin‐generating protease (kininogenase) in the porcine anterior pituitary. J. Biol. Chem. 257: 5594–5598, 1982.
 392. Powers, C. A., and A. Nasjletti. A major sex difference in kallikrein‐like activity in the rat anterior pituitary. Endocrinology 114: 1841–1844, 1984.
 393. Powers, C. A., and W. F. Westlin. Glandular kallikrein levels in the rat anterior pituitary during the estrous cycle and pregnancy. Biol. Reprod. 37: 306–310, 1987.
 394. Praddaude, F., T., Tran‐Van, and J. L. Ader. Renal kallikrein activity in rats developing spontaneous hypertension. Clin. Sci. (Colch.) 76: 311–315, 1989.
 395. Prado, E. S., L. Prado de Carvalho, M. S. Araujo‐Viel, N. Ling, and J. Rossier. A met‐enkephalin‐containing‐peptide, Bam 22P, as a novel substrate for glandular kallikreins. Biochem. Biophys. Res. Commun. 112: 366–371, 1983.
 396. Pritchett, D. B., and J. L. Roberts. Dopamine regulates expression of the glandular‐type kallikrein gene at the transcriptional level in the pituitary. Proc. Natl. Acad. Sci. U.S.A. 84: 5545–5549, 1987.
 397. Proud, D., and A. P. Kaplan. Kinin formation: mechanisms and role in inflammatory disorders. Annu. Rev. Immunol. 6: 49–83, 1988.
 398. Proud, D., M. A., Knepper, and J. J. Pisano. Distribution of immunoreactive kallikrein along the rat nephron. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F510–F515, 1983.
 399. Proud, D., M., Perkins, J. V. Pierce, K. Yates, P. Highet, P. Herrig, M. M. Mark, R. Bahu, F. Carone, and J. J. Pisano. Characterization and localization of human renal kininogen. J. Biol. Chem. 256: 10634–10639, 1981.
 400. Proud, D., C. J., Reynolds, J. Broomfield, D. W. Goldman, and J. M. Bathon. Bradykinin effects in guinea pig tracheal epithelial cells are mediated through a B2 kinin receptor and can be inhibited by the selective antagonist Hoe 140. J. Pharmacol. Exp. Ther. 264: 112–131, 1993.
 401. Pruneau, D., and P. Belichard. Induction of bradykinin B1 receptor‐mediated relaxation in the isolated rabbit carotid artery. Eur. J. Pharmacol. 239: 63–67, 1993.
 402. Pyne, S., and N. J. Pyne. Bradykinin‐stimulated phosphatidylcholine hydrolysis in airway smooth muscle: the role of Ca2+ and protein kinase C. Biochem. J. 311: 637–642, 1995.
 403. Quitterer, U., C., Schroder, W. Muller‐Esterl, and H. Rehm. Effects of bradykinin and endothelin‐1 on the calcium homeostasis of mammalian cells. J. Biol. Chem. 270: 1992–1999, 1995.
 404. Raidoo, D. M., N., Ramchurren, Y. Naidoo, S. Naidoo, W. Muller‐Esterl, and K. D. Bhoola. Visualization of bradykinin B2 receptors on human brain neurons. Immunopharmacology 33: 104–107, 1996.
 405. Rangachari, P. K., M., Berezin, and T. Prior. Effects of bradykinin on the canine proximal colon. Regul. Pept. 46: 511–522, 1993.
 406. Rapp, J. P., R. P., McPartland, and D. I. Sustarsic. Anomalous response of urinary kallikrein to desoxycorticosterone in Dahl salt‐sensitive rats. Hypertension 4: 20–26, 1982.
 407. Reddigari, S. R., P., Kuna, G. Miragliotta, Y. Shibayama, K. Nishikawa, and A. P. Kaplan. Human high molecular weight kininogen binds to human umbilical vein endothelial cells via its heavy and light chains. Blood 81: 1306–1311, 1993.
 408. Reddigari, S. R., M., Silverberg, and A. P. Kaplan, Bradykinin formation in allergic diseases and hereditary angioedema. In: The Kinin System, edited by S. G. Farmer. London: Academic, 1997, p. 265–286.
 409. Regoli, D., and J. Barabe. Pharmacology of bradykinin and related kinins. Pharmacol. Rev. 32: 1–46, 1980.
 410. Regoli, D., G., Calo, A. Rizzi, G. Bogoni, F. Gobeil, C. Campobasso, G. Mollica, and L. Beani. Bradykinin receptors and receptor ligands (with special emphasis on vascular receptors). Regul. Pept. 65: 83–89, 1996.
 411. Rehbock, J., P., Buchinger, A. Hermann, and C. Figueroa. Identification of immunoreactive tissue kallikrein in human ductal breast carcinomas. J. Cancer Res. Clin. Oncol. 121: 64–68, 1995.
