Comprehensive Physiology Wiley Online Library

Antidiuretic Hormone: Synthesis and Release

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Morphology of Vasopressinergic Neurons
1.1 Localization
1.2 Cellular Morphology
1.3 Glial–Neuronal Interactions
1.4 Posterior Pituitary Morphology
2 Synthesis of Vasopressin
2.1 Vasopressin Gene
2.2 Regulation of Vasopressin mRNA
2.3 Processing, Packaging, and Transport to the Neural Lobe
3 Release of Antidiuretic Hormone
3.1 Electrophysiological Characteristics of Vasopressin Neurons
3.2 Stimulus–Secretion Coupling in the Neural Lobe
3.3 Dendritic Release
4 Regulation of Vasopressin Secretion
4.1 Afferents to Magnocellular Vasopressin Neurons
4.2 Neurochemicals Regulating Secretion
4.3 Neuropeptides in Afferent Pathways
4.4 Osmoregulatory Pathways and Mechanisms
4.5 Pressure/Volume‐Regulatory Pathways
4.6 Other Ascending Pathways
4.7 Other Physiological Regulators
4.8 Steroid hormones
Figure 1. Figure 1.

Vasopressin and oxytocin neurons of the neurohypophyseal system as visualized by immunohistochemical staining for associated neurophysins. Dense staining is seen within neurons of the paraventricular (PVN) and supraoptic (SON) nuclei. Axons from the PVN (arrows) extend laterally and ventrally to join axons emanating from the SON to form the hypothalamo‐neurohypophyseal tract. Stained neurons belonging to accessory nuclei are seen in the path of axons from the PVN. Smaller stained neurons are also seen in the suprachiasmatic nucleus (SCN); however, this nucleus does not contribute fibers to the neural lobe. OC, optic chiasm; V, third ventricle. [From Sladek and Sladek 524 with permission.]

Figure 2. Figure 2.

Schematic representation of VP and oxytocin genes, mRNA transcripts, precursors, and final protein products. [From Swenson 551 with permission; (Compiled from refs. 85, 362, 364, 365, 450]. GRE, glucocorticoid‐response element; AP2, activator protein‐2; CRE, cAMP‐response element; VP, vasopressin; OT, oxytocin; RAR, retinoic acid receptor;

Figure 3. Figure 3.

Characteristic firing patterns for VP neurons (A) and oxytocin neurons (B) recorded from an anesthetized female rat during suckling. Blood pressure, unit activity (each pen deflection = 1 spike), intramammary pressure, and firing rate are plotted. Milk ejections (m.e) are indicated, and in (B), but not (A), each milk ejection is preceded by a burst of high‐frequency firing (filled arrows). Blood withdrawal elicited increased firing rate in both A and B; in A, following a period of continuous high‐frequency firing, a phasic firing pattern was established, whereas in B continuous high‐frequency firing was maintained throughout the period of hypovolemia. Following blood return, the cell in B continued to fire, whereas the cell in A was inhibited. [From Poulain et al. 430 with permission.]

Figure 4. Figure 4.

A: Depolarizing afterpotential (DAP) and resulting plateau potential (P) recorded in a phasically firing neuron. A DAP followed each action potential during the period between bursts. Summation of DAPs led to P and a burst of firing. [From Andrew and Dudek 16 with permission.] B: Frequency dependence of the after‐hyperpolarization (A.h.p.). At low frequency (10 Hz), a plateau potential (P) followed the spike train, but at higher frequencies the spike train was followed by the after‐hyperpolarization. [From Andrew and Dudek 18 with permission.] C: Spike broadening. Left panel: Superimposed recordings of consecutive action potentials recorded from magnocellular neurons during a current‐evoked train. Spikes broaden progressively and then maintain a longer duration. Right panel: Effect of frequency on spike duration in magnocellular neurons. Action potentials recorded at four different firing rates. [From Bourque and Renaud 71 with permission.]

Figure 5. Figure 5.

Ultrastructural evidence of exocytosis in neurohypophyseal nerve terminals from water‐deprived rats. A: The contents of a neurosecretory granule (nsg) are localized to the extracellular space (arrow) as a result of fusion of granule membrane with plasma membrane during exocytosis. × 70,000. B, C: Scanning electron micrographs of neurosecretory granule core material (core) localized in the extracellular space (B) and exiting the neurosecretory granule (C). × 92,000. [From Theodosis et al. 559 with permission.]

Figure 6. Figure 6.

Innervation of the supraoptic nucleus (SON) and adjacent perinuclear zone (PNZ). Important features to note are as follows: (1) afferent connections of the SON are shown because, unlike the paraventricular nucleus (PVN), the SON is comprised almost entirely of magnocellular neurons projecting to the neural lobe; (2) several CNS areas terminate in the area adjacent to the nucleus, possibly reflecting terminals on vasopressin (VP) or oxytocin (OT) proximal dendrites or innervation of other neurons in this area [for example, cholinergic (Ach), glutamatergic (Glu), γ‐aminobutyric acid (GABA), somatostatin (SRIF)], which in turn project to the SON proper; (3) relatively few of the inputs are confined to either the VP or oxytocin neurons, but it does appear that β‐endorphin (β‐endo), serotonin (5‐HT), and the somatostatin (SRIF)/inhibin projections may be selective for oxytocin neurons, whereas the norepinephrine (NE)/neuropeptide Y (NPY)/ATP projection is densest in the ventral, VP‐rich portion of the nucleus and in the ventral dendritic zone; (4) transmitters have not been identified for some of the inputs. AII, angiotensin II; ANP, atrial natriuretic peptide; AVPV, anteroventral periventricular region; AV3V, anterior ventral third ventricle; DA, dopamine; EAA, excitatory amino acid; Hist, histamine; MPO, median preoptic nucleus; OC, optic chiasm; OVLT, organum vasculosum of the lamina terminalis; PBN, parabrachial nucleus; SFO, subfornical organ; SP, substance P; TM, tuberomamillary nucleus. [Revised from Sladek and Armstrong 513 with permission.]

Figure 7. Figure 7.

Innervation of the neural lobe. In addition to the VP and oxytocin nerve terminals, the neural lobe contains a variety of other peptides and transmitters that are either co‐localized in the VP and oxytocin terminals or localized in fine fibers innervating the neural lobe. Most of these fine fibers arise from periventricular structures. *Other substances co‐localized in VP neurons include prolactin‐like peptides, 7B2, neuropeptide FF, VGF, T‐kininogen, and probably endothelin, dopamine (DA), and nitric oxide (NO) (see text); other peptides co‐localized in oxytocin neurons include endothelin and NO, and expression of galanin, thyrotropin‐releasing hormone, dynorphin, and enkephalin can be induced by hypophysectomy or dehydration. The importance of these agents in regulating VP release remains to be determined (see text). The presence of synthetic enzymes, tyrosine hydroxylase (TH) and nitric oxide synthase (NOS), in VP and oxytocin neurons suggests that dopamine and NO may be produced in these cells and, therefore, released from the neural lobe. 5HT, serotonin; CCK, cholecystokinin; CRH, corticotropin‐releasing hormone; NPY, neuropeptide Y; OC, optic chiasm; OT, oxytocin; SRIF, somatostatin; VP, vasopressin; AII, angiotensin II; GABA, γ‐aminobutyric acid; NT, neurotensin. [Revised from Sladek and Armstrong 513 with permission.]



Figure 1.

Vasopressin and oxytocin neurons of the neurohypophyseal system as visualized by immunohistochemical staining for associated neurophysins. Dense staining is seen within neurons of the paraventricular (PVN) and supraoptic (SON) nuclei. Axons from the PVN (arrows) extend laterally and ventrally to join axons emanating from the SON to form the hypothalamo‐neurohypophyseal tract. Stained neurons belonging to accessory nuclei are seen in the path of axons from the PVN. Smaller stained neurons are also seen in the suprachiasmatic nucleus (SCN); however, this nucleus does not contribute fibers to the neural lobe. OC, optic chiasm; V, third ventricle. [From Sladek and Sladek 524 with permission.]



Figure 2.

Schematic representation of VP and oxytocin genes, mRNA transcripts, precursors, and final protein products. [From Swenson 551 with permission; (Compiled from refs. 85, 362, 364, 365, 450]. GRE, glucocorticoid‐response element; AP2, activator protein‐2; CRE, cAMP‐response element; VP, vasopressin; OT, oxytocin; RAR, retinoic acid receptor;



Figure 3.

Characteristic firing patterns for VP neurons (A) and oxytocin neurons (B) recorded from an anesthetized female rat during suckling. Blood pressure, unit activity (each pen deflection = 1 spike), intramammary pressure, and firing rate are plotted. Milk ejections (m.e) are indicated, and in (B), but not (A), each milk ejection is preceded by a burst of high‐frequency firing (filled arrows). Blood withdrawal elicited increased firing rate in both A and B; in A, following a period of continuous high‐frequency firing, a phasic firing pattern was established, whereas in B continuous high‐frequency firing was maintained throughout the period of hypovolemia. Following blood return, the cell in B continued to fire, whereas the cell in A was inhibited. [From Poulain et al. 430 with permission.]



Figure 4.

A: Depolarizing afterpotential (DAP) and resulting plateau potential (P) recorded in a phasically firing neuron. A DAP followed each action potential during the period between bursts. Summation of DAPs led to P and a burst of firing. [From Andrew and Dudek 16 with permission.] B: Frequency dependence of the after‐hyperpolarization (A.h.p.). At low frequency (10 Hz), a plateau potential (P) followed the spike train, but at higher frequencies the spike train was followed by the after‐hyperpolarization. [From Andrew and Dudek 18 with permission.] C: Spike broadening. Left panel: Superimposed recordings of consecutive action potentials recorded from magnocellular neurons during a current‐evoked train. Spikes broaden progressively and then maintain a longer duration. Right panel: Effect of frequency on spike duration in magnocellular neurons. Action potentials recorded at four different firing rates. [From Bourque and Renaud 71 with permission.]



Figure 5.

Ultrastructural evidence of exocytosis in neurohypophyseal nerve terminals from water‐deprived rats. A: The contents of a neurosecretory granule (nsg) are localized to the extracellular space (arrow) as a result of fusion of granule membrane with plasma membrane during exocytosis. × 70,000. B, C: Scanning electron micrographs of neurosecretory granule core material (core) localized in the extracellular space (B) and exiting the neurosecretory granule (C). × 92,000. [From Theodosis et al. 559 with permission.]



Figure 6.

Innervation of the supraoptic nucleus (SON) and adjacent perinuclear zone (PNZ). Important features to note are as follows: (1) afferent connections of the SON are shown because, unlike the paraventricular nucleus (PVN), the SON is comprised almost entirely of magnocellular neurons projecting to the neural lobe; (2) several CNS areas terminate in the area adjacent to the nucleus, possibly reflecting terminals on vasopressin (VP) or oxytocin (OT) proximal dendrites or innervation of other neurons in this area [for example, cholinergic (Ach), glutamatergic (Glu), γ‐aminobutyric acid (GABA), somatostatin (SRIF)], which in turn project to the SON proper; (3) relatively few of the inputs are confined to either the VP or oxytocin neurons, but it does appear that β‐endorphin (β‐endo), serotonin (5‐HT), and the somatostatin (SRIF)/inhibin projections may be selective for oxytocin neurons, whereas the norepinephrine (NE)/neuropeptide Y (NPY)/ATP projection is densest in the ventral, VP‐rich portion of the nucleus and in the ventral dendritic zone; (4) transmitters have not been identified for some of the inputs. AII, angiotensin II; ANP, atrial natriuretic peptide; AVPV, anteroventral periventricular region; AV3V, anterior ventral third ventricle; DA, dopamine; EAA, excitatory amino acid; Hist, histamine; MPO, median preoptic nucleus; OC, optic chiasm; OVLT, organum vasculosum of the lamina terminalis; PBN, parabrachial nucleus; SFO, subfornical organ; SP, substance P; TM, tuberomamillary nucleus. [Revised from Sladek and Armstrong 513 with permission.]



Figure 7.

Innervation of the neural lobe. In addition to the VP and oxytocin nerve terminals, the neural lobe contains a variety of other peptides and transmitters that are either co‐localized in the VP and oxytocin terminals or localized in fine fibers innervating the neural lobe. Most of these fine fibers arise from periventricular structures. *Other substances co‐localized in VP neurons include prolactin‐like peptides, 7B2, neuropeptide FF, VGF, T‐kininogen, and probably endothelin, dopamine (DA), and nitric oxide (NO) (see text); other peptides co‐localized in oxytocin neurons include endothelin and NO, and expression of galanin, thyrotropin‐releasing hormone, dynorphin, and enkephalin can be induced by hypophysectomy or dehydration. The importance of these agents in regulating VP release remains to be determined (see text). The presence of synthetic enzymes, tyrosine hydroxylase (TH) and nitric oxide synthase (NOS), in VP and oxytocin neurons suggests that dopamine and NO may be produced in these cells and, therefore, released from the neural lobe. 5HT, serotonin; CCK, cholecystokinin; CRH, corticotropin‐releasing hormone; NPY, neuropeptide Y; OC, optic chiasm; OT, oxytocin; SRIF, somatostatin; VP, vasopressin; AII, angiotensin II; GABA, γ‐aminobutyric acid; NT, neurotensin. [Revised from Sladek and Armstrong 513 with permission.]

