Comprehensive Physiology Wiley Online Library

Endocrine Control of Water Balance

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 The Water‐Repletion Reaction
2 Cell‐Volume Regulation
3 The Neurohypophysis
3.1 Structure
3.2 Hormone Biosynthesis, Transport, and Metabolism
4 Control of Antidiuretic Hormone Release
4.1 Osmotic Regulation
4.2 Nonosmotic Regulation
4.3 Chemical Mediators
4.4 Intranuclear Secretion
5 Oxytocin
6 Thirst
6.1 Osmotic Regulation
6.2 Volume‐Mediated Thirst
6.3 Satiation of Thirst
7 Renal Contribution to Osmotic Homeostasis
7.1 Renal Countercurrent Mechanisms
7.2 Effects of Filtration Rate and Solute Excretion
7.3 Collecting Tubule
7.4 Medullary Thick Ascending Limb of Henle
7.5 Integration of Antidiuretic Hormone Actions with the Urinary Concentrating Mechanism
8 Selected Clinical Derangements of Water Balance
8.1 Hypertonic Syndromes
8.2 Hypotonic Syndromes
Figure 1. Figure 1.

Schematic illustration of the water‐repletion reaction. Solid lines indicate osmotically stimulated pathways, dashed lines indicate volume‐stimulated pathways, and dotted lines indicate negative‐feedback pathways. ANP, atrial natriuretic peptide; ADH, antidiuretic hormone; CNS, central nervous system; ECF, extracellular fluid; OPR, oropharyngeal reflex. [From Reeves et al. 243 with permission.]

Figure 2. Figure 2.

Schematic representation of some cell membrane–transport systems that help to regulate cell volume. Cell shrinkage stimulates solute‐uptake pathways (left) and results in an increase in cell volume. Cell swelling activates solute loss, primarily via conductive pathways for K+ and Cl.

Figure 3. Figure 3.

Schematic illustration of the neurohypophysis showing hypothalamic magnocellular nuclei, the supraopticohypophyseal tract with Herring bodies, and nerve endings forming on capillaries of the posterior pituitary. [From Reeves et al. 243 with permission.]

Figure 4. Figure 4.

Chemical structures of the major posterior pituitary hormones and desmopressin, a commonly used synthetic vasopresin analogue.

Figure 5. Figure 5.

Flow diagram for the pathway of posterior pituitary hormone biosynthesis.

Figure 6. Figure 6.

Schematic representation of the organization of the antidiuretic hormone gene and its relation to the preprohormone and final peptide products. AVP, arginine vasopressin; GP, glycoprotein; NP‐II, neurophysin II; SP, signal peptide. [From Reeves, et al 243 with permission.]

Figure 7. Figure 7.

Relationship between plasma osmolality and plasma vasopressin level. To convert vasopressin values to picomoles per liter, divide by 1.1. [From Robertson and Berl 255 with permission.]

Figure 8. Figure 8.

Relationship between plasma vasopressin and changes in plasma osmolality, blood volume, and mean arterial pressure in humans. To convert vasopressin values to picomoles per liter, divide by 1.1. [From Robertson and Berl 255 with permission.]

Figure 9. Figure 9.

Effect of changes in blood volume or arterial pressure on the relation between plasma osmolality and plasma vasopressin activity. To convert vasopressin values to picomoles per liter, divide by 1.1. [From Robertson and Berl 255 with permission.]

Figure 10. Figure 10.

Schematic illustration of the model of Kokko and Rector for the renal concentrating mechanism. [From Reeves and Andreoli 242 with permission.]

Figure 11. Figure 11.

Immunolocalization of aquaporin‐2 (AQP2) in the rat kidney medulla. Staining is limited to collecting duct cells and is more intense in the apical region. ADH, antidiuretic hormone; PKA, protein kinase A. [From Sasaki et al. 369 with permission.]

Figure 12. Figure 12.

Schematic model of the shuttle mechanism for the action of antidiuretic hormone (ADH) in the collecting tubule. In the absence of ADH, aquaporin‐2 (AQP2) water channels are located in vesicles, or endosomes, beneath the apical membrane. Upon stimulation by ADH, these endosomes fuse with the apical membrane delivering water channels to the cell surface. Water channels are retrieved from the cell surface by endocytosis of clathrincoated vesicles. The AQP3 water channels in the basolateral membrane facilitate exit of water from collecting duct cells. [From Reeves et al. 243 with permission.]

Figure 13. Figure 13.

Model for salt absorption in mouse medullary thick ascending limb of Henle. Solid lines denote conservative (primary or secondary) processes; dashed lines denote dissipatve processes.

Figure 14. Figure 14.

Effects of antidiuretic hormone (ADH) on the urinary concentrating mechanism. PGE2, prostaglandin E2.

Figure 15. Figure 15.

Relation between plasma vasopressin concentrations and urine osmolality. [From Robertson and Berl 255 with permission.]

Figure 16. Figure 16.

Schematic representation of the V2 receptor and identification of 72 mutations, including 36 missense, 10 nonsense, 18 frameshift, 2 inframe‐deletion, 1 splice‐site, and 5 large‐deletion mutations. The five large deletions are incompletely characterized and not included in the figure. Predicted amino acids are given as the one‐letter code. Solid symbols indicate predicted location of mutations; asterisk indicates two different mutations in the same codon. The mutations are listed according to their location within either one of the four extracellular domains (EI to EIV), four cytoplasmic domains (CI to CIV), or seven transmembrane domains (TMI to TMVII). These domains are numbered from N‐terminus to the C‐terminus according to Sharif and Hanley 371. EI: 98del28, 98ins28, 113delCT. TMI: L44F, L44P, L53R, L62P. TMII and CI: 253del35, 255del9. CI: 274insG, W71X. TMII: H80R, L83P, D85N, V88M, 337delCT, P95L. EII: R106C, 402delCT, C112R, R113W. TMIII: Q119X, Y124X, S126F, Y128S, A132D. CII: R137H, R143P, 528del7, 528delG. TMIV: W164S, S167L, S167T. EIII: R181C, G185C, R202C, T204N, 684delTA, Y205C, V206D. TMV: L219R, Q225X, 753insC. CIII: E231X, 763delA, 786delG, E242X, 804insG, 804delG, 834delA, 855delG. TMVI: V277A, V278, Y280C, W284X, A285P, P286L, P286R, L292P, W293X. EIV: 977delG, 982–2A→G. TMVII: L312X, P322H, P322S, W323R. CIV: R337X. [From Reeves et al. 243 with permission.]

Figure 17. Figure 17.

Expression of the R137H V2 receptor mutant in L cells. The R137H mutant had unaltered affinity for tritiated arginine vasopressin (AVP) but failed to stimulate the Gs‐‐adenylate cyclase system. Insert shows localization of the missense amino acid in the V2 receptor protein. Only the first three transmembrane domains are represented. [From Birnbaumer et al. 32 with permission.]

Figure 18. Figure 18.

Exon/intron organization of the aquaporin‐2 (AQP2) gene and secondary structure model of the human AQP2 protein. Identification of four AQP2 mutations. [From Deen et al. 65, 328 with permission.]



Figure 1.

Schematic illustration of the water‐repletion reaction. Solid lines indicate osmotically stimulated pathways, dashed lines indicate volume‐stimulated pathways, and dotted lines indicate negative‐feedback pathways. ANP, atrial natriuretic peptide; ADH, antidiuretic hormone; CNS, central nervous system; ECF, extracellular fluid; OPR, oropharyngeal reflex. [From Reeves et al. 243 with permission.]



Figure 2.

Schematic representation of some cell membrane–transport systems that help to regulate cell volume. Cell shrinkage stimulates solute‐uptake pathways (left) and results in an increase in cell volume. Cell swelling activates solute loss, primarily via conductive pathways for K+ and Cl.



Figure 3.

Schematic illustration of the neurohypophysis showing hypothalamic magnocellular nuclei, the supraopticohypophyseal tract with Herring bodies, and nerve endings forming on capillaries of the posterior pituitary. [From Reeves et al. 243 with permission.]



Figure 4.

Chemical structures of the major posterior pituitary hormones and desmopressin, a commonly used synthetic vasopresin analogue.



Figure 5.

Flow diagram for the pathway of posterior pituitary hormone biosynthesis.



Figure 6.

Schematic representation of the organization of the antidiuretic hormone gene and its relation to the preprohormone and final peptide products. AVP, arginine vasopressin; GP, glycoprotein; NP‐II, neurophysin II; SP, signal peptide. [From Reeves, et al 243 with permission.]



Figure 7.

Relationship between plasma osmolality and plasma vasopressin level. To convert vasopressin values to picomoles per liter, divide by 1.1. [From Robertson and Berl 255 with permission.]



Figure 8.

Relationship between plasma vasopressin and changes in plasma osmolality, blood volume, and mean arterial pressure in humans. To convert vasopressin values to picomoles per liter, divide by 1.1. [From Robertson and Berl 255 with permission.]



Figure 9.

Effect of changes in blood volume or arterial pressure on the relation between plasma osmolality and plasma vasopressin activity. To convert vasopressin values to picomoles per liter, divide by 1.1. [From Robertson and Berl 255 with permission.]



Figure 10.

Schematic illustration of the model of Kokko and Rector for the renal concentrating mechanism. [From Reeves and Andreoli 242 with permission.]



Figure 11.

Immunolocalization of aquaporin‐2 (AQP2) in the rat kidney medulla. Staining is limited to collecting duct cells and is more intense in the apical region. ADH, antidiuretic hormone; PKA, protein kinase A. [From Sasaki et al. 369 with permission.]



Figure 12.

Schematic model of the shuttle mechanism for the action of antidiuretic hormone (ADH) in the collecting tubule. In the absence of ADH, aquaporin‐2 (AQP2) water channels are located in vesicles, or endosomes, beneath the apical membrane. Upon stimulation by ADH, these endosomes fuse with the apical membrane delivering water channels to the cell surface. Water channels are retrieved from the cell surface by endocytosis of clathrincoated vesicles. The AQP3 water channels in the basolateral membrane facilitate exit of water from collecting duct cells. [From Reeves et al. 243 with permission.]



Figure 13.

Model for salt absorption in mouse medullary thick ascending limb of Henle. Solid lines denote conservative (primary or secondary) processes; dashed lines denote dissipatve processes.



Figure 14.

Effects of antidiuretic hormone (ADH) on the urinary concentrating mechanism. PGE2, prostaglandin E2.



Figure 15.

Relation between plasma vasopressin concentrations and urine osmolality. [From Robertson and Berl 255 with permission.]



Figure 16.

Schematic representation of the V2 receptor and identification of 72 mutations, including 36 missense, 10 nonsense, 18 frameshift, 2 inframe‐deletion, 1 splice‐site, and 5 large‐deletion mutations. The five large deletions are incompletely characterized and not included in the figure. Predicted amino acids are given as the one‐letter code. Solid symbols indicate predicted location of mutations; asterisk indicates two different mutations in the same codon. The mutations are listed according to their location within either one of the four extracellular domains (EI to EIV), four cytoplasmic domains (CI to CIV), or seven transmembrane domains (TMI to TMVII). These domains are numbered from N‐terminus to the C‐terminus according to Sharif and Hanley 371. EI: 98del28, 98ins28, 113delCT. TMI: L44F, L44P, L53R, L62P. TMII and CI: 253del35, 255del9. CI: 274insG, W71X. TMII: H80R, L83P, D85N, V88M, 337delCT, P95L. EII: R106C, 402delCT, C112R, R113W. TMIII: Q119X, Y124X, S126F, Y128S, A132D. CII: R137H, R143P, 528del7, 528delG. TMIV: W164S, S167L, S167T. EIII: R181C, G185C, R202C, T204N, 684delTA, Y205C, V206D. TMV: L219R, Q225X, 753insC. CIII: E231X, 763delA, 786delG, E242X, 804insG, 804delG, 834delA, 855delG. TMVI: V277A, V278, Y280C, W284X, A285P, P286L, P286R, L292P, W293X. EIV: 977delG, 982–2A→G. TMVII: L312X, P322H, P322S, W323R. CIV: R337X. [From Reeves et al. 243 with permission.]