 412. Rett, K., M., Wicklmayr, G. J. Dietze, and H. U. Haring. Insulin‐induced glucose transporter (Glut1 and Glut4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes 45 (Suppl. 1): S66–S69, 1996.
 413. Richards, G. P., J., Chao, P. Chung, and L. Chao. Purification and characterisation of tissue kallikrein‐like proteinases from the black sea bass (Centropristis striata) and the southern frog (Rana berlandieri). Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 111: 69–82, 1995.
 414. Richards, G. P., C., Zintz, J. Chao, and L. Chao. Purification and characterisation of salivary kallikrein from an insectivore (Scalopus aquaticus)—substrate specificities, immunoreactivity and kinetic analyses. Arch. Biochem. Biophys. 329: 104–112, 1996.
 415. Richards, R. I., K., Holman, Y. Shen, H. Kozman, H. Harley, D. Brook, and D. Shaw. Human glandular kallikrein genes: genetic and physical mapping of the KLK1 locus using a highly polymorphic microsatellite PCR marker. Genomics 11: 77–82, 1991.
 416. Riegman, P. H.J., R. J., Vlietstra, L. Suurmeijer, C. B. J. M. Cleutjens, and J. Trapman. Characterization of the human kallikrein locus. Genomics 14: 6–11, 1992.
 417. Riegman, P. H. J., R. J. Vlietstra, J. A. G. M. Van Der Korput, J. C. Romijin, and J. Trapman. Characterization of the prostate‐specific antigen gene: a novel human kallikrein‐like gene. Biochem. Biophys. Res. Commun. 159: 95–102, 1989.
 418. Rizzu, P., and A. Baldini. Three members of the human cystatin gene superfamily, AHSG, HRG and KNG, map within one megabase of genomic DNA at 3q27. Cytogenet. Cell Genet. 70: 26–28, 1995.
 419. Roa, J. P., C. A., Powers, R. Silva, and C. P. Vio. Cellular mechanisms of estrogen‐ and dopamine‐induced control of glandular kallikrein in the anterior pituitary of the rat. Cell Tissue Res. 274: 421–427, 1993.
 420. Roberts, R. A., and W. J. Gullick. Bradykinin receptor number and sensitivity to ligand stimulation of mitogenesis by expression of mutant ras oncogene. J. Cell Sci. 94: 527–535, 1989.
 421. Roblero, J., H. R., Croxatto, R. Garcia, J. Corthorn, and E. De Vito. Kallikrein‐like activity in perfusates and urine of isolated rat kidneys. Am. J. Physiol. 231: 1383–1389, 1976.
 422. Rocha e Silva, M., W. T. Beraldo, and G. Rosenfeld. Bradykinin, hypotensive and smooth muscle stimulating factor released from plasma globulins by snake venom and by trypsin. Am. J. Physiol. 156: 261–273, 1949.
 423. Roman, R. J., M. L., Kaldunski, A. G. Scicli, and O. A. Carretero. Influence of kinins and angiotensin II on the regulation of papillary blood flow. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F690–F698, 1988.
 424. Ronco, P., H., Pollard, M. Galceran, M. Delauche, J. C. Schwartz, and P. Verroust. Distribution of enkephalinase (membrane metalloendopeptidase, E.C. 3.4.24.11) in rat organs. Detection using a monoclonal antibody. Lab. Invest. 58: 210–217, 1988.
 425. Rosewicz, S., K., Detjen, C. D. Logsdon, L. M. Chen, J. Chao, and E. O. Riecken. Glandular kallikrein gene expression is selectively down‐regulated by glucocorticoids in pancreatic AR42J cells. Endocrinology 128: 2216–2222, 1991.
 426. Rouch, A. J., L., Chen, S. L. Troutman, and J. A. Schafer. Na+ transport in isolated rat CCD: effects of bradykinin, ANP, clonidine and hydrochlorothiazide. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F86–F95, 1991.
 427. Roy, P., C., Chatellard, G. Lemay, P. Crine, and G. Boileau. Transformation of the signal peptide membrane anchor domain of a type II transmembrane protein into a cleavable signal peptide. J. Biol. Chem. 268: 2699–2704, 1993.
 428. Ryan, J. W., P., Berryer, A. Y. Chung, and D. H. Sheffy. Characterization of rat pulmonary vascular aminopeptidase P in vivo: role in the inactivation of bradykinin. J. Pharmacol. Exp. Ther. 269: 941–947, 1994.
 429. Saed, G. M., O. A., Carretero, R. J. Macdonald, and A. G. Scicli. Kallikrein messenger RNA in rat arteries and veins. Circ. Res. 67: 510–516, 1990.