References
 1. Abe, H., M., Inoue, T. Matsuo, and N. Ogata. The effects of vasopressin on electrical activity in the guinea‐pig supraoptic nucleus in vitro. J. Physiol. (Land.) 337: 665–685, 1983.
 2. Abe, H., and N. Ogata. Ionic mechanism for the osmoticallyinduced depolarization in neurones of the guinea‐pig supraoptic nucleus in vitro. J. Physiol. (Lond.) 327: 157–171, 1982.
 3. Abe, T., H., Sugihara, H. Nawa, R. Shigemoto, N. Mizuno, and S. Nakanishi. Molecular characterization of a novel meta‐botropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca++ signal transduction. J. Biol. Chem. 267: 13361–13368, 1992.
 4. Acher, R.. Neurohypophysial peptide systems: processing machinery, hydroosmotic regulation, adaptation and evolution. Regul. Pept. 45: 1–13, 1993.
 5. Acher, R., and J. Chauvet. The neurohypophysial endocrine regulatory cascade: precursors, mediators, receptors, and effectors. Front. Neuroendocrinal. 16: 237–289, 1995.
 6. Adan, R. A. H., and J. P. H. Burbach. Regulation of vasopressin and oxytocin gene expression by estrogen and thyroid hormone. Prog. Brain Res. 92: 127–136, 1992.
 7. Agre, P., G. M., Preston, B. L. Smith, J. S. Jung, S. Raina, C. Moon, W. B. Guggino, and S. Nielsen. Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F463–F476, 1993.
 8. Akamatsu, N., K., Inenaga, and H. Yamashita. Inhibitory effects of natriuretic peptides on vasopressin neurons mediated through cGMP and cGMP‐dependent protein kinase in vitro. J. Neuroendocrinal. 5: 517–522, 1993.
 9. Akins, V. F., and S. L. Bealer. Brain histamine regulates pressor responses to peripheral hyperosmolality. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 28): R507–R513, 1990.
 10. Akins, V. F., and S. L. Bealer. Central nervous system histamine regulates peripheral sympathetic activity. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H218–H224, 1991.
 11. Akins, V. F., and S. L. Bealer. Hypothalamic histamine release, neuroendocrine and cardiovascular responses during tuberomammillary nucleus stimulation in the conscious rat. Neuroen‐docrinology 57: 849–855, 1993.
 12. Alper, R. H., K. T., Demarest, and K. E. Moore. Dehydration selectively increases dopamine synthesis in tuberohypophyseal dopaminergic neurons. Neuroendocrinology 31: 112–115, 1980.
 13. Alves, S. E., V., Lopez, B. S. McEwen, and N. G. Weiland. Differential colocalization of estrogen receptor beta (ERbeta) with oxytocin and vasopressin in the paraventricular and supraoptic nuclei of the female rat brain: an immunocytochemical study. Proc. Natl. Acad. Sci. U.S.A. 95: 3281–3286, 1998.
 14. Amir, S.. N‐Methyl‐d‐aspartate receptor‐mediated signaling in the suraoptic nucleus involves activation of a nitric oxide‐dependent pathway. Brain Res. 645: 330–334, 1994.
 15. Andersson, B.. Thirst and brain control of water balance. Am. Sci. 559: 40–415, 1971.
 16. Andrew, R. D., and F. E. Dudek. Burst discharge in mammalian neuroendocrine cells involves an intrinsic regenerative mechanism. Science 221: 1050–1052, 1983.
 17. Andrew, R. D., and F. E. Dudek. Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. J. Neurophysiol. 51: 552–556, 1984.
 18. Andrew, R. D., and F. E. Dudek. Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus. J. Physiol. (Lond.) 353: 171–185, 1984.
 19. Andrew, R. D., and F. E. Dudek. Spike broadening in magnocellular neuroendocrine cells of rat hypothalamic slices. Brain Res. 334: 176–179, 1985.
 20. Ang, H.‐L., D. A., Carter, and D. Murphy. Neuron‐specific expression and physiological regulation of bovine vasopressin transgenes in mice. EMBO J. 12: 2397–2409, 1993.
 21. Anhut, H., and W. Knepel. Release of dynorphin‐like immunoreactivity of rat neurohypophysis in comparison to vasopressin after various stimuli in vitro and in vivo. Neurosci. Lett. 31: 159–164, 1982.
 22. Armstrong, D. M., C. B., Saper, A. I. Levey, B. H. Wainer, and R. D. Terry. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J. Comp. Neurol. 216: 53–68, 1983.
 23. Armstrong, W. E.. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog. Neuro‐biol. 47: 291–339, 1995.
 24. Armstrong, W. E., J., Scholer, and T. H. McNeill. Immunocytochemical, Golgi, and electron microscopic characterization of putative dendrites in the ventral glial lamina of the rat supraoptic nucleus. Neuroscience 7: 679–694, 1982.
 25. Armstrong, W. E., and C. D. Sladek. Evidence for excitatory actions of histamine on supraoptic neurons in vitro: mediation by a H1–type receptor. Neuroscience 16: 307–322, 1985.
 26. Armstrong, W. E., B. N., Smith, and M. Tian. Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. J. Physiol. (Lond.) 475: 115–128, 1994.
 27. Armstrong, W. E., S., Warach, G. I. Hatton, and T. H. McNeill. Subnuclei in the rat hypothalamic paraventricular nucleus: a cytoarchitectural horseradish peroxidase and immunocytochemical analysis. Neuroscience 5: 1931–1958, 1980.
 28. Arnauld, E., M., Cirino, B. S. Layton, and L. P. Renaud. Contrasting actions of amino acids, acetylcholine, noradrenaline, and leucine enkephalin on the excitability of supraoptic vasopressin‐secreting neurons. A microiontophoretic study in the rat. Neuroendocrinology 36: 187–196, 1983.
 29. Arnauld, E., J.‐P., Wattiaux, J. Arsaut, W. Rostène, and J.‐D. Vincent. Alterations in vasopressin and oxytocin messenger RNA in the rat supraoptic nucleus during dehydration–rehydration evaluated by in situ hybridization and Northern blotting. Neurosci. Lett. 149: 177–181, 1993.
 30. Arsenijevic, Y., and A. J. Baertschi. Activation of the hypothalamo‐neurohypophysial system by hypertonic superfusion of the rat mesentery. Brain Res. 347: 169–172, 1985.
 31. Baertschi, A. J., and P. G. Vallet. Osmosensitivity of the hepatic portal vein area and vasopressin release in rats. J. Physiol. (Lond.) 315: 217–230, 1981.
 32. Bagdy, G., A. E., Calogero, K. Szemeredi, M. T. Gomez, D. L. Murphy, G. P. Chrousos, and P. W. Gold. β‐Endorphin responses to different serotonin agonists: involvement of corticotropin‐releasing hormone, vasopressin and direct pituitary action. Brain Res. 537: 227–232, 1990.
 33. Bains, J. S., and A. V. Ferguson. Angiotensin II neurotransmitter actions in paraventricular nucleus are potentiated by a nitric oxide synthase inhibitor. Regul. Pept. 50: 53–59, 1994.
 34. Baldino, F., Jr., T. M. O'Kane, S. Fitzpatrick‐McElligontt, and B. Wolfson. Coordinate hormonal and synaptic regulation of vasopressin messenger RNA. Science 241: 978–981, 1988.
 35. Banks, D., and M. C. Harris. Lesions of the locus coeruleus abolish baroreceptor‐induced depression of supraoptic neurons in the rat. J. Physiol. (Lond.) 355: 383–398, 1984.
 36. Barker, J. L., J. W., Crayton, and R. A. Nicoll. Noradrenalin and acetylcholine responses of supraoptic neurosecretory cells. J. Physiol. (Lond.) 218: 19–32, 1971.
 37. Bartanusz, V., J. M., Aubry, D. Jezova, J. Baffi, and J. Z. Kiss. Stress‐induced changes in messenger RNA levels of N‐methyl‐D‐aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 66: 247–252, 1995.
 38. Bealer, S. L.. Histamine releases norepinephrine in the paraventricular nucleus/anterior hypothalamus of the conscious rat. J. Pharmacol. Exp. Ther. 264: 734–738, 1993.
 39. Bealer, S. L., and S. O. Abell. Paraventricular nucleus histamine increases blood pressure by adrenoreceptor stimulation of vasopressin release. Am. J. Physiol. 269 (Heart Circ. Physiol. 38): H80–H85, 1995.
 40. Beato, M.. Gene regulation by steroid hormones. Cell 56: 335–344, 1989.
 41. Berghorn, K. A., L. T., Knapp, G. E. Hoffman, and T. G. Sherman. Induction of glucocorticoid receptor expression in hypothalamic magnocellular vasopressin neurons during chronic hypoosmolality. Endocrinology 136: 804–811, 1995.
 42. Beroukas, D., J. O., Willoughby, and W. W. Blessing. Neuropeptide Y‐like immunoreactivity is present in boutons synapsing on vasopressin‐containing neurons in rabbit supraoptic nucleus. Neuroendocrinology 50: 222–228, 1989.
 43. Bhat, G., V. B., Mahesh, K. Aguan, and D. W. Brann. Evidence that brain nitric oxide synthase is the major nitric oxide synthase isoform in the hypothalamus of the adult female rat and that nitric oxide potently regulates hypothalamic cGMP levels. Neuroendocrinology 64: 93–102, 1996.
 44. Bhat, G. K., V. B., Mahesh, C. A. Lamar, L. Ping, K. Aguan, and D. W. Brann. Histochemical localization of nitric oxide neurons in the hypothalamus: association with gonadotropin‐releasing hormone neurons and co‐localization with N‐methyl‐d‐aspartate receptors. Neuroendocrinology 62: 187–197, 1995.
 45. Bicknell, R. J.. Optimizing release from peptide hormone secretory nerve terminals. J. Exp. Biol. 139: 51–65, 1988.
 46. Bicknell, R. J., D., Brown, C. Chapman, P. D. Hancock, and G. Leng. Reversible fatigue of stimulus‐secretion coupling in the rat neurohypophysis. J. Physiol. (Lond.) 348: 601–613, 1984.
 47. Bicknell, R. J., and G. Leng. Relative efficiency of neural firing patterns for vasopressin release in vitro. Neuroendocrinology 33: 295–299, 1981.
 48. Bicknell, R. J., S. M., Luckman, K. Inenaga, W. T. Mason, and G. I. Hatton. Beta‐adrenergic and opioid receptors on pitui‐cytes cultured from adult rat neurohypophysis: regulation of cell morphology. Brain Res. Bull. 22: 379–388, 1989.
 49. Bielefeldt, K., J. L., Rotter, and M. B. Jackson. Three potassium channels in rat posterior pituitary nerve terminals. J. Physiol. (Lond.) 458: 41–67, 1992.
 50. Bioulac, B., O., Gaffori, M. Harris, and J. D. Vincent. Effects of acetylcholine, sodium glutamate and GABA on the discharge of supraoptic neurons in the rat. Brain Res. 154: 159–162, 1978.
 51. Birch, N. P., C., Rodriquez, J. E. Dixon, and E. Mezey. Distribution of carboxypeptidase H messenger RNA in rat brain using in situ hybridization histochemistry: implications for neuropeptide biosynthesis. Brain Res. Mol. Brain Res. 7: 53–59, 1990.
 52. Bittencourt, J. C., R., Benoit, and P. E. Sawchenko. Distribution and origins of substance P‐immunoreactive projections to the paraventricular and supraoptic nuclei: partial overlap with ascending catecholaminergic projections. J. Chem. Neuroanat. 4: 63–78, 1991.
 53. Björkstrand, E., A.‐L., Hulting, B. Meister, and K. Uvnäs‐Moberg. Effect of galanin on levels of oxytocin and cholecys‐tokinin. Neuroreport 4: 10–12, 1993.
 54. Blessing, W. W., and J. O. Willoughby. Excitation of neuronal function in rabbit caudal ventrolateral medulla elevates plasma vasopressin. Neurosci. Lett. 58: 189–194, 1985.
 55. Blessing, W. W., and J. O. Willoughby. Inhibiting the rabbit caudal ventrolateral medulla prevents baroreceptor‐initiated secretion of vasopressin. J. Physiol. (Lond.) 367: 253–265, 1985.
 56. Bloom, F. E., J., Rossier, E. L. F. Battenberg, A. Bayon, E. French, S. J. Henriksen, G. R. Siggins, D. Segal, R. Browne, N. Ling, and R. Guillemin. β‐Endorphin: cellular localization, electrophysiological and behavioral effects. Biochem. Psychopharmacol. 18: 89–108, 1978.
 57. Bobillier, P., S., Seguin, F. Petitjean, D. Salvert, M. Touret, and M. Jouvet. The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res. 113: 449–486, 1976.
 58. Bondy, C. A., H., Gainer, and J. T. Russell. Effects of stimulus frequency and potassium channel blockade on the secretion of vasopressin and oxytocin from the neurohypophysis. Neuroendocrinology 46: 258–267, 1987.
 59. Bondy, C. A., H., Gainer, and J. T. Russell. Dynorphin A inhibits and naloxone increases the electrically stimulated release of oxytocin but not vasopressin from the terminals of the neural lobe. Endocrinology 122: 1321–1327, 1988.
 60. Bondy, C. A., R. T., Jensen, L. S. Brady, and H. Gainer. Cholecystokinin evokes secretion of oxytocin and vasopressin from rat neural lobe independent of external calcium. Proc. Natl. Acad. Sci. U.S.A. 86: 5198–5201, 1989.
 61. Boudaba, C., K., Szabo, and J. G. Tasker. Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. J. Neurosci. 16: 7151–7160, 1996.
 62. Bourque, C. W.. Calcium‐dependent spike aftercurrent induces burst firing in magnocellular neurosecretory cells. Neurosci. Lett. 70: 204–209, 1986.
 63. Bourque, C. W.. Transient calcium‐dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. J. Physiol. (Lond.) 397: 331–347, 1988.
 64. Bourque, C. W.. Ionic basis for the intrinsic activation of rat supraoptic neurones by hyperosmotic stimuli. J. Physiol. (Lond.) 417: 263–277, 1989.
 65. Bourque, C. W.. Intraterminal recordings from the rat neurohypophysis in vitro. J. Physiol. (Lond.) 421: 247–262, 1990.
 66. Bourque, C. W., and D. A. Brown. Apamin and d‐tubocurarine block the afterhyperpolarization of rat supraoptic neurosecretory neurons. Neurosci. Lett. 82: 185–190, 1987.
 67. Bourque, C. W., S. H. R., Oliet, and D. Richard. Osmoreceptors, osmoreception, and osmoregulation. Front. Neuroendocrinal. 15: 231–274, 1994.
 68. Bourque, C. W., J. C. R., Randle, and L. P. Renaud. Non‐synaptic depolarizing potentials in rat supraoptic neurones recorded in vitro. J. Physiol. (Lond.) 376: 493–505, 1986.
 69. Bourque, C. W., and L. P. Renaud. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro. J. Physiol. (Lond.) 363: 429–439, 1985.
 70. Bourque, C. W., and L. P. Renaud. Calcium‐dependent action potentials in rat supraoptic neurosecretory neurones recorded in vitro. J. Physiol. (Lond.) 363: 419–428, 1985.
 71. Bourque, C. W., and L. P. Renaud. Membrane properties of rat magnocellular neuroendocrine cells in vivo. Brain Res. 540: 349–352, 1991.
 72. Bredt, D. S., and S. H. Snyder. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63: 175–195, 1994.
 73. Breslow, E.. Structure and folding properties of neurophysin and its peptide complexes: biological implications. Regul. Pept. 45: 15–19, 1993.
 74. Brimble, M. J., and R. E. J. Dyball. Characterization of the responses of oxytocin and vasopressin secreting neurones in the supraoptic nucleus to osmotic stimulation. J. Physiol. (Lond.) 271: 253–271, 1977.
 75. Brooks, D. P., L., Share, J. T. Crofton, and A. Nasjletti. Interrelationship between central bradykinin and vasopressin in conscous rats. Brain Res. 371: 42–48, 1986.
 76. Brown, J., and Z. Zuo. C‐type natriuretic peptide and atrial natriuretic peptide receptors of rat brain. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 33): R513–R523, 1993.
 77. Brown, M. R.. Somatostatin‐28 effects on central nervous system regulation of vasopressin secretion and blood pressure. Neuroendocrinology 47: 556–562, 1988.
 78. Brownfield, M. S., J., Greathouse, S. A. Lorens, J. Armstrong, J. H. Urban, and L. D. Van de Kar. Neuropharmacological characterization of serotoninergic stimulation of vasopressin secretion in conscious rats. Neuroendocrinology 47: 277–283, 1988.
 79. Brownstein, M. J., J. T., Russell, and H. Gainer. Synthesis, transport, and release of posterior pituitary hormones. Science 207: 373–378, 1980.
 80. Brussaard, A. B., K. S. Kits, and T. A. de Vleiger. Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat. J. Physiol. (Lond.) 497: 495–507, 1996.
 81. Buijs, R. M., and A. Kalsbeek, Anatomy and physiology of vasopressin pathways: from temperature regulation to corticotrophin‐inhibiting neurotransmission. In: Neurohypophysis: Recent Progress of Vasopressin and Oxytocin Research, edited by T. Saito, K. Kurokawa, and S. Yoshida. Amsterdam: Elsevier, 1995, p. 57–65.
 82. Buller, K. M., S., Khanna, J. R. Sibbald, and T. A. Day. Central noradrenergic neurons signal via ATP to elicit vasopressin response to haemorrhage. Neuroscience 73: 637–642, 1996.
 83. Buma, P., and R. Nieuwenhuys. Ultrastructural characterization of exocytotic release sites in different layers of the median eminence of the rat. Cell Tissue Res. 252: 107–114, 1988.
 84. Bunnemann, B., K., Fuxe, and D. Ganten. The brain renin‐angiotensin system: localization and general significance. J. Car‐diovasc. Pharmacol. 19 (Suppl. 6): S51–S62, 1992.
 85. Burbach, J. P. H., R. A. H., Adan, J. J. Cox, and S. Lopes Da Silva. Transactivation of the rat oxytocin and vasopressin promoters by nuclear hormone receptors. Regul. Pept. 45: 31–35, 1993.
 86. Burbach, J. P. H., M. J., DeHoop, H. Schmale, D. Richter, E. R. DeKloet, J. A. TenHaaf, and D. DeWied. Differential responses to osmotic stress of vasopressin‐neurophysin mRNA in hypothalamic nuclei. Neuroendocrinology 39: 582–584, 1984.
 87. Burbach, J. P. H., H. H. M., VanTol, M. H. C. Bakkus, H. Schmale, and R. Ivell. Quantitation of vasopressin mRNA and oxytocin mRNA in hypothalamic nuclei by solution hybridization assays. J. Neurochem. 47: 1814–1821, 1986.
 88. Cagampang, F. R. A., M., Rattray, J. F. Powell, N. W. S. Chong, I. D. Campbell, and C. W. Coen. Circadian variation of EAAC1 glutamate transporter messenger RNA in the rat suprachiasmatic nuclei. Mol. Brain Res. 35: 190–196, 1996.
 89. Calka, J., and C. H. Block. Relationship of vasopressin with NADPH‐diaphorase in the hypothalamo‐neurohypophysial system. Brain Res. Bull. 32: 207–210, 1993.
 90. Cantin, M., and J. Genest. The heart and the atrial natriuretic factor. Endocr. Rev. 107: 127, 1985.
 91. Carrazana, E. J., K. B., Pasieka, and J. A. Majzoub. The vasopressin mRNA poly(A) tract is unusually long and increases during stimulation of vasopressin gene expression in vivo. Mol. Cell. Biol. 8: 2267–2274, 1988.
 92. Carter, D. A., and D. Murphy. Cyclic nucleotide dynamics in the rat hypothalamus during osmotic stimulation: in vivo and in vitro studies. Brain Res. 487: 350–356, 1989.
 93. Carter, D. A., and D. Murphy. Independent regulation of neuropeptide mRNA level and poly(A) tail length. J. Biol. Chem. 264: 6601–6603, 1989.
 94. Carter, D. A., and D. Murphy. Vasopressin mRNA in parvo‐cellular neurons of the rat suprachiasmatic nucleus exhibits increased poly(A) tail length following water deprivation. Neurosci. Lett. 109: 180–185, 1990.
 95. Carter, D. A., and D. Murphy. Acute down‐regulation of oxytocin and vasopressin mRNA levels following metrazole‐induced seizure in the rat. Neurosci. Lett. 160: 135–138, 1993.
 96. Carter, D. A., K., Pardy, and D. Murphy. Regulation of vasopressin gene expression: changes in the level, but not the size, of vasopressin mRNA following endocrine manipulations. Cell. Mol. Neurobiol. 13: 87–95, 1993.
 97. Cazalis, M., G., Dayanithi, and J. J. Nordmann. The role of patterned burst and interburst interval on the excitation‐coupling mechanism in the isolated rat neural lobe. J. Physiol. (Lond.) 369: 45–60, 1985.
 98. Ceccatelli, S., L., Grandison, R. E. Scott, D. W. Pfaff, and L. M. Kow. Estradiol regulation of nitric oxide synthase mRNAs in rat hypothalamus. Neuroendocrinology 64: 357–363, 1996.