Figure 17.

Expression of the R137H V2 receptor mutant in L cells. The R137H mutant had unaltered affinity for tritiated arginine vasopressin (AVP) but failed to stimulate the Gs‐‐adenylate cyclase system. Insert shows localization of the missense amino acid in the V2 receptor protein. Only the first three transmembrane domains are represented. [From Birnbaumer et al. 32 with permission.]



Figure 18.

Exon/intron organization of the aquaporin‐2 (AQP2) gene and secondary structure model of the human AQP2 protein. Identification of four AQP2 mutations. [From Deen et al. 65, 328 with permission.]

References
 1. Adachi, S., S., Uchida, H. Ito, M. Hata, M. Hiroe, F. Marumo, and S. Sasaki. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle's loop and collecting ducts of rat kidney. J. Biol. Chem. 269: 17677–17683, 1994.
 2. Adolph, E. F. Termination of drinking: satiation. Federation Proc. 41: 2533–2535, 1982.
 3. Ahmad, A. J., E. H., Clark, and H. S. Jacobs. Water intoxication associated with oxytocin infusion. Postgrad. Med. J. 51: 249–252, 1975.
 4. Andersson, B., and S. M. McCann. Drinking, antidiuresis and milk ejection from electrical stimulation within the hypothalamus of the goat. Acta Physiol. Scand. 35: 191–201, 1956.
 5. Andersson, B., and M. Rundgren. Thirst and its disorders. Annu. Rev. Med. 33: 231–239, 1982.
 6. Anderson, R. J., H.‐M., Chung, R. Kluge, and R. W. Schrier. Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann. Intern. Med. 102: 164–168, 1985.
 7. Ando, Y., H. R., Jacobson, and M. D. Breyer. Phorbol ester and A23187 have additive but mechanistically separate effects on vasopressin action in rabbit collecting tubule. J. Clin. Invest. 81: 1578–1584, 1988.
 8. Ando, Y., H. R., Jacobson, and M. D. Breyer. Phorbol myristate acetate, dioctanoylglycerol and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule. J. Clin. Invest. 80: 590–593, 1987.
 9. Argy, W. P., J. S., Handler, and J. Orloff. Ca2+ and Mg2+ effects on toad bladder response to cyclic AMP, theophylline and ADH analogues. Am. J. Physiol. 213: 803–808, 1967.
 10. Arnauld, E., and J. duPont. Vasopressin release and firing of supraoptic neurosecretory neurones during drinking in the dehydrated monkey. Pflugers Arch. 394: 195–201, 1982.
 11. Ashkar, Z. M., S., Martial, T. Isozaki, S. R. Price, and J. M. Sands. Urea transport in initial IMCD of rats fed a low‐protein diet: functional properties and mRNA abundance. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F1218–F1223, 1995.
 12. Bagnasco, S. M., S., Uchida, R. S. Balaban, P. F. Kador, and M. B. Burg. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc. Natl. Acad. Sci. U.S.A. 84: 1718–1720, 1987.
 13. Bahnsen, U., P., Oosting, D. F. Swaab, P. Nahke, D. Richter, and H. Schmale. A missense mutation in the vasopressin‐neurophysin precursor gene cosegregates with human autosomal dominant neurophypophyseal diabetes insipidus. EMBO J. 11: 19–23, 1992.
 14. Ballatori, N., A. T., Truong, P. S. Jackson, K. Strange, and J. L. Boyer. ATP depletion and inactivation of an ATP‐sensitive taurine channel by classic ion channel blockers. Mol. Pharmacol. 48: 472–476, 1995.
 15. Balment, R. J., M. J., Brimble, and M. L. Forsling. Oxytocin release and renal actions in normal and Brattleboro rats. Ann. N.Y. Acad. Sci. 394: 241–253, 1982.
 16. Bankir, L., Urea and the kidney. In: The Kidney (5th ed.), edited by B. M. Brenner. Philadelphia: Saunders, 1996, p. 571–606.
 17. Barron, W. M., L. H., Cohen, L. A. Ulland, W. E. Lassiter, E. M. Fulghum, D. Emmanouel, G. Robertson, and M. D. Lindheimer. Transient vasopressin‐resistant diabetes insipidus of pregnancy. N. Engl. J. Med. 310: 442–444, 1984.
 18. Barth, T., I., Krejci, B. Kupkova, and K. Jost. Pharmacology of cyclic analogues of deamino‐oxytocin not containing a disulphide bond (carba analogues). Eur. J. Pharmacol. 24: 183–188, 1973.
 19. Barth, T., M. R., Rajerison, C. Roy, and S. Jard. Activation of rat kidney adenylate cyclase by vasopressin analogues: lack of correlation with antidiuretic activity. Mol. Cell. Endocrinol. 2: 69–80, 1975.
 20. Bauman, G., and J. F. Dingman. Distribution, blood transport, and degradation of antidiuretic hormone in man. J. Clin. Invest. 57: 1109–1116, 1976.
 21. Baylis, P. H., and G. L. Robertson. Vasopressin function in familial cranial diabetes insipidus. Postgrad. Med. J. 57: 36–40, 1981.
 22. Bayliss, J. M., W. B., Reeves, and T. E. Andreoli. Cl – transport in basolateral renal medullary vesicles: I. Cl‐ transport in intact vesicles. J. Membr. Biol. 113: 49–56, 1990.
 23. Bealer, S. L., J. T., Crofton, and L. Share. Hypothalamic knife cuts alter fluid regulation, vasopressin secretion and natriuresis during water deprivation. Neuroendocrinology 36: 364–370, 1983.
 24. Beck, T. R., and M. J. Dunn. The relationship of antidiuretic hormone and renal prostaglandins. Miner. Electrolyte Metab. 6: 46–59, 1981.
 25. Bell, N. H., C. M. J., Clark, S. Avery, T. Sinha, C. W. Trygstad, and D. O. Allen. Demonstration of a defect in the formation of adenosine 3′, 5′‐monophosphate in vasopressin‐resistant diabetes insipidus. Pediatr. Res. 8: 223–230, 1974.
 26. Bichet, D. G., Nephrogenic diabetes insipidus. In: Oxford Textbook of Clinical Nephrology, edited by J. S. Cameron, A. M. Davison, J. P. Grünfeld, D. N. S. Kerr, and E. Ritz. New York: Oxford University Press, 1996, p. 789–800.
 27. Bichet, D. G., M. F., Arthus, M. Lonergan, W. Balfe, K. Skorecki, H. Nivet, G. Robertson, A. Oksche, W. Rosenthal, M. Fujiwara, K. Morgan, and S. Sasaki. Autosomal dominant and autosomal recessive nephrogenic diabetes insipidus: novel mutations in the AQP2 gene [abstract]. J. Am. Soc. Nephrol. 6: 717, 1995.
 28. Bichet, D. G., M., Birnbaumer, M. Lonergan, M. F. Arthus, W. Rosenthal, P. Goodyer, H. Nivet, S. Benoit, P. Giampietro, S. Simonetti, A. Fish, C. B. Whitley, P. Jaeger, J. Gertner, M. New, F. J. DiBona, B. S. Kaplan, G. L. Robertson, G. N. Hendy, T. M. Fujiwara, and K. Morgan. Nature and recurrence of AVPR2 mutations in X‐linked nephrogenic diabetes insipidus. Am. J. Hum. Genet. 55: 278–286, 1994.
 29. Bichet, D. G., M., Razi, M. F. Arthus, M. Lonergan, P. Tittley, R. K. Smiley, G. Rock, and D. J. Hirsch. Epinephrine and dDAVP administration in patients with congenital nephrogenic diabetes insipidus. Evidence for a pre‐cyclic AMP V2 receptor defective mechanism. Kidney Int. 36: 859–866, 1989.
 30. Bichet, D. G., M., Razi, M. Lonergan, M. F. Arthus, V. Papukna, C. Kortas, and J. N. Bargon. Hemodynamic and coagulation responses to 1‐desamino/8‐D‐arginine vasopressin in patients with congenital nephrogenic diabetes insipidus. N. Engl. J. Med. 318: 881–887, 1988.
 31. Bicknell, R. J., and G. Leng. Endogenous opiates regulate oxytocin but not vasopressin secretion from the neurohypophysis. Nature 298: 161–162, 1982.
 32. Birnbaumer, M., S., Gilbert, and W. Rosenthal. An extracellular congenital nephrogenic diabetes insipidus mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand, and coupling to the Gs/adenylyl cyclase system. Mol. Endocrinol. 8: 886–894, 1994.
 33. Birnbaumer, M., A., Seibold, S. Gilbert, M. Ishido, C. Barberis, A. Antaramian, P. Brabet, and W. Rosenthal. Molecular cloning of the receptor for human antidiuretic hormone. Nature 357: 333–335, 1992.
 34. Blumenfeld, J. D., E. B., Grossman, A. M. Sun, and S. C. Hebert. Sodium‐coupled ion cotransport and the volume regulatory increase response. Kidney Int. 36: 434–440, 1989.
 35. Boim, M. A., K., Ho, M. E. Shuck, M. J. Bienkowski, J. H. Block, J. L. Slightom, Y. Yang, B. M. Brenner, and S. C. Hebert. ROMK inwardly rectifying ATP‐sensitive K+ channel II. Cloning and distribution of alternative forms. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F1132–F1140, 1995.
 36. Bosch‐Marce, M., W., Jimenez, P. Angeli, A. Leivas, J. Claria, A. Graziotto, V. Arroyo, F. Rivera, and J. Rodes. Aquaretic effect of the kappa‐opioid agonist RU 51599 in cirrhotic rats with ascites and water retention. Gastroenterology 109: 217–223, 1995.
 37. Brenner, B., U., Seligsohn, and Z. Hochberg. Normal response of factor VIII and von Willebrand factor to 1‐deamino‐8D‐arginine vasopressin in nephrogenic diabetes insipidus. J. Clin. Endocrinol. Metab. 67: 191–193, 1988.
 38. Brown, D. Membrane recycling and epithelial cell function. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1–F12, 1989.
 39. Brown, E. M., G., Gamba, D. Riccardi, M. Lombardi, R. Butters, O. Kifor, A. Sun, M. A. Hediger, J. Lytton, and S. C. Hebert. Cloning and characterization of an extracellular Ca2+‐sensing receptor from bovine parathyroid. Nature 366: 575–580, 1993.
 40. Brownstein, M. J., J. T., Russell, and H. Gainer. Synthesis, transport and release of posterior pituitary hormones. Science 207: 373–378, 1980.
 41. Buggy, J., and A. K. Johnson. Preoptic hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am. J. Physiol. 233 (Regulatory Integrative Comp. Physiol. 2): R44–R52, 1977.
 42. Burg, M. B., and N. Green. Function of the thick ascending limb of Henle's loop. Am. J. Physiol. 224: 659–668, 1973.
 43. Burg, M. B., S., Helman, J. J. Grantham, and J. Orloff. Effect of vasopressin on the permeability of isolated rabbit cortical collecting tubules to urea, acetamide, and thiourea. In: Urea and the Kidney, edited by B. Schmidt‐Neilsen. Amsterdam: Excerpta Medica, 1970, p. 193–208.
 44. Burg, M. B., and P. F. Kador. Sorbitol, osmoregulation, and the complications of diabetes. J. Clin. Invest. 81: 635–640, 1988.
 45. Butlen, D., G., Guillon, R. M. Rajerison, S. Jard, W. H. Sawyer, and M. Manning. Structural requirements for activation of vasopressin‐sensitive adenylate cyclase, hormone binding, and antidiuretic actions: effects of highly potent analogues and competitive inhibitors. Mol. Pharmacol. 14: 1006–1017, 1978.
 46. Caillens, H., W., Pruszczynski, A. Meurier, K.‐S. Ang, F. Rousselet, and R. Ardaillou. Relationship between change in volemia at constant osmolality and plasma antidiuretic hormone. Miner. Electrolyte Metab. 4: 161–171, 1980.
 47. Carter, D. A., and S. L. Lightman. Neuroendocrine control of vasopressin secretion. In: The Posterior Pituitary. Hormone Secretion in Health and Disease, edited by P. H. Baylis, and P. L. Padfield. New York: Marcel Dekker, 1985, p. 53–118.