 430. Saito, Y., M., Kato, Y. Kubohara, I. Kobayashi, and K. Tatemoto. Bradykinin increases intracellular free Ca2+ concentration and promotes insulin secretion in the clonal β‐cell line, HIT‐T15. Biochem. Biophys. Res. Commun. 221: 577–580, 1996.
 431. Saitoh, S., A. G., Scicli, E. Peterson, and O. A. Carretero. Effect of inhibiting renal kallikrein on prostaglandin E2, water, and sodium excretion. Hypertension 25: 1008–1013, 1995.
 432. Sakakibara, T., N., Ura, K. Shimamoto, Y. Mori, S. Saito, T. Ise, Y. Sasa, K. Yamauchi, and O. Iimura. Localization of neutral endopeptidase in the kidney determined by the stop‐flow method. Adv. Exp. Med. Biol. 247B: 349–353, 1989.
 433. Salvesen, G., C., Parkes, M. Abrahamson, A. Grubb, and A. J. Barrett. Human low‐Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem. J. 234: 429–434, 1986.
 434. Salvino, J. M., P. R., Seoane, B. D. Douty, M. M. A. Awad, R. E. Dolle, W. T. Houck, D. M. Faunce, and D. G. Sawutz. Design of potent non‐peptide competitive antagonists of the human bradykinin B2 receptor. J. Med. Chem. 36: 2583–2584, 1993.
 435. Sasaguri, M., M., Ideishi, S. Ogata, S. Miura, M. Ikeda, and K. Arakawa. Human urinary kallikrein can generate angiotensin II from homologous renin. Hypertens. Res. 18: 33–37, 1995.
 436. Schachter, M., D. J., Longridge, G. D. Wheeler, J. G. Mehta, and Y. Uchida. Immunocytochemical and and enzyme histo‐chemical localization of kallikrein like enzymes in colon, intestine, and stomach of rat and cat. J. Histochem. Cytochem. 34: 927–934, 1986.
 437. Schachter, M., M. W., Peret, C. Moriwaki, and J. A. A. Rodrigues. Localization of kallikrein in submandibular gland of cat, guineapig, dog and man by the immunoperoxidase method. J. Histochem. Cytochem. 28: 1295–1300, 1980.
 438. Schapira, M., C. F., Scott, and R. W. Colman. Protection of human plasma kallikrein from inactivation by C1 inhibitor and other protease inhibitors. The role of high molecular weight kininogen. Biochemistry 20: 2738–2743, 1981.
 439. Schedlich, L. J., B. H., Bennetts, and B. J. Morris. Primary structure of a human glandular kallikrein gene. DNA 6: 429–437, 1988.
 440. Schmaier, A. H., Gene expression, regulation and cell surface presentation of the kininogens. In: The Kinin System, edited by S. G. Farmer. London: Academic, 1997, p. 57–70.
 441. Schmaier, A. H., H., Bradford, L. D. Silver, A. Farber, C. F. Scott, and R. W. Colman. High molecular weight kininogen is an inhibitor of platelet calpain. J. Clin. Invest. 77: 1565–1573, 1986.
 442. Schmaier, A. H., A., Kuo, D. Lundberg, S. Murray, and D. B. Cines. Expression of high molecular weight kininogen on human umbilical vein endothelial cells. J. Biol. Chem. 263: 16327–16333, 1988.
 443. Schmaier, A. H., A., Zuckerberg, C. Silverman, J. Kuchibhotla, G. P. Tuszynski, and R. W. Colman. High molecular weight kininogen. A secreted platelet protein. J. Clin. Invest. 71: 1477–1489, 1983.
 444. Scholkens, B. A.. Kinins in the cardiovascular system. Immunopharmacology 33: 209–216, 1996.
 445. Schrey, M. P., and K. V. Patel. Prostaglandin E(2) production and metabolism in human breast cancer cells and breast fibroblasts—regulation by inflammatory mediators. Br. J. Cancer 72: 1412–1419, 1995.
 446. Schulz, W. W., H. K., Hagler, L. M. Buja, and E. G. Erdos. Ultrastructural localization of angiotensin I converting enzyme (EC 3.4.15.1) and neutral metallo‐endopeptidase (EC 3.4.24.11) in the proximal tubule of the human kidney. Lab. Invest. 59: 789–797, 1988.
 447. Schuster, V. L., J. P., Kokko, and H. R. Jacobsen. Interaction of lysl‐bradykinin and antidiuretic hormone in the rabbit collecting tubule. J. Clin. Invest. 73: 1659–1667, 1984.
 448. Scicli, A. G., and O. A. Carretero. Renal kallikrein‐kinin system. Kidney Int. 29: 120–130, 1986.
 449. Scicli, A. G., R., Gandolfi, and O. A. Carretero. Site of formation of kinins in the dog nephron. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F36–F40, 1978.