 99. Chang, M., D. G., Lowe, M. Lewis, R. Helmiss, E. Chan, and D. V. Goeddel. Differential activation by atrial and brain natriuretic peptides at two different receptor guanylate cyclases. Nature 341: 68–72, 1989.
 100. Chauvet, J., Y., Rouille, A. Spang, A. M. Cardine, and R. Acher. Processing endopeptidase deficiency in neurohypophysial secretory granules of the diabetes insipidus (Brattleboro) rat. Biosci. Rep. 12: 445–151, 1992.
 101. Chen, Z.‐P., A., Levy, and S. L. Lightman. Nucleotides as extracellular signalling molecules. J. Neuroendocrinal. 7: 83–96, 1995.
 102. Choi‐Kwon, S., and A. J. Baertschi. Splanchnic osmosensation and vasopressin: mechanisms and neural pathways. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E18–E25, 1991.
 103. Choi‐Kwon, S., R., McCarty, and A.J. Baertschi. Splanchnic control of vasopressin secretion in conscious rats. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E19–E26, 1990.
 104. Christensen, J. D., E. W., Hansen, and B. Fjalland. Interleukin‐1β stimulates the release of vasopressin from rat neurohypophysis. Eur. J. Pharmacol. 171: 233–235, 1989.
 105. Chu, D. C. M., R. L., Alvin, A. B. Young, and J. B. Penney. Distribution and kinetics of GABAv binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience 34: 341–357, 1990.
 106. Cirino, M., and L. P. Renaud. Influence of lateral septum and amygdala stimulation on the excitability of hypothalamic supraoptic neurons. An electrophysiological study in the rat. Brain Res. 326: 3557–3561, 1985.
 107. Clapp, C., L., Torner, G. Gutierrez‐Ospina, E. Alcantara, F.J. Lopez‐Gomez, M. Nagano, P. A. Kelly, S. Meijia, M. A. Morales, and G. Martinez de la Escalera. The prolactin gene is expressed in the hypothalamic‐neurohypophyseal system and the protein is processed into a 14‐kDa fragment with activity like 16‐kDa prolactin. Proc. Natl. Acad. Sci U.S.A. 91: 10384–10388, 1994.
 108. Clark, B. A., D., Elahi, L. Fish, M. McAloon‐Dyke, K. Davis, K. L. Minaker, and F. H. Epstein. Atrial natriuretic peptide suppresses osmostimulated vasopressin release in young and elderly humans. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E252–E256, 1991.
 109. Cobbett, P., K. G., Smithson, and G. I. Hatton. Immunoreactivity to vasopressin‐ but not oxytocin‐associated neurophysin antiserum in phasic neurons of rat hypothalamic paraventricular nucleus. Brain Res. 362: 7–16, 1986.
 110. Crandall, M. E., and C. M. Gregg. In vitro evidence for an inhibitory effect of atrial natriuretic peptide on vasopressin release. Neuroendocrinology 44: 439–445, 1986.
 111. Crofton, J. T., and L. Share. Osmotic control of vasopressin in male and female rats. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R738–R743, 1989.
 112. Crowley, R. S., and J. A. Amico. Gonadal steroid modulation of oxytocin and vasopressin gene expression in the hypothalamus of the osmotically stimulated rat. Endocrinology 133: 2711–2718, 1993.
 113. Crowley, R. S., T. R., Insel, J. A. O'Keefe, and J. A. Amico. Cytoplasmic oxytocin and vasopressin gene transcripts decline postpartum in the hypothalamus of the lactating rat. Endocrinology 133: 2704–2710, 1993.
 114. Crowley, W. R., S. L., Parker, W. E. Armstrong, W. Wang, and C. E. Grosvenor. Excitatory and inhibitory dopaminergic regulation of oxytocin secretion in the lactating rat: evidence for respective mediation by D‐1 and D‐2 dopamine receptor subtypes. Neuroendocrinology 53: 493–502, 1991.
 115. Cunningham, E. T., Jr., and P. E., Sawchenko. Reflex control of magnocellular vasopressin and oxytocin secretion. Trends Neurosci. 14: 406–411, 1991.
 116. Cunningham, J. T., R., Nissen, and L. P. Renaud. Catecholamine depletion of the diagonal band reduces baroreflex inhibition of supraoptic neurons. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 32): R363–R367, 1992.
 117. Cunningham, J. T., R., Nissen, and L. P. Renaud. Ibotenate lesions of the diagonal band of Broca attenuate baroreceptor sensitivity of rat supraoptic vasopressin neurons. J. Neuroendocrinal. 4: 303–309, 1993.
 118. Cunningham, J. T., R., Nissen, and L. P. Renaud. Perinuclear zone and diagonal band lesions enhance angiotensin responses of rat supraoptic neurons. Am. J. Physiol. 267 (Regulatory Integrative Comp. Physiol. 36): R916–R922, 1994.
 119. Dam, T. V., E., Escher, and R. Quirion. Visualization of neurokinin‐3 receptor sites in rat brain using the highly selective ligand [3H]senktide. Brain Res. 506: 176–179, 1990.
 120. Day, T. A., A. V., Ferguson, and L. P. Renaud. Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells. J. Physiol. (Land.) 355: 237–249, 1984.
 121. Day, T. A., J. H., Jhamandas, and L. P. Renaud. Comparisons between the actions of avian pancreatic polypeptide, neuropeptide Y and norepinephrine on the excitability of rat supraoptic vasopressin neurons. Neurosci. Lett. 62: 181–185, 1985.
 122. Day, T. A., and L. P. Renaud. Electrophysical evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Res. 303: 233–240, 1984.
 123. Day, T. A., L. P., Renaud, and J. R. Sibbald. Excitation of supraoptic vasopressin cells by stimulation of the A1 noradrenaline cell group: failure to demonstrate role for established adrenergic or amino acid receptors. Brain Res. 516: 91–98, 1990.
 124. Day, T. A., and J. R. Sibbald. Solitary nucleus excitation of supraoptic vasopressin cells via adrenergic afferents. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R711–R714, 1988.
 125. Day, T. A., and J. R. Sibbald. A1 cell group mediates solitary nucleus excitation of supraoptic vasopressin cells. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R1020–R1026, 1989.
 126. Day, T. A., and J. R. Sibbald. Involvement of the A1 cell group in baroreceptor inhibition of neurosecretory vasopressin cells. Neurosci. Lett. 113: 156–162, 1990.
 127. Day, T. A., and J. R. Sibbald. Differing effects of electrical and chemical parabrachial nucleus stimulation on supraoptic vasopressin cells. J. Auton. New. Syst. 45: 175–179, 1993.
 128. Day, T. A., J. R., Sibbald, and S. Khanna. ATP mediates an excitatory noradrenergic neuron input to supraoptic vasopressin cells. Brain Res. 607: 341–344, 1993.
 129. Day, T. A., J. R., Sibbald, and D. W. Smith. A1 neurons and excitatory amino acid receptors in rat caudal medulla mediate vagal excitation of supraoptic vasopressin cells. Brain Res. 594: 244–252, 1992.
 130. Dayanithi, G., M., Cazalis, and J. J. Nordmann. Relaxin affects the release of oxytocin and vasopressin from the neurohypophysis. Nature 325: 813–816, 1987.
 131. Dayanithi, G., H., Widmer, and P. Richard. Vasopressin‐induced intracellular Ca2+ increase in isolated rat supraoptic cells. J. Physiol. (Lond.) 490: 713–727, 1996.
 132. Decavel, C., P., Dubourg, B. Leon‐Henri, M. Geffard, and A. Calas. Simultaneous immunogold labeling of GABAergic terminals and vasopressin‐containing neurons in the rat paraventricular nucleus. Cell Tissue Res. 255: 77–80, 1989.
 133. Decavel, C., and G. I. Hatton. Taurine immunoreactivity in the rat supraoptic nucleus: prominent localization in glial cells. J. Comp. Neurol. 354: 13–26, 1995.
 134. Decavel, C., and A. N. Van den Pol. GABA: a dominant neurotransmitter in the hypothalamus. J. Comp. Neurol. 302: 1019–1037, 1990.
 135. Dillon, G. H., and T. G. Waldrop. In vitro responses of caudal hypothalamic neurons to hypoxia and hypercapnia. Neuroscience 51: 941–950, 1992.
 136. Ding, Y. Q., R., Shigemoto, M. Takada, H. Ohishi, S. Nakanishi, and N. Mizuno. Localization of the neuromedin K receptor (NK3) in the central nervous system of the rat. J. Comp. Neurol. 364: 290–310, 1996.
 137. Di Scala‐Guenot, D., M. T. Strosser, and P. Richard. Electrical stimulations of perfused magnocellular nuclei in vitro elicit Ca++‐dependent, tetrodotoxin‐insensitive release of oxytocin and vasopressin. Neurosci. Lett. 76: 209–214, 1987.
 138. Douglas, W. W., Mechanism of release of neurohypophyseal hormones: stimulus‐secretion coupling. In: Handbook of Physiology. Endocrinology. The Pituitary Gland and Its Neuroendocrine Control, edited by E. Knobil and W. H. Sawyer. Washington, DC: Am. Physiol. Soc., 1974, sect. 7, vol. IV, pt. 1, p. 191–224.
 139. Drewett, J. G., and D. L. Garbers. The family of guanylyl cyclase receptors and their ligands. Endocr. Rev. 15: 135–162, 1994.
 140. Dudek, F. E., and V. K. Gribkoff. Synaptic activation of slow depolarization in rat supraoptic nucleus neurones in vitro. J. Physiol. (Lond.) 387: 273–296, 1987.
 141. Duffy, K. R., and W. M. Pardridge. Blood brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420: 32–38, 1987.
 142. Dunn, F. L., T. J., Brennan, A. E. Nelson, and G. L. Robertson. The role of blood osmolarity and volume in regulating vasopressin secretion in the rat. J. Clin. Invest. 52: 3212–3219, 1973.
 143. Dutar, P., and R. A. Nicoll. A physiological role for GABAB receptors in the central nervous system. Nature 332: 156–158, 1988.
 144. Dutton, A., and R. E. J. Dyball. Phasic firing enhances vasopressin release from the rat neurohypophysis. J. Physiol. (Land.) 290: 433–440, 1979.
 145. Dyball, R. E. J., D. N., McKenzie, and G. P. Thomas. Osmoresponsiveness of the rat supraoptic nucleus in vivo depends on glutamatergic inputs. Neurobiology 3: 351–362, 1995.
 146. Edwards, G. L., J. T., Cunningham, T. G. Beltz, and A. K. Johnson. Neuropeptide Y immunoreactive cells in the caudal medulla project to the median preoptic nucleus. Neurosci. Lett. 105: 19–26, 1989.
 147. Eguchi, T., Y., Takano, T. Hatae, R. Saito, Y. Nakayama, Y. Shigeyoshi, H. Okamura, J. E. Krause, and H. Kamiya. Antidiuretic action of tachykinin NK‐3 receptor in the rat paraventricular nucleus. Brain Res. 743: 49–55, 1996.
 148. Emanuel, R. L., D. M., Girard, D. L. Thull, and J. A. Majzoub. Regulated expression of vasopressin gene by cAMP and phorbol ester in primary rat fetal hypothalamic cultures. Mol. Cell. Endocrinol. 86: 29–36, 1992.
 149. Erickson, K. R., O. K., Ronnekleiv, and M. J. Kelly. Electro‐physiology of guinea‐pig supraoptic neurons: role of a hyperpolarization‐activated cation current in phasic firing. J. Physiol. (Lond.) 460: 407–425, 1993.
 150. Erickson, K. R., O. K., Ronnekleiv, and M.J. Kelly. Role of a T‐type calcium current in supporting a depolarizing potential, damped oscillations, and phasic firing in vasopressinergic guinea pig supraoptic neurons. Neuroendocrinology 57: 789–800, 1993.
 151. Ericson, H., T., Watanabe, and C. Kohler. Morphological analysis of the tuberomammillary nucleus in the rat brain: delineation of subgroups with antibody against 1‐histidine decarboxylase as a marker. J. Comp. Neurol. 263: 1–24, 1987.
 152. Evans, D. A. P., A. A. M. Van der Kleu, M. A. F. Sonnemans, J. P. H. Burbach, and F. W. Van Leeuwen. Frameshift mutations at two hotspots in vasopressin transcripts in post‐mitotic neurons. Proc. Natl. Acad. Sci. U.S.A. 91: 6059–6063, 1994.
 153. Fagan, M., and R. D. Andrew. Intracellular study of calcium‐related events in cat magnocellular neuroendocine cells. J. Physiol. (Lond.) 434: 337–349, 1991.
 154. Felix, D., M. C., Khosla, K. L. Barnes, H. Imboden, B. Montani, and C. M. Ferrario. Neurophysiological responses to angiotensin‐(1–7). Hypertension 17: 1111–1114, 1991.
 155. Fenelon, V. S., and A. E. Herbison. Characterisation of GABAa receptor gamma subunit expression by magnocellular neurones in rat hypothalamus. Mol. Brain Res. 34: 45–56, 1995.
 156. Fenelon, V. S., and A. E. Herbison. In vivo regulation of specific GABAa receptor subunit messenger RNAs by increased GABA concentrations in rat brain. Neuroscience 71: 661–670, 1996.
 157. Fenelon, V. S., W., Sieghart, and A. E. Herbison. Cellular localization and differential distribution of GABAa receptor subunit proteins and messenger RNAs within hypothalamic magnocellular neurons. Neuroscience 64: 1129–1143, 1995.
 158. Firemark, H. M., and R. E. Weitzman. Effect of β‐endorphin, morphine, and naloxone on AVP secretion and the electroencephalogram. Neuroscience 4: 1895–1902, 1979.
 159. Fitzsimmons, M. D., M. M., Roberts, and A. G. Robinson. Control of posterior pituitary vasopressin content: implications for the regulation of the vasopressin gene. Endocrinology 134: 1874–1878, 1994.
 160. Fitzsimmons, M. D., M. M., Roberts, T. G. Sherman, and A. G. Robinson. Models of neurohypophyseal homeostasis. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 31) R1121–R1130, 1992.
 161. Fremeau, R. T., Jr., G. E. Duncan, M.‐G. Fornaretto, A. Dearry, J. A. Gingrich, G. R. Breese, and M. G. Caron. Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc. Natl. Acad. Sci. U.S.A. 88: 3772–3776, 1991.
 162. Fuller, R. S., R. E., Sterne, and J. Thorner. Enzymes required for yeast prohormone processing. Annu. Rev. Physiol. 50: 345–362, 1988.
 163. Fuxe, K., A.‐C., Wikstrom, S. Okret, L. F. Aganti, A. Harfstrand, Z. Y. Yu, L. Granholm, M. Zoli, W. Vale, and J.‐A. Gustafsson. Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel‐ and diencephalon using a monoclonal antibody against rat liver GR. Endocrinology 117: 1803–1812, 1985.
 164. Gahlert, D. R., H. I., Yamamura, and J. K. Wamsley. γ‐Aminobutyric acidB receptors in the rat brain: quantitative autoradiographic localization using [3H](–)‐baclofen. Neurosci. Lett. 56: 183–188, 1995.
 165. Gainer, H., J. T., Russell, and Y. P. Loh. The enzymology and intracellular organization of peptide precursor processing: the secretory vesicle hypothesis. Neuroendocrinology 40: 171–184, 1985.
 166. Gainer, H., Y., Sarne, and M.J. Brownstein. Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides. J. Cell Biol. 73: 366–381, 1977.
 167. Gainer, H., Y., Sarne, and M.J. Brownstein. Neurophysin biosynthesis: conversion of a putative precursor during axonal transport. Science 195: 1354–1356, 1977.
 168. Gainer, H., and S. Wray. Oxytocin and vasopressin: from genes to peptides. Ann. N.Y. Acad. Sci. 652: 14–28, 1992.
 169. Gainer, H., and S. Wray, Cellular and molecular biology of oxytocin and vasopressin. In: The Physiology of Reproduction, edited by E. Knobil and J. D. Neill. New York: Raven, 1994, p. 1099–1129.
 170. Gaymann, W., and N. Falke. Galanin lacks binding sites in the porcine pituitary and has no detectable effect on oxytocin and vasopressin release from rat neurosecretory endings. Neurosci. Lett. 112: 114–119, 1990.
 171. Gehlert, D. R., S. L., Gackenheimer, and D. A. Schober. Auto‐radiographic localization of subtypes of angiotensin II antagonist binding in the rat brain. Neuroscience 44: 501–514, 1991.
 172. Giaid, A., S. J., Gibson, M. T. Herrero, S. Gentleman, S. Legon, M. Yanagisawa, T. Masaki, N. B. Ibrahim, G. W. Roberts, M. L. Rossi, and J. M. Polak. Topographical localisation of endothelin mRNA and peptide immunoreactivity in neurones of the human brain. Histochemistry 95: 303–314, 1991.
 173. Gibbs, D. M., and W. Vale. Effect of the serotonin reuptake inhibitor fluoxetine on corticotropin‐releasing factor and vasopressin secretion into hypophysial portal blood. Brain Res. 280: 176–179, 1983.
 174. Gieroba, Z. J., and W. W. Blessing. Vasopressin secretion after stimulation of abdominal vagus in rabbit: role of A1 norepinephrine neurons. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 35): R1885–R1890, 1994.
 175. Gieroba, Z. J., L. N., Shapoval, and W. W. Blessing. Inhibition of the A1 area prevents hemorrhage‐induced secretion of vasopressin in rats. Brain Res. 657: 330–332, 1994.
 176. Ginsberg, S. D., P. R., Hof, W. G. Young, and J. H. Morrison. Noradrenergic innervation of vasopressin‐ and oxytocin‐containing neurons in the hypothalamic paraventricular nucleus of the macaque monkey: quantitative analysis using double‐label immunohistochemistry and confocal laser microscopy. J. Comp. Neurol. 341: 476–491, 1994.
 177. Ginsberg, S. D., D. L., Price, C. D. Blackstone, R. L. Huganir, and L. J. Martin. Non‐NMDA glutamate receptors are present throughout the primate hypothalamus. J. Comp. Neurol. 353: 539–552, 1995.
 178. Ginsberg, S. D., D. L., Price, C. D. Blackstone, R. L. Huganir, and L. J. Martin. The AMPA glutamate receptor GluR3 is enriched in oxytocinergic magnocellular neurons and is localized at synapses. Neuroscience 65: 563–575, 1995.
 179. Goetz, K. L., B. C., Wang, J. B. Madwed, J. L. Zhu, and R. J. Leadley, Jr.. Cardiovascular, renal, and endocrine responses to intravenous endothelin in conscious dogs. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R1064–R1068, 1988.
 180. Gouzenes, L., M. G., Desarmenien, N. Hussy, P. Richard, and F. C. Moos. Vasopressin regularizes the phasic firing pattern of rat hypothalamic magnocellular vasopressin neurons. J. Neurosci. 18: 1879–1885, 1998.
 181. Green, J. R., G. C., Buchan, E. C. Alvord, and A. G. Swanson. Hereditary and idiopathic types of diabetes insipidus. Brain 90: 707–714, 1967.
 182. Gregg, C. M., and C. D. Sladek. A compartmentalized, organ‐cultured hypothalamo‐neurohypophysial system for the study of vasopressin release. Neuroendocrinology 38: 397–402, 1984.
 183. Gribkoff, V. K., and F. E. Dudek. The effects of the excitatory amino acid antagonist kynurenic acid on synaptic transmission to supraoptic neuroendocrine cells. Brain Res. 442: 152–156, 1988.
 184. Gribkoff, V. K., and F. E. Dudek. Effects of excitatory amino acid antagonists on synaptic responses of supraoptic nucleus in slices of rat hypothalamus. J. Neurophysiol. 63: 60–71, 1990.
 185. Grino, M., V., Guillaume, F. Boudouresque, B. Conte‐Devolx, J.‐Y. Maltese, and C. Oliver. Glucocorticoids regulate peptidyl‐glycine α‐amidating monooxygenase gene expression in the rat hypothalamic paraventricular nucleus. Mol. Endocrinol. 4: 1613–1619, 1990.
 186. Gruber, K. A., L. D., Wilkin, and A. K. Johnson. Neurohypophyseal hormone release and biosynthesis in rats with lesions of the anteroventral third ventricle (AV3V) region. Brain Res. 378: 115–119, 1986.
 187. Guilan, D., T.J., Baker, L.‐C. N. Shih, and L. B. Lachman. Interleukin‐1 of the central nervous system is produced by ameboid microglia. J. Exp. Med. 164: 594–614, 1986.
 188. Guldenaar, S. E. F., P., Nahke, and B. T. Pickering. Immuno‐cytochemical evidence for the presence of a mutant vasopressin precursor in the supraoptic nucleus of the homozygous Brattleboro rat. Cell Tissue Res. 244: 431–436, 1986.
 189. Guyenet, P. G., and D. L. Brown. Unit activity in nucleus paragigantocellularis lateralis during cerebral ischemia in the rat. Brain Res. 364: 301–314, 1986.
 190. Haas, H. L., P., Wolf, and J. C. Nussbaumer. Histamine: action on supraoptic and other hypothalamic neurons of the cat. Brain Res. 88: 166–170, 1975.
 191. Hara, Y., J., Battey, and H. Gainer. Structure of mouse vasopressin and oxytocin genes. Mol. Brain Res. 8: 319–324, 1990.
