Comprehensive Physiology Wiley Online Library

Parathyroid Hormone and Polyhormones: Production and Export

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Role of Extracellular Calcium–Sensing and Extracellular Calcium–Regulated Parathyroid Hormone Secretion in Mineral ion Homeostasis
2 The G Protein–Coupled, Extracellular Calcium–Sensing Receptor
2.1 Structure and Function
2.2 Inherited Diseases Resulting from Receptor Mutations
2.3 Mice with Targeted Disruption of the Receptor
2.4 Are There Additional Receptors or Other Ion‐Sensing Receptors?
3 Anatomy and Physiology of the Parathyroid Cell
3.1 Morphology
3.2 Secretory Pathway
4 Physiological Control of Parathyroid Hormone Secretion by Extracellular Calcium and Other Factors
4.1 Acute Regulation
4.2 Additional Ionic Agonists Regulating Parathyroid Hormone Secretion via the Extracellular Calcium‐Sensing Receptor
4.3 Other Ions Modulating Parathyroid Hormone secretion
4.4 Rapid Actions of Vitamin D on Parathyroid Cells
4.5 Regulation of Parathyroid Hormone Secretion by Catecholamines and Other Biogenic Amines
4.6 Regulation of Parathyroid Hormone Secretion by Lipid Metabolites
4.7 Regulation of Parathyroid Hormone Secretion by Peptides and Peptide Hormones
4.8 Miscellaneous Factors Regulating Parathyroid Hormone Secretion
4.9 Mechanisms Underlying the Acute Regulation of Parathyroid Hormone Secretion by Extracellular Calcium
5 Regulation of Intracellular Degradation of Parathyroid Hormone
6 Regulation of Parathyroid Hormone Gene Expression
6.1 Chromosomal Localization and Organization of the Parathyroid Hormone Gene
6.2 Effects of Extracellular Calcium
6.3 Effects of Extracellular Phosphate
6.4 Effects of Vitamin D Metabolites
6.5 Parathyroid Hormone Regulation of Gene Expression by Steroids and Other Hormones
6.6 Regulation of Parathyroid Hormone Gene Expression by Agents that Increase Intracellular Cyclic Adenosine Monophosphate
6.7 Regulation of Overall Biosynthetic Activity of the Parathyroid Cell
7 Regulation of Parathyroid Cellular Proliferation
7.1 Effects of Extracellular Calcium
7.2 Effects of Vitamin D Metabolites
7.3 Effect of Extracellular Phosphate
7.4 Effect of Growth Factors
8 Circadian and Pulsatile Control of Parathyroid Hormone Secretion
8.1 Circadian Variation
8.2 Pulsatility
8.3 Alterations in Circadian Rhythm and Pulsatility in Patients with Abnormal Parathyroid Function
9 Secretion of Factors Other Than Parathyroid Hormone: Possible Autocrine/ Paracrine Regulation of Parathyroid Hormone Secretion
9.1 Evidence for Autocrine Control of Parathyroid Function
9.2 Secretion of Parathyroid Hormone–Related Protein
9.3 Secretion of Chromogranin A‐Derived Peptides
9.4 Secretion of Other Peptides
9.5 Secretion of Prostaglandins
Figure 1. Figure 1.

Steep inverse sigmoidal curves relating circulating parathyroid hormone (PTH) levels in vivo (top panel) and PTH release in vitro (bottom panel) to . Studies in vivo were performed in normal human subjects by administering EDTA on one day and calcium on another day intravenously and measuring circulating levels of intact PTH as a function of . Studies in vitro were carried out using dispersed parathyroid cells prepared from several different normal human parathyroid glands, each indicated by a different symbol. [From Brown 54 with permission.]

Figure 2. Figure 2.

The homeostatic system regulating . Even slight decrements in the level of stimulate parathyroid hormone (PTH) secretion, which then modulates the functions of bone, kidney, and intestine [indirectly through enhanced formation of 1,25(OH)2.D] to normalize . In addition to the actions of the classic calciotropic hormones, PTH and 1,25(OH)2.D (solid lines), extracellular calcium and phosphate ions exert direct actions (dashed lines). Some of the direct actions of are mediated by the ‐sensing receptor. PO4, phosphate; ECF, extracellular fluid; 1,25(OH)2D, 1,25–dihydroxyvitamin D; 25(OH)D, 25‐hydroxyvitamin D; + indicates stimulatory action and – inhibitory effect. [From Brown et al. 493 with permission.]

Figure 3. Figure 3.

Urinary excretion of calcium plotted as a function of total serum calcium concentration in normal human subjects (solid line) ± 2 SD (dashed lines) as well as in patients with hypoparathyroidism (triangles) and primary hyperparathyroidism (circles). [From Peacock et al. 344 with permission.]

Figure 4. Figure 4.

Predicted topology of the ‐sensing receptor from human parathyroid gland. Note the large extracellular domain, seven membrane‐spanning helices, and cytoplasmic C‐terminal tail. SP, signal peptide; HS, hydrophobic segment; PKC, protein kinase C. The positions of various missense and nonsense mutations causing either familial hypocalciuric hypercalcemia or autosomal dominant hypocalcemia are also indicated, using the three‐letter amino acid code, with the normal amino acid indicated before and the mutation after the number of the relevant codon. [From Brown et al. 492 with permission.]

Figure 5. Figure 5.

Effect of familial hypocalciuric hypercalcemia (FHH) on the relationship between serum and urinary calcium concentrations. Data are from either aparathyroid subjects who are otherwise normal (open symbols) or individuals with FHH who have been rendered hypoparathyroid following total parathyroidectomy (closed symbols). Note the marked flattening of this relationship in individuals with FHH, indicative of their failure to upregulate renal calcium excretion normally even in the face of substantial hypercalcemia. [From Attie et al. 14 with permission.]

Figure 6. Figure 6.

Expression in HEK 293 cells of ‐sensing receptors (CaRs) engineered to carry familial hypocalciuric hypercalcemia (top panel) or activating CaR mutations (bottom panel). Results show the effects of increasing concentrations of on levels of in HEK cells transiently transfected with wild‐type (WT) or mutant CaRs bearing the indicated mutations. [From Bai et al. 20 with permission.]

Figure 7. Figure 7.

Hypothetical ways in which the ‐sensing receptor integrates the homeostasis of divalent minerals, particularly calcium, and water to achieve the optimal “trade‐off” between the needs for conserving water and avoiding excessively high urinary calcium concentrations that might predispose to the formation of calcium‐containing stones within the distal urinary tract. [From Brown et al. 63 with permission.]

Figure 8. Figure 8.

Electron micrograph of parathyroid cells displaying cell polarity as revealed by the distribution of nuclei at the basal side, while secretory granules are preferentially located close to the apicolateral membrane, which is highlighted with the products of 5′‐nucleotidase activity, a well‐characterized enzyme marker for apical plasma membrane domains. Note the distinct characteristic folding of the apicolateral membrane in contrast to the basal plasma membrane juxtaposing the basal lamina. [From Wild and Schraner 494 with permission.]

Figure 9. Figure 9.

Possible pathways of parathyroid hormone (PTH) secretion in the parathyroid cell. The PTH gene is transcribed into mRNA coding for preproPTH in the nucleus. The preproPTH is synthesized in the cytosol and immediately translocated into the rough endoplasmic reticulum (RER), where the pre sequence is clipped. The proPTH is transported to the Golgi apparatus, where it stacks via a vesicle‐mediated pathway; the pro sequence is removed during transit to the trans‐Golgi network (TGN). Mature PTH is then packaged in immature secretory granules (ISG) in conjunction with chromo‐granin A (Cg A). Immature secretory granules can undergo maturation into larger, more dense mature secretory granules (MSG) by fusion to each other and condensation of the contents of their lumen; alternatively, immature secretory granules can release their contents directly at the plasma membrane or fuse to lysosomes (LYS), accelerating the time required to reach the cell surface or the degradation of PTH, respectively. Finally, it is possible that a fraction of PTH escapes packaging into immature secretory granules and reaches the plasma membrane via constitutive vesicles (CV), a pathway that is not regulated in most secretory cells and is present in all mammalian cells.

Figure 10. Figure 10.

A four‐parameter model of the relationship between parathyroid hormone (PTH) release and , which is based on the equation Y = {(A1D)/[1 + (X/C)B]} + D, where Y is the secretory rate for PTH and X is the extracellular free calcium ion concentration. The four parameters are as follows: A, maximal secretory rate; B, slope of the midpoint of the curve; C, midpoint or set‐point of the curve (defined as the level of that half‐maximally inhibits PTH secretion); and D, minimal secretory rate. [From Brown 53 with permission.]

Figure 11. Figure 11.

Temporal relationship between changes in and parathyroid hormone (PTH) secretion from perfused bovine parathyroid cells. [From Brown et al. 70 with permission.]

Figure 12. Figure 12.

Hysteresis in the relationship between circulating levels of intact parathyroid hormone (PTH) and serum ionized calcium concentration in normal human subjects during alterations in the direction of change of serum calcium concentration. Subjects were first infused with citrate to reduce the level of (solid triangles); then, the serum ionized calcium concentration was allowed to normalize (open triangles). On a subsequent day, the same subjects received an infusion of calcium to raise (solid circles), followed by citrate (open circles) to reduce back to its normal level. Note that on both days the serum PTH level is higher when is falling than when it is rising (that is, there is hysteresis). The vertical arrow indicates the basal levels of and PTH, while the other arrows show the direction in which is changing. [From Conlin et al. 100 with permission.]

Figure 13. Figure 13.

Apparent rate dependence in the response of circulating levels of intact parathyroid hormone (PTH) to stepwise decrements in induced by infusion of citrate to normal human subjects according to two different protocols. In one protocol (solid circles), citrate was first infused as a bolus followed at a constant rate for each of four 30 min periods. In the second (open circles), the initial bolus of citrate was omitted. As a result of the difference in the infusion protocols, there is a more rapid decrease in the level of to the eventual ∼0.05 mM decrement achieved at the end of each of the 30 min steps in the first protocol (A). This more rapid initial fall in elicits a more robust secretory response, which then decays to a level of PTH similar to that evoked by the second protocol at the end of each 30 min step (B). [From Grant et al. 170 with permission.]

Figure 14. Figure 14.

Potential intracellular pathways for regulation of parathyroid hormone (PTH) secretion in parathyroid cells. ISG, Immature secretory granule; MSG, mature secretory granule; PKC, protein kinase C; HETE, hydroxyeicosatetraenoic acid; PLA2, phospholipase A2; PLC, phospholipase C; D1R, dopamine 1 receptor; PAR, β‐adrenergic receptor; CaR, ‐sensing receptor. Solid lines represent pathways for which there is strong experimental evidence and dashed lines, pathways that have not been well characterized. Activation of the CaR in the presence of high raises G protein–mediated activation of PLC and inositol phosphate production and activation of a Ca2+ influx pathway, while cAMP levels decrease via pertussis toxin–sensitive inactivation of adenylate cyclase. Production of cAMP is stimulated in the presence of ligands for both βAR and D1,R. In addition, although total PKC activity is decreased in the presence of high , there is a CaR‐dependent activation of at least some PKC isoforms, which in turn activates PLA2 to produce HETEs, active metabolites of arachidonic acid produced by the lipoxygenase pathway. A rise in may also activate calpain, a protease that can inactivate some PKC isoforms, and contribute to the observed decrease in PKC activity at high . Activation of cAMP production is associated with increases in PTH secretion, derived primarily from the release of MSGs. Activation of PKC is also associated with increases in PTH secretion. Rises in and lipoxygenase metabolites of arachidonic acid (HETEs) are associated with inhibition of both ISG and MSG release. The mechanism that mediates the direct or indirect effects of these agents on inhibition of PTH secretion has not been characterized.



Figure 1.

Steep inverse sigmoidal curves relating circulating parathyroid hormone (PTH) levels in vivo (top panel) and PTH release in vitro (bottom panel) to . Studies in vivo were performed in normal human subjects by administering EDTA on one day and calcium on another day intravenously and measuring circulating levels of intact PTH as a function of . Studies in vitro were carried out using dispersed parathyroid cells prepared from several different normal human parathyroid glands, each indicated by a different symbol. [From Brown 54 with permission.]



Figure 2.

The homeostatic system regulating . Even slight decrements in the level of stimulate parathyroid hormone (PTH) secretion, which then modulates the functions of bone, kidney, and intestine [indirectly through enhanced formation of 1,25(OH)2.D] to normalize . In addition to the actions of the classic calciotropic hormones, PTH and 1,25(OH)2.D (solid lines), extracellular calcium and phosphate ions exert direct actions (dashed lines). Some of the direct actions of are mediated by the ‐sensing receptor. PO4, phosphate; ECF, extracellular fluid; 1,25(OH)2D, 1,25–dihydroxyvitamin D; 25(OH)D, 25‐hydroxyvitamin D; + indicates stimulatory action and – inhibitory effect. [From Brown et al. 493 with permission.]



Figure 3.

Urinary excretion of calcium plotted as a function of total serum calcium concentration in normal human subjects (solid line) ± 2 SD (dashed lines) as well as in patients with hypoparathyroidism (triangles) and primary hyperparathyroidism (circles). [From Peacock et al. 344 with permission.]



Figure 4.

Predicted topology of the ‐sensing receptor from human parathyroid gland. Note the large extracellular domain, seven membrane‐spanning helices, and cytoplasmic C‐terminal tail. SP, signal peptide; HS, hydrophobic segment; PKC, protein kinase C. The positions of various missense and nonsense mutations causing either familial hypocalciuric hypercalcemia or autosomal dominant hypocalcemia are also indicated, using the three‐letter amino acid code, with the normal amino acid indicated before and the mutation after the number of the relevant codon. [From Brown et al. 492 with permission.]



Figure 5.

Effect of familial hypocalciuric hypercalcemia (FHH) on the relationship between serum and urinary calcium concentrations. Data are from either aparathyroid subjects who are otherwise normal (open symbols) or individuals with FHH who have been rendered hypoparathyroid following total parathyroidectomy (closed symbols). Note the marked flattening of this relationship in individuals with FHH, indicative of their failure to upregulate renal calcium excretion normally even in the face of substantial hypercalcemia. [From Attie et al. 14 with permission.]



Figure 6.

Expression in HEK 293 cells of ‐sensing receptors (CaRs) engineered to carry familial hypocalciuric hypercalcemia (top panel) or activating CaR mutations (bottom panel). Results show the effects of increasing concentrations of on levels of in HEK cells transiently transfected with wild‐type (WT) or mutant CaRs bearing the indicated mutations. [From Bai et al. 20 with permission.]



Figure 7.

Hypothetical ways in which the ‐sensing receptor integrates the homeostasis of divalent minerals, particularly calcium, and water to achieve the optimal “trade‐off” between the needs for conserving water and avoiding excessively high urinary calcium concentrations that might predispose to the formation of calcium‐containing stones within the distal urinary tract. [From Brown et al. 63 with permission.]



Figure 8.

Electron micrograph of parathyroid cells displaying cell polarity as revealed by the distribution of nuclei at the basal side, while secretory granules are preferentially located close to the apicolateral membrane, which is highlighted with the products of 5′‐nucleotidase activity, a well‐characterized enzyme marker for apical plasma membrane domains. Note the distinct characteristic folding of the apicolateral membrane in contrast to the basal plasma membrane juxtaposing the basal lamina. [From Wild and Schraner 494 with permission.]



Figure 9.

Possible pathways of parathyroid hormone (PTH) secretion in the parathyroid cell. The PTH gene is transcribed into mRNA coding for preproPTH in the nucleus. The preproPTH is synthesized in the cytosol and immediately translocated into the rough endoplasmic reticulum (RER), where the pre sequence is clipped. The proPTH is transported to the Golgi apparatus, where it stacks via a vesicle‐mediated pathway; the pro sequence is removed during transit to the trans‐Golgi network (TGN). Mature PTH is then packaged in immature secretory granules (ISG) in conjunction with chromo‐granin A (Cg A). Immature secretory granules can undergo maturation into larger, more dense mature secretory granules (MSG) by fusion to each other and condensation of the contents of their lumen; alternatively, immature secretory granules can release their contents directly at the plasma membrane or fuse to lysosomes (LYS), accelerating the time required to reach the cell surface or the degradation of PTH, respectively. Finally, it is possible that a fraction of PTH escapes packaging into immature secretory granules and reaches the plasma membrane via constitutive vesicles (CV), a pathway that is not regulated in most secretory cells and is present in all mammalian cells.



Figure 10.

A four‐parameter model of the relationship between parathyroid hormone (PTH) release and , which is based on the equation Y = {(A1D)/[1 + (X/C)B]} + D, where Y is the secretory rate for PTH and X is the extracellular free calcium ion concentration. The four parameters are as follows: A, maximal secretory rate; B, slope of the midpoint of the curve; C, midpoint or set‐point of the curve (defined as the level of that half‐maximally inhibits PTH secretion); and D, minimal secretory rate. [From Brown 53 with permission.]



Figure 11.

Temporal relationship between changes in and parathyroid hormone (PTH) secretion from perfused bovine parathyroid cells. [From Brown et al. 70 with permission.]



Figure 12.