 450. Scicli, G., H., Nolly, O. A. Carretero, and A. G. Scicli. Glandular kallikrein‐like enzyme in adrenal glands. Adv. Exp. Med. Biol. 247B: 217–222, 1989.
 451. Sealey, J. E., S. A., Atlas, J. H. Laragh, N. B. Oza, and J. W. Ryan. Human urinary kallikrein converts inactive to active renin and is a possible physiological activator of renin. Nature 275: 144–145, 1978.
 452. Seidah, N. G., N., Sawyer, J. Hamelin, P. Mion, G. Beaubien, L. Brachpapa, J. Rochemont, M. Mbikay, and M. Chretien. Mouse plasma kallikrein: cDNA structure, enzyme characterization and comparison of protein and mRNA levels among species. DNA Cell. Biol. 9: 737–748, 1990.
 453. Seino, J., K., Abe, Y. Otsuka, T. Saito, N. Irokawa, M. Yasujima, S. Chiba, and K. Yoshinaga. Urinary kallikrein excretion and sodium metabolism in hypertensive patients. Tohoku J. Exp. Med. 116: 359–367, 1975.
 454. Seki, T., T., Nakajima, and E. G. Erdos. Colon kallikrein, its relationship to the plasma enzyme. Biochem. Pharmacol. 21: 1227–1235, 1972.
 455. Serveau, C., T., Moreau, G. X. Zhou, J. Chao, and F. Gauthier. Inhibition of rat tissue kallikrein gene family members by rat kallikrein‐binding protein and α1–proteinase inhibitor. FEBS Lett. 309: 405–408, 1992.
 456. Seyedi, N., X., Xu, A. Nasjletti, and T. Hintze. Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26: 164–170, 1995.
 457. Shimamoto, K., A., Masuda, T. Ando, N. Ura, M. Nakagawa, Y. Mori, H. Nakagawa, T. Sakakibara, H. Ogata, and O. Iimura. Mechanisms of suppression of renal kallikrein activity in low renin essential hypertension and renoparenchymal hypertension. Hypertension 14: 375–378, 1989.
 458. Shipp, M. A., J., Vijayaraghavan, E. V. Schmidt, E. L. Masteller, L. D'Adamio, L. B. Hersh, and E. L. Reinherz. Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 (“enkephalinase”): direct evidence by cDNA transfection analysis. Proc. Natl. Acad. Sci. U.S.A. 86: 297–301, 1989.
 459. Simmons, W. H., and A. T. Orawski. Membrane‐bound aminopeptidase P from bovine lung. Its purification, properties and degradation of bradykinin. J. Biol. Chem. 267: 4897–4903, 1992.
 460. Simson, J. A. V., J., Chao, and L. Chao, Localization of kallikrein gene family proteases in rat tissues. In: Recent Progress on Kinins. Agents and Action supplements, edited by H. Fritz, W. Muller‐Esterl, M. Jochum, A. Roscher, and K. Luppertz. Basel: Birkhauser Verlag, 1992, vol. 38/I, p. 595–602.
 461. Simson, J. A. V., C., Rowell, J. M. Barrett, J. King, and J. Chao. Rat urinary kallikrein localization in kidney: effects of fixation. Histochem. J. 19: 633–642, 1987.
 462. Simson, J. A. V., J., Wang, J. Chao, and L. Chao. Histopathology of lymphatic tissues in transgenic mice expressing human tissue kallikrein gene. Lab. Invest. 71: 680–687, 1994.
 463. Siragy, H. M., M., Ibrahim, A. A. Jaffa, R. Mayfield, and H. S. Margolius. Rat renal interstitial bradykinin, prostaglandin E2 and cyclic guanasine 3′, 5′‐monophosphate. Effects of altered sodium intake. Hypertension 23: 1068–1070, 1994.
 464. Siragy, H. M., A. A., Jaffa, and H. S. Margolius. Stimulation of renal interstitial bradykinin by sodium depletion. Am. J. Hypertens. 6: 863–866, 1993.
 465. Siragy, H. M., A. A., Jaffa, H. S. Margolius, and R. M. Carey. Renin‐angiotensin system modulates renal bradykinin production. Am. J. Physiol. 271 (Regulatory Integrative Comp. Physiol. 40): R1090–R1095, 1996.
 466. Skidgel, R. A., Structure and function of mammalian zinc carboxypeptidases. In: Metalloproteases in Health and Disease, edited by N. M. Hooper. London: Taylor and Francis, 1996, p. 241–243.
 467. Skidgel, R. A., R. A., Anders, P. A. Deddish, and E. G. Erdos. Carboxypeptidase (CP) M and H in small intestine. FASEB J. 5: A1578, 1991.
 468. Skidgel, R. A., R. M., Davis, and E. G. Erdos. Purification of a human urinary carboxypeptidase (kininase) distinct from carboxypeptidase A, B or N. Anal. Biochem. 140: 520–531, 1984.