 192. Hatton, G. I.. Phasic bursting activity of rat paraventricular neurones in the absence of synaptic transmission. J. Physiol. (Lond.) 327: 273–284, 1982.
 193. Hatton, G. I.. Emerging concepts of structure‐function dynamics in adult brain: the hypothalamo‐neurohypophysial system. Prog. Neurobiol. 34: 437–504, 1990.
 194. Hatton, G. I., P., Cobbett, and A. K. Salm. Extranuclear axon collaterals of paraventricular neurons in the rat hypothalamus: intracellular staining, immunocytochemistry and electrophysiology. Brain Res. Bull. 14: 123–132, 1985.
 195. Hatton, G. I., Y. W., Ho, and W. T. Mason. Synaptic activation of phasic bursting in rat supraoptic nucleus neurones recorded in hypothalamic slices. J. Physiol. (Lond.) 342: 297–317, 1983.
 196. Hatton, G. I., and J. K. Walters. Induced multiple nucleoli, nucleolar margination, and cell size changes in supraoptic neurons during dehydration and rehydration in the rat. Brain Res. 59: 137–154, 1973.
 197. Hatton, G. I., and Q. Z. Yang. Supraoptic nucleus afferents from the main olfactory bulb—II. Intracellularly recorded responses to lateral olfactory tract stimulation in rat brain slices. Neuroscience 31: 289–297, 1989.
 198. Healy, D. L., G. P., Chrousos, H. M. Schulte, P. W. Gold, and G. D. Hodgen. Increased adrenocorticotropin, Cortisol, and arginine vasopressin secretion in primates after the antiglucocorticoid steroid RU 486: dose‐response relationships. J. Clin. Endocrinol. Metab. 60: 1–4, 1985.
 199. Herbison, A. E.. Immunocytochemical evidence for oestrogen receptors within GABA neurones located in the perinuclear zone of the supraoptic nucleus and GABAA receptor b2/b3 subunits on supraoptic oxytocin neurones. J. Neuroendocrinal. 6: 5–11, 1994.
 200. Herbison, A. E., D. L., Voisin, A. J. Douglas, and C. Chapman. Profile of monoamine and excitatory amino acid release in rat supraoptic nucleus over parturition. Endocrinology 138: 33, 1997.
 201. Herman, J. P.. Regulation of adrenocorticosteroid receptor mRNA expression in the central nervous system. Cell. Mol. Neurobiol. 13: 349–372, 1993.
 202. Herman, J. P., M. C. Langub, Jr., and R. E. Watson, Jr. Localization of C‐type natriuretic peptide mRNA in rat hypothalamus. Endocrinology 133: 1903–1906, 1993.
 203. Herman, J. P., M. K.‐H., Schafer, S. J. Watson, and T. G. Sherman. In situ hybridization analysis of arginine vasopressin gene transcription using intron‐specific probes. Mol. Endocrinol. 5: 1447–1456, 1991.
 204. Herman, J. P., and S. J. Wiegand. Ibotenate‐induced cell death in the hypothalamic paraventricular nucleus: differential susceptibility of magnocellular and parvicellular neurons. Brain Res. 393: 367–372, 1986.
 205. Hiruma, H., and C. W. Bourque. P2 purinoceptor‐mediated depolarization of rat supraoptic neurosecretory cells in vitro. J. Physiol. (Lond.) 489: 805–811, 1995.
 206. Hoffman, P. K., L., Share, J. T. Crofton, and R. E. Shade. The effect of intracerebroventricular indomethacin on osmotically stimulated vasopressin release. Neuroendocrinology 34: 132–139, 1982.
 207. Hogarty, D. C., E. A., Speakman, V. Puig, and M. I. Phillips. The role of angiotensin, AT1 and AT2 receptors in the pressor, drinking and vasopressin responses to central angiotensin. Brain Res. 586: 289–294, 1992.
 208. Hokfelt, T., M., Herrera‐Marschitz, K. Seroogy, Jr., G. Ju, W. A. Staines, V. Holets, M. Schalling, V. Ungerstedt, C. Post, J. F. Rehfeld, P. Frey, J. Fischer, G. Dockray, T. Hamaoka, H. Walsh, and M. Goldstein. Immunohistochemical studies on cholecystokinin (CCK)‐immunoreactive neurons in the rat using sequence specific antisera and with special reference to the caudate nucleus and primary sensory neurons. J. Chem. Neuroanat. 1: 11–52, 1988.
 209. Hollman, M., and S. Heinemann. Cloned glutamate receptors. Annu. Rev. Neurosci. 17: 31–108, 1994.
 210. Holmes, M. C., F. A., Antoni, G. Aguilera, and K. Catt. Magnocellular axons in passage through the median eminence release vasopressin. Nature 319: 326–329, 1986.
 211. Holzbauer, M., E., Muscholl, K. Racke, and D. F. Sharman. Evidence that dopamine is a neurotransmitter in the neurointermediate lobe of the hypophysis. Prog. Brain Res. 60: 357–364, 1983.
 212. Honda, K., H., Negoro, T. Fukuoka, T. Higuchi, and K. Uchide. Effect of microelectrophoretically applied acetylcholine, noradrenaline, dopamine, and serotonin on the discharge of paraventricular oxytocinergic neurons in the rat. Endocrinol. Jpn. 32: 127–133, 1985.
 213. Honda, K., H., Negoro, T. Higuchi, and Y. Tadokoro. The role of the anteroventral 3rd ventricle area in the osmotic control of paraventricular neurosecretory cells. Exp. Brain Res. 76: 497–502, 1989.
 214. Hook, V. Y., E., Mezey, L. D. Fricker, R. M. Pruss, R. E. Siegel, and M. J. Brownstein. Immunochemical characterization of carboxypeptidase B‐like peptide‐hormone‐processing enzyme. Proc. Natl. Acad. Sci. U.S.A. 82: 4745–4749, 1985.
 215. Hope, B. T., G.J., Michael, K. M. Knigge, and S. R. Vincent. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 88: 2811–2814, 1991.
 216. Hu, B., and C. W. Bourque. NMDA receptor‐mediated rhythmic bursting activity in rat supraoptic nucleus neurones in vitro. J. Physiol. (Lond.) 458: 667–687, 1992.
 217. Hu, S.‐B., L. A., Tannahill, and S. L. Lightman. Regulation of arginine vasopressin mRNA in rat fetal hypothalamic cell culture. Role of protein kinases and glucocorticoids. J. Mol. Endocrinol. 10: 51–57, 1993.
 218. Hume, R. I., R., Dingledine, and S. F. Heinemann. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253: 1028–1030, 1991.
 219. Hurtmut, L., G., Schutz, H. Schmale, and D. Richter. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin–neurophysin II precursor. Nature 295: 299–303, 1982.
 220. Hussy, N., L., Boissin‐Agasse, P. Richard, and M. G. Desarmenien. NMDA receptor properties in rat supraoptic magno‐cellular neurons: characterization and postnatal development. Eur. J. Neurosci. 9: 1439–1449, 1997.
 221. Hussy, N., C., Deleuze, A. Pantaloni, M. G. Desarmenien, and F. Moos. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurons: possible role in osmoregulation. J. Physiol. (Lond.) 502: 609–621, 1997.
 222. Iitake, K., L., Share, J. T. Crofton, D. P. Brooks, Y. Ouchi, and E. H. Blaine. Central atrial natriuretic factor reduces vasopressin secretion in the rat. Endocrinology 119: 438–440, 1986.
 223. Imagawa, M., R., Chiu, and M. Karin. Transcription factor AP‐2 mediates induction by two different signal‐transduction pathways: protein kinase C and cAMP. Cell 51: 251–260, 1987.
 224. Imboden, H., J. W., Harding, and D. Felix. Hypothalamic angiotensinergic fibre systems terminate in the neurohypophysis. Neurosci. Lett. 96: 42–46, 1989.
 225. Imura, H., K., Nakao, and H. Itoh. The natriuretic peptide system in the brain: implications in the central control of cardiovascular and neuroendocrine functions. Front. Neuroendocrinal. 13: 217–249, 1992.
 226. Inenaga, K., T., Nagatomo, K. Nakao, N. Yanaihara, and H. Yamashita. Kappa‐selective agonists decrease postsynaptic potentials and calcium components of action potentials in the supraoptic nucleus of rat hypothalamus in vitro. Neuroscience 58: 331–340, 1994.
 227. Ingram, C. D., R. J., Bicknell, D. Brown, and G. Leng. Rapid fatigue of neuropeptide secretion during continual electrical stimulation. Neuroendocrinology 35: 424–428, 1982.
 228. Inoue, M., J. T., Crofton, and L. Share. Interactions between brain acetylcholine and prostaglandins in control of vasopressin release. Am. J. Physiol, 261 . (Regulatory Integrative Comp. Physiol. 30): R420–R426, 1991.
 229. Iovino, M., and L. Steardo. Thirst and vasopressin secretion following central administration of angiotensin II in rats with lesions of the septal area and subfornical organ. Neuroscience 15: 61–67, 1985.
 230. Ishikawa, S.‐E., T., Saito, and S. Yoshida. The effect of prostaglandins on the release of arginine vasopressin from the guinea pig hypothalamo‐neurohypophyseal complex in organ culture. Endocrinology 108: 193–198, 1981.
 231. Itake, K., L., Share, D. P. Brooks, J. T. Croftn, and Y. Ouchi. Role of brain acetylcholine in vasopressin release during osmotic stimulation and hemorrhage. Exp. Brain Res. 75: 47–52, 1989.
 232. Ivell, R., and D. Richter. Structure and comparison of the oxytocin and vasopressin genes from rat. Proc. Natl. Acad. Sci. U.S.A. 81: 2006–2010, 1984.
 233. Iversen, L. L., S. D., Iversen, and F. E. Bloom. Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis. Nature 284: 350–351, 1980.
 234. Jackson, M. B., A., Konnerth, and G. J. Augustine. Action potential broadening and frequency‐dependent facilitation of calcium signals in pituitary nerve terminals. Proc. Natl. Acad. Sci. U.S.A. 88: 380–384, 1991.
 235. Januszewicz, P., P., Larose, H. Ong, J. Gutkowska, J. Genest, and M. Cantin. Effect of atrial natriuretic factor on plasma vasopressin in conscious rats. Peptides 7: 989–993, 1986.
 236. Januszewicz, P., G., Thibault, R. Garcia, J. Gutkowska, J. Genest, and M. Cantin. Effect of synthetic atrial natriuretic factor on arginine vasopressin release by the rat hypothalamo‐neurohypophysial complex in organ culture. Biochem. Biophys. Res. Commun. 134: 652–658, 1986.
 237. Jarvis, C. R., C. W., Bourque, and L. P. Renaud. Depolarizing action of cholecystokinin on rat supraoptic neurones in vitro. J. Physiol. (Lond.) 458: 621–632, 1992.
 238. Jarvis, C. R., B. J. Van de Heijning, and L. P. Renaud. Cholecystokinin evokes vasopressin release from perfused hypothalamic‐neurohypophyseal explants. Regul. Pept. 56: 131–137, 1995.
 239. Jhamandas, J. H., K. H., Harris, and T. L. Krukoff. Parabrachial nucleus projection towards the hypothalamic supraoptic nucleus: electrophysiological and anatomical observations in the rat. J. Comp. Neurol. 308: 42–50, 1991.
 240. Jhamandas, J. H., R. W., Lind, and L. P. Renaud. Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamic supraoptic nucleus: an anatomical and electrophysiological study in the rat. Brain Res. 487: 52–61, 1989.
 241. Jhamandas, J. H., W., Raby, J. Rogers, R. M. Buijs, and L. P. Renaud. Diagonal band projection towards the hypothalamic supraoptic nucleus: light and electron microscopic observations in the rat. J. Comp. Neurol. 282: 15–23, 1989.
 242. Jhamandas, J. H., and L. P. Renaud. A gamma‐aminobutyric‐acid‐mediated baroreceptor input to supraoptic vasopressin neurones in the rat. J. Physiol. (Lond.) 381: 595–606, 1986.
 243. Jhamandas, J. H., and L. P. Renaud. Diagonal band neurons may mediate arterial baroreceptor input to hypothalamic vasopressin‐secreting neurons. Neurosci. Lett. 65: 214–218, 1986.
 244. Jhamandas, J. H., and L. P. Renaud. Bicuculline blocks an inhibitory baroreflex input to supraoptic vasopressin neurons. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R947–R952, 1987.
 245. Jirikowski, G. F., F. J., Ramalho‐Ortigao, and J. D. Caldwell. Transitory coexistence of oxytocin and vasopressin in the hypothalamo neurohypophysial system of parturient rats. Harm. Metab. Res. 23: 476–480, 1991.
 246. Johnson, A. K.. Neurobiology of the periventricular tissue surrounding the anterioventral third ventricle (AV3V) and its role in behavior, fluid balance, and cardiovascular control. Dev. Neurosci. 15: 277–298, 1982.
 247. Johnson, A. K., and J. Buggy. Periventricular preoptic‐hypothalamus is vital for thirst and normal water economy. Am. J. Physiol. 234 (Regulatory Integrative Comp. Physiol. 3): R122–R129, 1978.
 248. Johnson, A. K., and P. M. Gross. Sensory circumventricular organs and brain homeostatic pathways. PASEB J. 7: 678–686, 1993.
 249. Jones, C. W., and B. T. Pickering. Intra‐axonal transport and turnover of neurohypophysial hormones in the rat. J. Physiol. (Lond.) 227: 553–564, 1972.
 250. Jorgensen, A., B., Fjalland, J. D. Christensen, and M. Treiman. Dihydropyridine ligands influence the evoked release of oxytocin and vasopressin dependent on stimulation conditions. Eur. J. Pharmacol. 259: 157–163, 1994.
 251. Jung, J. S., R. V., Bhat, G. M. Preston, W. B. Guggino, J. M. Baraban, and P. Agre. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc. Natl. Acad. Sci. U.S.A. 91: 13052–13056, 1994.
 252. Kadowaki, K., J., Kishimoto, G. Leng, and P. C. Emson. Up‐regulation of nitric oxide synthase (NOS) gene expression together with NOS activity in the rat hypothalamo‐hypophysial system after chronic salt loading: evidence of a neuromodulatory role of nitric oxide in arginine vasopressin and oxytocin secretion. Endocrinology 134: 1011–1017, 1994.
 253. Kannan, H., T., Osaka, M. Kasai, S. Okuya, and H. Yamashita. Electrophysiological properties of neurons in the caudal ventrolateral medulla projecting to the paraventricular nucleus of the hypothalamus in rats. Brain Res. 376: 342–350, 1986.
 254. Kasai, M., T., Osaka, K. Inenaga, H. Kannan, and H. Yamashita. Alpha‐aminobutyric acid antagonists block baroreceptor‐activated inhibition of neurosecretory cells in the hypothalamic paraventricular nucleus of rats. Neurosci. Lett. 81: 319–324, 1987.
 255. Katsuura, G., P. E., Gottschall, R. R. Cahl, and A. Arimura. Identification of high‐affinity receptor for interleukin‐1β in the rat brain. Biochem. Biophys. Res. Commun. 156: 61–67, 1988.
 256. Katsuura, G., P. E., Gottschall, R. R. Cahl, and A. Arimura. Involvement of OVLT and preoptic area in interleukin‐1β induction of ACTH release. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E163–E171, 1990.
 257. Kawano, S., T., Osaka, H. Kannan, and H. Yamashita. Excitation of hypothalamic paraventricular neurons by stimulation of the raphe nuclei. Brain Res. Bull. 28: 573–579, 1992.
 258. Kebabian, J. W., and D. B. Calne. Multiple receptors for dopamine. Nature 277: 93–96, 1979.
 259. Kent, D. L., and J. R. Sladek, Jr.. Histochemical, pharmacological and microspectrofluorometric analysis of new sites of serotonin localization in the rat hypothalamus. J. Comp. Neurol. 180: 221–236, 1978.
 260. Khanna, S., J. R., Sibbald, and T. A. Day. Neuropeptide Y modulation of A1 noradrenergic neuron input to supraoptic vasopressin cells. Neurosci. Lett. 161: 60–64, 1993.
 261. Khanna, S., J. R., Sibbald, D. W. Smith, and T. A. Day. Initiation of rat vasopressin cell responses to simulated hypotensive hemorrhage. Am. J. Physiol. 267 (Regulatory Integrative Comp. Physiol. 36): R1142, 1994.
 262. Kimura, T., K., Abe, M. Shoju, K. Tsunoda, K. Matsui, K. Ota, M. Inoue, M. Yasujima, and K. Yoshinaga. Effects of human atrial natriuretic peptide on renal function and vasopressin release. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R789–R794, 1986.
 263. King, M. S., and A. J. Baertschi. Central neural pathway mediating splanchnic osmosensation. Brain Res. 550: 268–278, 1991.
 264. King, M. S., and A. J. Baertschi. Ventral pontine catecholaminergic pathway mediates the vasopressin response to splanchnic osmostimulation in conscious rats. Brain Res. 580: 81–91, 1992.
 265. Kirkpatrick, K., and C. W. Bourque. Dual role for calcium in the control of spike duration in rat supraoptic neuroendocrine cells. Neurosci. Lett. 133: 271–274, 1991.
 266. Kirkpatrick, K., and C. W. Bourque. Effects of neurotensin on rat supraoptic neurons in vitro. J. Physiol. (Lond.) 482: 373–381, 1995.
 267. Kirkpatrick, K., and C. W. Bourque. Activity dependence and functional role of the apamin‐sensitive K+ current in rat supraoptic neurones in vitro. J. Physiol. (Lond.) 494: 389–398, 1996.
 268. Kiyama, H., and P. C. Emson. Evidence for the coexpression of oxytocin and vasopressin messenger ribonucleic acids in magnocellular neurosecretory cells: simultaneous demonstration of two neurophysin messenger ribonucleic acids by hybridization histochemistry. J. Neuroendocrinal. 2: 2577–259, 1990.
 269. Kiyama, H., K., Sato, and M. Tohyama. Characteristic localization of non‐NMDA type glutamate receptor subunits in the rat pituitary gland. Mol. Brain Res. 19: 262–268, 1993.
 270. Kjaer, A., U., Knigge, A. Rouleau, M. Garbarg, and J. Warberg. Dehydration‐induced release of vasopressin involves activation of hypothalamic histaminergic neurons. Endocrinology 135: 675–681, 1994.
 271. Kjaer, A., P. J., Larsen, U. Knigge, and J. Warberg. Dehydration stimulates hypothalamic gene expression of histamine synthesis enzyme: importance for neuroendocrine regulation of vasopressin and oxytocin secretion. Endocrinology 136: 2189–2197, 1995.
 272. Knepel, W., D., Nutto, and D. K. Meyer. Effect of transection of subfornical organ efferent projections on vasopressin release induced by angiotensin or isoprenaline in the rat. Brain Res. 248: 180–184, 1982.
 273. Knepper, M. A.. The aquaporin family of molecular water channels. Proc. Natl. Acad. Sci. U.S.A. 91: 6255–6258, 1994.
 274. Kobashi, M., and A. Adachi. Convergence of hepatic osmoreceptive inputs on sodium‐responsive units within the nucleus of the solitary tract of the rat. J. Neurophysiol. 54: 212–219, 1985.
 275. Kohzuki, M., S. Y., Chai, G. Paxinos, A. Karavas, D. J. Casley, C. I. Johnston, and F. A. O. Mendelsohn. Localization and characterization of endothelin receptor binding sites in the rat brain visualized by in vitro autoradiography. Neuroscience 42: 245–260, 1991.
 276. Koike, K., Y., Sakamoto, H. Kiyama, K. Masuhara, A. Miyake, and M. Inoue. Cytokine‐induced neutrophil chemoattractant gene expression in the rat hypothalamus by osmotic stimulation. Brain Res. Mol. Brain Res. 52: 326–329, 1997.
 277. Koizumi, K., and H. Yamashita. Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recording. J. Physiol. (Land.) 221: 683–705, 1972.
 278. Kombian, S. B., D., Mouginot, and Q. J. Pittman. Dendritically released peptides act as retrograde modulators of afferent excitation in the supraoptic nucleus in vitro. Neuron 19: 903–912, 1997.
 279. Kombian, S. B., J. A., Zidichouski, and Q. J. Pittman. GABAB receptors presynaptically modulate excitatory synaptic transmission in the rat supraoptic nucleus in vitro. J. Neurophysiol. 76: 1166–1179, 1996.
 280. Koos, B. J., B. A., Mason, and M. G. Ervin. Adenosine mediates hypoxic release of arginine vasopressin in fetal sheep. Am. J. Physiol., 266 , (Regulatory Integrative Comp. Physiol. 35): R215–R220, 1994.
 281. Krisch, B., P., Nahke, and D. Richter. Immunocytochemical staining of supraoptic neurons from homozygous Brattleboro rats by use of antibodies against two domains of the mutated vasopressin precursor. Cell Tissue Res. 244: 351–358, 1986.
 282. Kumada, M., N., Terui, and T. Kuwaki. Arterial baroreceptor reflex: its central and peripheral neural mechanisms. Prog. Neurobiol. 35: 331–361, 1990.