Hysteresis in the relationship between circulating levels of intact parathyroid hormone (PTH) and serum ionized calcium concentration in normal human subjects during alterations in the direction of change of serum calcium concentration. Subjects were first infused with citrate to reduce the level of (solid triangles); then, the serum ionized calcium concentration was allowed to normalize (open triangles). On a subsequent day, the same subjects received an infusion of calcium to raise (solid circles), followed by citrate (open circles) to reduce back to its normal level. Note that on both days the serum PTH level is higher when is falling than when it is rising (that is, there is hysteresis). The vertical arrow indicates the basal levels of and PTH, while the other arrows show the direction in which is changing. [From Conlin et al. 100 with permission.]



Figure 13.

Apparent rate dependence in the response of circulating levels of intact parathyroid hormone (PTH) to stepwise decrements in induced by infusion of citrate to normal human subjects according to two different protocols. In one protocol (solid circles), citrate was first infused as a bolus followed at a constant rate for each of four 30 min periods. In the second (open circles), the initial bolus of citrate was omitted. As a result of the difference in the infusion protocols, there is a more rapid decrease in the level of to the eventual ∼0.05 mM decrement achieved at the end of each of the 30 min steps in the first protocol (A). This more rapid initial fall in elicits a more robust secretory response, which then decays to a level of PTH similar to that evoked by the second protocol at the end of each 30 min step (B). [From Grant et al. 170 with permission.]



Figure 14.

Potential intracellular pathways for regulation of parathyroid hormone (PTH) secretion in parathyroid cells. ISG, Immature secretory granule; MSG, mature secretory granule; PKC, protein kinase C; HETE, hydroxyeicosatetraenoic acid; PLA2, phospholipase A2; PLC, phospholipase C; D1R, dopamine 1 receptor; PAR, β‐adrenergic receptor; CaR, ‐sensing receptor. Solid lines represent pathways for which there is strong experimental evidence and dashed lines, pathways that have not been well characterized. Activation of the CaR in the presence of high raises G protein–mediated activation of PLC and inositol phosphate production and activation of a Ca2+ influx pathway, while cAMP levels decrease via pertussis toxin–sensitive inactivation of adenylate cyclase. Production of cAMP is stimulated in the presence of ligands for both βAR and D1,R. In addition, although total PKC activity is decreased in the presence of high , there is a CaR‐dependent activation of at least some PKC isoforms, which in turn activates PLA2 to produce HETEs, active metabolites of arachidonic acid produced by the lipoxygenase pathway. A rise in may also activate calpain, a protease that can inactivate some PKC isoforms, and contribute to the observed decrease in PKC activity at high . Activation of cAMP production is associated with increases in PTH secretion, derived primarily from the release of MSGs. Activation of PKC is also associated with increases in PTH secretion. Rises in and lipoxygenase metabolites of arachidonic acid (HETEs) are associated with inhibition of both ISG and MSG release. The mechanism that mediates the direct or indirect effects of these agents on inhibition of PTH secretion has not been characterized.