 469. Skidgel, R. A., R. M., Davis, and F. Tan. Human carboxypeptidase M: purification and characterization of a membrane bound carboxy peptidase that cleaves peptide hormones. J. Biol. Chem. 264: 2236–2241, 1989.
 470. Skidgel, R. A., P. A., Deddish, and R. M. Davis. Isolation and characterization of a basic carboxypeptidase from human seminal plasma. Arch. Biochem. Biophys. 267: 660–667, 1988.
 471. Skidgel, R. A., and E. G. Erdos. The broad substrate specificity of human angiotensin I converting enzyme. Clin. Exp. Hypertens. A9: 243–259, 1987.
 472. Smith, J. J., J. D., McCann, and M. J. Welsh. Bradykinin stimulates airway epithelial chloride secretion via two second messenger pathways. Am. J. Physiol. 258 (Lung Mol. Cell. Physiol. 27): L369–L377, 1990.
 473. Smith, S. R., P. E., Klotman, and L. P. Sventkey. Potassium chloride lowers blood pressure and causes natriuresis in older patients with hypertension. Am. J. Nephrol. 2: 1302–1309, 1992.
 474. Solomon, L. R., H., Bobinski, P. Astley, F. S. Goldby, and N. P. Mallick. Bartter's syndrome: observations on the pathophysiology. Q. J. Med. 203: 251, 1982.
 475. Song, Q., D.‐Z., Wang, R. A. Harley, L. Chao, and J. Chao. Cellular localization of low‐molecular‐weight kininogen and bradykinin B2 receptor mRNAs in human kidney. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F919–F926, 1996.
 476. Southard‐Smith, M., J., Lechargo, D. R. Wines, R. J. MacDonald, and R. E. Hammer. Tissue‐specific expression of kallikrein family transgenes in mice and rats. DNA Cell Biol. 11: 345–358, 1992.
 477. Southard‐Smith, M., J. C., Pierce, and R. J. MacDonald. Physical mapping of the rat tissue kallikrein family in two gene clusters by analysis of P1 bacteriophage clones. Genomics 22: 404–417, 1994.
 478. Spillantini, M. G., F., Sicuteri, S. Salmon, and B. Malfroy. Characterization of endopeptidase 3.4.24.11 (enkephalinase) activity in human plasma and cerebrospinal fluid. Biochem. Pharmacol. 39: 1353–1356, 1990.
 479. Spragg, J., and K. F. Austen. The preparation of human kininogen. II. Further characterization of human kininogen. J. Immunol. 107: 1512, 1971.
 480. Stein, J., R., Congbalay, D. Karsh, R. Osgood, and T. Ferris. The effect of bradykinin on proximal tubular sodium reabsorption in the dog: evidence for functional nephron heterogeneity. J. Clin. Invest. 51: 1709–1721, 1972.
 481. Stewart, J. M.. Bradykinin B2 receptor antagonists: development and applications. Can. J. Physiol. Pharmacol. 73: 787–790, 1995.
 482. Sueyoshi, T., K., Enjyoji, T. Shimada, H. Kato, S. Iwanaga, Y. Bando, E. Kominami, and N. Katunuma. A new function of kininogens as thiol proteinase inhibitors: inhibition of papain and cathepsins B, H and L by bovine, rat and human plasma kininogens. FEBS Lett. 182: 193–195, 1985.
 483. Swift, G. H., C. S., Craik, S. J. Stary, C. Quinto, R. G. Lahaie, W. J. Rutter, and R. J. MacDonald. Structure of the two related elastase genes expressed in the rat pancreas. J. Biol. Chem. 259: 14271–14278, 1984.
 484. Swift, G. H., J. C., Daghorn, P. L. Ashley, S. W. Cummings, and R. J. MacDonald. Rat pancreatic kallikrein mRNA: nucleotide sequence and aminoacid sequence of the encoded preproenzyme. Proc. Natl. Acad. Sci. U.S.A. 79: 7263–7267, 1982.
 485. Takada, Y., R. A., Skidgel, and E. G. Erdos. Purification of human urinary prokallikrein. Identification of the site of activation by the metalloproteinase thermolysin. Biochem. J. 232: 851–858, 1985.
 486. Takahashi, S., A., Irie, and Y. Miyake. Primary structure of human urinary prokallikrein. J. Biochem. 104: 22–29, 1988.
 487. Takano, M., K., Yokoyama, K. Yayama, and H. Okamoto. Murine fibroblasts synthesize and secrete kininogen in response to cyclic‐AMP, prostaglandin E2 and tumor necrosis factor. Biochim. Biophys. Acta 1265: 189–195, 1995.
 488. Taketo, M., S., Yokoyama, J. Rochelle, Y. Kimura, H. Higashida, M. Taketo, and M. F. Seldin. Mouse B2 bradykinin receptor gene maps to distal chromosome 12. Genomics 27: 222–223, 1995.