 283. Lambert, R. C., G., Dayanithi, F. C. Moos, and P. Richard. A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin. J. Physiol. (Lond.) 478: 275–287, 1994.
 284. Landgraf, R.. Intracerebrally released vasopressin and oxytocin: measurement, mechanisms and behavioral consequences. J. Neuroendocrinal. 7: 243–253, 1995.
 285. Landgraf, R., and M. Ludwig. Vasopressin release within the supraoptic and paraventricular nuclei of the rat brain: osmotic stimulation via microdialysis. Brain Res. 558: 191–196, 1991.
 286. Langub, M. C., Jr., C. M. Dolgas, R. E. Watson, Jr., and J. P., Herman. The C‐type natriuretic peptide receptor is the predominant natriuretic peptide receptor mRNA expressed in rat hypothalamus. J. Neuroendocrinal. 7: 305–309, 1995.
 287. Larsen, P. J.. Distribution of substance P‐immunoreactive elements in the preoptic area and the hypothalamus of the rat. J. Comp. Neurol. 316: 287–313, 1992.
 288. Larsen, P. J., D. S., Jessop, H. S. Chowdrey, and S. L. Lightman. Neuropeptide Y messenger ribonucleic acid in the magnocellular system of the rat is increased during osmotic stimulation. Neurosci. Lett. 138: 23–26, 1992.
 289. Larsen, P. J., K. E., Jukes, H. S. Chowdrey, S. L. Lightman, and D. S. Jessop. Neuropeptide‐Y potentiates the secretion of vasopressin from the neurointermediate lobe of the rat pituitary gland. Endocrinology 134: 1635–1639, 1994.
 290. Larsen, P. J., S. P., Sheikh, and J. D. Mikkelsen. Osmotic regulation of neuropeptide Y and its binding sites in the magnocellular hypothalamo‐neurohypophysial pathway. Brain Res. 573: 181–189, 1992.
 291. Lederis, K., Neurosecretion and the functional structure of the neurohypophysis. In: Handbook of Physiology. Endocrinology. The Pituitary Gland and Its Neuroendocrine Control, edited by E. Knobil and W. H. Sawyer. Washington, DC: Am. Physiol. Soc., 1974, sect. 7, vol. IV, pt. 1, p. 81–102.
 292. Lederis, K., and K. Jayasena, Storage of the neurohypophysial hormones and the mechanism for their release. In: Pharmacology of the Endocrine System and Related Drugs. The Neurohypophysis, edited by H. Heller and B. T. Pickering. Oxford: Pergamon, 1970, p. 111–154.
 293. Leng, G., and W. T. Mason. Influence of vasopressin upon firing patterns of supraoptic neurons: a comparison of normal and Brattleboro rats. Ann. N.Y. Acad. Sci. 394: 153–158, 1982.
 294. Leng, G., S., Way, and R. E. J. Dyball. Identification of oxytoxin cells in the rat supraoptic nucleus by their response to cholecystokinin injection. Neurosci. Lett. 122: 159–162, 1991.
 295. Lenkei, Z., P., Corvol, and C. Llorens‐Cortes. Comparative expression of vasopressin and angiotensin type‐1 receptor mRNA in rat hypothalamic nuclei: a double in situ hybridization study. Mol. Brain Res. 34: 135–142, 1995.
 296. Leranth, C. S., M., Palkovits, and D. T. Krieger. Serotonin immunoreactive nerve fibers and terminals in the rat pituitary light‐ and electron‐microscopic studies. Neuroscience 9: 289–296, 1983.
 297. Levin, M. C., and P. E. Sawchenko. Neuropeptide co‐expression in the magnocellular neurosecretory system of the female rat: evidence for differential modulation by estrogen. Neuroscience 54: 1001–1018, 1993.
 298. Li, X., P. E., Schwarz, and E. F. Rissman. Distribution of estrogen receptor‐β‐like immunoreactivity in rat forebrain. Neuroendocrinology 66: 63–67, 1997.
 299. Li, X. J., A. H., Sharp, S. H. Li, T. M. Dawson, S. H. Snyder, and C. A. Ross. Huntington‐associated protein (HAP1): discrete neuronal localizations in the brain resemble those of neuronal nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 93: 4839–4844, 1996.
 300. Li, Y.‐W., Z. J., Gieroba, and W. W. Blessing. Chemoreceptor and baroreceptor responses of A1 area neurons projecting to supraoptic nucleus. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 32): R310–R317, 1992.
 301. Li, Z., and G. I. Hatton. Histamine‐induced prolonged depolarization in rat supraoptic neurons: G‐proteinmediated, Ca2+‐independent suppression of K+ leakage conductance. Neuroscience 70: 145–158, 1996.
 302. Li, Z., K., Inenaga, S. Kawano, H. Kannan, and H. Yamashita. Interleukin‐1β directly excites hypothalamic suparaoptic neurons in rats in vitro. Neuroendocrinology 3: 91–93, 1992.
 303. Li, Z., K., Inenaga, and H. Yamashita. GABAergic inputs modulate effects of interleukin‐1β on supraoptic neurones in vitro. Neuroreport 5: 181–183, 1993.
 304. Lightman, S. L., K., Todd, and B. J. Everitt. Ascending noradrenergic projections from the brainstem: evidence for a major role in the regulation of blood pressure and vasopressin secretion. Exp. Brain Res. 55: 145–151, 1984.
 305. Lightman, S. L., and W. S. Young. Vasopressin, oxytocin, dynorphin, enkephalin and corticotropin‐releasing factor mRNA stimulation. J. Physiol. (Lond.) 394: 23–39, 1987.
 306. Lim, N. F., M. C., Nowycky, and R. J. Bookman. Direct measurement of exocytosis and calcium currents in single vertebrate nerve terminals. Nature 344: 449–451, 1990.
 307. Lind, R. W., L. W., Swanson, T. O. Bruhn, and D. Ganten. The distribution of angiotensin II‐immunoreactive cells and fibers in the paraventriculo‐hypophysial system of the rat. Brain Res. 338: 81–89, 1985.
 308. Lind, R. W., L. W., Swanson, and D. Ganten. Organization of angiotensin II‐immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study. Neuroendocrinology 40: 2–24, 1985.
 309. Lind, R. W., G. W. Van Hoesen, and A. K. Johnson. An HRP study of the connections of the subfornical organ of the rat. J. Comp. Neurol. 210: 265–277, 1982.
 310. Lindau, M., E. L., Stuenkel, and J.J. Nordmann. Depolarization, intracellular calcium and exocytosis in single vertebrate nerve endings. Biophys. J. 61: 19–30, 1992.
 311. Lindvall, O., A., Bjorklund, and G. Skagerberg. Selective histochemical demonstration of dopamine terminal systems in rat di‐ and telencephalon: new evidence for dopaminergic innervation of hypothalamic neurosecretory nuclei. Brain Res. 306: 19–30, 1984.
 312. Liu, J.‐W., P. C., Andrews, J. L. Mershon, C. Yan, D. L. Allen, and N. Ben‐Jonathan. Peptide V: a VGF‐derived neuropeptide purified from bovine posterior pituitary. Endocrinology 135: 2742–2748, 1994.
 313. Liu, S., and G. Ju. Origin of CCK‐like immunoreactive nerve fibers in the neurohypophysis of the rat. Brain Res. 651: 7–15, 1994.
 314. Liu, X., and Y.‐Z. Chen. Membrane‐mediated inhibition of corticosterone on the release of arginine vasopressin from rat hypothalamic slices. Brain Res. 704: 19–22, 1995.
 315. Liu, X., C.‐A., Wang, and Y.‐Z. Chen. Nongenomic effect of glucocorticoid on the release of arginine vasopressin from hypothalamic slices in rats. Neuroendocrinology 62: 628–633, 1995.
 316. Ludwig, M.. Functional role of intrahypothalamic release of oxytocin and vasopressin: consequences and controversies. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E537–E545, 1995.
 317. Ludwig, M., and R. Landgraf. Does the release of vasopressin within the supraoptic nucleus of the rat brain depend upon changes in osmolality and Ca2+/K+? Brain Res. 576: 231–234, 1992.
 318. Ludwig, M., M., Morris, and C. D. Sladek. Antisense oligo‐deoxynucleotides block osmotic, but not KC1 stimulated vasopressin and oxytocin release from hypothalamo‐neurohypophyseal explants. Am. J. Physiol., 272 (Regulatory, Integrative, Comp. Physiol. 41): R1441–1446, 1997.
 319. Lundberg, J. M., J., Pernow, and J. S. Lacroix. Neuropeptide Y: sympathetic cotransmitter and modulator? News Physiol. Sci. 4: 13–17, 1989.
 320. Lutz‐Bucher, B., and B. Koch. Evidence for an inhibitory effect of nitric oxide on neuropeptide secretion from isolated neural lobe of the rat pituitary gland. Neurosci. Lett. 165: 48–50, 1994.
 321. Macdonald, R. L., and R. W. Olsen. GABAA receptor channels. Annu. Rev. Neurosci. 17: 569–602, 1994.
 322. Mahata, S. K., M., Mahata, R. Fischer‐Colbrie, and H. Winkler. In situ hybridization: mRNA levels of secretogranin II, VGF and peptidylglycine alpha‐amidating monooxygenase in brain of salt‐loaded rats. Histochemistry 99: 287–293, 1993.
 323. Mahata, S. K., M., Mahata, H. Hortnag, R. Fischer‐Colbrie, H.‐J. Steiner, O. Dietze, and H. Winkler. Concomitant changes of messenger ribonucleic acid levels of secretogranin II, VGF, vasopressin and oxytocin in the paraventricular nucleus of rats after adrenalectomy and during lactation. J. Neuroendocrinal. 5: 323–330, 1993.
 324. Mahata, S. K., M., Mahata, H. J. Steiner, R. Fischer‐Colbrie, and H. Winkler. In situ hybridization: mRNA levels of secretogranin II, neuropeptides and carboxypeptidase H in brains of salt‐loaded and Brattleboro rats. Neuroscience 48: 669–680, 1992.
 325. Majane, E. A., and H.‐Y. T. Yang. FMRF‐NH2‐like peptide is deficient in the pituitary gland of the Brattleboro rat. Peptides 11: 345–349, 1990.
 326. Majane, E. A., and H.‐Y. T. Yang. Mammalian FMRF‐NH2‐like peptide in rat pituitary: decrease by osmotic stimulus. Peptides 12: 1303–1308, 1991.
 327. Majane, E. A., J., Zhu, A. A. Aarnisalo, P. Panula, and H.‐Y. T. Yang. Origin of neurohypophyseal neuropeptide‐FF (FLFQPQRF‐NH2). Endocrinology 133: 1578–1584, 1993.
 328. Majzoub, J. A., A., Rich, J. NanBoom, and J. F. Habener. Vasopressin and oxytocin mRNA regulation in the rat assessed by hybridization with synthetic oligonucleotides. J. Biol. Chem. 258: 14061–14064, 1983.
 329. Martin, L. J., C. D., Blacksone, A. I. Levey, R. L. Huganir, and D. L. Price. AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 53: 327–358, 1993.
 330. Mason, W. T.. Supraoptic neurons of rat hypothalamus are osmosensitive. Nature 287: 154–157, 1980.
 331. Mason, W. T.. Excitation by dopamine of putative oxytocinergic neurones in the rat supraoptic nucleus in vitro: evidence for two classes of continuously firing neurones. Brain Res. 267: 113–121, 1983.
 332. Mason, W. T.. Staining of the magnocellular nuclei of the rat hypothalamus by a monoclonal antibody directed against the α‐subunit of the nicotinic cholinergic receptor. Neurosci. Lett. 59: 89–95, 1985.
 333. Mason, W. T., G. I., Hatton, Y. W. Ho, C. Chapman, and I. C. Robinson. Central release of oxytocin, vasopressin and neu‐rophysin by magnocellular neurone depolarization: evidence in slices of guinea pig and rat hypothalamus. Neuroendocrinology 42: 311–322, 1986.
 334. Mason, W. T., Y. W., Ho, and G. I. Hatton. Axon collaterals of supraoptic neurons: anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience 11: 169–182, 1984.
 335. Mathiasen, J. R., E. R., Larson, M. A. Ariano, and C. D. Sladek. Neurophysin expression is stimulated by dopamine D1 agonist in dispersed hypothalamic cultures. Am. J. Physiol. 270 (Regulatory Integrative Comp. Physiol. 39): R404–R412, 1996.
 336. Mathis, J. M., D. M., Simmons, X. He, L. W. Swanson, and M. G. Rosenfeld. Brain 4: a novel mammalian POU domain transcription factor exhibiting restricted brain‐specific expression. EMBO J. 11: 2551–2561, 1992.
 337. McKinley, M. J., M., Congiu, D. A. Denton, B. Lichardus, R. G. Park, E. Tarjan, and R. S. Weisinger, Cerebrospinal fluid composition and homeostatic responses to dehydration. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1955, p. 299–309.
 338. McNeill, T. H., and J. R. Sladek, Jr.. Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. II. Correlative distribution of catecholamine varicosities and magnocellular neurosecretory neurons in rat supraoptic and paraventricular nuclei. J. Comp. Neurol. 193: 1023–1033, 1980.
 339. Meeker, R. B., R. S., Greenwood, and J. N. Hayward. Vasopressin mRNA expression in individual magnocellular neuroendocrine cells of the supraoptic and paraventricular nucleus in response to water deprivation. Neuroendocrinology 54: 236–247, 1991.
 340. Meeker, R. B., R. S., Greenwood, and J. N. Hayward. Glutamate is the major excitatory transmitter in the supraoptic nuclei. Ann. N.Y. Acad. Sci. 689: 636–639, 1993.
 341. Meeker, R. B., S., McGinnis, R. S. Greenwood, and J. N. Hayward. Increased hypothalamic glutamate receptors induced by water deprivation. Neuroendocrinology 60: 477–485, 1994.
 342. Meeker, R. B., K. M., Michels, M. T. Libber, and J. N. Hayward. Characteristics and distribution of high‐ and low‐affinity alpha bungarotoxin binding sites in the rat hypothalamus. J. Neurosci. 6: 1866–1875, 1986.
 343. Meeker, R. B., D. J., Swanson, R. S. Greenwood, and J. N. Hayward. Quantitative mapping of glutamate presynaptic terminals in the supraoptic nucleus and surrounding hypothalmus. Brain Res. 600: 112–122, 1992.
 344. Meeker, R. B., D. J., Swanson, and J. N. Hayward. Light and electron microscopic localization of glutamate immunoreactivity in the supraoptic nucleus of the rat hypothalamus. Neuroscience 33: 157–167, 1989.
 345. Meghji, P., and A. C. Newby. Sites of adenosine formation, action and inactivation in the brain. Neurochem. Int. 16: 227–232, 1990.
 346. Meister, B.. Gene expression and chemical diversity in hypothalamic neurosecretory neurons. Mol. Neurobiol. 7: 87–110, 1993.
 347. Meister, B., C., Broberger, M. J. Villar, and T. Hokfelt. Cholecystokinin B receptor gene expression in hypothalamic neurosecretory neurons after experimental manipulations. Neuroendocrinology 60: 458–469, 1994.
 348. Meister, B., and R. Elde. Dopamine transporter mRNA in neurons of the rat hypothalamus. Neuroendocrinology 58: 388–395, 1993.
 349. Meister, B., A. L., Hulting, K. Uvnas‐Moberg, and T. Hokfelt. Galanin stimulates the release of cholecystokinin from nerve fibres in the pituitary neurointermediate lobe. Neuroreport 4: 631–634, 1993.
 350. Meister, B., M. J., Villar, S. Ceccatelli, and T. Hökfelt. Localization of chemical messengers in magnocellular neurons of the hypothalamic supraoptic and paraventricular nuclei: an immunohistochemical study using experimental manipulations. Neuroscience 37: 603–633, 1990.
 351. Mejia, S., M. A., Morales, M. E. Zetina, G. Martinez de la Escalera, and C. Clapp. Immunoreactive prolactin forms co‐localize with vasopressin in neurons of the hypothalamic paraventricular and supraoptic nuclei. Neuroendocrinology 66: 151–159, 1997.
 352. Meyer, D. K., and M. J. Brownstein. Effect of surgical deafferentation of the supraoptic nucleus on its choline acetyltransferase content. Brain Res. 193: 566–569, 1980.
 353. Meyer, D. K., W. H., Oertel, and M. J. Brownstein. Deafferentation studies on the glutamic acid decarboxylase content of the supraoptic nucleus of the rat. Brain Res. 200: 165–168, 1980.
 354. Mezey, É., and J. Z. Kiss. Coexpression of vasopressin and oxytocin in hypothalamic supraoptic neurons of lactating rats. Endocrinology 129: 1814–1820, 1991.
 355. Mezey, É., C. Léránth, R. Eskay, S. Horváth, and M. Palkovits. The origin of somatostatin‐containing nerve fibers innervating the hypothalamic supraoptic nucleus. Brain Res. 554: 293–298, 1991.
 356. Michels, K. M., R. B., Meeker, and J. N. Hayward. Differential distribution of muscarinic cholinergic and putative nicotinic cholinergic receptors within the hypothalamo‐neurohypophysial system of the rat. Neuroendocrinology 44: 498–507, 1986.
 357. Miller, R. J.. The revenge of the kainate receptor. Trends Neurosci. 14: 477–479, 1991.
 358. Miselis, R. R.. The efferent projections of the subfornical organ of the rat: a circumventricular organ with a neural network subserving water balance. Brain Res. 230: 1–23, 1981.
 359. Miyagawa, A., H., Okamura, and Y. Ibata. Coexistence of oxytocin and NADPH‐diaphoraase in magnocellular neurons of the paraventriculatr and the supraoptic nuclei of the rat hypothalamus. Neurosa. Lett. 171: 13–16, 1994.
 360. Mohr, E., U., Bahnsen, C. Kiessling, and D. Richter. Expression of the vasopressin and oxytocin genes in rats occurs in mutually exclusive sets of hypothalamic neurons. FEBS Lett. 242: 144–148, 1988.
 361. Mohr, E., W., Meyerhof, and D. Richter. Vasopressin and oxytocin: molecular biology and evolution of the peptide hormones and their receptors. Vitam. Harm. 51: 235–266, 1995.
 362. Mohr, E., J. F., Morris, and D. Richter. Differential subcellular mRNA targeting: deletion of a single nucleotide prevents the transport to axons but not to dendrites of rat hypothalamic magnocellular neurons. Proc. Natl. Acad. Sci. U.S.A. 92: 4377–4381, 1995.
 363. Mohr, E., A., Peters, J. F. Morris, and D. Richter. Somatic nonhomologous crossing‐over between neuropeptide genes in rat hypothalamic neurons. Proc. Natl. Acad. Sci. U.S.A. 91: 11403–11407, 1994.
 364. Mohr, E., and D. Richter. Sequence analysis of the promoter region of the rat vasopressin gene. FEBS Lett. 260: 305–308, 1990.
 365. Mohr, E., and E. Schmitz. Functional characterization of estrogen and glucocorticoid responsive elements in the rat oxytocin gene. Mol. Brain Res. 9: 293–298, 1991.
 366. Moos, F., M. J., Freund‐Mercier, Y. Guerne, J. M. Guerne, M. E. Stoeckel, and P. Richard. Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J. Endocrinol. 102: 63–72, 1984.
 367. Moos, F. C., and C. D. Ingram. Electrical recordings of magnocellular supraoptic and paraventricular neurons displaying both oxytocin‐ and vasopressin‐related activity. Brain Res. 669: 309–314, 1995.
 368. Mori, M., T., Kamiya, H. Tsushima, and T. Matsuda. Regulation of spontaneous acetylcholine release in the hypothalamic vasopressinergic supraoptic nucleus of a freely moving rat: a study by in vivo microdialysis. Jpn. J. Pharmacol. 61: 203–208, 1993.
 369. Mori, M., H., Tsushima, and T. Matsuda. Substance P injected into the hypothalamic supraoptic nucleus causes antidiuresis through the release of arginine‐vasopressin in water‐loaded and ethanol‐anesthetized rats. Jpn. J. Pharmacol. 62: 49–56, 1993.
 370. Morian, K. R., and N. E. Rowland. Pregastric and postabsorptive inhibitory effects of water on angiotensin‐induced Fos in rat brain. Regul. Pept. 57: 133–140, 1995.
 371. Moriyoshi, K., M., Masu, R. Ishii, R. Shigemoto, N. Mizuno, and S. Nakanishi. Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31–37, 1991.
 372. Morris, J. F., D. B., Chapman, and H. W. Sokol, Anatomy and function of the classic vasopressin‐secreting hypothalamus‐neurohypophysial system. In: Vasopressin Principles and Properties, edited by D. M. Gash and G. J. Boer. New York: Plenum, 1987, p. 1–89.
 373. Morsette, D. J., H. E., Sidorowicz, and C. D. Sladek. Role of metabotropic glutamate receptors in the regulation of vasopressin and oxytocin release [abstract]. FASEB J. 12: A1034, 1998.
 374. Murphy, D., and D. Carter. Vasopressin gene expression in the rodent hypothalamus: transcriptional and posttranscriptional responses to physiological stimulation. Mol. Endocrinol. 4: 1051–1059, 1990.