 48. Casavola, V., L., Iacovelli, and M. Svelto. Phorbol ester effect on the hydroösmotic response to vasopressin in frog skin. Pflügers Arch. 408: 318–320, 1987.
 49. Chen, L. Q., J. P., Rose, E. Breslow, D. Yang, W. R. Chang, W. F. Furey, M. Sax, and B. C. Wang. Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 Å determined from the single‐wavelength anomalous scattering signal of an incorporated iodine atom. Proc. Natl. Acad. Sci. U.S.A. 88: 4240–4245, 1991.
 50. Chevalier, J., J., Bourguet, and J. J. Hugon. Membrane‐associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 152: 129–140, 1974.
 51. Chini, B., B., Mouillac, Y. Ala, M.‐N. Balestre, S. Trumpp‐Kallmeyer, J. Hoflack, J. Elands, M. Hibert, M. Manning, S. Jard, and C. Barberis. Tyr115 is the key residue for determining agonist selectivity in the V1a vasopressin receptor. EMBO J. 14: 2176–2182, 1995.
 52. Chinitz, A., and F. L. Turner. The association of primary hypothyroidism and inappropriate secretion of the antidiuretic hormone. Arch. Intern. Med. 116: 871–874, 1965.
 53. Chou, C.‐L., and M. A. Knepper. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F359–F365, 1989.
 54. Chung, H.‐M., R., Kluge, R. W. Schrier, and R. J. Anderson. Postoperative hyponatremia: a prospective study. Arch. Intern. Med. 146: 333–336, 1986.
 55. Cort, J. H., O., Schück, J. Stribrna, J. Skopkova, K. Jost, and J. L. Mulder. Role of the disulfide bridge and the C‐terminal tripeptide in the antidiuretic action of vasopressin in man and the rat. Kidney Int. 8: 292–302, 1975.
 56. Crandall, M. E., and C. M. Gregg. In vitro evidence for an inhibitory effect of atrial natriuretic peptide on vasopressin release. Neuroendocrinology 44: 439–445, 1986.
 57. Craven, P. A., and F. R. DeRubertis. Effects of vasopressin and urea on Ca2+–calmodulin‐dependent renal prostaglandin E. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F649–F658, 1981.
 58. Culpepper, R. M., and T. E. Andreoli. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating Cl‐ absorption in single mouse medullary thick ascending limbs of Henle. J. Clin. Invest. 71: 1588–1601, 1983.
 59. Culpepper, R. M., and T. E. Andreoli. PGE2, forskolin, and cholera toxin interactions in modulating NaCl transport in mouse mTALH. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol.: F784–F792, 1984.
 60. Czaczkes, J. W., C. R., Kleeman, and M. Koenig. Physiologic studies of antidiuretic hormone by its direct measurement in human plasma. J. Clin. Invest. 43: 1625–1640, 1964.
 61. Davis, L. G., R., Arentzen, J. M. Reid, R. W. Manning, B. Wolfson, K. L. Lawrence, and F. J. Baldino. Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the rat. Proc. Natl. Acad. Sci. U.S.A. 83: 1145–1149, 1986.
 62. Davison, J. M., E. A., Sheills, W. M. Barron, A. G. Robinson, and M. D. Lindheimer. Changes in the metabolic clearance of vasopressin and in plasma vasopressinase throughout human pregnancy. J. Clin. Invest. 83: 1313–1318, 1989.
 63. Dayanithi, G., E. L., Stuenkel, and J. J. Nordmann. Intracellular calcium and hormone release from nerve endings of the neurohypophysis in the presence of opioid agonists and antagonists. Exp. Brain Res. 90: 539–545, 1992.
 64. Deen, P. M. T., H. Croes, R. A. M. H. Van Aubel, L. A. Ginsel, and C. H. Van Os. Water channels encoded by mutant aquaporin‐2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J. Clin. Invest. 95: 2291–2296, 1995.
 65. Deen, P. M. T., M. A., Verdijk, N. V. A. M. Knoers, B. Wieringa, L. A. H. Monnens, C. H. Van Os, and B. A. Van Oost. Requirement of human renal water channel aquaporin‐2 for vasopressin‐dependent concentration of urine. Science 264: 1392–95, 1994.
 66. de Keyzer, Y., C. Auzan, F. Lenne, C. Beldford, M. Thibonnier, X. Bertagna, and E. Clauser. Cloning and characterization of the human V3 pituitary vasopressin receptor. FEBS Lett. 356: 215–220, 1994.
 67. De Rubertis, F. R., M. F. Mechelis, M. E. Bloom, D. H. Mintz, J. B. Field, and B. B. Davis. Impaired water excretion in myxedema. Am. J. Med. 51: 41–53, 1971.
 68. Digiovanni, S. R., S., Nielsen, E. I. Christensen, and M. A. Knepper. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc. Natl. Acad. Sci. U.S.A. 91: 8984–8988, 1994.
 69. Dill, D. B., Life, Heat and Altitude. Cambridge, MA: Harvard University Press, 1938.
 70. Dillingham, M. A., and R. J. Anderson. Inhibition of vasopressin action by atrial natriuretic factor. Science 231: 1572–1573, 1986.
 71. DiScala, V. A., and M. J. Kinney. Effects of myxedema on the renal diluting and concentrating mechanism. Am. J. Med. 50: 325–335, 1971.
 72. Dousa, T. P. Cyclic nucleotides in the cellular action of neurohypophyseal hormones. Federation Proc. 36: 1867–1871, 1977.
 73. Dreifuss, J. J. A review on neurosecretory granules: their contents and mechanisms of release. Ann. N. Y. Acad. Sci. 248: 184–201, 1975.
 74. Dreifuss, J. J., I., Kalnins, J. S. Kelly, and K. B. Ruf. Action potentials and release of neurohypophyseal hormones in vitro. J. Physiol. (Lond.) 215: 805–817, 1971.
 75. Dunn, F. L., T. J., Brennan, A. E. Nelson, and G. L. Robertson. The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J. Clin. Invest. 52: 3212–3219, 1973.
 76. Durr, J. A., J. G., Hoggard, J. M. Hunt, and R. W. Schrier. Diabetes insipidus in pregnancy associated with abnormally high circulating vasopressinase activity. N. Engl. J. Med. 316: 1070–1074, 1987.
 77. du Vigneaud, V. Hormones of the mammalian posterior pituitary gland and their naturally occurring analogues. Johns Hopkins Med. J. 124: 53–65, 1969.
 78. Edwards, B. R., M., Gallai, and H. Valtin. Concentration of urine in the absence of ADH with minimal or no decrease in GFR. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F84–F91, 1980.
 79. Edwards, R. M., E. J., Stack, M. Gellai, and D. P. Brooks. Inhibition of vasopressin‐sensitive cAMP accumulation by alpha 2‐adrenoceptor agonists in collecting tubules is species dependent. Pharmacology 44: 26–32, 1992.
 80. Fahrenholz, F., M., Jurzak, R. Gerstberger, and W. Haase. Renal and central vasopressin receptors: immunocytochemical localization. Ann. N. Y. Acad. Sci. 689: 194–206, 1993.
 81. Falke, N., and R. Martin. Opiate binding differentially associated with oxytocin and vasopressin nerve endings from porcine neurohypophyses. Exp. Brain Res. 70: 145–154, 1988.
 82. Fanestil, D. A., Hyposmolar syndromes. In: Disturbances in Body Fluid Osmolality, edited by T. E. Andreoli, J. J. Grantham, and F. C. Rector. Bethesda, MD: Am. Physiol. Soc., 1977, p. 267–284.
 83. Feeney, J. G. Water intoxication and oxytocin. BMJ 285: 243, 1982.
 84. Fichman, M. P., and G. Brokker. Deficient renal cyclic adenosine 3; pr,5′‐monophosphate production in nephrogenic diabetes insipidus. J. Clin. Endocrinol. Metab. 35: 35–47, 1972.
 85. Firsov, D., B., Mandon, A. Morel, J. Merot, S. Le Maout, A. C. Bellanger, C. de Rouffignac, J. M. Elalouf, and J. M. Buhler. Molecular analysis of vasopressin receptors in the rat nephron, evidence for alternative splicing of the V2 receptor. Pflugers Arch. 429: 79–89, 1994.
 86. Ford, S. M. J. Transient vasopressin‐resistant diabetes insipidus of pregnancy. Obstet. Gynecol. 68: 288–289, 1986.
 87. Forsling, M. L., and E. A. Ullmann. Non‐osmotic stimulation of vasopressin release. In: Neurohypophysis, edited by A. M. Moses, and L. Share. Basel: Karger, 1977, p. 128–135.
 88. Fujisawa, G., S., Ishikawa, Y. Tsuboi, K. Okada, and T. Saito. Therapeutic efficacy of non‐peptide ADH antagonist OPC‐31260 in SIADH rats. Kidney Int. 44: 19–23, 1993.
 89. Fujiwara, T. M., and K. Morgan. Molecular biology of diabetes insipidus. Annu. Rev. Med. 46: 331–343, 1995.
 90. Fushimi, K., S., Uchida, Y. Hara, Y. Hirata, F. Marumo, and S. Sasaki. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361: 549–552, 1993.
 91. Gainer, H., Y., Sarne, and M. J. Brownstein. Neurophysin biosynthesis: conversion of a putative precursor during axonal transport. Science 195: 1354–1356, 1977.
 92. Gamba, G., A., Miyanoshita, M. Lombardi, J. Lytton, W. S. Lee, M. A. Hediger, and S. C. Hebert. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium–(potassium)–chloride co‐transporter family expressed in kidney. J. Biol. Chem. 269: 17713–17722, 1994.
 93. Gauer, O. H., and J. P. Henry. Circulatory basis of fluid volume control. Physiol. Rev. 43: 423–481, 1963.
 94. Geelen, G., L. C., Keil, S. E. Kravik, C. E. Wade, T.N. Thrasher, P. R. Barnes, G. Pykra, C. Nesvig, and J. E. Green‐leaf. Inhibition of plasma vasopressin after drinking in dehydrated humans. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R968–R971, 1984.
 95. Gellai, M., B. R., Edwards, and H. Valtin. Urinary concentrating ability during dehydration in the absence of vasopressin. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F100–F104, 1979.
 96. Gilmore, J. P., and I. H. Zucker. Failure of left atrial distension to alter renal function in the nonhuman primate. Circ. Res. 42: 267–270, 1978.
 97. Goldberg, M. Abnormalities in the renal excretion of water. Med. Clin. North Am. 47: 915–933, 1963.
 98. Goldfarb, S. Effects of calcium on ADH action in the cortical collecting tubule perfused in vitro. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F481–F486, 1982.
 99. Gonzalez, E., R., Sanchez‐Olea, and H. Pasantes‐Morales. Inhibition by Cl‐ channel blockers of the volume‐activated, diffusional mechanism of inositol transport in primary astrocytes in culture. Neurochem. Res. 20: 895–900, 1995.
 100. Gordge, M. P., D. J., Williams, N. J. Huggett, N. N. Payne, and G. H. Neild. Loss of biological activity of arginine vasopressin during its degradation by vasopressinase from pregnancy serum. Clin. Endocrinol. (Oxf.) 42: 51–58, 1995.
 101. Gottschalk, C. W. Osmotic concentration and dilution of the urine. Am. J. Med. 36: 670–685, 1964.
 102. Gottschalk, C. W., and M. Mylle. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am. J. Physiol. 196: 927–936, 1959.
 103. Grantham, J. J., and M. B. Burg. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259, 1966.
 104. Grantham, J. J., and J. Orloff. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′, 5′‐monophosphate and theophylline. J. Clin. Invest. 47: 1154–1161, 1968.
 105. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney: a model for secondary active chloride transport. Pflugers Arch. 396: 325–334, 1983.