References
 1. Abboud, H. A., D., Zimmerman, A. J. Edis, H. Heath III, and T. P. Dousa. Histamine and human parathyroid adenomas: effects on adenosine 3′,5′‐monophosphate in vitro. J. Clin. Endocrinol. Metab. 53: 276–281, 1981.
 2. Adami, S., N., Muirhead, R. M. Manning, J. H. Gleed, S. E. Papapoulos, L. M. Sandler, G. R. D. Catto, and J. L. H. O'Riordan. Control of secretion of parathyroid hormone in secondary hyperparathyroidism. Clin. Endocrinol. (Oxf.) 16: 463–473, 1982.
 3. Adami, S., R., Suppi, F. Bertoldo, M. Rossini, M. Residori, V. Maresca, and V. Lo Cascio. Transdermal estradiol in the treatment of postmenopausal bone loss. Bone Miner. 7: 79–86, 1989.
 4. Adams, N. D., T. L., Garthwaite, R. W. Gray, T. C. Hagen, and J. Lemann, Jr.. The interrelationships among prolactin, 1,25‐dihydroxyvitamin D, and parathyroid hormone in humans. J. Clin. Endocrinol. Metab. 49: 628–630, 1979.
 5. Aida, K., S., Koishi, M. Inoue, M. Nakazato, M. Tawata, and T. Onaya. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca2+‐sensing receptor gene. J. Clin. Endocrinol. Metab. 80: 2594–2598, 1995.
 6. Aida, K., S., Koishi, M. Tawata, and T. Onaya. Molecular cloning of a putative Ca2+‐sensing receptor cDNA from human kidney. Biochem. Biophys. Res. Commun. 214: 524–529, 1995.
 7. Akerstrom, G., J., Rastad, S. Ljunghall, P. Ridefelt, C. Juhlin, and E. Gylfe. Cellular physiology and pathophysiology of the parathyroid glands. World J. Surg. 15: 672–680, 1991.
 8. Allgrove, J., S., Adami, R. M. Manning, and J. L. O'Riordan. Cytochemical bioassay of parathyroid hormone in maternal and cord blood. Arch. Dis. Child. 60: 110–115, 1985.
 9. Altenahr, E. Electron microscopical evidence for innervation of chief cells in human parathyroid gland. Experientia 27: 1077, 1971.
 10. Ammala, C., F. M., Ashcroft, and P. Rorsman. Calcium‐independent potentiation of insulin release by cyclic AMP in single beta‐cells. Nature 363: 356–358, 1993.
 11. Anast, C., J. L., Winnacker, L. R. Forte, and T. W. Burns. Impaired release of parathyroid hormone in magnesium deficiency. J. Clin. Endocrinol. Metab. 42: 707–718, 1976.
 12. Angeletti, R. H., L., Mints, C. Aber, and J. Russell. Determination of residues in chromogranin A‐(16–40) required for inhibition of parathyroid hormone secretion. Endocrinology 137: 2918–2922, 1996.
 13. Attie, M. F., E. M., Brown, D. G. Gardner, A. M. Spiegel, and G. D. Aurbach. Characterization of the dopamine‐responsive adenylate cyclase of bovine parathyroid cells and its relationship to parathyroid hormone secretion. Endocrinology 107: 1776–1781, 1980.
 14. Attie, M. F., J. R. Gill, Jr., J. L. Stock, A. M. Spiegel, R. W. Downs, Jr., M. A. Levine, and S. J. Marx. Urinary calcium excretion in familial hypocalciuric hypercalcemia. Persistence of relative hypocalciuria after induction of hypoparathyroidism. J. Clin. Invest. 72: 667–676, 1983.
 15. Au, W. Y. Cortisol stimulation of parathyroid hormone secretion by rat parathyroid glands in organ culture. Science 193: 1015–1017, 1976.
 16. Au, W. Y. Inhibition by 1,25 dihydroxycholecalciferol of parathyroid gland in organ culture. Calcif. Tissue Int. 36: 384–391, 1984.
 17. Aurbach, G. D., S.J., Marx, and A.M. Spiegel. Parathyroid hormone, calcitonin, and the calciferols. In: Textbook of Endocrinology (7th ed.), edited by J. D. Wilson, and D. W. Foster. Philadelphia: Saunders, 1985, p. 1137–1217.
 18. Auwerx, J., M., Demedts, and R. Bouillon. Altered parathyroid set point to calcium in familial hypocalciuric hypercalcaemia. Acta Endocrinol. (Copenh.) 106: 215–218, 1984.
 19. Bai, M., S. H. S., Pearce, O. Kifor, S. Trivedi, U. G. Stauffer, R. V. Thakker, E. M. Brown, and B. Steinmann. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+‐sensing receptor gene—normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J. Clin. Invest. 99: 88–96, 1997.
 20. Bai, M., S., Quinn, S. Trivedi, O. Kifor, S. H. S. Pearce, M. R. Pollak, K. Krapcho, S. C. Hebert, and E. M. Brown. Expression and characterization of inactivating and inactivating mutations of the human Cao2+‐sensing receptor. J. Biol. Chem. 271: 19537–19545, 1996.
 21. Bakris, G. L., R. R., Weber, K. Nelson, W. J. Elliot, E. Kaplan, and M. B. Murphy. Comparison of the effects of dopamine and fenoldepam, a selective dopamine‐1 agonist, on parathyroid hormone release in man. Miner. Electrolyte Metab. 14: 343–346, 1988.
 22. Bansal, D. D., and R. R. MacGregor. Calcium‐regulated secretion of tissue plasminogen activator and parathyroid hormone from human parathyroid cells. J. Clin. Endocrinol. Metab. 74: 266–271, 1992.
 23. Bansal, S., P. D., Woolf, J. A. Fischer, and J. F. Caro. Dopamine does not affect parathyroid function in man. J. Clin. Endocrinol. Metab. 54: 651–652, 1982.
 24. Baron, J., K., Winer, J. A. Yanovski, A. W. Cunningham, L. Laue, D. Zimmerman, and G. B. Cutler, Jr.. Mutations in the Ca2+‐sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism. Hum. Mol. Genet. 5: 601–606, 1996.
 25. Bauerfeind, R., and W. B. Huttner. Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. Curr. Opin. Cell. Biol. 5: 628–635, 1993.
 26. Benson, L., G., Lundqvist, L. Wide, G. Akerstrom, K. Oberg, and S. Ljunghall. Effects of secretin on parathyroid hormone and calcium in normal subjects, patients with hyperparathyroidism and patients with gastrinoma. Acta Med. Scand. 217: 205–211, 1985.
 27. Bikle, D. D., A., Ratnam, T. Mauro, J. Harris, and S. Pillai. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor. J. Clin. Invest. 97: 1085–1093, 1996.
 28. Black, B. L., and J. E. Smith. Regulation of goblet cell differentiation by calcium in embryonic chick intestine. FASEB J. 3: 2653–2659, 1989.
 29. Blum, J., and J. A. Fischer. Parathyroid hormone responses to the dopaminergic agonist 2‐amino‐6,7‐dihydroxy‐1,2,3,4‐tetrahydronaphthalene. Life Sci. 35: 1469–1474, 1984.
 30. Blum, J. W., and J. A. Fischer. Effects of somatostatin on parathyroid hormone levels and on responses of parathyroid hormone to beta‐adrenergic agonists and hypocalcaemia. Acta Endocrinol. (Copenh.) 100: 534–538, 1982.
 31. Blum, J. W., J. A., Fischer, W. H. Hunziker, U. Binswanger, G. B. Picotti, M. Da Prada, and A. Guillebeau. Parathyroid hormone responses to catecholamines and to changes of extracellular calcium in cows. J. Clin. Invest. 61: 1113–1122, 1978.
 32. Blum, J. W., J. A., Fischer, D. Schwoerer, W. Hunziker, and U. Binswanger. Acute parathyroid response: sensitivity, relationship to hypocalcemia and rapidity. Endocrinology 95: 753–759, 1974.
 33. Blum, J. W., A., Guillebeau, U. Binswanger, P. Kunz, M. Da Prada, and J. A. Fischer. Effects of alpha‐adrenergic stimulation and blockade on plasma parathyroid hormone concentrations in cows. Acta Endocrinol. (Copenh.) 88: 535–543, 1978.
 34. Blum, J. W., P., Kunz, J. Fischer, U. Binswanger, W. Lichtensteiger, and M. Da Prada. Parathyroid hormone response to dopamine in cattle. Am. J. Physiol. 239 (Endocrinol. Metab. 2): E255–E264, 1980.
 35. Blum, J. W., D., Schams, W. Born, and M. Da Prada. Effects of l‐dopa on plasma levels of parathyroid hormone in calves. J. Endocrinol. Invest. 5: 311–314, 1982.
 36. Blumsohn, A., K., Herrington, R. A. Hannon, P. Shao, D. R. Eyre, and R. Eastell. The effect of calcium supplementation on the circadian rhythm of bone resorption. J. Clin. Endocrinol. Metab. 79: 730–735, 1994.
 37. Bockaert, J. G. proteins, G protein–coupled receptors: structure, function and interactions. Curr. Opin. Neurobiol. 1: 32–42, 1991.
 38. Boucher, A., P., D'Amour, L. Hamel, P. Fugere, M. Gascon‐Barre, P. Lepage, and L. G. Ste‐Marie. Estrogen replacement decreases the set point of parathyroid hormone stimulation by calcium in normal postmenopausal women. J. Clin. Endocrinol. Metab. 68: 831–836, 1989.
 39. Bourdeau, A., M., Moutahir, J. C. Souberbielle, P. Bonnet, P. Herviaux, C. Sachs, and M. Lieberherr. Effects of lipoxygenase products of arachidonate metabolism on parathyroid hormone secretion. Endocrinology 135: 1109–1112, 1994.
 40. Bourdeau, A., J. J., Plachot, G. Cournot‐Witmer, A. Pointillart, S. Balsan, and C. Sachs. Parathyroid response to aluminum in vitro: ultrastructural changes and PTH release. Kidney Int. 31: 15–24, 1987.
 41. Bourdeau, A., J.‐C., Souberbielle, P. Bonnet, P. Herviaux, C. Sachs, and M. Lieberherr. Phospholipase‐A2 action and arachidonic acid metabolism in calcium‐mediated parathyroid hormone secretion. Endocrinology 130: 1339–1344, 1992.
 42. Brent, G. A., M. S., LeBoff, E. Seely, P. R. Conlin, and E. M. Brown. Relationship between the concentration and rate of change of calcium and serum intact parathyroid hormone levels in normal humans. J. Clin. Endocrinol. Metab. 67: 944–950, 1988.
 43. Bringhurst, F. R., H., Juppner, J. Guo, P. Urena, J. T. Potts, Jr., H. M. Kronenberg, A. B. Abou‐Samra, and G. V. Segre. Cloned, stably expressed parathyroid hormone (PTH)/PTH‐related peptide receptors activate multiple messenger signals and biological responses. Endocrinology 132: 2090–2098, 1993.
 44. Brookman, J. J., S. M., Farrow, L. Nicholson, J. L. O'Riordan, and G. N. Hendy. Regulation by calcium of parathyroid hormone mRNA in cultured parathyroid tissue. J. Bone Miner. Res. 1: 529–537, 1986.
 45. Brossard, J. H., S., Whittom, R. Lepage, and P. D'Amour. Carboxyl‐terminal fragments of parathyroid hormone are not secreted preferentially in primary hyperparathyroidism as they are in other hypercalcemic conditions. J. Clin. Endocrinol. Metab. 77: 413–419, 1993.
 46. Brown, A. J., M., Zhong, J. Finch, C. Ritter, R. McCracken, J. Morrissey, and E. Slatopolsky. Rat calcium‐sensing receptor is regulated by vitamin D but not by calcium. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F454–F460, 1996.
 47. Brown, A. J., M., Zhong, J. Finch, C. Ritter, and E. Slatopolsky. The roles of calcium and 1,25–dihydroxyvitamin D3 in the regulation of vitamin D receptor expression by rat parathyroid glands. Endocrinology 136: 1419–1425, 1995.
 48. Brown, A. J., M., Zhong, C. Ritter, E. M. Brown, and E. Slatopolsky. Loss of calcium responsiveness in cultured bovine parathyroid cells is associated with decreased calcium receptor expression. Biochem. Biophys. Res. Commun. 212: 861–867, 1995.
 49. Brown, E. M. Histamine receptors on dispersed parathyroid cells from pathological human parathyroid tissue. J. Clin. Endocrinol. Metab. 51: 1325–1329, 1980.
 50. Brown, E. M. Lithium induces abnormal calcium‐regulated PTH release in dispersed bovine parathyroid cells. J. Clin. Endocrinol. Metab. 52: 1046–1048, 1981.
 51. Brown, E. M. Relationship of 3′,5′‐adenosine monophosphate accumulation to parathyroid hormone release in dispersed cells from pathological human parathyroid tissue. J. Clin. Endocrinol. Metab. 52: 961–968, 1981.
 52. Brown, E. M. PTH secretion in vivo and in vitro: regulation by calcium and other secretagogues. Miner. Electrolyte Metab. 8: 130–150, 1982.
 53. Brown, E. M. Four parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue. J. Clin. Endocrinol. Metab. 56: 572–581, 1983.
 54. Brown, E. M. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol. Rev. 71: 371–411, 1991.
 55. Brown, E. M., The homeostatic mechanisms regulating extracellular and intracellular calcium metabolism and the interrelationships between these systems. In: The Parathyroids, edited by J. P. Bilizekian. New York: Raven, 1994, p. 15–54.
 56. Brown, E. M., M. Bai, and M. R. Pollak. Familial benign hypocalciuric hypercalcemia and other syndromes of altered responsiveness to extracellular calcium. In: Metabolic Bone Diseases (3rd ed.), edited by S. Krane, and L. V. Avioli. San Diego: Academic, 1997, p.
 57. Brown, E. M., R., Butters, C. Katz, and O. Kifor. Neomycin mimics the effects of high extracellular calcium concentrations on parathyroid function in dispersed bovine parathyroid cells. Endocrinology 128: 3047–3054, 1991.
 58. Brown, E. M., R. J., Carroll, and G. D. Aurbach. Dopaminergic stimulation of cyclic AMP accumulation and parathyroid hormone release from dispersed bovine parathyroid cells. Proc. Natl. Acad. Sci. U.S.A. 74: 4210–4213, 1977.
 59. Brown, E. M., and C. J. Chen. Calcium, magnesium, and the control of PTH secretion. Bone Miner. 5: 249–257, 1989.
 60. Brown, E. M., G. E., Fuleihan, C. J. Chen, and O. Kifor. A comparison of the effects of divalent and trivalent cations on parathyroid hormone release, 3′,5′‐cyclic‐adenosine monophosphate accumulation, and the levels of inositol phosphates and bovine parathyroid cells. Endocrinology 127: 1064–1071, 1990.
 61. Brown, E. M., G., Gamba, D. Riccardi, D. Lombardi, R. Butters, O. Kifor, A. Sun, M. H. Hediger, J. Lytton, and S. C. Hebert. Cloning and characterization of an extracellular Ca2+‐sensing receptor from bovine parathyroid. Nature 366: 575–580, 1993.
 62. Brown, E. M., D. G., Gardner, R. A. Windeck, and G. D. Aurbach. Relationship of intracellular 3′,5′‐adenosine monophosphate accumulation to parathyroid hormone release from dispersed bovine parathyroid cells. Endocrinology 103: 2323–2333, 1978.
 63. Brown, E. M., D. G., Gardner, R. A. Windeck, S. Hurwitz, M. F. Brennan, and G. D. Aurbach. β‐Adrenergically stimulated adenosine 3′,5′‐monophosphate accumulation in and parathyroid hormone release from dispersed human parathyroid cells. J. Clin. Endocrinol. Metab. 48: 618–626, 1979.
 64. Brown, E. M., H. W. Harris, Jr., P. M. Vassilev, and S. C. Hebert. The biology of the extracellular Ca2+‐sensing receptor. In: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz, and G. A. Rodan. San Diego: Academic, 1996, p. 243–262.
 65. Brown, E. M., and S. C. Hebert. A cloned Ca2+‐sensing receptor: a mediator of direct effects of extracellular Ca2+ on renal function? J. Am. Soc. Nephrol. 6: 1530–1540, 1995.
 66. Brown, E. M., S., Hurwitz, and G. D. Aurbach. Beta‐adrenergic stimulation of cyclic AMP content and parathyroid hormone release from isolated bovine parathyroid cells. Endocrinology 100: 1696–1702, 1977.
 67. Brown, E. M., S. H., Hurwitz, and G. D. Aurbach. Alpha‐adrenergic inhibition of adenosine 3′,5′‐monophosphate accumulation and parathyroid hormone release from dispersed bovine parathyroid cells. Endocrinology 103: 893–899, 1978.
 68. Brown, E. M., S., Hurwitz, C. J. Woodard, and G. D. Aurbach. Direct identification of beta‐adrenergic receptors on isolated bovine parathyroid cells. Endocrinology 100: 1703–1709, 1977.
 69. Brown, E. M., C., Katz, R. Butters, and O. Kifor. Polyarginine, polylysine, and protamine mimic the effects of high extracellular calcium concentrations on dispersed bovine parathyroid cells. J. Bone Miner. Res. 6: 1217–1225, 1991.
 70. Brown, E. M., M. S., LeBoff, M. Oetting, J. T. Posillico, and C. Chen. Secretory control in normal and abnormal parathyroid tissue. Recent Prog. Horm. Res. 43: 337–382, 1987.
 71. Brown, E. M., R., Leombruno, J. Thatcher, and M. Burrowes. The acute secretory response to alterations in the extracellular calcium concentration and dopamine in perifused bovine parathyroid cells. Endocrinology 116: 1123–1132, 1985.
 72. Brown, E. M., C. J., Pazoles, C. E. Creutz, G. D. Aurbach, and H. B. Pollard. Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Proc. Natl. Acad. Sci. U.S.A. 75: 876–880, 1978.
 73. Brown, E. M., M. Pollak, and S. C. Herbert. Cloning and characterization of extracellular Ca2+‐sensing receptors from parathyroid and kidney: molecular physiology and pathophysiology of Ca2+‐sensing. Endocrinologist 4: 419–426, 1994.
 74. Brown, E. M., M., Pollak, C. E. Seidman, J. G. Seidman, Y.‐H. W. Chou, D. Riccardi, and S. C. Hebert. Calcium‐ionsensing cell‐surface receptors. N. Engl. J. Med. 333: 234–240, 1995.
 75. Brown, E. M., and S. L. Swartz. Production of prostaglandins by dispersed cells and fragments from bovine parathyroid glands. Prostaglandins 29: 35–46, 1985.
 76. Brown, E. M., and J. G. Thatcher. Adenosine 3′,5′‐monophopshate (cAMP)–dependent protein kinase and the regulation of parathyroid hormone release by divalent cations and agents elevating cellular cAMP in dispersed bovine parathyroid cells. Endocrinology 110: 1374–1380, 1982.
 77. Brown, E. M., J. G., Thatcher, E. J. Watson, and R. Leombruno. Extracellular calcium potentiates the inhibitory effects of magnesium on parathyroid function in dispersed bovine parathyroid cells. Metabolism 33: 171–176, 1984.
 78. Brown, E. M., P. M., Vassilev, and S. C. Hebert. Calcium as an extracellular messenger. Cell 83: 679–682, 1995.
 79. Brown, E. M., R. E., Wilson, R. C. Eastman, J. Pallotta, and S. P. Marynick. Abnormal regulation of parathyroid hormone release by calcium in secondary hyperparathyroidism due to chronic renal failure. J. Clin. Endocrinol. Metab. 54: 172–179, 1982.