 375. Nakamoto, H., H., Suzuki, M. Murakami, Y. Kageyama, A. Ohishi, K. Fukuda, S. Hori, and T. Saruta. Effects of endothelin on systemic and renal haemodynamics and neuroendocrine hormones in conscious dogs. Clin. Sci. (Colch.) 77: 567–572, 1989.
 376. Nayeem, N., T. P., Breen, I. L. Martin, and E. A. Barnard. Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J. Neurochem. 64: 815–818, 1994.
 377. Needleman, P., S. P., Adams, B. R. Cole, M. G. Currie, D. M. Geller, M. L. Michener, C. B. Saper, D. Schwartz, and D. G. Standaert. Atriopeptins as cardiac hormones. Hypertension 7: 469–482, 1985.
 378. Neumann, I., P., Kremarik, and Q. J. Pittman. Acute, sequence‐specific effects of oxytocin and vasopressin antisense oligonucleotides on neuronal responses. Neuroscience 69: 997–1003, 1995.
 379. Neumann, I., M., Ludwig, M. Engelmann, Q. J. Pittman, and R. Landgraf. Simultaneous microdialysis in blood and brain: oxytocin and vasopressin release in response to central and peripheral osmotic stimulation and suckling in the rat. Neuroendocrinology 58: 637–645, 1993.
 380. Nicoll, R. A., and J. L. Barker. The pharmacology of recurrent inhibition in the supraoptic neurosecretory system. Brain Res. 35: 501–511, 1971.
 381. Nielsen, S., W. A., Nagelhuym, M. Amiry‐Moghaddam, C. Bouque, P. Agre, and O. P. Ottersen. Specialized membrane domains for water transport in glial cells: high‐resolution immunogold cytochemistry of aquaporin‐4 in rat brain. J. Neurosci. 17: 171–180, 1997.
 382. Nissen, R., C. W., Bourque, and L. P. Renaud. Membrane properties of organum vasculosum lamina terminalis neurons recorded in vitro. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 33): R811–R815, 1993.
 383. Nissen, R., J. T., Cunningham, and L. P. Renaud. Lateral hypothalamic lesions alter baroreceptorevoked inhibition of rat supraoptic vasopressin neurones. J. Physiol. (Lond.) 470: 751–766, 1993.
 384. Nissen, R., B., Hu, and L. P. Renaud. N‐Methyl‐d‐aspartate receptor antagonist ketamine selectively attenuates spontaneous phasic activity of supraoptic vasopressin neurons in vivo. Neuroscience 59: 115–120, 1994.
 385. Nissen, R., B., Hu, and L. P. Renaud. Regulation of spontaneous phasic firing of rat supraoptic vasopressin neurones in vivo by glutamate receptors. J. Physiol. (Lond.) 484: 415–424, 1995.
 386. Nissen, R., and L. P. Renaud. GABA receptor mediation of median preoptic nucleus‐evoked inhibition of supraoptic neurosecretory neurons in rat. J. Physiol. (Lond.) 479: 207–216, 1994.
 387. Nowycky, M. C.. Two high‐threshold Ca2+ channels contribute Ca2+ for depolarization–secretion coupling in the mammalian neurohypophysis. Ann. N.Y. Acad. Sci. 635: 45–57, 1991.
 388. Obermüller, N., T., Unger, J. Culman, P. Gohlke, M. De Gasparo, and S. P. Bottari. Distribution of angiotensin II receptor subtypes in rat brain nuclei. Neurosci. Lett. 132: 11–15, 1991.
 389. Oeding, P., K., Schilling, and H. Schmale. Vasopressin expression in cultured neurons is stimulated by cyclic AMP. J. Neuroendocrinol. 2: 859–865, 1990.
 390. Oertel, W. H., E., Mugnaini, M. L. Tappaz, J. K. Weise, A.‐L. Dahl, D. Schmechel, and I. J. Kopin. Central gabaergic innervation of neurointermediate pituitary lobe: biochemical and immunocytochemical study in the rat. Proc. Natl. Acad. Sci. U.S.A. 79: 675–679, 1982.
 391. Ogawa, K., L. F., Arnolda, E. A. Woodcock, M. Hiwatari, and C. I. Johnston. Lack of effect of atrial natriuretic peptide on vasopressin release. Clin. Sci. (Colch.) 72: 525–530, 1987.
 392. Ohishi, H., R., Shigemoto, S. Nakanishi, and N. Mizuno. Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 53: 1009–1018, 1993.
 393. Ohishi, H., R., Shigemoto, S. Nakanishi, and N. Mizuno. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J. Comp. Neurol. 335: 252–266, 1993.
 394. Ohman, L. E., R. E., Shade, and J. R. Haywood. Parabrachial nucleus modulation of vasopressin release. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R358–R364, 1990.
 395. Okuya, S., K., Inenaga, T. Kaneko, and H. Yamashita. Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain Res. 402: 58–67, 1987.
 396. Okuya, S., and H. Yamashita. Effects of atrial natriuretic polypeptide on rat hypothalamic neurones in vitro. J. Physiol. (Lond.) 389: 717–728, 1987.
 397. Oldfield, B. J., A., Hou‐Yu, and A.‐J. Silverman. A combined electron microscopic HRP and immunocytochemical study of the limbic projections to rat hypothalamic nuclei containing vasopressin and oxytocin neurons. J. Comp. Neurol. 231: 221–231, 1985.
 398. Oldfield, B. J., R. R., Miselis, and M. J. McKinley. Median preoptic nucleus projections to vasopressin‐containing neurones of the supraoptic nucleus in sheep. A light and electron microscopic study. Brain Res. 542: 193–200, 1991.
 399. Oliet, S. H., and C. W. Bourque. Properties of supraoptic magnocellular neurones isolated from the adult rat. J. Physiol. (Lond.) 455: 291–306, 1992.
 400. Oliet, S. H. R., and C. W. Bourque. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364: 341–343, 1993.
 401. Oliet, S. H. R., and C. W. Bourque. Steady‐state osmotic modulation of cationic conductance in neurons of rat supraoptic nucleus. Am. J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 34): R1475–R1479, 1993.
 402. Oliet, S. H. R., and C. W. Bourque. Osmoreception in magnocellular neurosecretory cells: from single channels to secretion. Trends Neurosci. 17: 340–344, 1994.
 403. Olsson, K., and R. Kolmodin. Dependence of basic secretion of antidiuretic hormone on cerebrospinal fluid [Na]. Acta Physiol. Scand. 91: 286–288, 1974.
 404. Onaka, T., S. M., Luckman, I. Antonijevic, J. R. Palmer, and G. Leng. Involvement of the noradrenergic afferents from the nucleus tractus solitarii to the supraoptic nucleus in oxytocin release after peripheral cholecystokinin octapeptide in the rat. Neuroscience 66: 403–412, 1995.
 405. O'Shea, R. D., and A. L. Gundlach. Regulation of cholecystokinin receptors in the hypothalamus of the rat: reciprocal changes in magnocellular nuclei induced by food deprivation and dehydration. J. Neuroendocrinal. 5: 697–704, 1993.
 406. O'Shea, R. D., and A. L. Gundlach. Activity‐linked alterations in cholecystokininB receptor messenger RNA levels in magnocellular hypothalamic neurones by food and water deprivation in the rat. Neurosci. Lett. 194: 189–192, 1995.
 407. O'Shea, R. D., and A. L. Gundlach. Food or water deprivation modulate nitric oxide synthase (NOS) activity and gene expression in rat hypothalamic neurones: correlation with neurosecretory activity? J. Neuroendocrinal. 8: 417–425, 1996.
 408. Osheroff, P. L., and H. S. Phillips. Autoradiographic localization of relaxin binding sites in the rat brain. Proc. Natl. Acad. Sci. U.S.A. 88: 6413–6417, 1991.
 409. Ota, M., J. T., Crofton, G. Festavan, and L. Share. Central carbachol stimulates vasopressin release into interstitial fluid adjacent to the paraventricular nucleus. Brain Res. 592: 249–254, 1992.
 410. Ota, M., J. T., Crofton, G. T. Festavan, and L. Share. Evidence that nitric oxide can act centrally to stimulate vasopressin release. Neuroendocrinology 57: 955–959, 1993.
 411. Otake, K., K., Kondo, and Y. Oiso. Possible involvement of endogenous opioid peptides in the inhibition of arginine vasopressin release by gamma‐aminobutyric acid in conscious rats. Neuroendocrinology 54: 170–174, 1991.
 412. Paden, C. M., and S.J. Hapner. Monoclonal antibodies identify two novel proteins associated with vasopressin secretory granules of the rat neurohypophysis. Brain Res. 545: 151–163, 1991.
 413. Palacios, J. M., J. K., Wamsleyu, and M. J. Kuhar. High affinity GABA receptors: autoradiographic localization. Brain Res. 222: 285–307, 1981.
 414. Palatnik, C. M., C., Wilkins, and A. Jacobson. Translational control during early dictyostelium development: possible involvement of poly(A) sequences. Cell 36: 1017–1025, 1984.
 415. Papanek, P. E., C. D., Sladek, and H. Raff. Corticosterone inhibition of osmotically‐stimulated vasopressin release from hypothalamic‐neurohypophysial explants. Am. J. Physiol. 272 (Regulatory Integrative Comp. Physiol. 41): R158–R162, 1997.
 416. Pardy, K., D., Murphy, D. Carter, and K. M. Hui. The influence of interleukin‐2 on vasopressin and oxytocin gene expression in the rodent hypothalamus. J. Neuroimmunol. 42: 131–138, 1993.
 417. Pascualy, M., E. R., Peskind, D. Wingerson, G. vanBelle, R. C. Veith, D. M. Dorsa, and M. A. Raskind. Lack of cholinergic regulation of vasopressin and norepinephrine responses to hypertonic saline in humans. Psychoneuroendocrinology 20: 679–691, 1995.
 418. Pasqualotto, B. A., B. T., Hope, and S. R. Vincent. Citrulline in the rat brain: immunohistochemistry and coexistence with NADPH‐diaphorase. Neurosci. Lett. 128: 155–160, 1991.
 419. Perlmutter, L. S., G. I., Hatton, and C. D. Tweedle. Plasticity in the neurohypophysis in vitro: effects of osmotic changes on pituicytes. Neuroscience 12: 503–511, 1984.
 420. Petralia, R. S., and R. J. Wenthold. Light and electron immunocytochemical localization of AMPA‐selective glutamate receptors in the rat brain. J. Comp. Neurol. 318: 329–354, 1992.
 421. Petralia, R. S., N., Yokotani, and R.J. Wenthold. Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti‐peptide antibody. J. Neurosci. 14: 667–696, 1994.
 422. Phillips, M. I., L., Shen, and E. M. Richard. Immunohistochemical mapping of AT1 receptors in the brain. Regul. Pept. 44: 95–107, 1993.
 423. Pickford, M.. The inhibitory effect of acetylcholine on water diuresis in the dog and its pituitary transmission. J. Physiol. (Lond.) 95: 226–238, 1939.
 424. Pieribone, V. A., and G. Aston‐Jones. Adrenergic innervation of the rat nucleus locus coeruleus arises predominantly from the C1 adrenergic cell group in the rostral medulla. Neuroscience 41: 525–542, 1991.
 425. Pin, J. P., C., Waeber, L. Prezeau, J. Bockaert, and S. F. Heinemann. Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A. 89: 10331–10335, 1992.
 426. Pittman, Q. J., H. W., Blume, and L. P. Renaud. Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: an electrophysiological study in the rat. Brain Res. 215: 155–128, 1981.
 427. Poole, C. J. M., D. A., Carter, M. Vallejo, and S. L. Lightman. Atrial natriuretic factor inhibits the stimulated in vivo and in vitro release of vasopressin and oxytocin in the rat. J. Endocrinol. 112: 97–102, 1987.
 428. Possenti, R., J. D., Eldridge, B. M. Paterson, A. Grasso, and A. Levi. A protein induced by NGF in PC12 cells is stored in secretory vesicles and released through the regulated pathway. EMBO J. 8: 2217–2223, 1989.
 429. Poulain, D. A., C. J., Lebrun, and J. D. Vincent. Electrophysiological evidence for connections between septal neurons and the supraoptic nucleus of the hypothalamus of the rat. Exp. Brain Res. 42: 260–268, 1981.
 430. Poulain, D. A., J. B., Wakerley, and R. E. J. Dyball. Electrophysiological differentiation of oxytocin‐ and vasopressin‐secreting neurones. Proc. R. Soc. Lond. B 196: 367–384, 1977.
 431. Pow, D. V., and J. F. Morris. Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32: 435–439, 1989.
 432. Pow, D. V., and J. F. Morris. Tunicamycin, puromycin and brefeldin A influence the subcellular distribution of neuropeptides in hypothalamic magnocellular neurones of rat. Cell Tissue Res. 269: 547–560, 1992.
 433. Pow, D. V., J. F., Morris, and A. R. Ward. Immuno‐electron microscopic evidence for two different types of partial somatic repair of the mutant Brattleboro vasopressin gene [letter]. Neuroscience 50: 503–512, 1992.
 434. Qadri, F., J., Culman, A. Veltmar, K. Maas, W. Rascher, and T. Unger. Angiotensin II–induced vasopressin release is mediated through alpha‐1 adrenoceptors and angiotensin II AT1 receptors in the supraoptic nucleus. J. Pharmacol. Exp. Ther. 267: 567–574, 1993.
 435. Raber, J., and F. E. Bloom. IL‐2 induces vasopressin release from the hypothalamus and the amygdala: role of nitric oxide–mediated signaling. J. Neurosci. 14: 6187–6195, 1994.
 436. Raber, J., E. Merlo Pich, G. F. Koob, and F. E. Bloom. IL‐1β potentiates the acetylcholine‐induced release of vasopressin from the hypothalamus in vitro, but not from the amygdala. Neuroendocrinology 59: 208–217, 1994.
 437. Raby, W. N., and L. P. Renaud. Dorsomedial medulla stimulation activates rat supraoptic oxytocin and vasopressin neurones through different pathways. J. Physiol. (Lond.) 417: 279–294, 1989.
 438. Raff, H.. Interactions between neurohypophysial hormones and the ACTH‐adrenocortical axis. Ann. N.Y. Acad. Sci. 689: 411–425, 1993.
 439. Randle, J. C. R., C. W., Bourque, and L. P. Renaud. Serial reconstruction of lucifer yellow–labeled supraoptic nucleus neurons in perfused rat hypothalamic explants. Neuroscience 17: 453–467, 1986.
 440. Randle, J. C. R., and L. P. Renaud. Actions of gamma‐aminobutyric acid on rat supraoptic nucleus neurosecretory neurones in vitro. J. Physiol. (Lond.) 387: 629–647, 1987.
 441. Reid, I. A.. Role of nitric oxide in the regulation of renin and vasopressin secretion. Front. Neuroendocrinal. 15: 351–383, 1994.
 442. Reinhardt, R. R., and C. A. Bondy. Insulin‐like growth factors cross the blood–brain barrier. Endocrinology 135: 1753–1761, 1994.
 443. Renaud, L. P.. Magnocellular neuroendocrine neurons: update on intrinsic properties, synaptic inputs and neuropharmacology. Trends Neurosci. 10: 498–502, 1987.
 444. Renaud, L. P., and C. W. Bourque. Neurophysiology and neuropharmacology of hypothalamic magnocellular neurons secreting vasopressin and oxytocin. Prog. Neurobiol. 36: 131–169, 1991.
 445. Renaud, L. P., A. V., Ferguson, T. A. Day, C. W. Bourque, and S. Sgro. Electrophysiology of the subfornical organ and its hypothalamic connections—an in‐vivo study in the rat. Brain Res. Bull. 15: 83–86, 1985.
 446. Renaud, L. P., M., Tang, M. J. McCann, E. M. Stricker, and J. G. Verbalis. Cholecystokinin and gastric distention activate oxytocinergic cells in rat hypothalamus. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 22): R661–R665, 1987.
 447. Richard, D., and C. W. Bourque. Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. J. Physiol. (Lond.) 489: 567–577, 1995.
 448. Richard, D., and C. W. Bourque. Atrial natriuretic peptide modulates synaptic transmission from osmoreceptor afferents to the supraoptic nucleus. J. Neurosci. 16: 7526–7532, 1996.
 449. Richoux, J. P., J. L., Gelly, J. Bouhnik, T. Baussant, F. Alhenc‐Gelas, G. Grignon, and P. Corvol. The kallikrein–kinin system in the rat hypothalamus. Immunohistochemical localization of high molecular weight kininogen and T kininogen in different neuronal systems. Histochemistry 96: 229–243, 1991.
 450. Richter, D.. Molecular events in expression of vasopressin and oxytocin and their cognate receptors. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F207–F219, 1988.
 451. Ritz, M.‐F., E. L., Stuenkel, G. Dayanithi, R. Jones, and J.J. Nordmann. Endothelin regulation of neuropeptide release from nerve endings of the posterior pituitary. Proc. Natl. Acad. Sci. U.S.A. 89: 8371–8375, 1992.
 452. Roberts, M. M., A. G., Robinson, G. E. Hoffman, and M. D. Fitzsimmons. Vasopressin transport regulation is coupled to the synthesis rate. Neuroendocrinology 53: 416–422, 1991.
 453. Robertson, G. L., and S. Athar. The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man. J. Clin. Endocrinol. Metab. 42: 613–620, 1976.
 454. Robertson, G. L., S., Athar, and R. L. Shelton, The osmotic control of vasopressin function. In: Disturbances in Body Fluid Osmolarity, edited by T. E. Andreoli, J. J. Grantham, and F. C. Rector. Bethesda, MD: Am. Physiol. Soc., 1977, p. 125–148.
 455. Robertson, G. L., S., Rittig, W.‐X. Gu, C. Siggaard, L. Jameson, N. Gregersen, and E. Pedersen, Pathogenesis and pathophysiology of familial neurohypophyseal diabetes insipidus. In: Neurohypophysis: Recent Progress of Vasopressin and Oxytocin Research, edited by T. Saito, K. Kurokawa, and S. Yoshida. Amsterdam: Elsevier, 1995, p. 593–603.
 456. Robinson, A. G., and M. D. Fitzsimmons. Vasopressin homeostasis: coordination of synthesis, storage and release. Regul. Pept. 45: 225–230, 1993.
 457. Robinson, A. G., M. M., Roberts, W. A. Evron, L. E. Janocko, and G. E. Hoffman. Total translation of vasopressin and oxytocin in neurohypophysis of rats. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R109–R117, 1989.
 458. Robinson, A. G., M. M., Roberts, W. A. Evron, J. G. Verbalis, and T. G. Sherman. Hyponatremia in rats induces downregulation of vasopressin synthesis. J. Clin. Invest. 86: 1023–1029, 1990.
 459. Rogers, R. C., D., Novin, and L. L. Butcher. Electrophysiological and neuroanatomical studies of hepatic portal osmo‐ and sodium‐receptive afferent projections within the brain. J. Auton. Nerv. Syst. 7: 183–202, 1979.
 460. Roland, B. L., and P. E. Sawchenko. Local origins of some GA‐BAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J. Comp. Neurol. 332: 123–143, 1993.
 461. Rouille, Y., J., Chauvet, and R. Acher. Partial conversion of vasopressinyl‐gly‐lys‐arg into pharmacologically active vasopressin through secretory granule carboxypeptidase E and alpha‐amidating processing enzyymes. Biochem. Int. 26: 739–746, 1992.
 462. Rouille, Y., A., Spang, J. Chauvet, and R. Acher. A neurosecretory granule Lys‐Arg Ca2+‐dependent endopeptidase putatively involved in prooxytocin and provasopressin processing. Neuropeptides 22: 223–228, 1992.
 463. Rouille, Y., A., Spang, J. Chauvet, and R. Acher. Evidence for distinct dibasic processing endopeptidases with Lys‐Arg and Arg‐Arg specificities in neurohypophysial secretory granules. Biochem. Biophys. Res. Commun. 183: 128–137, 1992.
 464. Rowland, N. E., B.‐H., Li, A. K. Rozelle, M. J. Fregly, M. Garcia, and G. C. Smith. Localization of changes in immediate early genes in brain in relation to hydromineral balance: intravenous angiotensin II. Brain Res. Bull. 33: 427–436, 1994.
 465. Ruggiero, D. A., R., Giuliano, M. Anwar, R. Stornetta, and D. J. Reis. Anatomical substrates of cholinergic‐autonomic regulation in the rat. J. Comp. Neurol. 292: 1–53, 1990.
 466. Russell, J. T., M. J., Brownstein, and H. Gainer. Time course of appearance and release of [35S] cysteine labeled neurophysins and peptides in the neurohypophysis. Brain Res. 205: 299–311, 1981.
 467. Sabatier, N., P., Richard, and G. Dayanithi. L‐, N‐ and T‐ but neither P‐ nor Q‐type Ca2+ channels control vasopressin‐induced Ca2+ influx in magnocellular vasopressin neurones isolated from the rat supraoptic nucleus. J. Physiol. (Lond.) 503: 253–268, 1997.
 468. Sagar, S. M., and D. M Ferriero. NADPH diaphorase activity in the posterior pituitary: relation to neuronal function. Brain Res. 400: 348–352, 1987.