 106. Greger, R., and E. Schlatter. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 396: 315–324, 1983.
 107. Gross, P., H., Pehrisch, W. Rascher, E. E. Hackenthal, A. Schomig, and E. Ritz. Vasopressin in hyponatremia: what stimuli? J. Cardiovasc. Pharmacol. 8: S92–S95, 1986.
 108. Gross, P. A., H., Pehrisch, W. Rascher, E. Hackenthal, A. Schomig, and E. Ritz. Pathogenesis of clinical hyponatremia: observations of vasopressin and fluid intake in 100 hyponatremic medical patients. Eur. J. Clin. Invest. 17: 123–129, 1987.
 109. Gupta, P. D., J. P., Henry, R. Sinclair, and R. Von Baumgarten. Responses of atrial and aortic baroreceptors to nonhypotensive hemorrhage and to transfusion. Am. J. Physiol. 211: 1429–1437, 1966.
 110. Hall, D. A., and J. J. Grantham. Temperature effect on ADH response of isolated perfused rabbit collecting tubules. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol.: F595–F601, 1980.
 111. Handler, J. S. Vasopressin–prostaglandin interactions in the regulation of epithelial cell permeability to water. Kidney Int. 19: 831–838, 1981.
 112. Harris, H. W. J., M. L., Zeidel, I. Jo, and T. G. Hammond. Characterization of purified endosomes containing the antidiuretic hormone‐sensitive water channel from rat renal papilla. J. Biol. Chem. 269: 11993–12000, 1994.
 113. Hattori, T., M., Morris, N. Alexander, and D. K. Sundberg. Extracellular oxytocin in the paraventricular nucleus: hyperosmotic stimulation by in vivo microdialysis. Brain Res. 506: 169–171, 1990.
 114. Hebert, S. C. Extracellular calcium‐sensing receptor: implications for calcium and magnesium handling in the kidney. Kidney Int. 50: 2129–2139, 1996.
 115. Hebert, S. C., and T. E. Andreoli. Control of NaCl transport in the thick ascending limb. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F745–F756, 1984.
 116. Hebert, S. C., and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. II. Determinants of the ADH‐mediated increases in transepithelial voltage and in net Cl‐ absorption. J. Membr. Biol. 80: 221–233, 1984.
 117. Hebert, S. C., and T. E. Andreoli. Interactions of temperature and ADH on transport processes in cortical collecting tubules: evidence for ADH‐induced narrow aqueous channels in apical membranes. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F470–F480, 1980.
 118. Hebert, S. C., and T. E. Andreoli. Water permeability of biological membranes. Lessons from antidiuretic hormone—responsive epithelia. Biochim. Biophys. Acta 650: 267–280, 1982.
 119. Hebert, S. C., R. M., Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH‐stimulated NaCl co‐transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F412–F431, 1981.
 120. Hebert, S. C., R. M., Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. III. Modulation of the ADH effect by peritubular osmolality. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F443–F451, 1981.
 121. Hebert, S. C., P. A., Friedman, and T. E. Andreoli. The effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. I. ADH increases transcellular conductance pathways. J. Membr. Biol. 80: 201–219, 1984.
 122. Hebert, S. C., J. A., Schafer, and T. E. Andreoli. The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron. J. Membr. Biol. 58: 1–19, 1981.
 123. Hechter, O., S., Terada, T. Nakahara, and G. Flouret. Neurohypophyseal hormone‐responsive adenylate cyclase. II. Relationship between hormonal occupancy of neurohypophyseal hormone receptor sites and adenylate cyclase activation. J. Biol. Chem. 253: 3219–3229, 1978.
 124. Ho, K., C. G., Nichols, W. J. Lederer, J. Lytton, P. M. Vassilev, M. V. Kanazirska, and S. C. Hebert. Cloning and expression of an inwardly rectifying ATP‐regulated potassium channel. Nature 362: 31–37, 1993.
 125. Hobbs, H. H., D. W., Russell, M. S. Brown, and J. L. Goldstein. The LDL receptor locus in familial hypercholesterolemia: mutations analysis of a membrane protein. Annu. Rev. Genet. 24: 133–170, 1990.
 126. Hoffman, P. K., L., Share, J. T. Crofton, and R. E. Shade. The effect of intracerebroventricular indomethacin on osmotically stimulated vasopressin release. Neuroendocrinology 34: 132–139, 1982.
 127. Hoffman, W. E., U., Ganten, M. I. Phillips, P. G. Schmid, P. Schelling, and D. Ganten. Inhibition of drinking in water‐deprived rats by combined central angiotensin II and cholinergic receptor blockade. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F41–F47, 1978.
 128. Holtzman, E. J., L. F., Kolakowski, and D. A. Ausiello. The molecular biology of congenital nephrogenic diabetes insipidus. In: Molecular Nephrology, edited by J. Bonventre. New York: Marcel Dekker, 1994, p. 887–912.
 129. Honda, K., H., Negoro, T. Higuchi, and Y. Tadokoro. Activation of neurosecretory cells by osmotic stimulation of anteroventral third ventricle. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R1039–R1045, 1987.
 130. Hughes, J. M., W. M., Barron, and M. L. Vance. Recurrent diabetes insipidus associated with pregnancy: pathophysiology and therapy. Obstet. Gynecol. 73: 462–464, 1989.
 131. Iitake, K., L., Share, J. T. Crofton, D. P. Brooks, Y. Ouchi, and E. H. Blaine. Central atrial natriuretic factor reduces vasopressin secretion in the rat. Endocrinology 119: 438–440, 1986.
 132. Iitake, K., L., Share, Y. Ouchi, J. T. Crofton, and D. P. Brooks. Central cholinergic control of vasopressin release in conscious rats. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E146–E150, 1986.
 133. Iovino, M., and L. Steardo. Vasopressin release to central and peripheral angiotensin II in rats with lesion of the subfornical organ. Brain Res. 322: 365–368, 1984.
 134. Ishikawa, S.‐E., J. K., Kim, and R. W. Schrier. Effects of arginine vasopressin antidiuretic and vasopressor antagonists in glucocorticoid and mineralocorticoid deficient rats. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1985, p. 171–180.
 135. Isozaki, T., J. P., Lea, J. A. Tumlin, and J. M. Sands. Sodium‐dependent net urea transport in rat initial inner medullary collecting ducts. J. Clin. Invest. 94: 1513–1517, 1994.
 136. Isozaki, T., J. W., Verlander, and J. M. Sands. Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J. Clin. Invest. 92: 2448–2457, 1993.
 137. Itoh, C., and A. Nagamatsu. An aminopeptidase activity from porcine kidney that hydrolyzes oxytocin and vasopressin: purification and partial characterization. Biochim. Biophys. Acta 1243: 203–208, 1995.
 138. Iversen, L. L., S. D., Iversen, and F. E. Bloom. Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis. Nature 284: 350–351, 1980.
 139. Iwasaki, Y., M. B., Gaskill, C. A. Boss, and G. L. Robertson. The effect of nonselective opioid antagonist diprenorphine on vasopressin secretion in the rat. Endocrinology 134: 48–54, 1994.
 140. Iwasaki, Y., M. B., Gaskill, and G. L. Robertson. The effect of selective opioid antagonists on vasopressin secretion in the rat. Endocrinology 134: 55–62, 1994.
 141. Jans, D. A., B. A. Van Oost, H. H. Ropers, and F. Fahrenholz. Derivatives of somatic cell hybrids which carry the human gene locus for nephrogenic diabetes insipidus (NDI) express functional vasopressin renal V2‐type receptors. J. Biol. Chem. 265: 15379–15382, 1992.
 142. Jinnouchi, H., E., Araki, N. Miyamura, H. Kishikawa, R. Yoshimura, S. Ismai, K. Yamaguchi, H. Iwamatsu, and M. Shichiri. Analysis of vasopressin receptor type II (V2R) gene in three Japanese pedigrees with congenital nephrogenic diabetes insipidus: identification of a family with complete deletion of the V2R gene. Eur. J. Endocrinol. 143: 689–698, 1996.
 143. Johnson, A. K., and J. T. Cunningham. Brain mechanisms and drinking: the role of lamina terminalis–associated systems in extracellular thirst. Kidney Int. 32: S35–S42, 1987.
 144. Kachadorian, W. A., J. B., Wade, and V. A. DiScala. Vasopressin: induced structural change in toad bladder luminal membranes. Science 190: 67–69, 1975.
 145. Kachadorian, W. A., J. B., Wade, C. C. Uiterwyk, and V. A. Discala. Membrane structural and functional responses to vasopressin in toad urinary bladder. J. Membr. Biol. 30: 381–401, 1977.
 146. Kallen, B. A., S. S., Carlsson, and B. K. Bengtssen. Diabetes insipidus and use of desmopressin (Minirin) during pregnancy. Eur. J. Endocrinol. 132: 144–146, 1995.
 147. Kaplan, M. R., M. D., Plotkin, W.‐S. Lee, Z.‐C. Xu, J. Lytton, and S. C. Hebert. Apical localization of the Na–K–Cl cotransporter, rBSCl, on rat thick ascending limbs. Kidney Int. 49: 40–47, 1996.
 148. Kaplowitz, P. B., A. J., D'Ercole, and G. L. Robertson. Radioimmunoassay of vasopressin in familial central diabetes insipidus. J. Pediatr. 100: 76–81, 1982.
 149. Kieferle, S., P., Fong, M. Bens, A. Vandewalle, and T. Jentsch. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc. Natl. Acad. Sci. U.S.A. 91: 6943–6947, 1994.
 150. Kihlberg, J., J., Ahman, B. Walse, T. Drakenberg, A. Nilsson, C. Soderbergahlm, B. Bengtsson, and H. Olsson. Glycosylated peptide hormones: pharmacological properties and conformational studies of [1‐desamino,8‐d‐arginine;]vasopressin. J. Med. Chem. 38: 161–169, 1995.
 151. Kim, J. K., and R. W. Schrier. Cellular effect of arginine vasopressin antagonist on the isolated renal tubule. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1985, p. 155–158.
 152. Kinter, L. B., W. F., Huffman, and F. L. Stassen. Antagonists of the antidiuretic activity of vasopressin. Am. J. Physiol. 254: F165–F177, 1988.
 153. Kiss, J. Z., E., Mezey, and L. Skirboll. Corticotropin‐releasing factor–immunoreactive neurons of the paraventricular nucleus become vasopressin‐positive after adrenalectomy. Proc. Natl. Acad. Sci. U.S.A. 81: 1854–1858, 1984.
 154. Knepel, W., D., Nutto, and D. K. Meyer. Effects of transection of subfornical organ efferent projections on vasopressin release induced by angiotensin or isoprendaline in the rat. Brain Res. 248: 180–184, 1982.
 155. Knepper, M. A., and F. C. J. Rector. Urine concentration and dilution. In: The Kidney (5th ed.), edited by B. M. Brenner. Philadelphia: Saunders, 1996, p. 532–570.
 156. Knoers, N., and A. H. Monnens. A variant of nephrogenic diabetes insipidus: V2 receptor abnormality restricted to the kidney. Eur. J. Pediatr. 150: 370–373, 1991.
 157. Knoers, N., and L. A. H. Monnens. Nephrogenic diabetes insipidus: clinical symptoms, pathogenesis, genetics and treatment. Pediatr. Nephrol. 6: 476–482, 1992.