 80. Brunner, M., E. M., Schraner, and P. Wild. Cellular changes in rat parathyroids provoked by progesterone and estrogen. Cell Tissue Res. 268: 283–286, 1992.
 81. Buccione, R., S., Bannykh, I. Santone, M. Baldassarre, F. Facchiano, Y. Bozzi, G. Di Tullio, A. Mironov, A. Luini, and M. A. De Matteis. Regulation of constitutive exocytic transport by membrane receptors. A biochemical and morphometric study. J. Biol. Chem. 271: 3523–3533, 1996.
 82. Butters, R. R., N., Chattopadhyay, P. Nielsen, C. P. Smith, A. Mithal, O. Kifor, M. Bai, S. Quinn, P. Goldsmith, S. Hurwitz, K. Krapcho, J. Busby, and E. M. Brown. Cloning and characterization of a calcium‐sensing receptor from the hypercalcemic New Zealand white rabbit reveals unaltered responsiveness to extracellular calcium. J. Bone Miner. Res. 12: 568–579, 1997.
 83. Calvo, M.S., R., Eastell, K. P. Offord, E.J. Bergstralh, and M. F. Burritt. Circadian variation in ionized calcium and intact parathyroid hormone: evidence for sex differences in calcium homeostasis. J. Clin. Endocrinol. Metab. 72: 69–76, 1991.
 84. Cantley, L. K., J., Russell, D. Lettieri, and L. M. Sherwood. 1,25‐Dihydroxyvitamin D suppresses parathyroid hormone secretion from bovine parathyroid cells in tissue culture. Endocrinology 117: 2114–2119, 1985.
 85. Capen, C. C., and G. N. Rowland. Ultrastructural evaluation of the parathyroid glands of young cats with experimental hyperparathyroidism. Z. Zellforsch. Mikrosk. Anat. 90: 495–500, 1968.
 86. Care, A. D., D. W., Pickard, S. E. Papapoulos, J. L. O'Riordan, and J. Redel. Inhibitory effect of 25,26‐dihydroxycholecalciferol on the rate of secretion of parathyroid hormone in goats. J. Endocrinol. 78: 303–304, 1978.
 87. Carlberg, C., I., Bondik, A. Wyss, E. Meier, L. J. Sturzenbecker, J. F. Grippo, and W. Hunziker. Two nuclear signalling pathways for vitamin D. Nature 361: 657–660, 1993.
 88. Castro, J. H., J. F., Caro, H. J. Kim, and J. A. Glennon. Effects of parathyroid hormone infusion and primary hyperparathyroidism on serum prolactin in man. J. Clin. Endocrinol. Metab. 51: 397–398, 1980.
 89. Chabardes, D., M., Imbert, A. Clique, M. Montegut, and F. Morel. PTH‐sensitive adenyl cyclase activity in different segments of the rabbit nephron. Pflugers Arch. 354: 229–239, 1975.
 90. Chanard, J., B., Lacour, T. Drueke, J. P. Brunois, and J. C. Ruiz. Effect of acute ethanol loading on parathyroid gland secretion in the rat. Adv. Exp. Med. Biol. 128: 495–504, 1980.
 91. Chang, W., T.‐H., Chen, P. Gardner, and D. Shoback. Regulation of Ca2+‐conducting currents in parathyroid cells by extracellular Ca2+ and channel blockers. Am. J. Physiol. 269 (Endocrinol. Metab. 32): E864–E877, 1995.
 92. Chapotot, F., C., Gronfier, K. Spiegel, R. Luthringer, and G. Brandenberger. Relationships between intact parathyroid hormone 24‐hour profiles, sleep–wake cycle, and sleep electroen‐cephalographic activity in man. J. Clin. Endocrinol. Metab. 81: 3759–3765, 1996.
 93. Chattopadhyay, N., G., Légrádi, M. Bai, O. Kifor, C. Ye, P. M. Vassilev, E. M. Brown, and R. Lechan. Calcium‐sensing receptor in the rat hippocampus: a developmental study. Dev. Brain Res. 100: 13–21, 1997.
 94. Chattopadhyay, N., A., Mithal, and E. M. Brown. The calcium receptor: a new handle on the diagnosis and treatment of parathyroid disorders. Endocr. Rev. 17: 289–307, 1996.
 95. Chen, C. J., J. V., Barnett, D. A. Congo, and E. M. Brown. Divalent cations suppress 3′,5′‐adenosine monophosphate accumulation by stimulating a pertussis toxin–sensitive guanine nucleotide–binding protein in cultured bovine parathyroid cells. Endocrinology 124: 233–239, 1989.
 96. Cholst, I. N., S. F., Steinberg, P. J. Tropper, H. E. Fox, and G. V. Segre. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N. Engl. J. Med. 310: 1221–1225, 1984.
 97. Chou, Y. W., E. M., Brown, T. Levi, G. Crowe, A. B. Atkinson, H. J. Arnqvist, G. Toss, G. E. Fuleihan, J. G. Seidman, and C. E. Seidman. The gene responsible for familial hypocalciuric hypercalcemia maps to chromosome 3q in four unrelated families. Nat. Genet. 1: 295–300, 1992.
 98. Chou, Y. W., M. P., Pollak, M. L. Brandi, G. Toss, H. Arnqvist, A. B. Atkinson, S. E. Papapoulos, S. J. Marx, E. M. Brown, J. G. Seidman, and C. E. Seidman. Mutations in the human Ca2+‐sensing receptor gene that cause familial hypocalciuric hypercalcemia. Am. J. Hum. Genet. 56: 1075–1079, 1995.
 99. Cogan, E., and M. Abramov. Inhibition by lithium of the hydrosmotic action of vasopressin in the isolated perfused cortical collecting tubule of the rabbit. J. Clin. Invest. 77: 1507–1514, 1986.
 100. Cohn, D. V., B. H., Fasciotto, B. K. Reese, and J. X. Zhang. Chromogranin A: a novel regulator of parathyroid gland secretion. J. Nutr. 125: 2015S–2019S, 1995.
 101. Cohn, D. V., and R. R. MacGregor. The biosynthesis, intracellular processing and secretion of parathormone. Endocr. Rev. 2: 1–26, 1981.
 102. Conlin, P. R., V. T., Fajtova, R. M. Mortensen, M. S. LeBoff, and E. M. Brown. Hysteresis in the relationship between serum ionized calcium and intact parathyroid hormone during recovery from induced hyper‐and hypocalcemia in normal humans. J. Clin. Endocrinol. Metab. 69: 593–599, 1989.
 103. Connor, C. S., B. M., Brees, A. Thurston, L. Forte, A. S. Hermreck, and J. W. Hamilton. Parathyroid hormone‐like peptide and parathyroid hormone are secreted from bovine parathyroid via different pathways. Biochim. Biophys. Acta 1178: 81–86, 1993.
 104. Connor, C., B., Drees, and J. Hamilton. Parathyroid hormonelike peptide and parathyroid hormone are secreted from bovine parathyroid via different pathways. Biochim. Biopbys. Acta 1178: 81–86, 1993.
 105. Cool, D. R., E., Normant, F. Shen, H.‐C. Chen, L. Pannell, Y. Zhang, and Y. P. Loh. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpefat mice. Cell 88: 73–83, 1997.
 106. Cooper, L., J., Wertheimer, R. Levey, E. Brown, M. LeBoff, R. Wilkinson, and C. Anast. Severe primary hyperparathyroidism in a neonate with two hypercalcemic parents: management with parathyroidectomy and heterotopic autotransplantation. Pediatrics 78: 263–268, 1986.
 107. Cosman, F., J., Nieves, J. Horton, V. Shen, and R. Lindsay. Effects of estrogen on response to edetic acid infusion in postmenopausal osteoporotic women. J. Clin. Endocrinol. Metab. 78: 939–943, 1994.
 108. Costanzo, L. S., and E. E. Windhager. Renal tubular transport of calcium. In: Handbook of Physiology. Renal Physiology, edited by E. Windhager. Bethesda, MD: Am. Physiol. Soc., 1992, sect. 8, vol. II, p. 1759–1783.
 109. Cross, A. J., I. N., Ferrier, and C. A. Bloxham. Dopamine D1 receptors in human parathyroid gland: in vitro and in vivo studies. Life Sci. 33: 743–747, 1983.
 110. Cunningham, J., P., Altmann, J. H. Gleed, K. C. Butter, F. P. Marsh, and J. L. H. O'Riordan. Effect of direction and rate of change of calcium on parathyroid hormone secretion in uremia. Nephrol. Dial. Transplant. 4: 339–344, 1989.
 111. D'Amour, P., and P. M. Huet. Ca2+ concentration influences the hepatic extraction of bioactive human PTH‐(1–34) in rats. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E87–E92, 1989.
 112. D'Amour, P., J., Palardy, G. Bahsali, L. E. Mallette, A. DeLean, and R. LePage. The modulation of circulating parathyroid hormone immunoheterogeneity in man by ionized calcium concentration. J. Clin. Endocrinol. Metab. 74: 525–532, 1992.
 113. Davies, M., P. H., Adams, G. A. Lumb, J. L. Berry, and N. Loveridge. Familial hypocalciuric hypercalcemia: evidence for continued enhanced renal tubular reabsorption of calcium following total parathyroidectomy. Acta Endocrinol. (Copenh.) 106: 499–504, 1984.
 114. De Feo, M. L., O. Bartolini, C. Orlando, M. Maggi, M. Serio, M. Pines, S. Hurwitz, Y. Fujii, K. Sakaguchi, G. L. Aurbach, and M. L. Brandi. Natriuretic peptide receptors regulate endothelin synthesis and release from parathyroid cells. Proc. Natl. Acad. Sci. U.S.A. 88: 6496–6500, 1991.
 115. Deftos, L. J., Calcitonin. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (3 ed.), edited by M. J. Favus. Philadelphia: Lippincott‐Raven, 1996, p. 82–87.
 116. De Matteis, M. A., G. Santini, R. A. Kahn, G. Di Tullio, and A. Luini. Receptor and protein kinase C–mediated regulation of ARF binding to the Golgi complex. Nature 364: 818–821, 1993.
 117. DeBellis, A., C. A., Quigley, K. B. Marschke, M. K. el‐Awady, M. V. Lane, E. P. Smith, M. Sar, E. M. Wilson, and F. S. French. Characterization of mutant androgen receptors causing partial androgen insensitivity syndromes. J. Clin. Endocrinol. Metab. 78: 513–522, 1994.
 118. Demay, M. B., M. S., Kiernan, H. F. DeLuca, and H. M. Kronenberg. Sequences in the human parathyroid hormone gene that bind the 1,25‐dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25‐dihydroxyvitamin D3. Proc. Natl. Acad. Sci. U.S.A. 89: 8097–8101, 1992.
 119. Denda, M., J., Finch, A. J. Brown, Y. Nishii, N. Kubodera, and E. Slatopolsky. 1,25‐Dihydroxyvitamin D3 and 22‐oxacalcitriol prevent the decrease in vitamin D receptor content in the parathyroid glands of uremic rats. Kidney Int. 50: 34–39, 1996.
 120. Derenoncourt, F. J., J. P., Bilezikian, C. R. Feind, D. E. Gammon, E. Shane, S. Krutzik, M. A. Hardy, C. J. Weber, and K. Reetsma. Organ culture of human parathyroid glands: effects of catecholamines. J. Surg. Res. 30: 86–95, 1981.
 121. Diaz, R., S., Hurwitz, N. Chattopadhyay, M. Pines, Y. Yang, O. Kifor, M. Einat, R. Butters, S. C. Hebert, and E. M. Brown. Cloning, expression and tissue localization of the calcium‐sensing receptor in the chicken (Callus domesticus). Am. J. Physiol. 273 (Regulatory Integrative comp. Physiol. 42): 744: 47–56, 1997: R1008–R1016, 1997 (in press), 1997.
 122. Drees, B. M., and J. W. Hamilton. Pancreastatin and bovine parathyroid cell secretion. Bone Miner. 17: 335–346, 1992.
 123. Drees, B. M., and J. W. Hamilton. Processing of chromogranin A by bovine parathyroid secretory granules: production and secretion of N‐terminal fragments. Endocrinology 134: 2057–2063, 1994.
 124. Duarte, B., G. K., Hargis, and S. C. Kukreja. Effects of estradiol and progesterone on parathyroid hormone secretion from human parathyroid tissue. J. Clin. Endocrinol. Metab. 66: 584–587, 1988.
 125. Dunn, C. K., E. M., Brown, S. C. Hebert, and K. V. Rogers. Localization of calcium receptor mRNA in the adult rat central nervous system by in situ hybridization. Brain Res. (in press), 1997.
 126. Dusso, A. S., L., Negrea, S. Gunawarhana, S. Lopez‐Hilker, J. Finch, T. Morei, Y. Nishii, E. Slatopolsky, and A. J. Brown. On the mechanisms for the selective action of vitamin D analogues. Endocrinology 128: 1687–1692, 1991.
 127. Eastell, R., M. S., Calvo, and M. F. Burritt. Abnormalities in circadian patterns of bone resorption and renal calcium conservation in type I osteoporosis. J. Clin. Endocrinol. Metab. 74: 487–494, 1992.
 128. Egawa, C., and Y. Kameda. Innervation of the chicken parathyroid glands: immunohistochemical study with the TuJ1, galanin, VIP, substance P, CGRP, and tyrosine hydroxylase antibodies. Anat. Embryol. (Berl.) 191: 445–450, 1995.
 129. Eguchi, S., Y., Hirata, T. Imai, K. Kanno, T. Akiba, A. Sakamoto, M. Yanagisawa, T. Masaki, and F. Marumo. Endothelin receptors in human parathyroid gland. Biochem. Biophys. Res. Commun. 184: 1448–1455, 1992.
 130. El‐Hajj Fuleihan, G., E. M. Brown, K. Curtis, M. Berger, B. Berger, R. Gleason, and M. S. LeBoff. Effect of sequential and daily continuous hormone replacement therapy on indices of mineral metabolism. Arch. Intern. Med. 152: 1904–1909, 1992.
 131. El‐Hajj Fuleihan, G., C. M. Gundberg, R. Gleason, E. M. Brown, M. E. Stromski, F. D. Grant, and P. R. Conlin. Racial differences in parathyroid hormone dynamics. J. Clin. Endocrinol. Metab. 79: 1642–1647, 1994.
 132. El‐Hajj Fuleihan, G., E. B. Klerman, E. N. Brown, Y. Choe, E. M. Brown, and C. E. Czeisler. The parathyroid hormone circadian rhythm is truly endogenous—a general clinical research center study. J. Clin. Endocrinol. Metab. 82: 281–286, 1997.
 133. Epstein, S., H. Heath, 3rd, and N. H. Bell. Lack of influence of isoproterenol, propranolol, and dopamine on immunoreactive parathyroid hormone and calcitonin in normal man. Calcif. Tissue Int. 35: 32–36, 1983.
 134. Fajtova, V. T., S. J., Quinn, and E. M. Brown. Cytosolic calcium responses of single rMTC 44–2 cells to stimulation with external calcium and potassium. Am. J. Physiol. 261 (Endocrinol Metab. 24): E151–158, 1991.
 135. Fajtova, V. T., M. H., Sayegh, N. Hickey, P. Aliabadi, J. M. Lazarus, and M. S. LeBoff. Intact parathyroid hormone levels in renal insufficiency. Calcif. Tissue Int. 57: 329–335, 1995.
 136. Farrow, S. M., R., Karmali, J. H. Gleed, G. N. Hendy, and J. L. O'Riordan. Regulation of preproparathyroid hormone messenger RNA and hormone synthesis in human parathyroid adenomata. J. Endocrinol. 117: 133–138, 1988.
 137. Fasciotto, B. H., S. U., Gorr, and D. V. Cohn. Autocrine inhibition of parathyroid cell secretion requires proteolytic processing of chromogranin‐A. Bone Miner. 17: 323–333, 1992.
 138. Fasciotto, B. H., S. U., Gorr, D. J. DeFranco, M. A. Levine, and D. V. Cohn. Pancreastatin, a presumed product of chromogranin‐A (secretory protein‐I) processing, inhibits secretion from porcine parathyroid cells in culture. Endocrinology 125: 1617–1622, 1989.
 139. Fasciotto, B. H., C. A., Trauss, G. H. Greeley, and D. V. Cohn. Parastatin (porcine chromogranin A347–419), a novel chromogranin‐A‐derived peptide, inhibits parathyroid cell secretion. Endocrinology 133: 461–466, 1993.
 140. Felsenfeld, A. J., A., Jara, M. Pahl, J. Bover, and M. Rodruigez. Difference in the dynamics of parathyroid hormone secretion in hemodialysis patients with marked secondary hyperparathyroidism. J. Am. Soc. Nephrol. 6: 1371–1378, 1995.
 141. Felsenfeld, A. J., D., Ross, and M. Rodriguez. Hysteresis of the parathyroid hormone response to hypocalcemia in hemodialysis patients with low turnover aluminum bone disease. J. Am. Soc. Nephrol. 2: 1136–1143, 1991.
 142. Ferment, O., P. E., Garnier, and Y. Touitou. Comparison of the feedback effect of magnesium and calcium on parathyroid hormone secretion in man. J. Endocrinol. 113: 117–122, 1987.
 143. Fischer, J. A., J. W., Blum, and U. Binswanger. Acute parathyroid hormone response to epinephrine in vivo. J. Clin. Invest. 52: 2434–2440, 1973.
 144. Fischer, J. S., S. B., Oldham, and G. W. Sizemore. Calcitonin stimulation of parathyroid hormone secretion in vitro. Horm. Metab. Res. 3: 223–224, 1971.
 145. Fitzpatrick, L. A. Differences in the actions of calcium versus lanthanum to influence parathyroid hormone release. Endocrinology 127: 711–715, 1990.
 146. Fitzpatrick, L. A., and G. D. Aurbach. Calcium inhibition of parathyroid hormone secretion is mediated via a guanine nucleotide regulatory protein. Endocrinology 119: 2700–2703, 1986.
 147. Fitzpatrick, L. A., M. L., Brandi, and G. D. Aurbach. Prostaglandin F2 and alpha‐adrenergic agonists regulate parathyroid cell function via the inhibitory guanine nucleotide regulatory protein. Endocrinology 118: 2115–2119, 1986.
 148. Fitzpatrick, L. A., J., Norton, C. Martin, M. Sharp, and G. D. Aurbach. Effect of prostaglandin F2 alpha on human parathyroid adenomas: evidence for uncoupling of parathyroid hormone secretion and cAMP accumulation. J. Bone Miner. Res. 3: 81–86, 1988.
 149. Flueck, J. A., F. P., DiBella, A. J. Edis, J. M. Kehrwald, and C. D. Arnaud. Immunoheterogeneity of parathyroid hormone in venous effluent serum from hyperfunctioning parathyroid glands. J. Clin. Invest. 60: 1387–1395, 1977.
 150. Fox, J. Regulation of parathyroid hormone secretion by plasma calcium in aging rats. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E220–E225, 1991.
 151. Fraser, W. D., F. C., Logue, J. P. Christie, D. A. Cameron, D. S. O'Reilly, and G. H. Beastall. Alteration of the circadian rhythm in intact parathyroid hormone following a 96‐hour fast. Clin. Endocrinol. (Oxf.) 40: 523–528, 1994.
 152. Fried, R., and A.J. Tashjian. Unusual sensitivity of cytosolic free Ca2+ to changes in extracellular Ca2+ in rat C‐cells. J. Biol. Chem. 261: 7669–7674, 1986.
 153. Fujii, Y., J. E., Moreira, C. Orlando, M. Maggi, G. D. Aurbach, and M. L. Brandi. Endothelin as an autocrine factor in the regulation of parathyroid cells. Proc. Natl. Acad. Sci. U.S.A. 88: 4235–4239, 1991.