 489. Tippmer, S., B., Bossenmaier, and H. Haring. Bradykinin induces tyrosine phosphorylation in human foreskin fibroblasts and 293 cells transfected with rat B2 kinin receptor. Eur. J. Biochem. 236: 953–959, 1996.
 490. Tippmer, S., U., Quitterer, V. Kolm, A. Faussner, A. Roscher, L. Mostaf, W. Muller‐Esterl, and H. Haring. Bradykinin induces translocation of the protein kinase C isoforms α ε and ζ. Eur. J. Biochem. 225: 297–304, 1994.
 491. Tomita, K., and J. J. Pisano. Binding of [3H] bradykinin in isolated nephron segments of the rabbit. Am. J. Physiol. 246: 732–737, 1984.
 492. Tomita, K., J. J., Pisano, M. B. Burg, and M. A. Knepper. Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. J. Clin. Invest. 77: 136–141, 1986.
 493. Tomita, K., J. J., Pisano, and M. A. Knepper. Control of sodium and potassium transport in the cortical collecting duct of the rat. J. Clin. Invest. 76: 132–136, 1985.
 494. Travis, J., and G. S. Salvesen. Human plasma proteinase inhibitors. Annu. Rev. Biochem. 52: 655–709, 1983.
 495. Tropea, M. M., D., Gummelt, M. S. Herzig, and L. M. F. Leeb‐Lundberg. B1 and B2 kinin receptors on cultured rabbit superior mesenteric artery smooth muscle cells: receptor‐specific stimulation of inositol phosphate formation and arachidonic acid release by desArg9‐bradykinin and bradykinin. J. Pharmacol. Exp. Ther. 264: 930–937, 1993.
 496. Tschesche, H., G., Mair, G. Godec, F. Fiedler, W. Ehret, C. Hischauer, M. Lemon, and H. Fritz, The primary structure of porcine glandular kallikreins. In: Kinins II: Biochemistry, Pathophysiology and Clinical Aspects, edited by S. Fuji, H. Moriya, and T. Suzuki. New York: Plenum, 1979, p. 245–260.
 497. Tschesche, H., T., Michaelis, U. Kohnert, J. Fedrowitz, and R. Oberhoff. Tissue kallikrein effectively activates latent degrading metalloenzymes. Adv. Exp. Med. Biol. 247A: 545–548, 1989.
 498. Uchida, K., M., Niinobe, H. Kato, and S. Fuji. Purification and properties of rat stomach kallikrein. Biochim. Biophys. Acta 614: 501–510, 1980.
 499. Ura, N., O. A., Carretero, and E. G. Erdos. Role of renal endopeptidase 24.11 in kinin metabolism in vitro and in vivo. Kidney Int. 32: 507–513, 1987.
 500. Ura, N., K., Shimamoto, S. Kuroda, N. Nomura, M. Iwata, T. Aoyama, and O. Iimura. The role of kinins and atrial natriuretic peptide on the renal effects of neutral endopeptidase inhibitor in rats. Clin. Exp. Hypertens. 16: 799–808, 1994.
 501. Ura, N., K., Shimamoto, T. Nakao, A. Ogasawara, S. Tanaka, T. Mita, T. Nishimiya, and O. Iimura. The excretion of human urinary kallikrein—quantity and activity in normal and low renin essential hypertension. Clin. Exp. Hypertens. 5: 329–337, 1983.
 502. Ura, N., K., Shimamoto, S. Satoh, S. Kuroda, N. Nomura, Y. Ohtomo, A. Masuda, and O. Iimura. Renal kininase I, kininase II and neutral endopeptidase 24.11 activities in patients with essential hypertension, primary aldosteronism and Cushing's syndrome. Hypertens. Res. 16: 253–258, 1993.
 503. Valdes, G., J., Corthorn, G. A. Scicli, V. Gaete, J. Soto, M. E. Ortiz, A. Foradori, and G. Saed. Uterine kallikrein in the early pregnant rat. Biol. Reprod. 49: 802–808, 1993.
 504. Van Leeuwen, B. H., B. A. Evans, G. W. Tregear, and R. I. Richards. Mouse glandular kallikrein genes. Identification, structure and expression of the renal kallikrein gene. J. Biol. Chem. 261: 5529–5535, 1986.
 505. Van Leeuwen, B. H., J. D. Penschow, J. P. Coghlan, and R. I. Richards. Cellular basis for the differential response of mouse kallikrein genes to hormonal induction. EMBO J. 6: 1705–1713, 1987.