 158. Knoers, N., H. Van der Heyden, B. A. Van der Oost, L. Monnens, J. Willems, and H. H. Ropers. Nephrogenic diabetes insipidus: close linkage with markers from the distal long arm of the human X chromosome. Hum. Genet. 30: 31–38, 1988.
 159. Knoers, N. V. A. M., A. M. W. Van den Ouweland, M. Verdijk, L. A. H. Monnens, and B. A. Van Oost. Inheritance of mutations in the V2 receptor gene in thirteen families with nephrogenic diabetes insipidus. Kidney Int. 46: 170–176, 1994.
 160. Koida, M., J. D., Glass, I. L. Schwartz, and R. Walter. Mechanism of inactivation of oxytocin by rat kidney enzymes. Endocrinology 88: 633–643, 1971.
 161. Kojro, E., P., Eich, G. Gimpl, and F. Fahrenholz. Direct identification of an extracellular agonist binding site in the renal V2 vasopressin receptor. Biochemistry 32: 13537–13544, 1993.
 162. Kokko, J. P., and F. C. J. Rector. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 2: 214–223, 1972.
 163. Krothapalli, R. K., W. B., Duffy, H. O. Senekjian, and W. N. Suki. Modulation of the hydroosmotic effect of vasopressin on the rabbit cortical collecting tubule by adrenergic agents. J. Clin. Invest. 72: 287–294, 1983.
 164. Kuhn, W., and K. Ryffel. Herstellung konzentrierter Lösungen aus verdünnten durch blosse Membranwirkung. Ein Modellversuch zur Funcktion der Niere. Z. Physiol. Chemie. 276: 145–178, 1942.
 165. Kuwahara, M., K., Fushimi, Y. Terada, L. Bai, V. Marumo, and S. Sasaki. cAMP‐dependent phosphorylation stimulates water permeability of aquaporin‐collecting duct water channel protein expressed in Xenopus oocytes. J. Biol. Chem. 270: 10384–10387, 1995.
 166. Land, H., G., Schuetz, H. Schmale, and D. Richter. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin–neurophysin II precursor. Nature 295: 299–303, 1982.
 167. Landgraf, R., and M. Ludwig. Vasopressin release within the supraoptic and paraventricular nuclei of the rat brain: osmotic stimulation via microdialysis. Brain Res. 558: 191–196, 1991.
 168. Landgraf, R., I., Neumann, and H. Schwarzberg. Central and peripheral release of vasopressin and oxytocin in the conscious rat after osmotic stimulation. Brain Res. 457: 219–225, 1988.
 169. Langley, J. M., J. W., Balfe, T. Selander, P. N. Ray, and J. T. R. Clarke. Autosomal recessive inheritance of vasopressin‐resistant diabetes insipidus. Am. J. Med. Genet. 38: 90–94, 1991.
 170. Lee, W.‐S., and S. C. Hebert. ROMK inwardly rectifying ATP‐sensitive K+ channel. I. Expression in rat distal nephron segments. Am. J. Physiol. 268 (Renal fluid Electrolyte Physiol. 37): F1124–F1131, 1995.
 171. Leng, G. Rat supraoptic neurones: the effects of locally applied hypertonic saline. J. Physiol. (Lond.) 304: 405–414, 1980.
 172. Leng, G., R. E. J., Dyball, and W. T. Mason. Electrophysiology of osmoreceptors. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1985, p. 333–342.
 173. Lewandowska, A., I., Szyburska, and J. W. Guzek. Atrial natriuretic peptide inhibits neurohypophysial hormone's release in the rat. J. Physiol. Pharmacol. 43: 79–88, 1992.
 174. Linas, S. L., T., Berl, G. L. Robertson, G. A. Aisenbrey, R. W. Schrier, and R. J. Anderson. Role of vasopressin in the impaired water excretion of glucocorticoid deficiency. Kidney Int. 18: 58–67, 1980.
 175. Lind, R. W., L. W., Swanson, and D. Ganten. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40: 2–24, 1985.
 176. Lindheimer, M. D., and J. M. Davison. Osmoregulation, the secretion of arginine vasopressin and its metabolism during pregnancy. Eur. J. Endocrinol. 132: 133–143, 1995.
 177. Lolait, S. J., A. M., O'Carroll, O. W. McBride, M. Konig, Morel, and M. J. Brownstein. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357: 336–339, 1992.
 178. Lonergan, M., M., Birnbaumer, M. F. Arthus, and D. G. Bichet. Non‐X‐linked nephrogenic diabetes insipidus: phenotype and genotype features [abstract]. J. Am. Soc. Nephrol. 4: 264, 1993.
 179. Ludwig, M. Functional role of intrahypothalamic release of oxytocin and vasopressin: consequences and controversies. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E537–E545, 1995.
 180. Mangiapane, M. L., T. N., Thrasher, L. C. Keil, J. B. Simpson, and W. F. Ganong. Deficits in drinking and vasopressin secretion after lesions of the nucleus medianus. Neuroendocrinology 37: 73–77, 1983.
 181. Manning, M., W. A., Klis, A. Olma, J. Seto, and W. H. Sawyer. Design of more potent and selective antagonists of the antidiuretic responses to arginine vasopressin. J. Med. Chem. 25: 414–419, 1982.
 182. Manning, M., E., Nawrocka, A. Misicka, A. Olma, W. A. Klis, J. Seto, and W. H. Sawyer. Potent and selective antagonists of the antidiuretic responses to arginine vasopressin based on modification of [1‐(β‐mercapto‐β, β‐cyclopentamethyl‐enepropionic acid) 2‐d‐isoleucine, 4‐valine] arginine vasopressin at position 4. J. Med. Chem. 27: 423–429, 1984.
 183. Manning, M., and W. A. Sawyer. Development of selective agonists and antagonists of vasopressin and oxytocin. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1985, p. 131–144.
 184. Manning, M., and W. H. Sawyer. Synthesis and receptor specificities of vasopressin antagonists. J. Cardiovasc. Pharmacol. 8: S29–S32, 1986.
 185. Manning, P. T., D., Schwartz, N. C. Katsube, S. W. Holmberg, and P. Needleman. Vasopressin‐stimulated release of atriopeptin: endocrine antagonists in fluid homeostasis. Science 229: 395–397, 1985.
 186. Marks, N., L., Abrash, and R. Walter. Degradation of neurohypophyseal hormones by brain extracts and purified brain enzymes. Proc. Soc. Exp. Biol. Med. 142: 455–460, 1973.
 187. Martin, M. R. Familial diabetes insipidus. Q. J. Med. 28: 573–582, 1959.
 188. Martin, R., and K. H. Voigt. Enkephalins co‐exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis. Nature 289: 502–504, 1981.
 189. Matsui, K., T., Kimura, K. Ota, et al. Attenuation of the osmotic release of vasopressin by enkephalins in dogs. Am. J. Physiol. 256: (Endocrinol. Metab. 19): E270–E276, 1989.
 190. McDonald, K. M., K. C., Kuruvila, G. A. Aisenbrey, and R. W. Schrier. Effect of alpha and beta adrenergic stimulation on renal water excretion and medullary cyclic AMP in intact and diabetes insipidus rats. Kidney Int. 12: 96–103, 1977.
 191. McKinley, M. J. Common aspects of the cerebral regulation of thirst and renal sodium excretion. Kidney Int. 41: S102–S106, 1992.
 192. McKinley, M. J., A. M., Allen, J. Clevers, G. Paxinos, and F. A. O. Mendelsohn. Angiotensin receptor binding in the human hypothalamus: autoradiographic localization. Brain Res. 420: 375–379, 1987.
 193. McKinley, M. J., D. A., Denton, L. G. Leksell, R. S. Weisinger, R. D. Wright, D. R. Mouw, B. A. Scoggins, and M. H. Smith. Osmoregulatory thirst in sheep is disrupted by ablation of the anterior wall of the optic recess. Brain Res. 236: 210–215, 1982.
 194. McKinley, M. J., D. A., Denton, and R. S. Weisinger. Sensors for antidiuresis and thirst—osmoreceptors or CSF sodium detectors? Brain Res. 141: 89–103, 1978.
 195. McManus, M., C., Serhan, P. Jackson, and K. Strange. Ketoconazole blocks organic osmolyte efflux independently of its effect on arachidonic acid conversion. Am. J. Physiol. 267 (Cell Physiol. 36): C266–271, 1994.
 196. Mendelsohn, F. A. O., R., Quiron, J. M. Saavedra, G. Aguilera, and K. J. Catt. Autoradiographic localization of angiotensin II receptors in rat brain. Proc. Natl. Acad. Sci. U.S.A. 81: 1575–1579, 1984.
 197. Molony, D. A., W. B., Reeves, and T. E. Andreoli. Na+: K+: 2Cl‐ cotransport and the thick ascending limb. Kidney Int. 36: 418–426, 1989.
 198. Molony, D. A., W. B., Reeves, S. C. Hebert, and T. E. Andreoli. ADH increases apical Na+, K+, 2Cl‐ entry in mouse medullary thick ascending limbs of Henle. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F177–F187, 1987.
 199. Morris, J. F. Organization of neural inputs to the supraoptic and paraventricular nuclei: anatomical aspects. Prog. Brain Res. 60: 3–18, 1983.
 200. Morris, J. F., H. W., Sokol, and H. Valtin. One neuron–one hormone? In: Neurohypophysis, edited by A. M. Moses, and L. Share. Basel: Karger, 1977, p. 58–66.
 201. Morton, J. J., J. M., Connell, M.J. Hughes, G. C. Inglis, and E. C. Wallace. The role of plasma osmolality, angiotensin II and dopamine in vasopressin release in man. Clin. Endocrinol. (Oxf.) 23: 129–138, 1985.
 202. Moses, A. M., J. L., Miller, and M. A. Levine. Two distinct pathophysiological mechanisms in congenital nephrogenic diabetes insipidus. J. Clin. Endocrinol. Metab. 66: 1259–1264, 1988.
 203. Moses, A. M., S. J., Scheinman, and E. T. Schroeder. Antidiuretic and PGE2 responses to AVP and dDAVP in subjects with central and nephrogenic diabetes insipidus. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F354–F359, 1985.
 204. Muller, J., W. A., Kachadorian, and V. A. DiScala. Evidence that ADH‐stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell. Biol. 85: 83–95, 1980.
 205. Nadler, S. P., S. C., Hebert, and B. M. Brenner. PGE2, forskolin, and cholera toxin interaction in rabbit cortical collecting tubule. Am. J. Physiol. 250 (Renal Fluid electrolyte Physiol. 19): F127–F135, 1986.
 206. Nagasaki, H., M., Ito, H. Yuasa, H. Saito, M. Fukase, K. Hamada, E. Ishikawa, H. Katakami, and Y. Oiso. Two novel mutations in the coding region for neurophysin‐II associated with familial central diabetes insipidus. J. Clin. Endocrinol. Metab. 80: 1352–1356, 1995.
 207. Nardacci, N. J., S., Mukhopadhyay, and B. J. Campbell. Partial purification and characterization of the antidiuretic hormone‐inactivating enzyme from renal plasma membranes. Biochim. Biophys. Acta 377: 146–157, 1975.
 208. Neumann, I., E., Koehler, R. Landgraf, and J. Summy‐Long. An oxytocin receptor antagonist infused into the supraoptic nucleus attenuates intranuclear and peripheral release of oxytocin during suckling in conscious rats. Endocrinology 134: 141–148, 1994.
 209. Nielsen, S., and P. Agre. The aquaporin family of water channels in kidney. Kidney Int. 48: 1057–1068, 1995.
 210. Nielsen, S., C.‐L., Chou, D. Marples, E. I. Christensen, B. K. Kishore, and M. A. Knepper. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin‐CD water channels to plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 92: 1013–1017, 1995.