 154. Fujii, Y., M., Tomic, S. S. Stojilkovic, T. Iida, M. L. Brandi, Y. Ogino, and K. Sakaguchi. Effects of endothelin‐1 on Ca2+ signaling and secretion in parathyroid cells. J. Bone Miner. Res. 10: 716–725, 1995.
 155. Fujimi, T., H., Baba, M. Fukase, and T. Fujita. Direct inhibitory effect of amino‐terminal parathyroid hormone fragment [PTH(1–34)] on PTH secretion from bovine parathyroid primary cultured cells in vitro. Biochem. Biophys. Res. Commun. 178: 953–958, 1991.
 156. Fukuda, N., N., Tanaka, Y. Tominaga, M. Fukagawa, K. Kurokawa, and Y. Seino. Decreased 1,25‐dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J. Clin. Invest. 92: 1436–1443, 1993.
 157. Fuleihan, G. E., C. J., Chen, S. A. Rivkees, S. P. Marynick, J. Stock, J. A. Pallotta, and E. M. Brown. Calcium‐dependent release of N‐terminal fragments and intact immunoreactive parathyroid hormone by human pathological parathyroid tissue in vitro. J. Clin. Endocrinol. Metab. 69: 860–867, 1989.
 158. Gardella, T. J., D., Axelrod, D. Rubin, H. T. Keutmann, J. T. Potts, Jr., H. M. Kronemberg, and S. R. Nussbaum. Mutational analysis of the receptor‐activating region of human parathyroid hormone. J. Biol. Chem. 266: 13141–13146, 1991.
 159. Gardin, J. P., P., Patron, B. Fouqueray, A. Prigent, and M. Paillard. Maximal PTH secretory rate and set point for calcium in normal subjects and patients with primary hyperparathyroidism. In vivo studies. Miner. Electrolyte Metab. 14: 221–228, 1988.
 160. Gardner, D. G., E. M., Brown, M. F. Attie, and G. D. Aurbach. Prostaglandin‐mediated stimulation of adenosine 3′,5′‐monophosphate accumulation and parathyroid hormone release in dispersed human parathyroid cells. J. Clin. Endocrinol. Metab. 51: 20–25, 1980.
 161. Gardner, D. G., E. M., Brown, and G. D. Aurbach. Inhibition of adenosine 3′,5′‐monophosphate accumulation and parathyroid hormone release by sodium nitroprusside. Endocrinology 105: 360–366, 1979.
 162. Gardner, D. G., E. M., Brown, R. Windeck, and G. D. Aurbach. Prostaglandin E2 stimulation of adenosine 3′,5′‐monophosphate accumulation and parathyroid hormone release in dispersed bovine parathyroid cells. Endocrinology 103: 577–582, 1978.
 163. Gardner, D. G., E. M., Brown, R. Windeck, and G. D. Aurbach. Prostaglandin F2alpha inhibits 3′,5′‐adenosine monophosphate acccumulation and parathyroid hormone release from dispersed parathyroid cells. Endocrinology 104: 1–7, 1979.
 164. Garland, H. O., T.J., Birdsey, C. G. Davidge, J. T. McLaughlin, L. M. Oakes, A.J. Smith, and E. S. Harpur. Effects of gentamicin, neomycin, and tobramycin on renal calcium and magnesium handling in two rat strains. Clin. Exp. Pharmacol. Physiol. 21: 109–115, 1994.
 165. Garrett, J. E., I. V., Capuano, L. G. Hammerland, B. C. P. Hang, E. M. Brown, S. C. Hebert, E. F. Nemeth, and F. Fuller. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J. Biol. Chem. 270: 12919–12925, 1995.
 166. Garrett, J. E., H., Tamir, O. Kifor, R. T. Simin, K. V. Rogers, A. Mithal, R. F. Gagel, and E. M. Brown. Calcitonin‐secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology 136: 5202–5211, 1995.
 167. Gibb, C. A., D. I., Cook, L. Delbridge, and A. D. Conigrave. Pharmacological characterization of the nucleotide receptors that mobilize Ca2+ ions in human parathyroid cells. J. Endocrinol. 142: 277–283, 1994.
 168. Gittes, R. F., and I. C. Radde. Experimental model for hyperparathyroidism: effect of excessive numbers of transplanted isologous parathyroid glands. J. Urol. 95: 595–603, 1966.
 169. Gogusev, J., P., Duchambon, B. Hory, M. Giovannini, Y. Goureau, E. Sarfati, and T. Drueke. Depressed expression of calcium receptor in parathyroid gland of patients with hyperparathyroidism. Kidney Int. 51: 328–336, 1997.
 170. Goltzman, D., B., Henderson, and N. Loveridge. Cytochemical bioassay of parathyroid hormone: characteristics of the assay and analysis of circulating hormonal forms. J. Clin. Invest. 65: 1309–1317, 1980.
 171. Gorr, S.‐U., W. L., Dean, T. L. Radley, and D. V. Cohn. Calcium binding and aggregation properties of parathyroid secretory protein‐I (chromogranin A). Bone Miner. 4: 17–25, 1988.
 172. Grant, F. D., P. R., Conlin, and E. M. Brown. Rate and concentration dependence of parathyroid hormone dynamics during stepwise changes in serum ionized calcium in normal humans. J. Clin. Endocrinol. Metab. 71: 370–378, 1990.
 173. Grant, F. D., S. J., Mandel, E. M. Brown, G. H. Williams, and E. W. Seely. Interrelationships between the renin–angiotensin–aldosterone and calcium homeostatic systems. J. Clin. Endocrinol. Metab. 75: 988–992, 1992.
 174. Greenberg, C., S. C., Kukreja, E. N. Bowser, G. K. Hargis, W. J. Henderson, and G. A. Williams. Parathyroid hormone secretion: effect of estradiol and progesterone. Metab. Clin. Exp. 36: 151–154, 1987.
 175. Gundberg, C. M., M., Markowitz, M. Mizruchi, and J. F. Rosen. Osteocalcin in human serum: a circadian rhythm. J. Clin. Endocrinol. Metab. 60: 736–739, 1985.
 176. Habener, J. F. Responsiveness of neoplastic and hyperplastic parathyroid tissue to calcium in vitro. J. Clin. Invest. 62: 436–450, 1978.
 177. Habener, J. F. Regulation of parathyroid hormone secretion and biosynthesis. Annu. Rev. Physiol. 43: 211–224, 1981.
 178. Habener, J. F., M., Amherdt, M. Ravazzola, and L. Orci. Parathyroid hormone biosynthesis. Correlation of conversion of biosynthetic precursors with intracellular protein migration as determined by electron microscope autoradiography. J. Cell Biol. 80: 715–731, 1979.
 179. Habener, J. F., B. Kemper, and J. T. Potts, Jr.. Calcium‐dependent intracellular degradation of parathyroid hormone. A possible mechanism for the regulation of hormone stores. Endocrinology 97: 431–441, 1975.
 180. Habener, J. F., and J. T. Potts, Jr.. Relative effectiveness of calcium and magnesium in the secretion and biosynthesis of parathyroid hormone in vitro. Endocrinology 98: 197–202, 1976.
 181. Habener, J. F., M., Rosenblatt, and J. T. Potts. Parathyroid hormone: biochemical aspects of biosynthesis, secretion, action, and metabolism. Physiol. Rev. 64: 985–1053, 1984.
 182. Hammerland, L. G., J. E., Garrett, K.J. Krapcho, R. Simin, I. V. Capuano, N. Alasti, and E. F. Nemeth. NPS R‐467 activation of chimeric calcium‐metabotropic glutamate receptor and a calcium receptor deletion mutant indicates a site of action within the transmembrane domain of the calcium receptor. J. Bone Miner. Res. 11 (Suppl. 1): S158, 1996. Abstract nr. P272.
 183. Hammerland, L. G., K.J., Krapcho, N. Alasti, J. E. Garrett, I. V. Capuano, B. C. P. Hung, and F. Fuller. Cation binding determinants of the calcium receptor revealed by functional analysis of chimeric receptors and a deletion mutant [abstract]. J. Bone Miner. Res. 10: S156, 1995.
 184. Hanley, D. A., K., Takatsuki, M. E. Birnbaumer, A. B. Schneider, and L. M. Sherwood. In vitro perfusion for the study of parathyroid hormone secretion: effects of extracellular calcium concentration and beta‐adrenergic regulation on parathyroid hormone secretion in vitro. Calcif. Tissue Int. 32: 19–27, 1980.
 185. Hanley, D. A., K., Takatsuki, J. M. Sultan, A. B. Schneider, and L. M. Sherwood. Direct release of parathyroid hormone fragments from functioning bovine parathyroid glands in vitro. J. Clin. Invest. 62: 1247–1254, 1978.
 186. Hanley, D. A., and P. G. Wellings. Dopamine‐stimulated parathyroid hormone release in vitro: further evidence for a two‐pool model of parathyroid hormone secretion. Can. J. Physiol. Pharmacol. 63: 1139–1144, 1985.
 187. Hansson, G. G., J., Mathewson, and K. Norrby. Parathyroid cell growth and proliferation in nephrectomized rats. Pathol. Eur. 6: 313–321, 1971.
 188. Hargis, G. K., G. A., Williams, W. A. Reynolds, B. S. Chertow, and S. C. Kukreja. Effects of somatostatin on parathyroid hormone and calcitonin secretion. Endocrinology 102: 745–750, 1978.
 189. Harms, H. M., U., Kaptaina, W. R. Kulpmann, G. Brabant, and R. D. Hesch. Pulse amplitude and frequency modulation of parathyroid hormone in plasma. J. Clin. Endocrinol. Metab. 69: 843–851, 1989.
 190. Harms, H. M., O., Neubauer, C. Kayser, P. R. Wustermann, R. Horn, U. Brosa, E. Schlinke, W. R. Kulpmann, A. von zur Muhlen, and R. D. Hesch. Pulse amplitude and frequency modulation of parathyroid hormone in early postmenopausal women before and on hormone replacement therapy. J. Clin. Endocrinol. Metab. 78: 48–52, 1994.
 191. Hartle, J. E., J. M., Arthur, J. T. Raymond, and L. D. Quarles. Evidence for a cation sensing receptor in osteoblasts coupled to G‐protein activation and DNA synthesis [abstract]. J. Bone Miner. Res. 9: S159, 1994.
 192. Hashizume, Y., S., Waguri, T. Watanabe, E. Kominami, and Y. Uchiyama. Cysteine proteinases in rat parathyroid cells with special reference to their correlation with parathyroid hormone (PTH) in storage granules. J. Histochem. Cytochem. 41: 273–282, 1993.
 193. Hassager, C., J., Risteli, L. Risteli, S. B. Jensen, and C. Christiansen. Diurnal variation in serum markers of type I collagen synthesis and degradation in healthy premenopausal women. J. Bone Miner. Res. 7: 1307–1311, 1992.
 194. Hawa, N. S., J. L., O'Riordan, and S. M. Farrow. Post‐transcriptional regulation of bovine parathyroid hormone synthesis. J. Mol. Endocrinol. 10: 43–49, 1993.
 195. Hawkins, D., P., Enyedi, and E. M. Brown. The effects of high extracellular Ca2+ and Mg2+ concentrations on the levels of inositol 1,3,4,5‐tetrakisphosphate in bovine parathyroid cells. Endocrinology 124: 838–844, 1989.
 196. Heath, D. A., Familial hypocalciuric hypercalcemia. In: The Parathyroids, edited by J. Bilezikian. New York: Raven, 1994, p. 699–710.
 197. Heath III, H. Biogenic amines and the secretion of parathyroid hormone and calcitonin. Endocr. Rev. 1: 319–338, 1980.
 198. Heath III, H. Biogenic amines and the secretion of parathyroid hormone and calcitonin. Endocr. Rev. 1: 319–338, 1980.
 199. Heath, H., C. E., Jackson, B. Otterud, and M. F. Leppert. Genetic linkage analysis of familial benign (hypocalciuric) hypercalcemia: evidence for locus heterogeneity. Am. J. Hum. Genet. 53: 193–200, 1993.
 200. Heath III, H. S. Odelberg, C. E. Jackson, B. T. Teh, N. Hayward, C. Larsson, N. R. M. Buist, K. J. Krapcho, B. Hung, I. V. Capuano, J. E. Garrett, and M. F. Leppert. Clustered inactivating mutations and benign polymorphisms of the calcium receptor gene in familial benign hypocalciuric hypercalcemia suggest receptor functional domains. J. Clin. Endocrinol. Metab. 81: 1312–1317, 1996.
 201. Hellerman, J. G., R. C., Cone, G. V. Segre, J. T. Potts, Jr., A. Rich, R. C. Mulligan, and H. M. Kronenberg. Secretion of human parathyroid hormone from rat pituitary cells infected with recombinant retrovirus encoding preproparathyroid hormone. Proc. Natl. Acad. Sci. U.S.A. 81: 5340–5344, 1984.
 202. Hellman, P., P., Ridefelt, C. Juhlin, G. Akerstrom, J. Rastad, and E. Gylfe. Parathyroid‐like regulation of parathyroid‐hormone‐related protein release and cytoplasmic calcium in cytotrophoblast cells of human placenta. Arch. Biochem. Biophys. 293: 174–180, 1992.
 203. Hennings, H., D., Michael, C. Cheng, P. Steinert, K. Holbrook, and S. H. Yuspa. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19: 245–254, 1980.
 204. Ho, C., D. A., Conner, M. Pollak, D. J. Ladd, O. Kifor, H. Warren, E. M. Brown, C. E. Seidman, and J. G. Seidman. A mouse model for familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat. Genet. 11: 389–394, 1995.
 205. Hosokawa, Y., M. R., Pollak, E. M. Brown, and A. Arnold. Mutational analysis of the extracellular Ca2+‐sensing receptor gene in human parathyroid tumors. J. Clin. Endocrinol. Metab. 80: 3107–3110, 1995.
 206. Hruska, K. A., A., Korkor, K. Martin, and E. Slatopolsky. Peripheral metabolism of intact parathyroid hormone: role of liver and kidney and the effect of chronic renal failure. J. Clin. Invest. 67: 885–892, 1981.
 207. Hughes, M. R., P. F., Brumbaugh, M. R. Haussler, J. E. Wergedal, and D. J. Baylink. Regulation of serum 1,25‐dihydroxyvitamin D by calcium and phosphate in the rat. Science 190: 578–579, 1975.
 208. Ikeda, K., E. C., Weir, M. Mangin, P. S. Dannies, B. Kinder, L. J. Deftos, E. M. Brown, and A. E. Broadus. Expression of messenger ribonucleic acids encoding a parathyroid hormonelike peptide in normal human and animal tissues with abnormal expression in human parathyroid adenomas. Mol. Endocrinol. 2: 1230–1236, 1988.
 209. Isaac, R., R. E., Merceron, G. Caillens, J. P. Raymond, and R. Ardaillou. Effect of parathyroid hormone on plasma prolactin in man. J. Clin. Endocrinol. Metab. 47: 18–23, 1978.
 210. Jackson, T. Structure and function of G protein coupled receptors. Pharmacol. Ther. 50: 425–442, 1991.
 211. Jacobowitz, D. M., and E. M. Brown. Bovine parathyroid catecholamines: a chemical and histochemical study. Experientia 36: 115–116, 1980.
 212. Janicic, N., Z., Pausova, D. E. C. Cole, and G. N. Hendy. Insertion of an Alu sequence in the Ca2+‐sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am. J. Hum. Genet. 56: 880–886, 1995.
 213. Joborn, H., P., Hjemdahl, L. Wide, G. Akerstrom, and S. Ljunghall. Reduction of serum parathyroid hormone levels during sympathetic stimulation in man. J. Endocrinol. Invest. 10: 153–156, 1987.
 214. Joburn, H., R., Larsson, J. Rastad, P. Nygren, G. Akerstrom, and S. Ljunghall. Vasoactive intestinal polypeptide stimulates parathyroid hormone release by interaction with cyclic adenosine monophosphate production of bovine parathyroid cells. Acta Endocrinol. (Copenh.) 124: 54–59, 1991.
 215. Johansson, H., R., Larsson, C. Wallfelt, J. Rastad, G. Akerstrom, and E. Gylfe. Calcium‐agonistic action of Mn2+ in the parathyroid cell. Mol. Cell. Endocrinol. 59: 77–82, 1988.
 216. Jubiz, W., J. M., Cantebury, R. Reiss, and F. H. Tyler. Circadian rhythm in serum parathyroid hormone concentration in human subjects: correlation with serum calcium, phosphate, albumin, and growth hormone levels. J. Clin. Invest. 51: 2040–2046, 1972.
 217. Juhlin, C., H., Johansson, R. Holmdahl, E. Gylfe, R. Larsson, J. Rastad, G. Akerstrom, and L. Klareskog. Monoclonal anti‐parathyroid antibodies interfering with a Ca2+‐sensor of human parathyroid cells. Biochem. Biophys. Res. Commun. 143: 570–574, 1987.
 218. Jung, A., G. P., Mayer, J. G. Hurst, R. Neer, and J. T. Potts, Jr.. Model for parathyroid hormone secretion and metabolism in calves. Am. J. Physiol. 242 (Regulatory Integrative Comp. Physiol. 11): R141–R150, 1982.
 219. Kaiser, F. E., M., Dorighi, J. Muchnick, J. E. Morley, and P. Patrick. Regulation of gonadotropins and parathyroid hormone by nitric oxide. Life Sci. 59: 987–992, 1996.
 220. Kaneko, T., R., Ohtani, R. Z. Lewanczuk, and P. Pang. A novel cell type in the parathyroid glands of spontaneously hypertensive rats. Am. J. Hypertens. 2: 549–552, 1989.
 221. Karmali, R., S., Farrow, M. Hewison, S. Barker, and J. L. O'Riordan. Effects of 1,25‐dihydroxyvitamin D3 and Cortisol on bovine and human parathyroid cells. J. Endocrinol. 123: 137–142, 1989.
 222. Katz, C. L., R. R., Butters, C. J. Chen, and E. M. Brown. Structure–function relationships for the effects of various aminoglycoside antibiotics on dispersed bovine parathyroid cells. Endocrinology 131: 903–910, 1992.
 223. Khosla, S., P. R., Ebeling, A. F. Firek, M. M. Burritt, P. C. Kao, and H. Heath, III.. Calcium infusion suggests a “set‐point” abnormality of parathyroid gland function in familial benign hypercalcemia and more complex disturbances in primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 76: 715–720, 1993.
 224. Kifor, O., and E. M. Brown. Relationship between diacylglycerol levels and extracellular Ca++ in dispersed bovine parathyroid cells. Endocrinology 123: 2723–2729, 1988.
 225. Kifor, O., R., Diaz, R. Butters, and E. M. Brown. The Ca2+‐sensing receptor mediates activation of phospholipases C, A2, and D by high extracellular Ca2+ in bovine parathyroid cells and human embryonic kidney (HEK293) cells. J. Bone. Miner. Res. 12: 715–725, 1997.
 226. Kifor, O., I., Kifor, and E. M. Brown. Effects of high extracellular calcium concentrations on phosphoinositide turnover and inositol phosphate metabolism in dispersed bovine parathyroid cells. J. Bone Miner. Res. 7: 1327–1335, 1992.
 227. Kifor, O., F. D. Moore, Jr., P. Wang, M. Goldstein, P. Vassilev, I. Kifor, S. C. Hebert, and E. M. Brown. Reduced immunostaining for the extracellular Ca2+‐sensing receptor in primary and uremic secondary hyperparathyroidism. J. Clin. Endocrinol. Metab. 31: 1598–1606, 1996.