 469. Samson, W. K.. Atrial natriuretic factor inhibits dehydration and hemorrhage‐induced vasopressin release. Neuroendocrinology 40: 277–279, 1985.
 470. Samson, W. K., M. D., Aguila, J. Martinovic, J. Antunes‐Rodrigues, and M. Norris. Hypothalamic action of atrial natriuretic factor to inhibit vasopressin secretion. Peptides 8: 449–454, 1987.
 471. Sanchez, F., J. R., Alonso, R. Arévalo, E. Blanco, J. Aijón, and R. Vazquez. Coexistence of NADPH‐diaphorase with vasopressin and oxytocin in the hypothalamic magnocellular neurosecretory nuclei of the rat. Cell Tissue Res. 276: 31–34, 1994.
 472. Saper, C. B., K. M., Hurley, M. M. Moga, H. R. Holmes, S. A. Adams, K. M. Leahy, and P. Needleman. Brain natriuretic peptides: differential localization of a new family of neuropeptides. Neuroscience 96: 29–34, 1989.
 473. Saper, C. B., D. J., Reis, and T. Joh. Medullary catecholamine inputs to the anteroventral third ventricular cardiovascular regulatory region in the rat. Neurosci. Lett. 42: 285–291, 1983.
 474. Saper, C. B., D. G., Standaert, M. G. Currie, D. Schwartz, D. M. Geller, and P. Needleman. Atriopeptin‐immunoreactive neurons in the brain: presence in cardiovascular regulatory areas. Science 227: 1047–1049, 1985.
 475. Sato, K., H., Kiyama, and M. Tohyama. The differential expression patterns of messenger RNAs encoding non‐N‐methyl‐d‐aspartate glutamate receptor subunits (GluR1–4) in the rat brain. Neuroscience 52: 515–539, 1993.
 476. Sawchenko, P., and L. W. Swanson. Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214: 685–687, 1981.
 477. Sawchenko, P. E., C., Arias, and J. C. Bittencourt. Inhibin b, somatostatin, and enkephalin immunoreactivities coexist in caudal medullary neurons that project to the paraventricular nucleus of the hypothalamus. J. Comp. Neurol. 291: 269–280, 1990.
 478. Sawchenko, P. E., R., Benoit, and M. R. Brown. Somatostatin 28‐immunoreactive inputs to the paraventricular nucleus: origin from non‐aminergic neurons in the nucleus of the solitary tract. J. Chem. Neuroanat. 1: 81–94, 1988.
 479. Sawchenko, P. E., and S. W. Pfeiffer. Ultrastructural localizatin of inhibin b‐ and somatostatin‐28‐immmunoreactivities in the paraventricular and supraoptic nuclei. Brain Res. 694: 233–245, 1995.
 480. Sawchenko, P. E., L. W., Swanson, and S. A. Joseph. The distribution and cells of origin of ACTH (1–39)‐stained varicosities in the paraventricular and supraoptic nuclei. Brain Res. 232: 365–374, 1982.
 481. Sawchenko, P. E., L. W., Swanson, A. W. M. Steinbusch, and A. A. J. Verhofstad. The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res. 277: 355–360, 1983.
 482. Schafer, M. K., R., Day, W. E. Cullinan, M. Chretien, N. G. Seidah, and S. J. Watso. Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. J. Neurosci. 13: 1258–1279, 1993.
 483. Schiavone, M. T., K. B., Brosnihan, A. Husain, and C. M. Ferrario. Basal and potassium‐evoked release of angiotensin II from the rat hypothalamus. Brain Res. 397: 193–196, 1986.
 484. Schiavone, M. T., R. A. S., Santos, K. B. Brosnihan, M. C. Khosla, and C. M. Ferrario. Release of vasopressin from the rat hypothalamo‐neurohypophysial system by angiotensin‐(1–7) heptapeptide. Proc. Natl. Acad. Sci. U.S.A. 85: 4095–4098, 1988.
 485. Schilling, K., H., Schmale, P. Oeding, and C. Pilgrim. Regulation of vasopressin expression in cultured diencephalic neurons by glucocorticoids. Neuroendocrinology 53: 528–535, 1991.
 486. Schmale, H., U., Bahnsen, and D. Richter. Structure and expression of the vasopressin precursor gene in central diabetes insipidus. Ann. N.Y. Acad. Sci. 689: 74–82, 1993.
 487. Schmale, H., B., Borowiak, H. Holtgreve‐Grez, and D. Richter. Impact of altered protein structures on the intracellular traffic of a mutated vasopressin precursor from Brattleboro rats. Eur. J. Biochem. 182: 621–627, 1989.
 488. Schmale, H., and D. Richter. Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 30: 705–709, 1984.
 489. Scholtz, K. P., and R. J. Miller. GABAb receptor‐mediated inhbition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurones. J. Physiol. (Lond.) 444: 669–686, 1991.
 490. Schrader, L. A., and J. G. Tasker. Presynaptic modulation of metabotropic glutamate receptors of excitatory and inhibitory synaptic inputs to hypothalamic magnocellular neurons. J. Neurophysiol. 77: 527–536, 1997.
 491. Schrader, L. A., and J. G. Tasker. Modulation of multiple potassium currents by metabotropic glutamate receptors in neurons of the hypothalamic supraoptic nucleus. J. Neurophysiol. 78: 3428–3437, 1997.
 492. Scott, D. E., G. K., Dudley, A. Weindl, and R. J. Joynt. An autoradiographic analysis of hypothalamic magnocellular neurons. Z. Zellforsch. 138: 321–327, 1973.
 493. Senba, E., P. E., Daddona, T. Watanabe, J.‐Y. Wu, and J. I. Nagy. Coexistence of adenosine deaminase, histidine decarboxylase, and glutamate decarboxylase in hypothalamic neurons of the rat. J. Neurosci. 5: 3393–3402, 1985.
 494. Serje, A., Z., Fan, W. Al‐Ghoul, R. Greenwood, and R. Meeker. Metabotropic glutamate receptors and the control of vasopressin secretion from magnocellular neuroendocrine cells. Soc. Neurosci. Abstr. 22: 629, 1996.
 495. Sgro, S., A. V., Ferguson, and L. P. Renaud. Subfornical organ–supraoptic nucleus connections: an electrophysiologic study in the rat. Brain Res. 303: 7–13, 1984.
 496. Share, L., Y.‐X., Wang, and J. T. Crofton, Gender differences in the actions of vasopressin. In: Neurohypophysis: Recent Progress in Vasopressin and Oxytocin Research, edited by T. Saito, K. Kurokawa, and S. Yoshida. Amsterdam: Elsevier, 1995, p. 3–13.
 497. Shen, E., and X. Sun. Endogenous acetylcholine‐induced Fos expression in magnocellular neurosecretory neurons in the supraoptic nucleus of the rat hypothalamus. Neurosci. Lett. 195: 191–194, 1995.
 498. Shen, Y.‐T., A. W. Cowley, Jr., and S. F., Vatner. Relative roles of cardiac and arterial baroreceptors in vasopressin regulation during hemorrhage in conscious dogs. Circ. Res. 68: 1422–1436, 1991.
 499. Sherman, T. G., J. F., McKelvy, and J. Watson. Vasopressin mRNA regulation in individual hypothalamic nuclei: a Northern and in situ hybridization analysis. J. Neurosci. 6: 1685–1694, 1986.
 500. Sherman, T. G., and S. J. Watson. Differential expression of vasopressin alleles in the Brattleboro heterozygote. J. Neurosci. 8: 3797–3811, 1988.
 501. Shichiri, M., Y., Hirata, K. Kanno, K. Ohta, T. Emori, and F. Marumo. Effect of endothelin‐1 on release of arginine‐vasopressin from perfused rat hypothalamus. Biochem. Biophys. Res. Commun. 163: 1332–1337, 1989.
 502. Shigemoto, R., S., Nakanishi, and N. Mizuno. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J. Comp. Neurol. 322: 121–135, 1992.
 503. Shirakami, G., H., Itoh, S. Suga, Y. Komatsu, N. Hama, K. Mori, and K. Nakao. Central action of C‐type natriuretic peptide on vasopressin secretion in conscious rats. Neurosci. Lett. 159: 25–28, 1993.
 504. Shughrue, P. J., B., Komm, and I. Merchenthaler. The distribution of estrogen receptor‐β mRNA in the rat hypothalamus. Steroids 61: 678–681, 1996.
 505. Shughrue, P. J., M. V., Lane, and I. Merchenthaler. In situ hybridization analysis of the distribution of neurokinin‐3 mRNA in the rat central nervous system. J. Comp. Neurol. 372: 395–414, 1996.
 506. Sibbald, J. R., J. E., Hubbard, and N. E. Sirrett. Responses from osmosensitive neurons of the rat subfornical organ in vitro. Brain Res. 461: 205–214, 1988.
 507. Sibbald, J. R., B. K. J., Wilson, and T. A. Day. Neuropeptide Y potentiates excitation of supraoptic neurosecretory cells by noradrenaline. Brain Res. 499: 164–168, 1989.
 508. Sieghart, W.. GABAa receptors: ligand‐gated Cl‐ ion channels modulated by multiple drug‐binding sites. Trends Pharmacol. Sci. 13: 446–150, 1992.
 509. Silverman, A. J., and E. A. Zimmerman. Ultrastructural immunocytochemical localization of neurophysin and vasopressin in the median eminence and posterior pituitary of the guinea pig. Cell Tissue Res. 159: 291–301, 1975.
 510. Skofitsch, G., D. M., Jacobowitz, R. L. Eskay, and N. Zamir. Distribution of atrial natriuretic factor‐like immunoreactive neurons in the rat brain. Neuroscience 16: 917–948, 1985.
 511. Sladek, C. D., and W. E. Armstrong, Neural pathways subserving osmotic control of vasopressin release. In: Vasopressin, edited by R. Schrier. Raven, 1985, p. 435–441.
 512. Sladek, C. D., and W. E. Armstrong. Osmotic control of vasopressin release. Trends Neurosci. 8: 166–169, 1985.
 513. Sladek, C. D., and W. E. Armstrong, Effect of neurotransmitters and neuropeptides on vasopressin release. In: Vasopressin: Principles and Properties, edited by D. M. Gash and G. J. Boer. New York: Plenum, 1987, p. 275–333.
 514. Sladek, C. D., S. E., Badre, D. J. Morsette, and H. E. Sidorowicz. Role of non‐NMDA receptors in osmotic and glutamate stimulation of vasopressin release: effect of rapid receptor desensitization. J. Neuroendocrinal. 10: 897–903, 1998.
 515. Sladek, C. D., K. Y., Fisher, H. E. Sidorowicz, and J. R. Mathiasen. Osmotic stimulation of vasopressin mRNA content in the supraoptic nucleus requires synaptic activation. Am. J. Physiol. 268 (Regulatory Integrative Comp. Physiol. 37): R1034–R1039, 1995.
 516. Sladek, C. D., K. Y., Fisher, H. E. Sidorowicz, and J. R. Mathiasen. cAMP regulation of vasopressin mRNA content in hypothalamo‐neurohypophyseal explants. Am. J. Physiol. 271 (Regulatory Integrative Comp. Physiol. 40): R554–R560, 1996.
 517. Sladek, C. D., and M.J. Gallagher. The stimulation of vasopressin gene expression in cultured hypothalamic neurons by cyclic adenosine 3′,5′‐monophosphate is reversible. Endocrinology 133: 1320–1330, 1993.
 518. Sladek, C. D., and A. K. Johnson. The effect of anteroventral third ventricle lesions on vasopressin release by organ cultured hypothalamo‐neurohypophyseal explants. Neuroendocrinology 37: 78–84, 1983.
 519. Sladek, C. D., and R.J. Joynt. Osmotic stimulation of vasopressin release: inhibition by tetrodotoxin. Brain Res. 151: 424–429, 1978.
 520. Sladek, C. D., and R. J. Joynt. Cholinergic involvement in osmotic control of vasopressin release by the organ cultured rat hypothalamo‐neurohypophyseal system. Endocrinology 105: 367, 1979.
 521. Sladek, C. D., and R. J. Joynt. Role of angiotensin in the osmotic control of vasopressin release by the organ‐cultured rat hypothalamo‐neurohypophyseal system. Endocrinology 106: 173–178, 1980.
 522. Sladek, C. D., and K. M. Knigge. Osmotic control of vasopressin release by organ cultured hypothalamo‐neurohypophyseal explants from the rat. Endocrinology 101: 1834–1838, 1977.
 523. Sladek, C. D., and J. A. Olschowka. Dehydration induces fos, but not increased vasopressin mRNA in supraoptic nucleus of aged rats. Brain Res. 652: 207–215, 1994.
 524. Sladek, J. R., Jr., and C. D., Sladek, Morphology of the endocrine hypothalamus. In: Principles and Practice of Endocrinology and Metabolism. edited by K. L. Becker. Philadelphia: Lip‐pincott, 1995, p. 87.
 525. Sladek, C. D., and C. Yagil. Diverse effects of norepinephrine on vasopressin release may reflect modulation by hypotonicity. J. Neuroendocrinal. 2: 363–367, 1990.
 526. Smith, B. N., and W. E. Armstrong. Histamine enhances the depolarizing afterpotential of immunohistochemically identified vasopressin neurons in the rat supraoptic nucleus via H1‐receptor activation. Neuroscience 53: 855–864, 1993.
 527. Smith, B. N., and W. E. Armstrong. The ionic dependence of the histamine‐induced depolarization of vasopressin neurones in the rat supraoptic nucleus. J. Physiol. (Lond.) 495: 465–478, 1996.
 528. Smith, D. W., K. M., Buller, and T. A. Day. Role of ventrolateral medulla catecholamine cells in hypothalamic neuroendocrine cell responses to systemic hypoxia. J. Neurosci. 15: 7979–7988, 1995.
 529. Smith, D. W., and T. A. Day. c‐Fos expression in hypothalamic neurosecretory and brainstem catecholamine cells following noxious somatic stimuli. Neuroscience 58: 765–775, 1994.
 530. Smith, D. W., J. R., Sibbald, L. Khanna, and T. A. Day. Rat vasopressin cell responses to simulated hemorrhage: stimulus‐dependent role for A1 noradrenergic neurons. Am. J. Physiol. 268 (Regulatory Integrative Comp. Physiol. 37): R1336–R1342, 1995.
 531. Smithson, K. G., M. L., Weiss, and G. I. Hatton. Supraoptic nucleus afferents from the main olfactory bulb—I. Anatomical evidence from anterograde and retrograde tracers in rat. Neuroscience 31: 277–287, 1989.
 532. Smithson, K. G., M. L., Weiss, and G. I. Hatton. Supraoptic nucleus afferents from the accessory olfactory bulb: evidence from anterograde and retrograde tract tracing in the rat. Brain Res. Bull. 29: 209–220, 1992.
 533. Sokol, H. W., and H. Valtin, The Brattleboro Rat. New York: New York Academy of Sciences, 1982.
 534. Sokol, H. W., E. A., Zimmerman, W. H. Sawyer, and A. G. Robinson. The hypothalamic‐neurohypophysial system of the rat: localization and quantitation of neurophysin by light microscopic immunocytochemistry in normal rats and in Brattleboro rats deficient in vasopressin and neurophysin. Endocrinology 98: 1176–1188, 1976.
 535. Sonnemans, M. A. F., D. A. P., Evans, J. P. H. Burbach, and F. W. Van Leeuwen. Immunocytochemical evidence for the presence of vasopressin in intermediate sized neurosecretory granules of solitary neurohypophyseal terminals in the homozygous Brattleboro rat. Neuroscience 72: 225–231, 1996.
 536. Staines, W. A., P. E., Daddona, and J. I. Nagy. The organization and hypothalamic projections of the tuberomammillary nucleus in the rat: an immunohistochemical study of adenosine deaminase‐positive neurons and fibers. Neuroscience 23: 571–596, 1987.
 537. Standaert, D. G., D. F., Cechetto, P. Needleman, and C. B. Saper. Inhibition of the firing of vasopressin neurons by atriopeptin. Nature 329: 151–153, 1987.
 538. Standaert, D. G., P., Needleman, and C. B. Saper. Organization of atriopeptin‐like immunoreactive neurons in the central nervous system of the rat. J. Comp. Neurol. 253: 315–341, 1986.
 539. Standaert, D. G., and C. B. Saper. Origin of the atriopeptin‐like immunoreactive innervation of the paraventricular nucleus of the hypothalamus. J. Neurosci. 8: 1940–1950, 1988.
 540. Steardo, L., and M. Iovino. Vasopressin release after enhanced serotoninergic transmission is not due to activation of the peripheral renin–angiotensin system. Brain Res. 382: 145–148, 1986.
 541. Stecklings, U., C., Lebrun, F. Qadri, A. Veltmar, and T. Unger. Role of brain angiotensin in cardiovascular regulation. J. Cardiovasc. Pharmacol. 19 (Suppl. 6): S72–S79, 1992.
 542. Stone, J. D., J. T., Crofton, and L. Share. Sex differences in central adrenergic control of vasopressin release. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R1040–R1045, 1989.
 543. Stone, J. D., J. T., Crofton, and L. Share. Sex differences in central adrenoreceptor‐mediated vasopressin response to hemorrhage. Am. J. Physiol. 260 (Endocrinol. Metab., 23): E780–E786, 1991.
 544. Strittmatter, S. M., D. R., Lynch, E. B. DeSouza, and S. H. Snyder. Enkephalin convertase demonstrated in the pituitary and adrenal gland by [3H]guanidinoethylmercapto‐succinic acid autoradiography: dehydration decreases neurohypophyseal levels. Endocrinology 117: 1667–1674, 1985.
 545. Summar, M. L., J. A. Phillips, III, J. Battey, C. M. Castiglione, K. K. Kidd, K. J. Maness, B. Weiffenbach, and T. C. Gravius. Linkage relationships of human arginine vasopressin–neurophysin‐II and oxytocin–neurophysin‐I to prodynorphin and other loci on chromosome 20. Mol. Endocrinol. 4: 947–950, 1990.
 546. Summy‐Long, J. Y., V., Bui, S. Mantz, E. Koehler, J. Weisz, and M. Kadekaro. Central inhibition of nitric oxide synthase preferentially augments release of oxytocin during dehydration. Neurosci. Lett. 152: 190–193, 1993.
 547. Summy‐Long, J. Y., D. S., Miller, L. M. Rosella‐Dampman, R. D. Hartman, and S. E. Emmert. A functional role for opioid peptides in the differential secretion of vasopressin and oxytocin. Brain Res. 309: 362–366, 1984.
 548. Surprenant, A., G., Buell, and R. A. North. P2x receptors bring new structure to ligand‐gated ion channels. Trends Neurosci. 188: 224–229, 1995.
 549. Swanson, L. W.. Spatiotemporal patterns of transcription factor gene expression accompanying the development and plasticity of cell phenotypes in the neuroendocrine system. Prog. Brain Res. 92: 97–113, 1992.
 550. Swanson, L. W., and P. E. Sawchenko. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6: 269–324, 1983.
 551. Swenson, K. L., The effects of gonadal steroids on vasopressin secretion. Chicago: Finch Univ. of Health Sciences/Chicago Medical School, 1996. Dissertation.
 552. Swenson, K. L., S. E., Badre, D. J. Morsette, and C. D. Sladek. N‐Methyl‐d‐aspartic (NMDA) stimulation of vasopressin release: role in osmotic regulation and modulation by gonadal steroids. J. Neuroendocrinal. 10: 679–685, 1998.
 553. Swenson, K. L., and C. D. Sladek. Effect of MK801 on osmotic stimulation of vasopressin release. FASEB J. 10: A672, 1996.
 554. Swenson, K. L., and C. D. Sladek. Gonadal steroid modulation of vasopressin secretion in response to osmotic stimulation. Endocrinology 138: 2089–2097, 1997.
 555. Szczepanska‐Sadowska, E., C. S., Opperman, E. Simon, D. A. Gray, K. Pleschka, and M. Szczypaczewska. Central ANP administration in conscious dogs responding to dehydration and hypovolemia. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 31): R746–R753, 1992.
 556. Takabatake, Y., and H. Sachs. Vasopressin biosynthesis. III. In vitro studies. Endocrinology 75: 934–942, 1964.
 557. Tanabe, Y., M., Masu, T. Ishii, R. Shigemoto, and S. Nakanishi. A family of metabotropic glutamate receptors. Neuron 8: 169–179, 1992.
 558. Tasker, J. G., and F. E. Dudek. Local inhibitory synaptic inputs to neurones of the paraventricular nucleus in slices of rat hypothalamus. J. Physiol. (Lond.) 469: 179–192, 1993.
 559. Theodosis, D. T., J. J., Dreifuss, and L. Orci. A freeze‐fracture study of membrane events during neurohypophysial secretion. J. Cell Biol. 78: 542–553, 1978.
 560. Theodosis, D. T., M. el Majdoubi, U. Gies, and D. A. Poulain. Physiologically‐linked structural plasticity of inhibitory and excitatory synaptic inputs to oxytocin neurons. Adv. Exp. Med. Biol. 395: 155–171, 1995.
 561. Theodosis, D. T., C., Montagnese, F. Rodriquez, J. D. Vincent, and D. A. Poulain. Oxytocin induces morphological plasticity in the adult hypothalamo‐neurohypophysial system. Nature 322: 738–740, 1986.
 562. Thrasher, T. N.. Baroreceptor regulation of vasopressin and renin secretion: low‐pressure versus high‐pressure receptors. Front. Neuroendocrinal. 15: 157–196, 1994.