 211. Nielsen, S., S. R., Digiovanni, E. I. Christensen, M. A. Knepper, and H. W. Harris. Cellular and subcellular immunolocalization of vasopressin‐regulated water channel in rat kidney. Proc. Natl. Acad. Sci. U.S.A. 90: 11663–11667, 1993.
 212. Nielsen, S., B., Smith, E. I. Christensen, M. A. Knepper, and P. Agre. CHIP28 water channels are localized in constitutively water‐permeable segments of the nephron. J. Cell. Biol. 120: 371–383, 1993.
 213. Nitschke, U., and H. Balzar. Die Inaktivierung von infundiertem Vasopressin bei Diabetes insipidus‐Probanden. Acta Endocrinol. (Copenh.) 62: 270–282, 1969.
 214. Nordmann, J. J. Stimulus‐secretion coupling. Prog. Brain Res. 60: 281–304, 1983.
 215. Nordmann, J. J., G., Dayanithi, and M. Cazalis. Coupling between the bioelectrical activity of a neurosecretory cell and the release at its terminals of neuropeptides. In: Vasopressin, edited by R. W. New York: New York: Raven, 1985, p. 375–383.
 216. Nordmann, J. J., G., Dayanithi, and M. Cazalis. Do opioid peptides modulate, at the level of the nerve endings, the release of neurohypophyseal hormones? Exp. Brain Res. 61: 560–566, 1986.
 217. Nordmann, J. J., and R. E. J. Dyball. Effects of veratridine on Ca fluxes and the release of oxytocin and vasopressin from the isolated rat neurohypophysis. J. Gen. Physiol. 72: 297–304, 1978.
 218. Obana, K., M., Natuse, T. Inagami, A. B. Brown, K. Naruse, F. Kurimoto, H. Sakurai, H. Demura, and K. Shizume. Atrial natriuretic factor inhibits vasopressin secretion from rat posterior pituitary. Biochem. Biophys. Res. Commun. 132: 1088–1094, 1985.
 219. Oberleithner, H., W., Guggino, and G. Giebisch. Mechanism of distal tubular chloride transport in Amphiuma kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F331–F339, 1982.
 220. Ohnishi, A., Y., Orita, R. Okahara, et al. Potent aquaretic agent: a novel nonpeptide selective vasopressin 2 antagonist (OPC‐31260) in men. J. Clin. Invest. 92: 2653–2659, 1993.
 221. Oiso, Y., Y., Iwasaki, K. Kondo, K. Takatsuki, and A. Tomita. Effect of the opioid kappa‐receptor agonist U50488H on the secretion of arginine vasopressin. Study on the mechanism of U50488H‐induced diuresis. Neuroendocrinology 48: 658–662, 1988.
 222. Oksche, A., J., Dickson, R. Schülein, H. W. Seyberth, M. Müller, W. Rascher, M. Birnbaumer, and W. Rosenthal. Two novel mutations in the vasopressin V2 receptor gene in patients with congenital nephrogenic diabetes insipidus. Biochem. Biophys. Res. Commun. 205: 552–557, 1994.
 223. Oksche, A., R., Schülein, C. Rutz, U. Liebenhoff, J. Dickson, H. Müller, M. Birnbaumer, and W. Rosenthal. Vasopressin V2 receptor mutants causing X‐linked nephrogenic diabetes insipidus: analysis of expression, processing and function. Mol. Pharmacol. 50: 820–828, 1996.
 224. Okuya, S., K., Inenaga, T. Kaneko, and H. Yamashita. Antiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain Res. 402: 58–67, 1987.
 225. Online Mendelian Inheritance in Man, Johns Hopkins University, Baltimore, MD. MIM numbers: 304800 diabetes insipidus nephrogenic; 222000 diabetes insipidus, renal type, autosomal recessive. World Wide Web URL: http://www3.ncbi.‐nlm.nih.gov/omim/
 226. Orloff, J., J. S., Handler, and S. Bergstrom. Effect of prostaglandin (PGE‐1) on the permeability response of toad bladder to vasopressin, theophylline and adenosine 3′,5′‐monophosphate. Nature 205: 397–398, 1965.
 227. Orr, F. R., and R. L. Filipich. Studies with angiotensin in nephrogenic diabetes insipidus. Can. Med. Assoc. J. 97: 841–845, 1967.
 228. Pan, Y., P., Wilson, and J. Gitschier. The effect of eight V2 vasopressin receptor mutations on stimulation of adenylyl cyclase and binding to vasopressin. J. Biol. Chem. 269: 31933–31937, 1994.
 229. Peters, J. P., Body Water. The Exchange of Fluids in Man. Springfield, IL: Thomas, 1935.
 230. Peterson, M. J., and I. S. Edelman. Calcium inhibition of the action of vasopressin on the urinary bladder of toad. J. Clin. Invest. 43: 583–594, 1964.
 231. Phillips, M. I., W. E., Hoffman, and S. L. Bealer. Dehydration and fluid balance: central effects of angiotensin. Federation Proc. 41: 2520–2527, 1982.
 232. Pickering, B. T., and C. W. Jones. Neurophysins. In: Hormonal Proteins and Peptides, edited by C. H. Li, New York: Academic, 1978, vol. 5, p. 103–158.
 233. Poole, C. J. M., D. A., Carter, M. Vallejo, and S. L. Lightman. Atrial natriuretic factor inhibits the stimulated in vivo and in vitro release of vasopressin and oxytocin in the rat. J. Endocrinol. 112: 97–102, 1987.
 234. Portilla, D., J. A., Shayman, and N. A. R. Morriso. Vasopressin does not hydrolyze polyphosphoinositides in rabbit collecting tubule cells. Biochim. Biophys. Acta 928: 305–311, 1987.
 235. Poulain, D. A., and J. B. Wakerley. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7: 773–808, 1982.
 236. Preston, B. M., T. P., Carroll, W. B. Guggino, and P. Agre. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256: 385–387, 1992.
 237. Quillen, E. W., and A. W. Cowley. Influence of volume changes on osmolality–vasopressin relationships in conscious dogs. Am. J. Physiol. 244 (Heart Circ. Physiol. 13): H73–H79, 1983.
 238. Raff, H. Glucocorticoid inhibition of neurohypophysial vasopressin secretion. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R635–R644, 1987.
 239. Rajerison, R. M., M., Montegut, S. Jard, and F. Morel. The isolated frog skin epithelium: permeability characteristics and responsiveness to oxytocin, cyclic AMP and theophylline. Pflugers Arch. 332: 302–312, 1972.
 240. Ramsay, D. J., B. J., Rolls, and R. J. Wood. Thirst following water deprivation in dogs. Am. J. Physiol. 232 (Regulatory Integrative Comp. Physiol. 1): R93–R100, 1977.
 241. Reeves, W. B., and T. E. Andreoli. Cl‐ transport in basolateral renal medullary vesicles: II. Cl‐ channels in planar lipid bilayers. J. Membr. Biol. 113: 57–65, 1990.
 242. Reeves, W. B., and T. E. Andreoli. Nephrogenic diabetes insipidus. In: Metabolic and Molecular Bases of Inherited Disease, edited by C. R. Schriver, A. L. Beaudet, W. S. Sly, and D. Vale. New York: McGraw‐Hill, 1995, p. 3045–3071.
 243. Reeves, W. B., D. G., Bichet, and T. E. Andreoli. The posterior pituitary and water metabolism. In: Williams Textbook of Endocrinology (9th ed.), edited by J. D. Wilson, and D. W. Foster. Philadelphia: Saunders, 1998, p. 341–387.
 244. Reeves, W. B., G. A., McDonald, P. Mehta, and T. E. Andreoli. Activation of K+ channels in renal medullary vesicles by cAMP‐dependent protein kinase. J. Membr. Biol. 109: 65–72, 1989.
 245. Reeves, W. B., C. J., Winters, L. Zimniak, and T. E. Andreoli. Medullary thick limbs: renal concentrating segments. Kidney Int. 50: S154–S164, 1996.
 246. Reif, M. C., S. L., Troutman, and J. A. Schafer. Sustained response to vasopressin in isolated rat cortical collecting tubules. Kidney Int. 26: 725–732, 1984.
 247. Repaske, D., and D. Browning. A de novo mutation in the coding sequence for neurophysin‐II (Pro24—Leu) is associated with onset and transmission of autosomal dominant neurohypophyseal diabetes insipidus. J. Clin. Endocrinol. Metab. 79: 421–427, 1994.
 248. Ribeiro, C. P., F., Ribeiro‐Neto, J. B. Field, and W. N. Suki. Prevention of α2‐adrenergic inhibition on ADH action by pertussis toxin in rabbit CCT. Am. J. Physiol. 253 (Cell Physiol. 22): C105–C112, 1987.
 249. Riccardi, D., J., Park, W.‐S. Lee, G. Gamba, E. M. Brown, and S. C. Hebert. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation‐sensing receptor. Proc. Natl. Acad. Sci. U.S.A. 92: 131–135, 1995.
 250. Riddell, D. C., R., Mallonee, J. A. Phillips, J. S. Parks, L. A. Sexton, and J. L. Hamerton. Chromosomal assignment of human sequences encoding arginine vasopressin–neurophysin II and growth hormone releasing factor. Somat. Cell Mol. Genet. 11: 189–195, 1985.
 251. Rittig, R., G. L., Robertson, C. Siggaard, L. Kovacs, N. Gregersen, J. Nyborg, and E. B. Pedersen. Identification of 13 new mutations in the vasopressin–neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am. J. Hum. Genet. 58: 107–117, 1996.
 252. Robertson, G. L. Physiology of ADH secretion. Kidney Int. 32: S20–S26, 1987.
 253. Robertson, G. L. Vasopressin in osmotic regulation in man. Annu. Rev. Med. 25: 315–322, 1974.
 254. Robertson, G. L., S., Athar, and R. L. Shelton. Osmotic control of vasopressin function. In: Disturbances in Body Fluid Osmolality, edited by T. E. Andreoli, J. J. Grantham, and F. C. Rector. Bethesda, MD: Am. Physiol. Soc., 1977, p. 125–148.
 255. Robertson, G. L., and T. Berl. Water metabolism. In: The Kidney, edited by B. M. Brenner, and F. C. J. Rector. Philadelphia: Saunders, 1986, p. 385–432.
 256. Robertson, G. L., E. A., Mahr, S. Athar, and T. Sinha. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52: 2340–2352, 1973.
 257. Robertson, G. L., R. L., Shelton, and S. Athar. The osmoregulation of vasopressin. Kidney Int. 10: 25–37, 1976.
 258. Robinson, A. G. Radioimmunoassay of neurophysin proteins: utilization of specific neurophysin assays to demonstrate independent secretion of different neurophysins in vivo. Ann. N.Y. Acad. Sci. 248: 246–256, 1975.
 259. Robinson, A. G., The neurophysins. In: The Neurohypophysis. Physiological and Clinical Aspects, edited by S. Reichlin, New York: Plenum, 1984, p. 65–93.
 260. Rocha, A. S., and J. P. Kokko. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J. Clin. Invest. 52: 612–623, 1973.
 261. Rosenthal, W., A., Antaramian, S. Gilbert, and M. Birnbaumer. Nephrogenic diabetes insipidus. J. Biol. Chem. 268: 13030–13033, 1993.
 262. Rosenthal, W., A., Seibold, A. Antaramian, M. Lonergan, M.‐F. Arthus, G. Hendy, M. Birnbaumer, and D. Bichet. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359: 233–235, 1992.
 263. Ross, M. G., M. G., Ervin, R. D. Leake, J. A. Humme, and D. A. Fisher. Continuous ovine fetal hemorrhage: sensitivity of plasma and urine arginine vasopressin response. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E464–E469, 1986.
 264. Roy, C., T., Barth, and S. Jard. Vasopressin‐sensitive kidney adenylate cyclase. Structural requirements for attachment to the receptor and enzyme activation. J. Biol. Chem. 250: 3144–3156, 1975.
 265. Roy, G., and U. Banderali. Channels for ions and amino acids in kidney cultured cells (MDCK) during volume regulation. J. Exp. Zool. 268: 121–126, 1994.
 266. Russell, J. A., R. E., Blackburn, and G. Leng. The role of the AV3V region in the control of magnocellular oxytocin neurons. Brain Res. Bull. 20: 803–810, 1988.