 228. Kitamura, N., C., Shigeno, K. Shiomi, K. Lee, S. Ohta, S. Teruki, S. Katsushima, E. Tadamura, T. Kousaka, I. Yamamoto, S. Dokoh, and J. Konishi. Episodic fluctuation in serum intact parathyroid hormone concentration in men. J. Clin. Endocrinol. Metab. 70: 252–263, 1990.
 229. Knigge, U., F., Wollesen, and P. M. Christiansen. Histamine H2 receptors and parathyroid hormone secretion. Lancet 2: 212, 1980.
 230. Knochel, J. P., and H. R. Jackson. Renal handling of phosphorus, hyperphosphatemia, and phosphorus depletion. In: The Kidney, edited by B. M. Brenner, and F. C. Rector, Jr. Philadelphia: Saunders, 1986, p. 619–662.
 231. Kobayashi, N., J., Russell, D. Lettieri, and L. M. Sherwood. Regulation of protein kinase C by extracellular calcium in bovine parathyroid cells. Proc. Natl. Acad. Sci. U.S.A. 85: 4857–4860, 1988.
 232. Kopp, P., K., Kitijima, and J. L. Jameson. Syndrome of resistance to thyroid hormone: insights into thyroid hormone action. Proc. Soc. Exp. Biol. Med. 211: 49–61, 1996.
 233. Kremer, R., I., Bolivar, D. Goltzman, and G. N. Hendy. Influence of calcium and 1,25‐dihydroxycholecalciferol on proliferation and proto‐oncogene expression in primary cultures of bovine parathyroid cells. Endocrinology 125: 935–941, 1989.
 234. Kripke, D. F., P., Lavie, D. Parker, L. Huey, and L. J. Deftos. Plasma parathyroid hormone and calcium are related to sleep stages. J. Clin. Endocrinol. Metab. 47: 1021–1027, 1978.
 235. Kronenberg, H. M., F. R., Bringhurst, G. V. Segre, and J. T. Potts, Jr., Parathyroid hormone biosynthesis and metabolism. In: The Parathyroids, edited by J. Bilezikian. New York: Raven, 1994, p. 125–137.
 236. Kuliawat, R., and P. Arvan. Protein targetting via the “constitutive‐like” secretory pathway in isolated pancreatic islets: passive sorting in the immature granule compartment. J. Cell Biol. 118: 521–529, 1992.
 237. Kurokawa, K. The kidney and calcium homeostasis. Kidney Int. 45 (Suppl. 44): S97–S105, 1994.
 238. Kwan, J. T., J. C., Beer, K. Noonan, and J. Cunningham. Parathyroid sensing of direction of change of calcium in uremia. Kidney Int. 43: 1104–1109, 1993.
 239. Lasker, R. D., and A. M. Spiegel. Endogenous substrates for cAMP‐dependent phosphorylation in dispersed bovine parathyroid cells. Endocrinology 111: 1412–1414, 1982.
 240. Law, W. M., Jr., and H. Heath III.. Familial benign hypercalcemia (hypocalciuric hypercalcemia). Clinical and pathogenetic studies in 21 families. Ann. Intern. Med. 105: 511–519, 1985.
 241. Ledger, G. A., M. F., Burritt, P. C. Kao, W. M. O'Fallon, B. L. Riggs, and S. Khosla. Abnormalities of parathyroid hormone secretion in elderly women that are reversible by short term therapy with 1,24‐dihydroxyvitamin D3. J. Clin. Endocrinol. Metab. 79: 211–216, 1994.
 242. Ledger, G. A., M. F., Burritt, P. C. Kao, W. M. O'Fallon, B. L. Riggs, and S. Khosla. Role of parathyroid hormone in mediating nocturnal and age‐related increases in bone resorption. J. Clin. Endocrinol. Metab. 80: 3304–3310, 1995.
 243. Lee, M. J., and S. I. Roth. Effect of calcium and magnesium in deoxyribonucleic acid synthesis in rat parathyroid glands in vitro. Lab. Invest. 33: 72–79, 1975.
 244. Lewanczuk, R. Z., and P. K. Pang. Parathyroid hypertensive factor is present in DOCA‐salt but not two‐kidney‐one‐clip hypertensive rats. Am. J. Hypertens. 4: 802–805, 1991.
 245. Leyte, A., F. A., Barr, R. H. Kehlenbach, and W. B. Huttner. Multiple trimeric G‐proteins on the trans‐Golgi network exert stimulatory and inhibitory effects on secretory vesicle formation. EMBO J. 11: 4795–4804, 1992.
 246. Lim, S. K., T. J., Gardella, H. Baba, S. R. Nussbaum, and H. M. Kronenberg. The carboxy‐terminus of parathyroid hormone is essential for hormone processing and secretion. Endocrinology 131: 2325–2330, 1992.
 247. Lin, C. M., K., Saito, and M. Yokoyama. Calcium supplementation inhibits the expression of parathyroid hypertensive factor in DOCA‐salt hypertensive rats. Am. J. Hypertens. 7: 201–204, 1994.
 248. Lindberg, I. The new eukaryotic precursor processing proteinases. Mol. Endocrinol. 5: 1361–1365, 1991.
 249. Ljunghall, S., G., Akerstrom, L. Benson, J. Hetta, C. Rudberg, and L. Wide. Effects of epinephrine and norepinephrine on serum parathyroid hormone and calcium in normal subjects. Exp. Clin. Endocrinol. 84: 313–318, 1984.
 250. Ljunghall, S., L., Benson, G. Akerstrom, and L. Wide. Insulininduced hypoglycaemia stimulates secretion of parathyroid hormone. Exp. Clin. Endocrinol. 84: 319–323, 1984.
 251. Ljunghall, S., H., Joborn, L. E. Roxin, J. Rastad, L. Wide, and G. Akerstrom. Prolonged low‐intensity exercise raises the serum parathyroid hormone levels. Clin. Endocrinol. (Oxf.) 25: 535–542, 1986.
 252. Ljunghall, S., L., Lundin, and L. Wide. Acute effects of ethanol intake on the serum concentrations of parathyroid hormone, calcium and phosphate. Exp. Clin. Endocrinol. 85: 365–368, 1985.
 253. Ljunghall, S., C., Rudberg, G. Akerstrom, and L. Wide. Effects of beta‐adrenergic blockade on serum parathyroid hormone in normal subjects and patients with primary hyperparathyroidism. Acta Med. Scand. 211: 27–30, 1982.
 254. Llinas, R., M., Sugimori, E. J. Lang, M. Morita, M. Fukuda, M. Niinobe, and K. Mikoshiba. The inositol high polyphosphate series blocks synaptic transmission by preventing vesicular fusion: a squid giant axon study. Proc. Natl. Acad. Sci. U.S.A. 91: 12990–12993, 1994.
 255. Lobaugh, B., F. A., Neelon, H. Oyama, N. Buckley, S. Smith, M. Christy, and G. S. Leight, Jr.. Orcadian rhythms for calcium, inorganic phosphorus, and parathyroid hormone in primary hyperparathyroidism: functional and practical. Surgery 106: 1009–1016, 1989.
 256. Logue, F. C., W. D., Fraser, S. J. Gallacher, D. A. Cameron, D. S. O'Reilly, G. H. Beastall, U. Patel, and Boyle, I. T. The loss of circadian rhythm for intact parathyroid hormone and nephrogenous cyclic AMP in patients with primary hyperparathyroidism. Clin. Endocrinol. (Oxf.) 32: 475–483, 1990.
 257. Logue, F. C., W. D., Fraser, D. S. O'Reilly, D. A. Cameron, and A. J. Kelly. The circadian rhythm of intact parathyroid hormone‐(1–84): temporal correlation with prolactin secretion in normal men. J. Clin. Endocrinol. Metab. 71: 1556–1560, 1990.
 258. Logue, F. C., W. D., Fraser, D. S. O'Reilly, J. Christie, D. A. Cameron, D. C. Wallace, and G. H. Beastall. Sleep shift dissociates the nocturnal peaks of parathyroid hormone (1–84), nephrogenous cAMP, and prolactin in normal men. J. Clin. Endocrinol. Metab. 75: 25–29, 1992.
 259. Lopez‐Barneo, J., and C. M. Armstrong. Depolarizing response of rat parathyroid cells to divalent cations. J. Gen. Physiol. 82: 269–294, 1983.
 260. Lovlie, R., H. G., Eiken, and H. Sorheim. The Ca2+‐sensing receptor gene (PCAR1) mutation T151M in isolated autosomal dominant hypoparathyroidism. Hum. Genet. 98: 129–133, 1996.
 261. Lundgren, S., G., Hjalm, P. Hellman, B. Ek, C. Juhlin, J. Rastad, L. Klareskog, G. Akerstrom, and L. Rask. A protein involved in calcium sensing of the human parathyroid and placental cytotrophoblast cells belongs to the LDL‐receptor protein super‐family. Exp. Cell Res. 212: 344–350, 1994.
 262. Lutz, M. D. How antibiotics can damage the kidneys. Med. Times 107: 19d–32d, 1979.
 263. MacDonald, P. N., C., Ritter, A. J. Brown, and E. Slatopolsky. Retinoic acid suppresses parathyroid hormone (PTH) secretion and preproPTH mRNA levels in bovine parathyroid cell culture. J. Clin. Invest. 93: 725–730, 1994.
 264. MacGregor, R. R., and D. D. Bansal. Inhibitors of cellular proteolysis cause increased secretion from parathyroid cells. Biochem. Biophys. Res. Commun. 160: 1339–1343, 1989.
 265. MacGregor, R. R., J. W., Hamilton, and D. V. Cohn. The bypass of tissue hormone stores during the secretion of newly synthesized parathyroid hormone. Endocrinology 97: 178–188, 1975.
 266. Macgregor, R. R., D. A., Hinton, and R. D. Ridgeway. Effects of calcium on synthesis and secretion of parathyroid hormone and secretory protein I. Am. J. Physiol. 225 (Endocrinol. Metab. 18): E299–E305, 1988.
 267. Magliola, L., and L. R. Forte. Prolactin stimulation of parathyroid hormone secretion in bovine parathyroid cells. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E675–E680, 1984.
 268. Mahaffe, D. D., C. W., Cooper, W. K. Ramp, and D. A. Ontjes. Magnesium promotes both parathyroid hormone secretion and adenosine 3′,5′‐monophosphate production in rat parathyroid tissues and reverses the inhibitory effects of calcium on adenylate cyclase. Endocrinology 110: 487–495, 1982.
 269. Malgaroli, A., J., Meldolesi, A. Zambone‐Zallone, and A. Teti. Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin. J. Biol. Chem. 264: 14342–14349, 1989.
 270. Mallette, L. E. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr. Rev. 12: 110–117, 1991.
 271. Mallette, L. E., and E. Eichhorn. Effects of lithium carbonate on human calcium metabolism. Arch. Intern. Med. 146: 770–776, 1986.
 272. Mallette, L. E., K., Khouri, H. Zengotita, B. W. Hollis, and S. Malini. Lithium treatment increases intact and midregion parathyroid hormone and parathyroid volume. J. Clin. Endocrinol. Metab. 68: 654–660, 1989.
 273. Manji, H. K., W. Z., Potter, and R. H. Lenox. Signal transduction pathways. Molecular targets for lithium's actions. Arch. Gen. Psychiatry 52: 531–543, 1995.
 274. Markowitz, M. E., S., Arnaud, J. F. Rosen, M. Thorpy, and S. Laximinarayan. Temporal interrelationships between the circadian rhythms of serum parathyroid hormone and calcium concentrations. J. Clin. Endocrinol. Metab. 67: 1068–1073, 1988.
 275. Marti, R., P., Wild, E. M. Schraner, M. Mueller, and H. Moor. Parathyroid ultrastructure after aldehyde fixation, high pressure freezing, or microwave irradiation. J. Histochem. Cytochem. 35: 1415–1424, 1987.
 276. Marx, S. J., M. F., Attie, M. A. Levine, A. M. Spiegel, R. W. J. Downs, and R. D. Lasker. The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine (Baltimore) 60: 397–412, 1981.
 277. Marx, S. J., M. F., Attie, A. M. Spiegel, M. A. Levine, R. D. Lasker, and M. Fox. An association between neonatal severe primary hyperparathyroidism and familial hypocalciuric hypercalcemia in three kindreds. N. Engl. J. Med. 306: 257–284, 1982.
 278. Marx, S. J., M. F., Attie, J. L. Stock, A. M. Spiegel, and M. A. Levine. Maximal urine‐concentrating ability: familial hypocalciuric hypercalcemia versus typical primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 52: 736–740, 1981.
 279. Marx, S. J., R., Lasker, E. Brown, L. Fitzpatrick, N. Sweezey, R. Goldbloom, D. Gillis, and D. Cole. Secretory dysfunction in parathyroid cells from a neonate with severe primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 62: 445–449, 1986.
 280. Marx, S. J., U. A., Liberman, and C. A. Eil. Calciferols; actions and deficiencies in actions. Vitam. Horm. 40: 235–308, 1983.
 281. Matovcik, L. M., H. C., Hemmings, and B. K. Kinder. DARPP‐32 (dopamine and cAMP‐regulated phosphoprotein, Mr 32,000) is a membrane protein in the bovine parathyroid. FEBS Lett. 364: 67–74, 1995.
 282. Matovcik, L. M., S. S., Rhee, J. F. Schaefer, and B. K. Kinder. Reconstitution of calcium‐regulated parathyroid hormone secretion from streptolysin‐O‐permeabilized parathyroid cells by guanosine‐5′‐O‐(thio)triphosphate. Endocrinology 138: 1170–1179, 1997.
 283. Matsuo, M., K., Okita, H. Takemine, and T. Fujita. Neonatal primary hyperparathyroidism in familial hypocalciuric hypercalcemia. Am. J. Dis. Child. 136: 728–731, 1982.
 284. Mayer, G. P., J. F. Habener, and J. T. Potts, Jr.. Parathyroid hormone secretion in vivo: demonstration of a calciumindependent, non‐suppressible component of secretion. J. Clin. Invest. 57: 678–683, 1979.
 285. Mayer, G. P., and J. G. Hurst. Sigmoidal relationship between parathyroid hormone secretion rate and plasma calcium concentration in calves. Endocrinology 102: 1036–1042, 1978.
 286. Mayer, G. P., J. G., Hurst, J. A. Barto, J. A. Keaton, and M. P. Moore. Effect of epinephrine on parathyroid hormone secretion by calves. Endocrinology 104: 1181–1187, 1979.
 287. Mayer, G. P., J. A., Keaton, J. C. Hurst, and J. F. Habener. Effects of plasma calcium concentration on the relative proportion of hormone and carboxyl fragments in parathyroid venous blood. Endocrinology 104: 1778–1784, 1979.
 288. Mayorga, L. S., M. I., Colombo, M. Lennartz, E. J. Brown, K. H. Rahman, R. Weiss, P. J. Lennon, and P. D. Stahl. Inhibition of endosome fusion by phospholipase A2 (PLA2) inhibitors points to a role of PLA2 in endocytosis. Proc. Natl. Acad. Sci. U.S.A. 90: 10255–10259, 1993.
 289. McGhee, J. G., and D. M. Shoback. Effects of phosphatidic acid on parathyroid hormone release, intracellular free Ca2+, and inositol phosphates in dispersed bovine parathyroid cells. Endocrinology 126: 899–907, 1990.
 290. McGrath, C. M., and H. D. Soule. Calcium regulation of normal human mammary epithelial cells in culture. In Vitro Cell. Dev. Biol. 20: 652–662, 1984.
 291. McHenry, C. R., D. B., Stenger, and F. Racke. Investigation of calcium‐induced hydrolysis of polyphosphoinositides in normal and lithium‐treated parathyroid cells. Am. J. Surg. 170: 484–487, 1995.
 292. McKay, C., and A. Miller. Relationship among cellular diacylglycerol, sphingosine formation, protein kinase C activity, and parathyroid hormone secretion from dispersed bovine parathyroid cells. Endocrinology 137: 2473–2479, 1996.
 293. Melloni, E., and S. Pontremoli. The calpains. Trends Neurosci. 12: 438–444, 1989.
 294. Membreno, L., T., Chu, S. Woodley, R. Gagucas, and D. M. Shoback. The effect of protein kinase‐C agonists on parathyroid hormone release and intracellular free Ca2+ in bovine parathyroid cells. Endocrinology 124: 789–797, 1989.
 295. Metz, S. A., L. J., Deftos, D. Baylink, and R. P. Robertson. Neuroendocrine modulation of calcitonin and parathyroid hormone in man. J. Clin. Endocrinol. Metab. 47: 151–159, 1978.
 296. Miki, H., P. B., Maercklein, and L. A. Fitzpatrick. Spontaneous oscillations of intracellular calcium in single bovine parathyroid cells may be associated with the inhibition of parathyroid‐hormone secretion. Endocrinology 136: 2954–2959, 1995.
 297. Miller, S. G., L., Carnell, and H. P. H. Moore. Post Golgi membrane traffic: brefeldin A inhibits export from the distal Golgi compartment to the cell surface but not recycling. J. Cell Biol. 118: 267–283, 1992.
 298. Mithal, A., O., Kifor, P. Vassilev, K. Krapcho, R. Simin, F. Fuller, S. C. Hebert, and E. M. Brown. The reduced responsiveness of cultured bovine parathyroid cells to extracellular Ca2+ is associated with marked reduction in the expression of extracellular Ca2+‐sensing receptor mRNA and protein. Endocrinology 136: 3087–3092, 1995.
 299. Monsma, F. J., and D. Sibley. Direct demonstration of D1 dopamine receptors in the bovine parathyroid gland using the selective antagonist [125I]‐SCH 23982. Synapse 3: 193–199, 1989.
 300. Morrissey, J., and E. Slatopolsky. Effect of aluminum on parathyroid hormone secretion. Kidney Int. 18: S41–S44, 1986.
 301. Morrissey, J. J. Effect of phorbol myristate acetate on secretion of parathyroid hormone. Am. J. Physiol. 254 (Endocrinol. Metab. 17): E63–E70, 1988.
 302. Morrissey, J. J., and D. V. Cohn. The effects of calcium and magnesium on the secretion of parathormone and parathyroid secretory protein by isolated porcine parathyroid cells. Endocrinology 103: 2081–2090, 1978.
 303. Morrissey, J. J., and D. V. Cohn. Regulation of secretion of parathormone and secretory protein protein‐I from separate intracellular pools by calcium, dibutyryl cyclic AMP, and (1)‐isoproterenol. J. Cell Biol. 82: 93–102, 1979.
 304. Morrissey, J. J., J. W., Hamilton, R. R. MacGregor, and D. V. Cohn. The secretion of parathormone fragments 34–84 and 37–84 by dispersed porcine parathyroid cells. Endocrinology 107: 164–171, 1980.
 305. Muff, R., and J. Fischer. Parathyroid hormone secretion does not respond to changes in free calcium in electropermeabilized bovine parathyroid cells, but is stimulated with phorbol ester and cAMP. Biochem. Biophys. Res. Commun. 139: 1233–1237, 1986.
 306. Muff, R., E. F. Nemeth, S. Haller‐Brem, and J. A. Fischer. Regulation of hormone secretion and cytosolic Ca2+ by extracellular Ca2+ in parathyroid cells and C‐cells: role of voltage‐sensitive Ca2+ channels. Arch. Biochem. Biophys. 265: 128–135, 1988.
 307. Muresan, Z., and R. R. MacGregor. The release of parathyroid hormone and the exocytosis of a proteoglycan are modulated by extracellular Ca2+ in a similar manner. Mol. Biol. Cell 5: 725–737, 1994.