 563. Thrasher, T. N., C. J., Brown, L. C. Keil, and D. J. Ramsay. Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism? Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 7): R333–R339, 1980.
 564. Thrasher, T. N., L. C., Keil, and D. J. Ramsay. Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically induced drinking and vasopressin secretion in the dog. Endocrinology 110: 1837–1839, 1982.
 565. Torner, L., S., Mejia, F. J. Lopez‐Gomez, A. Quintanar, G. Martinez de la Escalera, and C. Clapp. A 14‐kilodalton prolactin‐like fragment is secreted by the hypothalamo‐neurohypophyseal system of the rat. Endocrinology 136: 5454–5460, 1995.
 566. Traczyk, W. Z., and E. Strumillo‐Dyba. Substance P‐like peptides and vasopressin release from posterior pituitary lobe incubated in situ after intracarotid injections of hypertonic solutions in rats. Acta Physiol. Pol. 28: 397–404, 1977.
 567. Trani, E., T., Ciotti, A. M. Rinaldi, N. Canu, G. L. Ferri, A. Levi, and R. Possenti. Tissue‐specific processing of the neuroendocrine protein VGF. J. Neurochem. 65: 2441–2449, 1995.
 568. Trembleau, A., M., Morales, and F. E. Bloom. Aggregation of vasopressin mRNA in a subset of axonal swellings of the median eminence and posterior pituitary: light and electron microscopic evidence. J. Neurosci. 14: 39–53, 1994.
 569. Tribollet, E., W. E., Armstrong, M. Dubois‐Dauphin, and J. J. Dreifuss. Extra‐hypothalamic afferent inputs to the supraoptic nucleus area of the rat as determined by retrograde and anterograde tracing techniques. Neuroscience 15: 135–148, 1985.
 570. Tsutsumi, K., and J. M. Saavedra. Angiotensin‐II receptor subtypes in median eminence and basal forebrain areas involved in regulation of pituitary function. Endocrinology 129: 3001–3008, 1991.
 571. Tweedle, C. D., and G. I. Hatton. Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration. Cell Tissue Res. 181: 59–72, 1977.
 572. Tweedle, C. D., and G. I. Hatton. Evidence for dynamic interactions between pituicytes and neurosecretory axons in the rat. Heuroscience 5: 661–667, 1980.
 573. Tweedle, C. D., and G. I. Hatton. Synapse formation and disappearance in adult rat supraoptic nucleus during different hydration states. Brain Res. 309: 373–376, 1984.
 574. Tweedle, C. D., and G. I. Hatton. Morphological adaptability at neurosecretory axonal endings on the neurovascular contact zone of the rat neurohypophysis. Neuroscience 20: 241–246, 1987.
 575. Tweedle, C. D., K. G., Smithson, and G. I. Hatton. Neurosecretory endings in the rat neurohypophysis are en passant. Exp. Neurol. 106: 20–26, 1989.
 576. Uchimura, N., and R. A. North. Baclofen and adenosine inhibit synaptic potentials mediated by gamma‐aminobutyric acid and glutamate release in rat nucleus accumbens. J. Pharmacol. Exp. Ther. 25: 668, 1991.
 577. Ueta, Y., A., Levy, H. S. Chowdrey, and S. L. Lightman. Hypothalamic nitric oxide synthase gene expression is regulated by thyroid hormones. Endocrinology 136: 4182–4187, 1995.
 578. Ueta, Y., A., Levy, H. S. Chowdrey, and S. L. Lightman. Water deprivation in the rat induces nitric oxide synthase (NOS) gene expression in the hypothalamic paraventricular and supraoptic nuclei. Neurosci. Res. 23: 317–319, 1995.
 579. Uhl, G., H. H., Zingg, and J. F. Habener. Vasopressin mRNA in situ hybridization: localization and regulation studied with oligonucleotide cDNA probes in normal and Brattleboro rat hypothalamus. Proc. Natl. Acad. Sci. U.S.A. 82: 5555–5559, 1985.
 580. Unger, J. W., A. M., Moss, and J. N. Livingston. Immunohistochemical localization of insulin receptors and phosphotyrosine in the brainstem of the adult rat. Neuroscience 42: 853–861, 1991.
 581. Vallet, P. G., and A. J. Baertschi. Sodium‐chloride sensitive receptors located in hepatic portal vein of the rat. Neurosci. Lett. 17: 283–288, 1980.
 582. Vallet, P. G., and A. J. Baertschi. Spinal afferents for peripheral osmoreceptors in the rat. Brain Res. 239: 271–274, 1982.
 583. Valtin, H., and H. A. Schroeder. Familial hypothalamic diabetes insipidus in rats (Brattleboro strain). Am. J. Physiol. 206: 425–430, 1964.
 584. Valtin, H., J., Stewart, and H. W. Sokol, Genetic control of the production of posterior pituitary principles. In: Handbook of Physiology. Endocrinology. The Pituitary Gland and Its Neuroendocrine Control, edited by E. Knobil and W. H. Sawyer. Washington, DC: Am. Physiol. Soc., 1974, Sect. 7, vol. IV, pt. 1, p. 131–171.
 585. Van den Hooff, P., M. A. Seger, J. P. H. Burbach, and I. J. A. Urban. The C‐terminal glycopeptide of propressophysin potentiates excitatory transmission in the rat lateral septum. Neuroscience 37: 647–653, 1990.
 586. Van den Pol, A. N.. The magnocellular and parvocellular nucleus of the rat: intrinsic organisation. J. Comp. Neurol. 206: 317–345, 1982.
 587. Van den Pol, A. N.. Dual ultrastructural localization of two neurotransmitter‐related antigens: colloidal gold labeled neurophysin immunoreactive supraoptic neurons receive peroxidase labelled glutamate decarboxylase or gold labelled GABA immunoreactive synapses. J. Neurosci. 5: 2940–2954, 1985.
 588. Van den Pol, A. N.. Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons. J. Neurosci. 11: 2087–2101, 1991.
 589. Van den Pol, A. N.. Metabotropic glutamate receptor mGluR1 distribution and ultrastructural localization in hypothalamus. J. Comp. Neurol. 349: 615–632, 1994.
 590. Van den Pol, A. N., C. Decavel, A. Levi, and B. Paterson. Hypothalamic expression of a novel gene product, VGF: immunocytochemical analysis. J. Neurosci. 9: 4122–4137, 1989.
 591. Van den Pol, A. N., I. Herman‐Borgmeyer, M. Hofer, P. Ghosh, and S. Heinemann. Ionotropic glutamate‐receptor gene expression in hypothalamus: localization of AMPA, kainate, and NMDA receptor RNA with in situ hybridization. J. Comp. Neurol. 343: 428–444, 1994.
 592. Van den Pol, A. N., L. Kogelman, P. Ghosh, P. Liljelund, and C. Blackstone. Developmental regulation of the hypothalamic metabotropic glutamate receptor mGluR1. J. Neurosci. 14: 3816–3834, 1994.
 593. Van den Pol, A. N., C. Romano, and P. Ghosh. Metabotropic glutamate receptor mGluR5 subcellular distribution and developmental expression in hypothalamus. J. Comp. Neurol. 362: 134–150, 1995.
 594. Van den Pol, A. N., J. P. Waurin, and F. E. Dudek. Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science 250: 1276–1278, 1990.
 595. Vanhatalo, S., and S. Soinila. Nitric oxide synthase in the hypothalamo‐pituitary pathways. J. Chem. Neuroanat. 8: 165–173, 1995.
 596. Van Leeuwen, F., E. Van der Beek, M. Seger, P. Burbach, and R. Ivell. Age‐related development of a heterozygous phenotype in solitary neurons of the homozygous Brattleboro rat. Proc. Natl. Acad. Sci. U.S.A. 86: 6417–6420, 1989.
 597. Van Leeuwen, F. W.. Mutant vasopressin precursor producing cells of the homozygous Brattleboro rat as a model for coexpression of neuropeptides. Prog. Brain Res. 92: 149–155, 1992.
 598. Van Leeuwen, F. W., E. M. Van der Beek, J. J. Van Heerikhuize, A. A. Sluiter, D. Felix, and H. Imboden. Vasopressin and an giotensin II are absent but spontaneously reappear in solitary hypothalamic neurons of the homozygous Brattleboro rat. Neurosci. Lett. 127: 207–211, 1991.
 599. Verbalis, J. G., E. F., Baldwin, and A. G. Robinson. Osmotic regulation of plasma vasopressin and oxytocin after sustained hyponatremia. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R444–R451, 1986.
 600. Verbeeck, M. A. E., R. A. H., Adan, and J. P. H. Burbach. Vasopressin gene expression is stimulated by cyclic AMP in homologous and heterologous expression systems. FEBS Lett. 272: 89–93, 1990.
 601. Verbeeck, M. A. E., W., Sutanto, and J. P. H. Burbach. Regulation of vasopressin messenger RNA levels in the small cell lung carcinoma cell line GLC‐8: interactions between glucocorticoids and second messengers. Mol. Endocrinol. 5: 795–801, 1991.
 602. Verdoorn, T. A., N., Burnashev, H. Monyer, P. H. Seeburg, and B. Sakmann. Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252: 1715–1718, 1992.
 603. Verney, E. B.. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. 135: 25–106, 1947.
 604. Villar, M. J., S., Ceccatelli, K. Bedecs, T. Bartfai, D. Bredt, S. H. Synder, and T. Hokfelt. Upregulation of nitric oxide synthase and galanin message‐associated peptide in hypothalamic magnocellular neurons after hypophysectomy. Immunohistochemical and in situ hybridization studies. Brain Res. 650: 219–228, 1994.
 605. Villar, M. J., S., Ceccatelli, M. Ronnqvist, and T. Hokfelt. Nitric oxide synthase increases in hypothalamic magnocellular neurons after salt loading in the rat. An immunohistochemical and in situ hybridization study. Brain Res. 6444: 273–281, 1994.
 606. Vivas, L., E., Chiaraviglio, and H. F. Carrer. Rat organum vasculosum laminae terminalis in vitro: responses to changes in sodium concentration. Brain Res. 519: 294–300, 1990.
 607. Voisin, D. L., C., Chapman, D. A. Poulain, and A. E. Herbison. Extracellular GABA concentrations in rat supraoptic nucleus during lactation and following haemodynamic changes: an in vivo microdialysis study. Neuroscience 63: 547–558, 1994.
 608. Voisin, D. L., A. E., Herbison, C. Chapman, and D. A. Poulain. Effects of central GABAb receptor modulation upon the milk ejection reflex in the rat. Neuroendocrinology 63: 368–376, 1996.
 609. Vokes, T. P., P. R., Aycinena, and G. L. Robertson. Effect of insulin on osmoregulation of vasopressin. Am. J. Physiol. 252 (Endocrinol. Metab. 15): E538–E548, 1987.
 610. Von Spreckelsen, S., K. Lollike, and M. Treiman. Ca2+ and vasopressin release in isolated rat neurohypophysis: differential effects of four classes of Ca2+ channel ligands. Brain Res. 514: 68–76, 1990.
 611. Wagner, C. K., M.J., Eaton, K. E. Moore, and K.J. Lookingland. Efferent projections from the region of the medial zona incerta containing A13 dopaminergic neurons: a PHA‐L anterograde tract‐tracing study in the rat. Brain Res. 677: 229–237, 1995.
 612. Wakerley, J. B., Electrophysiology of the central vasopressin system. In: Vasopressin Principles and Properties, edited by D. M. Gash and G. J. Boer. New York: Plenum, 1987, p. 211–256.
 613. Wall, K. M., and A. V. Ferguson. Endothelin acts at the subfornical organ to influence the activity of putative vasopressin and oxytocin‐secreting neurons. Brain Res. 586: 111–116, 1992.
 614. Wang, G., P., Thorn, and J. R. Lemos. A novel large‐conductance Ca2+‐activated potassium channel and current in nerve terminals of the rat neurohypophysis. J. Physiol. (Lond.) 457: 47–74, 1992.
 615. Watson, S. J., H., Akil, W. Fischli, A. Goldstein, E. Zimmerman, G. Nilaver, and T. B. Van Wimersma Greidanus. Dynorphin and vasopressin: common localization in magnocellular neurons. Science 216: 85–87, 1982.
 616. Watts, A. G.. Disturbance of fluid homeostatsis leads to temporally and anatomically distinct responses in neuropeptide and tyrosine hydroxylase mRNA levels in the paraventricular and supraoptic nuclei of the rat. Neuroscience 46: 859–879, 1992.
 617. Way, S. A., and G. Leng. Relaxin increases the firing rate of supraoptic neurones and increases oxytocin secretion in the rat. J. Endocrinol. 132: 149–158, 1992.
 618. Weiss, M. L., and G. I. Hatton. Collateral input to the paraventricular and supraoptic nuclei in rat. II. Afferents from the ventral lateral medulla and nucleus tractus solitarius. Brain Res. Bull. 25: 561–567, 1990.
 619. Weiss, M. L., Q. Z., Yang, and G. I. Hatton. Magnocellular tuberomammillary nucleus input to the supraoptic nucleus in the rat: anatomical and in vitro electrophysiological investigations. Neuroscience 31: 299–311, 1989.
 620. Weitzman, R. E., D. A., Fisher, S. Minick, N. Ling, and R. Guillemin. β‐Endorphin stimulates secretion of arginine vasopressin in vivo. Endocrinology 101: 1643–1646, 1977.
 621. Wetzel, W. C., and J. D. Fernstrom. In vivo biosynthesis of arginine vasopressin and oxytocin in hypothalami from intact and hypophysectomized rats. Endocrinology 120: 2562–2568, 1987.
 622. Whitnall, M. H., H., Gainer, B. M. Cox, and C. J. Molineaux. Dynorphin‐A‐(1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science 222: 1137–1139, 1983.
 623. Wilkin, L. D., L. D., Mitchell, D. Ganten, and A. K. Johnson. The supraoptic nucleus: afferents from areas involved in control of body fluid homeostasis. Neuroscience 28: 573–584, 1989.
 624. Williams, K.. Subunit‐specific potentiation of recombinant N‐methyl‐d‐aspartate receptors by histamine. Mol. Pharmacol. 46: 531–541, 1994.
 625. Willoughby, J. O., and W. W. Blessing. Neuropeptide Y injected into the supraoptic nucleus causes secretion of vasopressin in the unanesthetized rat. Neurosci. Lett. 75: 17–22, 1987.
 626. Wotjak, C. T., M., Ludwig, and R. Landgraf. Vasopressin facilitates its own release within the rat supraoptic nucleus in vivo. Neuroreport 5: 1181–1184, 1994.
 627. Wuarin, J.‐P., and F. E. Dudek. Excitatory amino acid antagonists inhibit synaptic responses in the guinea pig hypothalamic paraventricular nucleus. J. Neurophysiol. 65: 946–951, 1991.
 628. Wuarin, J. P., and F. E. Dudek. Patch‐clamp analysis of spontaneous synaptic currents in supraoptic neuroendocrine cells of the rat hypothalamus. J. Neurosci. 13: 2323–2331, 1993.
 629. Yagi, K., and T. Onaka. A benzodiazepine, chlordiazepoxide, blocks vasopressin and oxytocin release after footshocks but not osmotic stimulus in the rat. Neurosci. Lett. 203: 49–52, 1996.
 630. Yamada, K., P., Emson, and T. Hokfelt. Immunohistochemical mapping of nitric oxide synthase in the rat hypothalamus and colocalization with neuropeptides. J. Chem. Neuroanat. 10: 295–316, 1996.
 631. Yamamoto, S., K., Inenaga, H. Kannan, S. Eto, and H. Yamashita. The actions of endothelin on single cells in the anteroventral third ventricular region and supraoptic nucleus in rat hypothalamic slices. J. Neuroendocrinol. 5: 427–434, 1993.
 632. Yamamoto, S., I., Morimoto, H. Yamashita, and S. Eto. Inhibitory effects of endothelin‐3 on vasopressin release from rat supraoptic nucleus in vitro. Neurosci. Lett. 141: 147–150, 1992.
 633. Yamamoto, T., T., Kimura, K. Ota, M. Shoji, M. Inoue, K. Sato, M. Ohta, and K. Yoshinaga. Central effects of endothelin‐1 on vasopressin release, blood pressure, and renal solute excretion. Am. J. Physiol. 262 (Endocrinol. Metab. 225): E856–E862, 1992.
 634. Yamashita, H., K., Inenaga, M. Kawata, and Y. Sano. Phasically firing neurons in the supraoptic nucleus of the rat hypothalamus: immunocytochemical and electrophysiological studies. Neurosci. Lett. 37: 87–92, 1983.
 635. Yamashita, H., Y., Ueta, K. Inenaga, T. Nagatomo, I. Shibuya, N. Kabashima, L. N. Cui, Z. Li, and S. Yamamoto. Cardiovascular system related peptides and hypothalamic neurons. Neurobiology (Bp) 3: 419–427, 1995.
 636. Yanagisawa, M., A., Inoue, T. Ishikawa, Y. Kasuya, S. Kimura, S. Nakajima, K. Kumagaye, T. X. Watanabe, S. Sakakibara, K. Goto, and T. Masaki. Primary structure, synthesis, and biological activity of rat endothelin, an endothelium‐derived vasoconstrictor peptide. Proc. Natl. Acad. Sci. U.S.A. 85: 6964–6967, 1988.
 637. Yang, C. R., C. W., Bourque, and L. P. Renaud. Dopamine D2 receptor activation depolarizes rat supraoptic neurons in hypothalamic explants. J. Physiol. (Lond.) 443: 405–419, 1991.
 638. Yang, C. R., M. I., Phillips, and L. P. Renaud. Angiotensin II receptor activation depolarizes rat supraoptic neurons in vitro. Am. J. Physiol. 263. (Regulatory Integrative Comp. Physiol. 32): R1333–R1338, 1992.
 639. Yang, C. R., V. V., Senatorov, and L. P. Renaud. Organum vasculosum lamina terminalis–evoked post‐synaptic responses in rat supraoptic neurones in vitro. J. Physiol. (Lond.) 477: 59–74, 1994.
 640. Yang, Q. Z., and G. I. Hatton. Histamine and histaminergic inputs: responses of rat supraoptic nucleus neurons recorded intracellularly in hypothalamic slices. Biomed. Res. 10 (Suppl. 3): 135–144, 1989.
 641. Yang, Q. Z., and G. I. Hatton. Synaptically released histamine increases dye coupling among vasopressinergic neurons of the supraoptic nucleus: mediation by H1‐receptors and cyclic nucleotides. J. Neurosci. 16: 123–129, 1996.
 642. Yasin, S. A., A., Costa, M. L. Forsling, and A. Grossman. Interleukin‐1β and Interleukin‐6 stimulate neurohypophysial hormone release in vitro. J. Neuroendocrinal. 6: 179–184, 1994.
 643. Yoshizawa, T., O., Shinmi, A. Giaid, M. Yanagisawa, S. J. Gibson, S. Kimura, Y. Uchiyama, J. M. Polak, T. Masaki, and I. Kanazawa. Endothelin: a novel peptide in the posterior pituitary system. Science 247: 462–464, 1990.
 644. Young, W. S., III.. Expression of the oxytocin and vasopressin genes. J. Neuroendocrinal. 4: 529–540, 1992.
 645. Young, W. S., K., Reynolds, E. A. Shepard, H. Gainer, and M. Castel. Cell‐specific expression of the rat oxytocin gene in transgenic mice. J. Neuroendocrinal. 2: 917–925, 1990.
 646. Young, W. S., III, E. A. Shepard, and R. M. Burch. Plasma hyperosmolality increases G protein and 3′, 5′‐cyclic adenosine monophosphate synthesis in the paraventricular and supraoptic nuclei. Mol. Cell. Endocrinol. 1: 884–888, 1987.
 647. Zardetto‐Smith, A. M., and T. S. Gray. A direct neural projection from the nucleus of the solitary tract to the subfornical organ in the rat. Neurosci. Lett. 80: 163–166, 1987.
 648. Zeevi, M., J. R. Nevins, and J. E. Darnell, Jr.. Newly formed mRNA lacking polyadenylic acid enters the cytoplasm and the polyribosomes but has a shorter half‐life in the absence of polyadenylic acid. Mol. Cell. Biol. 2: 517–525, 1982.
 649. Zhou, L., J. D. Blaustein, and G. J. De Vries. Distribution of androgen receptor immunoreactivity in vasopressin‐and oxytocin‐immunoreactive neurons in the male rat brain. Endocrinology 134: 2622–2627, 1994.
 650. Zhu, B., and J. Herbert. Behavioural, autonomic, and endocrine responses associated with c‐fos expression in the forebrain and brainstem after intracerebroventricular infusions of endothelins. Neuroscience 71: 1049–1062, 1996.
 651. Zimmerman, H.. Signalling via ATP in the nervous system. Trends Neurosci. 17: 420–426, 1994.
 652. Zingg, H. H., D., Lefebvre, and G. Almazan. Regulation of vasopressin gene expression in rat hypothalamic neurons. Response to osmotic stimulation. J. Biol. Chem. 261: 12956–12959, 1986.
 653. Zingg, H. H., D. L., Lefebvre, and G. Almazan. Regulation of poly(A) tail size of vasopressin mRNA. J. Biol. Chem. 263: 11041–11043, 1988.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Celia D. Sladek. Antidiuretic Hormone: Synthesis and Release. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 436-495. First published in print 2000. doi: 10.1002/cphy.cp070312