 267. Russell, J. T., M. J., Brownstein, and H. Gainer. Time course of appearance and release of [35S] cysteine labelled neurophysins and peptides in the neurohypophysis. Brain Res. 205: 299–311, 1981.
 268. Sabolic, I., T., Katsura, J. M. Verbavatz, and D. Brown. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J. Membr. Biol. 143: 165–175, 1995.
 269. Sachs, H., P., Fawcett, Y. Takabatake, and R. Portanova. Biosynthesis and release of vasopressin and neurophysin. Recent. Prog. Harm. Res. 25: 447–484, 1969.
 270. Sachs, H., and Y. Takabatake. Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75: 943–948, 1964.
 271. Salata, R. A., J. G., Verbalis, and A. G. Robinson. Cold water stimulation of oropharyngeal receptors in man inhibits release of vasopressin. J. Clin. Endocrinol. Metab. 65: 561–567, 1987.
 272. Sands, J. M., H., Nonoguchi, and M. A. Knepper. Vasopressin effects on urea and H2.O transport in inner medullary collecting duct subsegments. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F823–F832, 1987.
 273. Sands, J. M., and D. C. Schrader. An independent effect of osmolality on urea transport in rat terminal IMCDs. J. Clin. Invest. 88: 137–142, 1991.
 274. Saper, C. B., D. G., Standaert, M. G. Currie, D. Schwartz, D. M. Geller, and P. Needleman. Atriopeptin‐immunoreactive neurons in the brain: presence in cardiovascular regulatory areas. Science 227: 1047–1049, 1985.
 275. Sasaki, S., K. Fushimi, K. Ishibashi, and F. Marumo. Water channels in the kidney collecting duct. Kidney Int. 48: 1082–1087, 1995.
 276. Sato, M., and M. J. Dunn. Interaction of vasopressin, prostaglandins and cAMP in rat papillary collecting tubule cells in culture. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F423–F433, 1984.
 277. Sausville, E., D. Carney, and J. Battey. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J. Biol. Chem. 260: 10236–10241, 1985.
 278. Sawchenko, P. E., and L. W. Swanson. Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214: 685–687, 1981.
 279. Sawchenko, P. E., and L. W. Swanson. The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei. Prog. Brain Res. 60: 19–29, 1983.
 280. Sawchenko, P. E., L. W., Swanson, and W. W. Vale. Co‐expression of corticotropin‐releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc. Natl. Acad. Sci. U.S.A. 81: 1883–1887, 1984.
 281. Sawyer, W. H. Evolution of neurohypophyseal hormones and their receptors. Federation Proc. 36: 1842–1847, 1977.
 282. Sawyer, W. H., M., Acosta, L. Balaspiri, J. Judd, and M. Manning. Structural changes in the arginine vasopressin molecule that enhance antidiuretic activity and specificity. Endocrinology 94: 1106–1115, 1974.
 283. Sawyer, W. H., P. K. T., Pang, J. Seto, M. McEnroe, B. Lammek, and M. Manning. Vasopressin analogs that antagonize antidiuretic responses by rats to the antidiuretic hormone. Science 212: 49–51, 1981.
 284. Schafer, J. A., and T. E. Andreoli. The effect of antidiuretic hormone on solute flows in mammalian collecting tubules. J. Clin. Invest. 51: 1279–1286, 1972.
 285. Schlatter, E., and R. Greger. cAMP increases the basolateral Cl‐‐conductance in the isolated perfused medullary thick ascending limb of Henle's loop of the mouse. Pflugers Arch. 405: 367–376, 1985.
 286. Schlondorff, D., and S. D. Levine. Inhibition of vasopressin‐stimulated water flow in toad bladder by phorbol myristate acetate, dioctanoylglycerol and RHC‐80267. J. Clin. Invest. 76: 1071–1078, 1985.
 287. Schlondorff, D., J. A., Satriano, and G. J. Schwartz. Synthesis of prostaglandin E2 in different segments of isolated collecting tubules from adult and neonatal rabbits. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F134–F144, 1985.
 288. Schmale, H., S., Fehr, and D. Richter. Vasopressin biosynthesis: from gene to peptide hormone. Kidney Int. 32: S8–S13, 1987.
 289. Schmale, H., S., Heinsohn, and D. Richter. Structural organization of the rat gene for the arginine vasopressin–neurophysin II precursor. EMBO J. 2: 763–767, 1983.
 290. Schmale, H., and D. Richter. Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308: 705–709, 1984.
 291. Schöneberg, T., J., Yun, D. Wenkert, and J. Wess. Functional rescue of mutant V2 vasopressin receptors causing nephrogenic diabetes insipidus by a coexpressed receptor polypeptide. EMBO J. 15: 1283–1291, 1996.
 292. Schrier, R. W., T., Berl, R. J. Anderson, and K. M. McDonald. Non‐osmotic regulation of renal water excretion. Trans. Am. Clin. Climatol. Assoc. 87: 161–169, 1976.
 293. Schülein, R., C., Rutz, and W. Rosenthal. Membrane targeting and determination of transmembrane topology of the human vasopressin V2 receptor. J. Biol. Chem. 271: 28844–28852, 1996.
 294. Seckl, J. R., T. D. M., Williams, and S. L. Lightman. Oral hypertonic saline causes transient fall of vasopressin in humans. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R214–R217, 1986.
 295. Seibold, A., P., Brabet, W. Rosenthal, and M. Birnbaumer. Structure and chromosomal localization of the human antidiuretic hormone receptor gene. Am. J. Hum. Genet. 51: 1078–1083, 1992.
 296. Shade, R. E., and L. Share. Renal vasopressin clearance with reductions in renal blood flow in the dog. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1) F341–F347, 1977.
 297. Shah, S. V., and V. Thakur. Vasopressinase and diabetes insipidus of pregnancy. Ann. Intern. Med. 109: 435–436, 1988.
 298. Share, L. Vasopressin, its bioassay and the physiological control of its release. Am. J. Med. 42: 701–712, 1967.
 299. Sharif, M., and M. R. Hanley. Peptide receptors. Stepping up the pressure. Nature 357: 279–280, 1992.
 300. Shayakul, C., A., Steel, and M. A. Hediger. Molecular cloning and characterization of the vasopressin‐regulated urea transporter of rat kidney collecting ducts. J. Clin. Invest. 98: 2580–2587, 1996.
 301. Simpson, J. B., A. N., Epstein, and J. S. Camardo. Localization for the dipsogenic action of angiotensin II in the subfornical organ of the rat. J. Comp. Physiol. Psychol. 92: 2676–2682, 1978.
 302. Sklar, A. H., and R. W. Schrier. Central nervous system mediators of vasopressin release. Physiol. Rev. 63: 1243–1280, 1983.
 303. Sladek, J. R., and T. H. McNeill. Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. IV. Verification of catecholamine–neurophysin interactions through single section analysis. Cell Tissue Res. 210: 181–190, 1980.
 304. Star, R. A., H., Nonoguchi, R. Balaban, and M. A. Knepper. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J. Clin. Invest. 81: 1879–1888, 1988.
 305. Stassen, F. L., R. W., Erickson, W. F. Huffman, J. Stefankiewicz, L. Sulat, and V. D. Wiebelhaus. Molecular mechanisms of novel antidiuretic antagonists: analysis of the effects on vasopressin binding and adenylate cyclase activation in animal and human kidney. J. Pharmacol. Exp. Ther. 223: 50–54, 1982.
 306. Stassen, F. L., G. D., Heckman, D. B. Schmidt, J. Stefankiewicz, L. Sulat, W. F. Huffman, M. M. Moore, and L. B. Kinter. Actions of vasopressin antagonists: molecular mechanisms. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1985, p. 145–154.
 307. Stephenson, J. L. Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 2: 85–94, 1972.
 308. Stokes, J. B. Consequences of potassium recycling in the renal medulla. Effects on ion transport by the medullary thick ascending limb of Henle's loop. J. Clin. Invest. 70: 219–229, 1982.
 309. Strange, K., F., Emma, and P. S. Jackson. Cellular and molecular physiology of volume‐sensitive anion channels. Am. J. Physiol. 270 (Cell Physiol. 39): C711–730, 1996.
 310. Strange, K., R., Morrison, L. Shrode, and R. Putnam. Mechanism and regulation of swelling‐activated inositol efflux in brain glial cells. Am. J. Physiol. 265 (Cell Physiol: C244–256, 1993.
 311. Stricker, E. M., and J. G. Verbalis. Interaction of osmotic and volume stimuli in regulation of neurohypophyseal secretion in rats. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R267–R275, 1986.
 312. Sugimoto, T., M., Saito, S. Mochizuki, Y. Watanabe, S. Hashimoto, and H. Kawashima. Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor. J. Biol. Chem. 269: 27088–27092, 1994.
 313. Sved, A. F., Central neural pathways in baroreceptor control of vasopressin secretion. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1985, p. 443–453.
 314. Tajima, T., J., Nakae, Y. Takekoshi, Y. Takahashi, K. Yuri, T. Nagashima, and K. Fujieda. Three novel AVPR2 mutations in three Japanese families with X‐linked nephrogenic diabetes insipidus. Pediatr. Res. 39: 522–526, 1996.
 315. Takabatake, Y., and H. Sachs. Vasopressin biosynthesis. III. In vitro studies. Endocrinology 75: 934–942, 1964.
 316. Takaichi, K., and K. Kurokawa. Inhibitory guanosine triphosphate—binding protein‐mediated regulation of vasopressin action in isolated single medullary tubules of mouse kidney. J. Clin. Invest. 82: 1437–1444, 1988.
 317. Takaichi, K., S., Uchida, and K. Kurokawa. High Ca2+ inhibits AVP‐dependent cAMP production in thick ascending limbs of Henle. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F770–F776, 1986.
 318. Tanaka, J., H., Kaba, H. Saito, and K. Seto. Electrophysiological evidence that circulating angiotensin II sensitive neurons on the subfornical organ alter the activity of hypothalamic paraventricular neurohypophyseal neurons in the rat. Brain Res. 342: 361–365, 1985.
 319. Thrasher, T. N., C.J., Brown, L. C. Keil, and D.J. Ramsay. Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism? Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 7): R333–R339, 1980.
 320. Thrasher, T. N., L. C., Keil, and D.J. Ramsay. Drinking, oropharyngeal signals, and inhibition of vasopressin secretion in dogs. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 22): R509–R515, 1987.
 321. Thrasher, T. N., L. C., Keil, and D. J. Ramsay. Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically‐induced drinking and vasopressin secretion in the dog. Endocrinology 110: 1837–1839, 1982.
 322. Thrasher, T. N., J. F., Nistal‐Herrera, L. C. Keil, and D.J. Ramsay. Satiety and inhibition of vasopressin secretion after drinking in dehydrated dogs. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E394–E401, 1981.
 323. Tsuboi, Y., S., Ishikawa, G. Fujisawa, K. Okada, and T. Saito. Therapeutic efficacy of the non‐peptide AVP antagonist OPC‐31260 in cirrhotic rats. Kidney Int. 46: 237–244, 1994.