 308. Murray, T. M., L. G., Rao, S. A. Muzaffar, and H. Ly. Human parathyroid hormone carboxyterminal peptide (53–84) stimulates alkaline phosphatase activity in dexamethasone‐treated rat osteosarcoma cells in vitro. Endocrinology 124: 1097–1099, 1989.
 309. Nakanishi, S. Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603, 1992.
 310. Nakanishi, S. Metabotropic glutamate receptors: synaptic transmission, modulation and plasticity. Neuron 13: 1031–1037, 1994.
 311. Naveh‐Many, T., G., Almogi, N. Livni, and J. Silver. Estrogen receptors and biologic response in rat parathyroid tissue and C‐cells. J. Clin. Invest. 90: 2434–2438, 1992.
 312. Naveh‐Many, T., M. M., Friedlaender, H. Mayer, and J. Silver. Calcium regulates parathyroid hormone messenger ribonucleic acid (mRNA), but not calcitonin mRNA in vivo in the rat. Dominant role of 1,25‐dihydroxyvitamin D. Endocrinology 125: 275–280, 1989.
 313. Naveh‐Many, T., R., Marx, E. Keshet, J. W. Pike, and J. Silver. Regulation of 1,25‐dihydroxyvitamin D3 receptor gene expression by 1,25‐dihydroxyvitamin D3 in the parathyroid gland in vivo. J. Clin. Invest. 86: 1969–1975, 1990.
 314. Naveh‐Many, T., R., Rahaminov, N. Livni, and J. Silver. Parathyroid cell proliferation in normal and chronic renal failure rats. The effects of calcium, phosphate, and vitamin D. J. Clin. Invest. 96: 1786–1793, 1995.
 315. Naveh‐Many, T., and J. Silver. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia and vitamin D in the rat. J. Clin. Invest. 86: 1313–1319, 1990.
 316. Naveh‐Many, T., and J. Silver. Effects of calcitriol, 22‐oxocalcitriol, and calcipotriol on serum calcium and parathyroid hormone gene expression. Endocrinology 133: 2724–2728, 1993.
 317. Nemeth, E. F. Regulation of cytosolic calcium by extracellular divalent cations in C‐cells and parathyroid cells. Cell Calcium 11: 323–327, 1990.
 318. Nemeth, E. F. Ca2+ receptor‐dependent regulation of cellular function. News Physiol. Sci. 10: 1–5, 1995.
 319. Nemeth, E. F., and L. M. Kosz. Adenine nucleotides mobilize cellular Ca2+ and inhibit parathyroid hormone secretion. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E505–E513, 1989.
 320. Nemeth, E. F., and A. Scarpa. Cytosolic Ca2+ and the regulation of secretion in parathyroid cells. FEBS Lett. 203: 15–19, 1986.
 321. Nemeth, E. F., and A. Scarpa. Rapid mobilization of cellular Ca2+ in bovine parathyroid cells by external divalent cations. J. Biol. Chem. 202: 5188–5196, 1987.
 322. Nemeth, E. F., J., Wallace, and A. Scarpa. Stimulus–secretion coupling in bovine parathyroid cells. Dissociation between secretion and net changes in cytosolic Ca++. J. Biol. Chem. 261: 2668–2674, 1986.
 323. Neuman, M. W. Blood: bone equilibrium. Calcif. Tissue Int. 34: 117–120, 1982.
 324. Neuman, W. F. The milieu interieur of bone: Claude Bernard revisited. Federation Proc. 28: 262–270, 1969.
 325. Nielsen, H. K., P., Laurberg, K. Brixen, and L. Mosekilde. Relations between diurnal variations in serum osteocalcin, Cortisol, parathyroid hormone, and ionized calcium in normal individuals. Acta Endocrinol. (Copenh.) 124: 391–398, 1991.
 326. Niznik, H. B., E. L., Fogel, C. J. Chen, D. Congo, E. M. Brown, and P. Seeman. Dopamine D1 receptors of the calf parathyroid gland: identification and characterization. Mol. Pharmacol. 34: 29–36, 1988.
 327. Nko, M., M., Gruson, J. Gueris, M. Mouktar, J. Redel, J. De‐mignon, and L. Miravet. Effects of the dihydroxyl metabolites of vitamin D3 and their ethanol solvent on parathyroid secretion: in vivo study in the rat. C. R. Seances Acad. Sci. III 292: 307–312, 1981.
 328. Norberg, K. A., B., Persson, and P. O. Granberg. Adrenergic innervation of the human parathyroid glands. Acta Chir. Scand. 141: 319–322, 1975.
 329. Nordenstrom, J., K., Strigard, L. Perbeck, J. Williams, M. Bagedahl‐Stricklund, and J. Linder. Hyperparathyroidism associated with treatment of manic‐depressive disorders by lithium. Eur. J. Surg. 158: 207–211, 1992.
 330. Nussbaum, S. R., J. T. Potts, Jr., C. A. Wang, R. Zahradnik, J. R. Lavigne, L. Kim, and G. V. Segre. A highly sensitive two‐site immunoradiometric assay for parathyroid hormone (PTH) and its clinical utility in the evaluation of patients with hypercalcemia. Clin. Chem. 33: 1364–1367, 1987.
 331. Nygren, P., E., Gylfe, R. Larsson, H. Johansson, C. Juhlin, L. Klareskog, G. Akerstrom, and J. Rastad. Modulation of the Ca2+‐sensing function of parathyroid cells in vitro and in hyperparathyroidism. Biochim. Biophys. Acta 968: 253–260, 1988.
 332. Nygren, P., R., Larsson, H. Johansson, S. Ljunghall, J. Rastad, and G. Akerstrom. 1,25(OH)2D inhibits hormone secretion and proliferation but not functional differentiation of cultured bovine parathyroid cells. Calcif. Tissue Int. 42: 213–218, 1988.
 333. Nygren, P., R., Larsson, S. Lindh, S. Ljunghall, J. Rastad, G. Akerstrom, and E. Gylfe. Bimodal regulation of secretion by cytoplasmic Ca2+ as demonstrated by the parathyroid. FEBS Lett. 213: 195–198, 1987.
 334. Nygren, P., R., Larsson, J. Rastad, G. Akerstrom, and E. Gylfe. Dimethyl sulfoxide increases cytoplasmic Ca2+ concentration and inhibits parathyroid hormone release in normal bovine and pathological human parathyroid cells. Biochim. Biophys. Acta 928: 194–198, 1987.
 335. Oetting, M., M. S., Leboff, S. Levy, J. Swiston, J. Preston, C. Chen, and E. M. Brown. Permeabilization reveals classical stimulus–secretion coupling in bovine parathyroid cells. Endocrinology 121: 1571–1576, 1987.
 336. Oetting, M., M. S., Leboff, J. Swiston, J. Preston, C. Chen, and E. M. Brown. Guanine nucleotides are potent secretagogues in permeabilized parathyroid cells. FEBS Lett. 208: 99–104, 1986.
 337. Okazaki, T., U., Chung, T. Nishishita, S. Ebisu, S. Usuda, S. Mishiro, S. Xanthoudakis, T. Igarashi, and E. Ogata. A redox factor protein, refl, is involved in negative gene regulation by extracellular calcium. J. Biol. Chem. 269: 27855–27862, 1994.
 338. Okazaki, T., T., Igarashi, and H. M. Kronenberg. 5′‐Flanking region of the parathyroid hormone gene mediates negative regulation by 1,25(OH)2 vitamin D3. J. Biol. Chem. 263: 2203–2208, 1989.
 339. Okazaki, T., J. D., Zajac, T. Igarashi, E. Ogata, and H. M. Kronenberg. Negative regulatory elements in the human parathyroid hormone gene. J. Biol. Chem. 266: 21903–21910, 1991.
 340. Orloff, J. J., Y., Kats, P. Urena, E. Schipani, R. C. Vasavada, W. M. Philbrick, A. Behal, A. B. Abou‐Samra, G. V. Segre, and H. Juppner. Further evidence for a novel receptor for amino‐terminal parathyroid hormone–related protein in keratinocytes and squamous carcinoma cell lines. Endocrinology 136: 3016–3023, 1995.
 341. Orloff, J. J., D. Reddy, A. E. dePapp, K. H. Yang, N. E. Soifer, and A. F. Stewart. Parathyroid hormone–related protein as a prohormone: posttranslational processing and receptor interactions. Endocr. Rev. 15: 40–60, 1994.
 342. Pang, P. K., C. G., Benishin, and R. Z. Lewanczuk. Parathyroid hypertensive factor, a circulating factor in animal and human hypertension. Am. J. Hypertens. 4: 472–477, 1991.
 343. Parfitt, A. M. Hypercalcemic hyperparathyroidism following renal transplantation: differential diagnosis, management, and implications for cell population control in the parathyroid gland. Miner Electrolyte Metab. 8: 92–112, 1982.
 344. Parfitt, A. M. Bone and plasma calcium homeostasis. Bone 8 (Suppl. 1): 269–398 1–8, 1987.
 345. Parfitt, A. M., and M. Kleerekoper. The divalent ion homeostatic system—physiology and metabolism of calcium, phosphorus, magnesium, and bone. In: Clinical Disorders of Fluid and Electrolyte Metabolism, edited by M. H. Maxwell, and C. R. Kleeman. New York: McGraw‐Hill, 1980, p. 269–398.
 346. Peacock, M., W. G., Robertson, and B. E. C. Nordin. Relation between serum and urinry calcium with particular reference to parathyroid activity. Lancet 1: 384–389, 1969.
 347. Pearce, S. H. S., M., Bai, S. J. Quinn, O. Kifor, E. M. Brown, and R. V. Thakker. Functional characterization of calciumsensing receptor mutations expressed in human embryonic kidney cells. J. Clin. Invest. 98: 1860–1866, 1996.
 348. Pearce, S. H., and D. Trump. G‐protein‐coupled receptors in endocrine disease. Q. J. Med. 88: 3–8, 1995.
 349. Pearce, S. H. S., D., Trump, C. Wooding, G. M. Besser, S. L. Chew, D. L. Heath, I. A. Hughes, and R. V. Thakker. Calciumsensing receptor mutations in familial benign hypercalcaemia and neonatal hyperparathyroidism. J. Clin. Invest. 96: 2683–2692, 1995.
 350. Pearce, S. H. S., C., Williamson, O. Kifor, M. Bai, M. G. Coul‐thard, M. Davies, N. Lewis‐Barned, D. McCredie, H. Powell, P. Kendall‐Taylor, E. M. Brown, and R. V. Thakker. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium‐sensing receptor. N. Engl. J. Med. 335: 1115–1122, 1996.
 351. Peng, T. C., S. C., Garner, P. F. Hirsch, and J. T. Posillico. Cytochemical bioassay of circulating concentrations of rat parathyroid hormone: application to a study of age and sex. J. Bone Miner. Res. 1: 351–357, 1986.
 352. Perry, Y. M., D. M., Finegold, M. M. Armitage, and R. E. Ferell. A missense mutation in the Ca‐sensing receptor causes familial autosomal dominant hypoparathyroidism [abstract]. Am. J. Hum. Genet. 55 (Suppl.): A17, 1994.
 353. Peterson, L. Vitamin D‐induced chronic hypercalcemia inhibits thick ascending limb NaC1 reabsorption in vivo. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F122–F129, 1990.
 354. Philbrick, W. M., J. J., Wysolmerski, S. Galbraith, E. Holt, J. J. Orloff, K. H. Yang, R. C. Vasavada, E. C. Weir, A. E. Broadus, and A. E. Stewart. Defining the role of parathyroid hormone–related protein in normal physiology. Physiol. Rev. 76: 127–173, 1996.
 355. Pietschman, P., H., Resch, W. Woloszczuk, and R. Wilvonseder. A circadian rhythm of serum osteocalcin levels in postmenopausal osteoporosis. Eur. J. Clin. Invest. 20: 310–312, 1990.
 356. Pimplikar, S. W., and K. Simons. Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature 362: 456–458, 1993.
 357. Plenge, P., and O. J. Rafaelson. Lithium effects on calcium, magnesium and phosphate in man: effects on balance, bone mineral content, faecal and urinary excretion. Acta Psychiatr. Scand. 66: 361–373, 1982.
 358. Pocotte, S. L., G., Ehrenstein, and L. A. Fitzpatrick. Regulation of parathyroid hormone secretion. Endocr. Rev. 12: 291–301, 1991.
 359. Pocotte, S. L., G., Ehrenstein, and L. A. Fitzpatrick. Role of calcium channels in parathyroid hormone secretion. Bone 16: S365–S372, 1995.
 360. Pollak, M., E. M., Brown, Y. H. Chou, S. C. Hebert, S. J. Marx, B. Steinmann, T. Levi, C. E. Seidman, and J. G. Seidman. Mutations in the human Ca2+‐sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75: 1297–1303, 1993.
 361. Poliak, M. R., E. M., Brown, H. L. Estep, P. N. McLaine, O. Kifor, J. Park, S. C. Hebert, C. E. Seidman, and J. G. Seidman. Autosomal dominant hypocalcaemia caused by Ca2+‐sensing receptor gene mutation. Nat. Genet. 8: 303–307, 1994.
 362. Pollak, M., Y. H., Chou, S. J. Marx, B. Steinmann, D. E. C. Cole, M. L. Brandi, S. E. Papapoulos, F. Menko, G. N. Hendy, E. M. Brown, C. E. Seidman, and J. G. Seidman. Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J. Clin. Invest. 93: 1108–1112, 1994.
 363. Pontremoli, S., E., Melloni, B. Sparatore, M. Michetti, F. Sal‐amino, and B. L. Horecker. Isoenzymes of protein kinase C in human neutrophils and their modification by two endogenous proteinases. J. Biol. Chem. 265: 706–712, 1990.
 364. Prince, R. L. Counterpoint: estrogen effects on calcitropic hormones and calcium homeostasis. Endocr. Rev. 15: 301–309, 1994.
 365. Prince, R. L., I., Schiff, and R. M. Neer. Effects of transdermal estrogen replacement on parathyroid hormone secretion. J. Clin. Endocrinol. Metab. 71: 1284–1287, 1990.
 366. Putney, J. W. J., Jr.. Capacitative calcium entry revisited. Cell Calcium 11: 611–624, 1990.
 367. Quamme, G. A. Control of magnesium transport in the thick ascending limb. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F197–F210, 1989.
 368. Quarles, L. D., T. K., Hinson, M. F. Seldin, and S. R. Siddhanti. Identification of a novel calcium‐sensing receptor related gene localized to mouse chromosome 7. J. Bone Miner. Res. 11 (Suppl 1): S141, 1996. Abstract P203.
 369. Quinn, S. J., C. P., Ye, R. Diaz, O. Kifor, B. M. P. Vassilev, and E. M. Brown. The calcium‐sensing receptor: a target for polyamines. Am. J. Physiol. 273 (Cell Physiol. 42) C1315–C1323, 1997.
 370. Racke, F., C. R., McHenry, and D. Wentworth. Lithiuminduced alterations in parathyroid cell function: insight into the pathogenesis of lithium‐associated hyperparathyroidism. Am. J. Surg. 168: 462–465, 1994.
 371. Racke, F. K., and E. F. Nemeth. Protein kinase C modulates hormone secretion regulated by extracellular polycations in bovine parathyroid cells. J. Physiol. (Lond.) 468: 163–176, 1993.
 372. Racke, F. K., and E. F. Nemeth. Stimulus–secretion coupling in parathyroid cells deficient in protein kinase activity. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E429–E438, 1994.
 373. Raisz, L. G. Regulation by calcium of parathyroid growth and secretion in vitro. Nature 44: 103–110, 1965.
 374. Raisz, L. G., and B. E. Kream. Regulation of bone formation. N. Engl. J. Med. 309: 29–35, 1983.
 375. Raisz, L. G., and I. Niemann. Effect of phosphate, calcium, and magnesium on bone resorption and bone formation in tissue culture. Endocrinology 85: 446–452, 1969.
 376. Raisz, L. G., C. L., Trummel, M. F. Holick, and H. F. DeLuca. 1,25–dihydroxycholecalciferol: a potent stimulator of bone resorption in tissue culture. Science 175: 768–769, 1972.
 377. Ramirez, J. A., W. G., Goodman, J. Gornbein, C. Menezes, L. Moulton, and G. V. Segre. Direct in vivo comparison of calcium‐regulated parathyroid hormone secretion in normal volunteers and patients with secondary hyperparathyroidism. J. Clin. Endocrinol. Metab. 76: 1489–1494, 1993.
 378. Ravazzola, M., L., Orci, J. F. Habener, and J. T. Potts, Jr.. Parathyroid secretory protein: immunocytochemical localization within cells that contain parathyroid hormone. Lancet 1: 371–372, 1978.
 379. Raymond, J. P. Hereditary and acquired defects in signaling through the hormone–receptor–G protein complex. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F163–F174, 1994.
 380. Raymond, J. P., R., Isaac, R. E. Merceron, and F. Wahbe. Comparison between the plasma concentrations of prolactin and parathyroid hormone in normal subjects and in patients with hyperparathyroidism or hyperprolactinemia. J. Clin. Endocrinol. Metab. 55: 1222–1225, 1982.
 381. Riccardi, D., W.‐S., Lee, K. Lee, G. V. Segre, E. M. Brown, and S. C. Hebert. Localization of the extracellular Ca2+‐sensing receptor and PTH/PTHrP receptor in rat kidney. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40): F951–F956, 1996.
 382. Riccardi, D., J., Park, W. S. Lee, G. Gamba, E. M. Brown, and S. C. Hebert. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation‐sensing receptor. Proc. Natl. Acad. Sci. U.S.A. 92: 131–135, 1995.
 383. Ridefelt, P., P., Hellman, O. Lundggren, S. Llunghall, G. Akerstrom, J. Rastad, and E. Gylfe. Ga3+ inhibits parathyroid hormone release without interacting with the Ca2+ receptor of the parathyroid cell. Biochem. Biophys. Res. Commun. 186: 1556–1561, 1992.
 384. Ridefelt, P., P., Hellman, M. Stridsberg, G. Akerstrom, and J. Rastad. Different secretory actions of pancreastatin in bovine and human parathyroid cells. Biosci. Rep. 14: 221–229, 1994.
 385. Ridefelt, T. P., P., Hellman, C. Wallfelt, G. Akerstrom, J. Rastad, and E. Gylfe. Neomycin interacts with Ca2+‐sensing of normal and adenomatous parathyroid cells. Mol. Cell. Endocrinol. 83: 211–218, 1992.
 386. Ritchie, C. K., D. V., Cohn, and L. A. Fitzpatrick. Chromogranin‐A secretion from individual parathyroid cells: effects of 1,25‐(OH)2 vitamin D3 and calcium. Bone Miner. 18: 31–40, 1992.
 387. Ritchie, C. K., D. V., Cohn, P. B. Maercklein, and L. A. Fitzpatrick. Individual parathyroid cells exhibit cyclic secretion of parathyroid hormone and chromogranin‐A (as measured by a novel sequential hemolytic plaque assay). Endocrinology 131: 2638–2642, 1992.
 388. Rodan, G. A., and T. J. Martin. Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif. Tissue Int. 33: 349–351, 1981.
 389. Rodda, C. P., I. W., Caple, and T. J. Martin. Role of PTHrP in fetal and neonatal physiology. In: Parathyroid Hormone Related Protein: Normal Physiology and Its Role in Cancer, edited by B. Halloran, and R. Nissenson. Boca Raton, FL,: CRC, 1992, p. 169–196.
 390. Rosof, J. A. An experimental study of the histology and cytology of the parathyroid glands in the albino rat. J. Exp. Zool. 68: 121–157, 1934.