 506. Vavrek, R., and J. M. Stewart. Competitive antagonists of bradykinin. Peptides 6: 161–164, 1985.
 507. Velvarde, V., J., Humphreys, C. D. Figueroa, and C. P. Vio. Postnatal maturation of tissue kallikrein‐producing cells (connecting tubule cells) in the rat kidney—a morphometric and immunohistochemical study. Anat. Embryol. 192: 409–416, 1995.
 508. Veress, A. T., C. K., Chong, U. Honrath, and H. Sonneneberg. Effect of bradykinin B‐2 receptor antagonist and indomethacin on natriuretic and hypotensive responses to atrial natriuretic factor. Can. J. Physiol. Pharmacol. 72: 1561–1566, 1994.
 509. Vio, C. P. Renal kallikrein. In: Hypertension: Pathophysiology, Diagnosis and Management, edited by J. H. Laragh and B. M. Brenner. New York: Raven, 1990, p. 819–828.
 510. Vio, C. P., I., Churchill, S. F. Rabito, A. Terragno, O. A. Carretero, and N. A. Terragno. Renal kallikrein in venous effluent of filtering and non‐filtering isolated kidney. Adv. Exp. Med. Biol. 156B: 897–905, 1983.
 511. Vio, C. P., L., Churchill, A. Terragno, J. C. McGiff, and N. A. Terragno. Arachidonic acid stimulates renal kallikrein release. Clin. Sci. (Colch.) 63: 235–239, 1982.
 512. Vio, C. P., and C. D. Figueroa. Evidence for a stimulatory effect of high potassium diet on renal kallikrein. Kidney Int. 31: 1327–1334, 1987.
 513. Vio, C. P., C. D., Figueroa, and I. Caorsi. Anatomical relationship between kallikrein‐containing tubules and the juxtaglomerular apparatus in the human kidney. Am. J. Hypertens. 1: 269–271, 1988.
 514. Vio, C. P., V., Velarde, and W. Muller‐Esterl. Cellular distribution and fate of the bradykinin antagonist Hoe 140 in the rat kidney—colocalization with the bradykinin B2 receptor. Immunopharmacology 33: 146–150, 1996.
 515. Vogel, R., J., Kaufmann, D. W. Chung, J. Kellerman, and W. Muller‐Esterl. Mapping of the prekallikrein‐binding site of human H‐kininogen by ligand screening of λgt11 expression libraries. J. Biol. Chem. 265: 12494–12502, 1990.
 516. Wachtfogel, Y. T., P. R. A. DeLa Cadena, S. P. Kunapuli, L. Rick, M. Miller, R. L. Schultze, D. C. Altieri, T. E. Edgington, and R. W. Colman. High molecular weight kininogen binds to Mac‐1 on neutrophils by its heavy chain (domain 3) and its light chain (domain 5). J. Biol. Chem. 269: 19307–19312, 1993.
 517. Waller, D. G. P. M. Thakrar, and S. K. Campbell. Amiloride, frusemide and urinary kallikrein excretion. Arch. Pharmacodyn. Ther. 290: 145–150, 1987.
 518. Wang, C., C., Chao, L.‐M. Chen, L. Chao, and J. Chao. High‐salt diet upregulates kininogen and downregulates tissue kallikrein expression in Dahl‐SS and SHR rats. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F824–F830, 1996.
 519. Wang, C., L., Chao, and J. Chao. Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats. J. Clin. Invest. 95: 1710–1716, 1995.
 520. Wang, D.‐Z., Song, Q., Chen, L‐M., Chao, L. and Chao, J.. Expression and cellular localization of tissue kallikrein‐kinin system in human adrenal gland. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F709–F716, 1996.
 521. Wang, J., J., Chao, and L. Chao. Specificity determinants of rat tissue kallikrein probed by site‐directed mutagenesis. Protein Eng. 5: 569–575, 1992.
 522. Ward, P. E., C. D., Gedney, R. M. Dowben, and E. G. Erdos. Isolation of membrane‐bound renal kallikrein and kininase. Biochem. J. 151: 755–758, 1975.
 523. Ward, P. E., W., Schultz, R. C. Reynolds, and E. G. Erdos. Metabolism of kinins and angiotensins in the isolated glomerulus and brush border of rat kidney. Lab. Invest. 36: 599–606, 1977.
 524. Webster, M., and J. Gilmore. Influence of kallidin‐10 in renal function. Am. J. Physiol. 209: 714–718, 1964.
 525. Werle, E., and U. Berek. Zur Kenntnis des Kallikreins. Agnew Chem. 60A: 53, 1948.
 526. Werle, E., W., Gotze, and A. Keppler. Uber die Wirkung des Kallikreins auf den isolierten darm und uber eine neue darmkontrahierende Substanz. Biochem. Z. 289: 217–233, 1937.
 527. Werle, E., L., Maier, and E. Ringelmann. Hemmung von Proteinasen durch Kallikrein‐Inaktivatoren. Naturwissenschaften 39: 328, 1953.