 324. Tsukaguchi, H., H., Matsubara, S. Taketani, Y. Mori, T. Seido, and M. Inada. Binding‐, intracellular transport‐, and biosynthesis‐defective mutants of vasopressin type 2 receptor in patients with X‐linked nephrogenic diabetes insipidus. J. Clin. Invest. 96: 2043–2050, 1995.
 325. Tsushima, H., M., Mori, and T. Matsuda. Microinjections of angiotensin II into the supraoptic and paraventricular nuclei produce potent antidiureses by vasopressin release mediated through adrenergic and angiotensin receptors. Jpn. J. Pharmacol. 66: 241–246, 1994.
 326. Usberti, M., G., DiMinno, B. Ungaro, B. Cianciaruso, S. Federico, G. Ardillo, A. Gargiuo, F. Martucci, M. Pannain, A. M. Cerbone, G. Conte, C. Pecoraro, and V. Andreucci. Angiotensin II inhibition with captopril on plasma ADH, PG synthesis, and renal function in humans. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F986–F990, 1986.
 327. Usberti, M., S., Federico, G. DiMinno, B. Ungaro, G. Ardillo, C. Pecoraro, B. Cianciaruso, A. M. Cerbone, F. Cirillo, M. Pannain, A. Gargiulo, and V. Andreucci. Effects of angiotensin II on plasma ADH, PGE2 synthesis and water excretion in normal man. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F254–F259, 1985.
 328. Valtin, H. Sequestration of urea and nonurea solutes in renal tissues of rats with hereditary hypothalamic diabetes insipidus: effect of vasopressin and dehydration on the countercurrent mechanism. J. Clin. Invest. 45: 337–345, 1966.
 329. Van den Ouweland, A. M. W., J. C. F. M. Dreesen, M. Verdijk, N. V. A. M. Knoers, L. A. H. Monnens, M. Rocchi, and B. A. Van Oost. Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nat. Genet. 2: 99–102, 1992.
 330. Vandesande, F., and K. Dierickx. Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res. 164: 153–162, 1975.
 331. Van Lieburg, A. F., M. A. J. Verdijk, N. V. A. M. Knoers, A. J. Van Essen, W. Proesmans, R. Mallmann, L. A. H. Monnens, B. A. Van Oost, C. H. Van Os, and P. M. T. Deen. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water‐channel gene. Am. J. Hum. Genet. 55: 648–652, 1994.
 332. Van Lieburg, A. F., M. A. J. Verdijk, F. Schoute, M. J. L. Ligtenberg, B. A. Van Oost, F. Waldhauser, M. Dobner, L. A. H. Monnens, and N. V. A. M. Knoers. Clinical phenotype of nephrogenic diabetes insipidus in females heterozygous for a vasopressin type 2 receptor mutation. Hum. Genet. 96: 70–78, 1995.
 333. Verkman, A. S., W. I., Lencer, D. Brown, and D. A. Ausiello. Endosomes from kidney collecting tubule cells contain the vasopressin‐sensitive water channel. Nature 333: 268–269, 1988.
 334. Verkman, A. S., P., Weyer, D. Brown, and D. A. Ausiello. Functional water channels are present in clathrin‐coated vesicles from bovine kidney but not from brain. J. Biol. Chem. 264: 20608–20613, 1989.
 335. Verney, E. B. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. Biol. Sci. 135: 25–105, 1947.
 336. Wade, J. B. Membrane structural studies of the action of vasopressin. Federation Proc. 44: 2687–2692, 1985.
 337. Wade, J. B., D. L., Stetson, and S. A. Lewis. ADH action: evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372: 106–117, 1981.
 338. Walter, R., and R. H. Bowman. Mechanism of inactivation of vasopressin and oxytocin by the isolated perfused rat kidney. Endocrinology 92: 189–193, 1973.
 339. Wang, B. C., W. D., Sundet, M. O. K. Hakumäki, and K. L. Goetz. Vasopressin and renin responses to hemorrhage in conscious, cardiac‐denervated dogs. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H399–H405, 1983.
 340. Wang, W., S., White, J. Giebel, and G. Giebisch. A potassium channel in the thick ascending limb of Henle's loop of rabbit kidney. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F244–F253, 1990.
 341. Weitzman, R. E., and D. A. Fisher. Arginine vasopressin metabolism in dogs. I. Evidence for a receptor‐mediated mechanism. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E591–E597, 1978.
 342. Weitzman, R. E., T. H., Glatz, and D. A. Fisher. The effect of hemorrhage and hypertonic saline upon plasma oxytocin and arginine vasopressin in conscious dogs. Endocrinology 103: 2154–2160, 1978.
 343. Weitzman, R. E., and C. R. Kleeman. The clinical physiology of water metabolism. III. The water depletion (hyperosmolar) and water excess (hyposmolar) syndromes. West. J. Med. 132: 16–38, 1980.
 344. Welling, P. A., and R. G. O'Neil. Cell swelling activates baso‐lateral membrane Cl and K conductances in rabbit proximal tubule. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F951–F962, 1990.
 345. Whitnall, M. H., E., Mezey, and H. Gainer. Co‐localization of corticotropin‐releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature 317: 248–252, 1985.
 346. Wildin, R. S., M. J., Antush, R. L. Bennett, J. M. Schoof, and C. R. Scott. Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus. Am. J. Hum. Genet. 55: 266–277, 1994.
 347. Willoughby, J. O., P. M., Jervois, M. F. Menadue, and W. W. Blessing. Noradrenaline, by activation of alpha‐1–adrenoceptors in the region of the supraoptic nucleus, causes secretion of vasopressin in the unanesthetized rat. Neuroen‐docrinology 45: 219–226, 1987.
 348. Wilson, K. C., R. E., Weitzman, and D. A. Fisher. Arginine vasopressin metabolism in dogs. II. Modeling and systems analysis. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E598–E605, 1978.
 349. Winters, C. J., W. B., Reeves, and T. E. Andreoli. Cl‐ channels in basolateral renal medullary membranes: III. Determinants of single channel activity. J. Membr. Biol. 118: 269–278, 1991.
 350. Winters, C. J., W. B., Reeves, and T. E. Andreoli. Cl‐ channels in basolateral renal medullary membrane vesicles: IV. Analogous channel activation by Cl‐ or cAMP‐dependent protein kinase. J. Membr. Biol. 122: 89–95, 1991.
 351. Wood, R. J., E. T., Rolls, and B. J. Rolls. Physiological mechanisms for thirst in the nonhuman primate. Am. J. Physiol. 242 (Regulatory Integrative Comp. Physiol. II): R423–R428, 1982.
 352. Work, J., J. H., Galla, B. B. Booker, et. al. Effect of ADH on chloride reabsorption in the loop of Henle of the Brattleboro rat. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F698–F703, 1985.
 353. Wotjak, C. T., M., Ludwig, and R. Landgraf. Vasopressin facilitates its own release within the supraoptic nucleus in vivo. Neuroreport 6: 1181–1184, 1994.
 354. Wuthrich, R. P., R., Loup, L. Favre, and M. B. Vallotton. Dynamic response of PG synthesis to peptide hormones and osmolality in renal tubular cells. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F790–F797, 1986.
 355. Yamada, T., K., Nakao, H. Itoh, et. al. Inhibitory action of leumorphin on vasopressin secretion in conscious rats. Endocrinology 122: 985–990, 1988.
 356. Yamamoto, S., K., Inenaga, S. Eto, and H. Yamashita. Cardiovascular‐related peptides influence hypothalamic neurons involved in control of body water homeostasis. Obes. Res. 3: 789S‐794S, 1995.
 357. Yamamoto, T., S., Sasaki, K. Fushimi, K. Kawasaki, E. Yaoita, K. Oota, Y. Hirata, F. Marumo, and I. Kihara. Localization and expression of a collecting duct water channel, aquaporin, in hydrated and dehydrated rats. Exp. Nephrol. 3: 193–201, 1995.
 358. Yokoyama, K., A., Yamauchi, M. Izumi, T. Itoh, A. Ando, E. Imai, T. Kamada, and N. Ueda. A low‐affinity vasopressin V2‐receptor gene in a kindred with X‐linked nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 7: 410–414, 1996.
 359. You, G., C. P., Smith, Y. Kanai, W.‐S. Lee, M. Stelzner, and M. A. Hediger. Cloning and characterization of the vasopressin‐regulated urea transporter. Nature 365: 844–847, 1993.
 360. Yuasa, H., M., Ito, M. Kurokawa, Y. Oiso, T. Watanabe, Y. Oda, T. Ishizuka, N. Tani, S. Ito, A. Shibata, and H. Saito. Novel mutations in the V2 vasopressin receptor gene in two pedigrees with congenital nephrogenic diabetes insipidus. J. Clin. Endocrinol. Metab. 79: 361–365, 1994.
 361. Zeidel, M. L., T. G., Hammond, J. B. Wade, J. Tucker, and H. W. Harris. Fate of antidiuretic hormone water channel proteins after retrieval from apical membrane. Am. J. Physiol. 265 (Cell Physiol. 34): C822–C833, 1993.
 362. Zerbe, R., L., Stropes, and A. G. Robertson. Vasopressin function in the syndrome of inappropriate diuresis. Annu. Rev. Med. 31: 315–327, 1980.
 363. Zhao, B. G., C., Chapman, and R. J. Bicknell. Opioid‐noradrenergic interactions in the neurohypophysis. I. Differential opioid receptor regulation of oxytocin, vasopressin and noradrenaline release. Neuroendocrinology 48: 16–24, 1988.
 364. Zhao, B. G., C., Chapman, D. Brown, and R. J. Bicknell. Opioid‐noradrenergic interactions in the neurohypophysis II. Does noradrenaline mediate the actions of endogenous opioids on oxytocin and vasopressin release? Neuroendocrinology 48: 25–31, 1988.
 365. Zimmerman, E. A., and R. Defendi. Hypothalamic pathways containing oxytocin, vasopressin and associated neurophysins. In: Neurohypophysis, edited by A. M. Moses, and L. Share. Basel: Karger, 1977, p. 22–29.
 366. Zimmerman, E. A., L.‐Y., Ma, and G. Nilaver. Anatomical basis of thirst and vasopressin secretion. Kidney Int. 32: S14–S19, 1987.
 367. Zimmerman, E. A., and A. G. Robinson. Hypothalamic neurons secreting vasopressin and neurophysin. Kidney Int. 10: 12–24, 1976.
 368. Zimmerman, E. A., and A. J. Silverman. Vasopressin and adrenal cortical interactions. Prog. Brain Res. 60: 493–504, 1983.
 369. Zimmerman, M. B., E. H., Blaine, and E. M. Stricker. Water intake in hypovolemic sheep: effects of crushing the left atrial appendage. Science 211: 489–491, 1981.
 370. Zimniak, L., C. J., Winters, W. B. Reeves, and T. E. Andreoli. Cl‐ channels in basolateral renal medullary vesicles. X. Cloning of a basolateral mTAL Cl‐ channel. Kidney Int. 48: 1828–1836, 1995.
 371. Zimniak, L., C. J., Winters, W. B. Reeves, and T. E. Andreoli. Cl‐ Cl‐channels in basolateral renal medullary vesicles XI. rbClC‐Ka cDNA encodes basolateral MTAL Cl‐ channels. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F1066–F1072, 1996.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Thomas E. Andreoli, W. Brian Reeves, Daniel G. Bichet. Endocrine Control of Water Balance. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 530-569. First published in print 2000. doi: 10.1002/cphy.cp070314