 528. Wines, D. R., J. M., Brady, D. B. Pritchett, J. L. Roberts, and R. J. MacDonald. Organization and expression of the rat kallikrein gene family. J. Biol. Chem. 264: 7653–7662, 1989.
 529. Wines, D. R., J. M., Brady, E. M. Southard, and R. J. MacDonald. Evolution of the rat kallikrein gene family: gene conversion leads to functional diversity. J. Mol. Evol. 32: 476–492, 1991.
 530. Woodley‐Miller, C., J., Chao, and L. Chao. Restriction fragment length polymorphisms mapped in spontaneously hypertensive rats using kallikrein probes. J. Hypertens. 7: 865–871, 1989.
 531. Xiong, W., L., Chao, and J. Chao. Renal kallikrein mRNA localization by in situ hybridization. Kidney Int. 35: 1324–1329, 1989.
 532. Xiong, W., L., Chen, and J. Chao. Purification and characterization of a kallikrein‐like T‐kininogenase. J. Biol. Chem. 265: 2822–2827, 1990.
 533. Xiong, W., L., Chen, C. Woodley‐Miller, J. V. Simson, and J. Chao. Identification, purification and localization of tissue kallikrein in rat heart. Biochem. J. 267: 639–646, 1990.
 534. Xiong, W., C. Q., Tang, G. X. Zhou, L. Chao, and J. Chao. In vivo catabolism of human kallikrein‐binding protein and its complex with tissue kallikrein. J. Lab. Clin. Med. 119: 514–521, 1992.
 535. Yamada, K., and E. G. Erdos. Kallikrein and pre‐kallikrein of the isolated basolateral membrane of rat kidney. Kidney Int. 22: 331–357, 1982.
 536. Yamaguchi, Y. T., O. A., Carretero, and A. G. Scicli. A novel serine protease with vasoconstrictor activity coded by the kallikrein gene S3. J. Biol. Chem. 266: 5011–5017, 1991.
 537. Yang, H. Y. T., E. G., Erdos, and Y. Levin. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim. Biophys. Acta 214: 374–376, 1970.
 538. Yang, T., Y., Terada, H. Monoguchi, M. Tsujino, K. Tomita, and F. Marumo. Distribution of kallikrein‐binding protein mRNA in kidneys and difference between SHR and WKY rats. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F325–F330, 1994.
 539. Yang, X. P., S., Saitoh, A. G. Scicli, E. Mascha, M. Orlowski, and O. A. Carretero. Effects of a metalloendopeptidase‐24,15 inhibitor on renal hemodynamics and function in rats. Hypertension 23: 1235–1239, 1994.
 540. Yano, K., H., Higashida, R. Inoue, and Y. Nozawa. Bradykinin induced rapid breakdown of phosphotidylinositol 4,5‐biphosphate in neuroblastoma X glioma hybrid NC‐108–15 cells. J. Biol. Chem. 259: 10201–10207, 1984.
 541. Yasujima, M., K., Abe, M. Tanno, M. Kohzuki, K. Omata, Y. Kasai, K. Kudo, K. Tsunoda, M. Sato, S. Chiba, and K. Yoshinga. Effects of sodium and angiotensin II on urinary active and inactive kallikrein in rats. J. Hypertens. 4: 13–18, 1986.
 542. Yokoyama, S., Y., Kimura, M. Teketo, J. A. Black, B. R. Ransom, and H. Higashida. B2 bradykinin receptors in NG108–15 cells: cDNA cloning and functional expression. Biochem. Biophys. Res. Commun. 200: 634–641, 1994.
 543. Yoon, J. B., H. C., Towle, and S. Seelig. Growth hormone induces two mRNA species of the serine protease inhibitor gene family in rat liver. J. Biol. Chem. 262: 4284–4289, 1987.
 544. Yosipiv, I. V., and S. S. El‐Dahr. Developmental regulation of ACE gene expression by endogenous kinins and angiotensin II. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F172–F179, 1995.
 545. Zeidel, M. L., K., Jabs, D. Kikeri, and P. Silva. Kinins inhibit conductive Na+ uptake by rabbit inner medullary collecting duct cells. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1584–F1591, 1990.
 546. Zhou, G. X., L., Chao, and J. Chao. Kallistatin: a novel tissue kallikrein inhibitor. Purification, characterization and reactive center sequence. J. Biol. Chem. 267: 25873–25880, 1992.
 547. Zimmermann, A., R., Geiger, and H. Kortmann. Similarity between a kininogenase (kallikrein) from a human large intestine and human urinary kallikrein. Hoppe‐Seyler Z. Physiol. Chem. 360: 1767–1773, 1979.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Judith A. Clements. Tissue Kallikrein–Kinin System. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 331-376. First published in print 2000. doi: 10.1002/cphy.cp070309