 391. Roth, S. I., and L. G. Raisz. The course and reversibility of calcium effect on the ultrastructure of the rat parathyroid gland in organ culture. Lab. Invest. 15: 1187–1211, 1966.
 392. Rothman, J. Mechanisms of intracellular protein transport. Nature 372: 55–63, 1994.
 393. Ruat, M., M. E., Molliver, A. M. Snowman, and S. H. Snyder. Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc. Natl. Acad. Sci. U.S.A. 92: 3161–3165, 1995.
 394. Ruat, M., A. M., Snowman, L. D. Hester, and S. H. Snyder. Cloned and expressed rat Ca2+‐sensing receptor. J. Biol. Chem. 271: 5972–5976, 1996.
 395. Rubin, L. P., J. T., Posillico, C. S. Anast, and E. M. Brown. Circulating levels of biologically active and immunoreactive parathyroid hormone in newborns. Pediatr. Res. 29: 201–207, 1991.
 396. Rupp, E., H., Mayer, and E. Wingender. The promoter of the human parathyroid gene contains a functional cyclic AMP‐response element. Nucleic Acids Res. 18: 5677–5683, 1990.
 397. Russell, J., A., Bar, L. M. Sherwood, and S. Hurwitz. Interaction between calcium and 1,25‐dihydroxyvitamin D3 in the regulation of preproparathyroid hormone and vitamin D receptor messenger ribonucleic acid in avian parathyroid. Endocrinology 132: 2639–2644, 1993.
 398. Russell, J., D. F., Lettieri, and L. M. Sherwood. Direct regulation by calcium of cytoplasmic messenger ribonucleic acid coding for preproparathyroid hormone in isolated bovine parathyroid cells. J. Clin. Invest. 72: 1851–1855, 1983.
 399. Russell, J., and L. M. Sherwood. The effects of 1,25‐dihydroxyvitamin D3 and high calcium on transcription of the preproparathyroid hormone are direct. Trans. Assoc. Am. Physicians 100: 256–262, 1987.
 400. Russell, R. G., R., Smith, C. Preston, R. J. Walton, C. G. Woods, R. C. Henderson, and A. W. Norman. The effects of 1,25‐dihydroxycholecalciferol on renal tubular reabsorption of phosphate, intestinal absorption of calcium and bone histology in hypophosphatemic renal tubular rickets. Clin. Sci. Mol. Med. 48: 177–186, 1975.
 401. Sadler, G. P., D. L., Jones, J. S. Woodhead, K. Horgan, and M. H. Wheeler. Effect of growth factors on growth of bovine parathyroid cells in serum‐free medium. World J. Surg. 20: 822–828, 1996.
 402. Sairanen, S., R., Tahtela, K. Laitinen, S. L. Karonen, and M. J. Valimaki. Nocturnal rise in markers of bone resorption is not abolished by bedtime calcium or calcitonin. Calcif. Tissue Int. 55: 349–352, 1994.
 403. Saito, A., S., Pietromonaco, A. Loo, and M. G. Farquhar. Complete cloning and sequencing of rat gp330/“megalin”, a distinctive member of the low density lipoprotein receptor gene family. Proc. Natl. Acad. Sci. U:S.A. 91: 9725–9729, 1994.
 404. Sakaguchi, K. Acidic fibroblast growth factor autocrine system as a mediator of calcium‐regulated parathyroid cell growth. J. Biol. Chem. 267: 24554–24562, 1992.
 405. Samuels, M. H., J., Veldhuis, C. Cawley, R. Urban, M. Luther, R. Bauer, and G. Mundy. Pulsatile secretion of parathyroid hormone in normal young subjects: assessment by deconvolution analysis. J. Clin. Endocrinol. Metab. 76: 399–403, 1993.
 406. Sandelin, K., L., Skoog, S. Humla, and L. O. Farnedo. Oestrogen, progesterone, and glucocorticoid receptors in normal and neoplastic parathyroid glands. Eur. J. Surg. 158: 467–472, 1992.
 407. Sands, J. M., M., Naruse, M. Baum, S. C. Hebert, E. M. Brown, and W. H. Harris. An apical extracellular calcium/polyvalent cations‐sensing receptor (CaR) regulates vasopressin‐elicited water 1997. permeability in rat kidney inner medullary collecting duct. J. Clin. Invest. 99: 1399–1405.
 408. Saxe, A., G. W., Gibson, I. H. Russo, and P. Gimotty. Measurement of estrogen and progesterone receptors in abnormal human parathyroid tissue. Calcif. Tissue Int. 51: 344–347, 1992.
 409. Scherubl, H., G., Schultz, and J. Hescheler. Electrophysiological properties of rat calcitonin‐secreting cells. Mol. Cell. Endocrinol. 82: 293–301, 1991.
 410. Schlemmer, A., C., Hassager, S. B. Jensen, and C. Christiansen. Marked diurnal variation in urinary excretion of pyridinium cross‐links in premenopausal women. J. Clin. Endocrinol. Metab. 74: 476–480, 1992.
 411. Schluter, H., C., Quante, B. Buchholz, K. Dietl, C. Spieker, M. Karas, and W. Zidek. A vasopressor factor partially purified from human parathyroid glands. Biochem. Biophys. Res. Commun. 188: 323–329, 1992.
 412. Schmitt, C. P., F., Schaefer, A. Bruch, J. D. Veldhuis, H. Schmidt‐Gayk, G. Stein, E. Ritz, and O. Mehls. Control of pulsatile and tonic parathyroid hormone secretion by ionized calcium. J. Clin. Endocrinol. Metab. 81: 4236–4243, 1996.
 413. Schwarz, P. Dose response dependency in regulation of acute S‐PTH(1–84) release in normal humans: a citrate and calcium infusion study. Scand. J. Clin. Lab. Invest. 53: 601–605, 1993.
 414. Schwarz, P., H. A., Sorensen, P. McNair, and I. Transbol. Cicaclamp technique: a method for quantifying parathyroid hormone secretion: a sequential citrate and calcium clamp study. Eur. J. Clin. Invest. 23: 546–553, 1993.
 415. Schwarz, P., H. A., Sorensen, I. Transbol, and P. McNair. Induced hypocalcaemia controlled by a citrate clamp technique, and the intact parathyroid hormone response obtained. Scand. J. Clin. Lab. Invest. 50: 891–897, 1990.
 416. Schwarz, P., H. A., Sorensen, I. Transbol, and P. McNair. Regulation of acute parathyroid hormone release in normal humans: combined calcium and citrate clamp study. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E195–E198, 1992.
 417. Scott, D., N. Loveridge, H. Abu Damir, W. Buchan, and J. Milne. Effects of acute acid loading on parathyroid hormone secretion and on urinary calcium and cAMP excretion in the growing lamb. Exp. Physiol. 78: 157–163, 1993.
 418. Seely, E. W., T. J., Moore, M. S. LeBoff, and E. M. Brown. A single dose of lithium carbonate acutely elevates intact parathyroid hormone levels in humans. Acta Endocrinol. (Copenh.) 121: 174–176, 1989.
 419. Setoguti, T., Y., Inoue, and P. Wild. The biological significance of storage granules in rat parathyroid cells. Microsc. Res. Tech. 32: 148–163, 1995.
 420. Shah, J. H., E. N., Bowser, G. K. Hargis, N. Wongsurawat, P. Bannerjee, W. J. Henderson, and G. A. Williams. Effect of ethanol on parathyroid hormone secretion in the rat. Metabolism 27: 257–260, 1978.
 421. Shoback, D., T., Chen, S. Pratt, and B. Lattyak. Thapsigargin stimulates intracellular calcium mobilization and inhibits parathyroid hormone release. J. Bone Miner. Res. 5: 743–750, 1995.
 422. Shoback, D. M., L. A., Membreno, and J. McGhee. High calcium and other divalent cations increase inositol trisphosphate in bovine parathyroid cells. Endocrinology 123: 382–389, 1988.
 423. Shoback, D. M., J., Thatcher, R. Leombruno, and E. M. Brown. Effects of extracellular Ca++ and Mg++ on cytosolic Ca++ and PTH release in dispersed bovine parathyroid cells. Endocrinology 113: 424–426, 1983.
 424. Shoback, D. M., J., Thatcher, R. Leombruno, and E. M. Brown. Relationship between parathyroid hormone secretion and cytosolic calcium concentration in dispersed bovine parathyroid cells. Proc. Natl. Acad. Sci. U.S.A. 81: 3113–3107, 1984.
 425. Shoumura, S., H. Chen, S. Emura, M. Utsumi, D. Hayakawa, T. Yamahira, K. Terasawa, A. Tamada, M. Arakawa, and H. Isono. An in vitro study on the effects of melatonin on the ultrastructure of the hamster parathyroid gland. Histol. Histopathol. 7: 715–718, 1992.
 426. Silver, J., E., Moallem, E. Epstein, R. Kilav, and T. Naveh‐Many. New aspects in the control of parathyroid hormone secretion. Curr. Opin. Nephrol. Hypertens. 3: 379–385, 1994.
 427. Silver, J., T., Naveh‐Many, H. Mayer, H. J. Schmelzer, and M. M. Popovtzer. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J. Clin. Invest. 78: 1296–1301, 1986.
 428. Silver, J., J., Russell, and L. M. Sherwood. Regulation by vitamin D metabolites of messenger ribonucleic acid for prepro‐parathyroid hormone in isolated bovine parathyroid cells. Proc. Natl. Acad. Sci. U.S.A. 82: 4270–4273, 1985.
 429. Silverberg, S. J., S., Thys‐Jacobs, F. G. Locker, E. L. Sanguinetti, T. B. Marriott, and J. P. Bilezikian. The effects of the calcimimetic drug NPS R‐568 on parathyroid hormone secretion in primary hyperparathyroidism. J. Bone Miner. Res. 11 (Suppl. 1): S116, 1996. Abstract nr. 87.
 430. Simpson, J. B., and A. Routenberg. Subfornical organ lesions reduce intravenous angiotensin‐induced drinking. Brain Res. 88: 154–161, 1975.
 431. Sinha, T. K., S., Miller, and J. Fleming. Demonstration of a diurnal variation in serum parathyroid hormone in primary and secondary hyperparathyroidism. J. Clin. Endocrinol. Metab. 41: 1009–1013, 1975.
 432. Slatopolsky, E., M., Berkoben, J. Kelber, A. Brown, and J. Delmez. Effects of calcitriol and non‐calcemic vitamin D analogs on secondary hyperparathyroidism. Kidney Int. 42 (Suppl. 38): S43–S49, 1991.
 433. Slatopolsky, E., J., Finch, M. Denda, C. Ritter, M. Zhong, A. Dusso, P. N. MacDonald, and A. L. Brown. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J. Clin. Invest. 97: 2534–2540, 1996.
 434. Slatopolsky, E., J., Finch, C. Ritter, M. Denda, J. Morrissey, A. Brown, and H. DeLuca. A new analog of calcitriol, 19‐nor‐1,25‐(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am. J. Kidney Dis. 26: 852–860, 1995.
 435. Smith, J. B., S. D., Dwyer, and L. Smith. Cadmium evokes inositol polyphosphate formation and calcium mobilization. J. Biol. Chem. 264: 7115–7118, 1989.
 436. Spiegel, A. M. Mutations in G protein and G protein–coupled receptors in endocrine disease. J. Clin. Endocrinol. Metab. 81: 2434–2442, 1996.
 437. Spiegel, A. M., H. E., Harrison, S. J. Marx, E. M. Brown, and G. D. Aurbach. Neonatal primary hyperparathyroidism with autosomal dominant inheritance. J. Pediatr. 90: 269–272, 1977.
 438. Spiegel, A. M., M. V., Rudorfer, S. J. Marx, and M. Linnoila. The effect of short tem lithium administration on suppressibility of parathyroid hormone secretion by calcium in vivo. J. Clin. Endocrinol. Metab. 59: 354–357, 1984.
 439. Stancer, H. C., and N. Forbath. Hyperparathyroidism, hypothyroidism and impaired renal function after 10 to 20 years of lithium treatment. Arch. Intern. Med. 149: 1042–1045, 1989.
 440. Stern, J. E., M. L., Sarmiento, and D. P. Cardinali. Parasympathetic control of parathyroid hormone and calcitonin secretion. J. Auton. Nerv. Syst. 48: 45–53, 1994.
 441. Stewart, A. F., and A. E. Broadus. Mineral metabolism. In: Endocrinology and Metabolism (2nd ed.), edited by P. Felig, J. Baxter, A. Broadus, and L. Frohman. New York: McGraw‐Hill, 1987, p. 1317–1453.
 442. Strewler, G. J. Famialial hypocalciuric hypercalcemia—from the clinic to the calcium sensor. West. J. Med. 160: 579–580, 1994.
 443. Sugimoto, T., A. J., Brown, C. Ritter, J. Morrissey, and E. Slatopolsky. Combined effects of dexamethasone and 1,25‐didroxyvitamin D3 on parathyroid hormone secretion in cultured parathyroid cells. Endocrinology 125: 638–641, 1989.
 444. Sugimoto, T., C., Ritter, E. Slatopolsky, and J. Morrissey. Effect of 1,25‐dihydroxyvitamin D3 on phospholipid metabolism in cultured bovine parathyroid cells. Endocrinology 122: 2387–2392, 1988.
 445. Suh, J. H., A. J. Tashjian, Jr., N. Matsuo, D. K. Parkinson, and D. Fraser. Pathogenesis of hypocalcemia in primary hypomagnesemia: normal end‐organ responsiveness to parathyroid hormone, impaired parathyroid gland function. J. Clin. Invest. 52: 153–160, 1973.
 446. Suki, W. M., G., Eknoyan, F. C. Rector, Jr., and D. W., Seldin. The renal diluting and concentrating mechanism in hypercalcemia. Nephron 6: 50–61, 1969.
 447. Sun, F., P., Maercklein, and L. A. Fitzpatrick. Paracrine interactions among parathyroid cells: effects of cell density on cell function. J. Bone Miner. Res. 9: 971–976, 1994.
 448. Sunthornthepvarakui, T., M. E., Gottschal, Y. Hayashi, and S. Refetoff. Brief report: resistance to thyrotropin caused by mutations in the thyrotropin‐receptor gene. N. Engl. J. Med. 332: 155–160, 1995.
 449. Sutton, R. A. L., and J. H. Dirks. Calcium and magnesium: renal handling and disorders of metabolism. In: Calcium and Magnesium: The Kidney (3rd ed.), edited by B. Brenner, and F. Rector, Jr. Philadelphia,: Saunders, 1986, p. 551–618.
 450. Szabo, A., E., Ritz, K. Schmidt‐Gayk, and H. Reichel. Abnormal expression and regulation of vitamin D receptor in experimental uremia. Nephron 73: 619–628, 1996.
 451. Tachibana, M., S., Baba, N. Deguchi, S. Jitsukawa, M. Hata, H. Tazaki, A. Tanimoto, Y. Yuasa, and K. Hiramatsu. Efficacy of gadolinium‐diethylenetriaminepentaacetic acid–enhanced magnetic resonance imaging for differentiation between superficial and muscle‐invasive tumor of the bladder: a comparative study with computerized tomography and transureteral ultrasonography. J. Urol. 145: 1169–1173, 1991.
 452. Takuma, T., and T. Ichida. Catalytic subunit of protein kinase A induces amylase release from streptolysis O‐permeabilized parotid acini. J. Biol. Chem. 269: 22124–22128, 1994.
 453. Tamir, H., K., Liu, M. Adlersberg, S. Hsiung, and M. D. Gershon. Acidification of serotonin‐containing secretory vesicles induced by a plasma membrane calcium receptor. J. Biol. Chem. 271: 6441–6450, 1996.
 454. Tanaka, R., T., Rsushima, H. Murakami, K. Shizume, and T. Obara. Insulin‐like growth factor I receptors and insulin‐like growth factor‐binding proteins in human parathyroid tumors. World J. Surg. 18: 635–641, 1994.
 455. Tanguay, K. E., S. T., Mortimer, P. H. Wood and D. A. Hanley. The effects of phorbol myristate acetate on the intracellular degradation of bovine parathyroid hormone. Endocrinology 128: 1863–1868, 1991.
 456. Targovnik, J. H., J. S., Rodman, and L. M. Sherwood. Regulation of parathyroid hormone secretion in vitro: quantitative aspects of calcium and magnesium ion control. Endocrinology 88: 1477–1482, 1971.
 457. Tooze, S., T., Flatmark, J. Tooze, and W. B. Huttner. Characterization of the immature secretory granule, an intermediate in granule biogenesis. J. Cell Biol. 115: 1491–1503, 1991.
 458. Treschel, U., J. A. Eisman, J. A. Fischer, J.‐P. Bonjour, and H. Fleisch. Calcium‐dependent, parathyroid hormone‐independent regulation of 1,25‐dihydroxyvitamin D. Am. J. Physiol. 239 (Endocrinol. Metab. 2): E119–E124, 1980.
 459. Trump, D., M. P., Whyte, C. Wooding, J. T. Pang, S. H. S. Pearce, D. B. Kocher, and R. V. Thakker. Linkage studies in a kindred from Oklahoma, with familial benign (hypocalciuric) hypercalcaemia (FBH) and developmental elevations in serum parathyroid hormone levels, indicate a third locus for FBH. Hum. Genet. 96: 183–187, 1995.
 460. Uden, P., B. P., Halloran, R. Daly, Q. V. Duh, and O. Clark. Set‐point for parathyroid hormone release increases with postmaturational aging in the rat. Endocrinology 131: 2251–2256, 1992.
 461. Usdin, T. B., C., Gruber, and T. I. Bonner. Identification and functional characterization of a receptor selectively recognizing parathyroid hormone, the PRH2 receptor. J. Biol. Chem. 270: 15455–15458, 1995.
 462. Veldhuis, J. D., J. L. C., Borges, C. R. Drake, and A. D. Rogol. Divergent influences of calcium ions on releasing factor–stimulated anterior hormone secretion in normal man. J. Clin. Endocrinol. Metab. 59: 56–61, 1984.
 463. Wagner, P. K., U., Krause, and M. Rothmund. The effect of oxtremorine on in‐vitro secretion of parathyroid hormone. Exp. Clin. Endocrinol. 90: 331–336, 1987.
 464. Wallfelt, C., E., Gylfe, R. Larsson, S. Ljunghall, J. Rastad, and G. Akerstrom. Relationship between external and cytoplasmic calcium concentrations, parathyroid hormone release and weight of parathyroid glands in human hyperparathyroidism. J. Endocrinol. 116: 457–464, 1988.
 465. Wallfelt, C. H., R., Larsson, E. Gylfe, S. Ljunghall, and J. Rastad. Secretory disturbances in hyperplastic parathyroid nodules of uremic hyperparathyroidism: implication for parathyroid autotransplantation. World J. Surg. 12: 431–438, 1988.
 466. Wang, W.‐H., M., Lu, and S. C. Hebert. Cytochrome P‐450 metabolites mediate extracellular Ca2+‐induced inhibition of apical K+ channels in the TAL. Am. J. Physiol. 271 (Cell Physiol. 40): C103–C111, 1996.
 467. Watson, P. H., and D. A. Hanley. Parathyroid hormone: regulation of synthesis and secretion. Clin. Invest. Med. 16: 58–77, 1993.
 468. Watson, P. H., K. K., Wang, and D. A. Hanley. In vitro proteolysis of bovine parathyroid hormone by human erythrocyte calpain I. J. Bone Miner. Res. 6: S179, 1991. Abstract nr. 384.
 469. Watson, P. H., K. K., Wang, and D. A. Hanley. Cell‐penetrating calpain inhibitor, cBz‐VAL‐PHE‐H, increases parathyroid hormone release from cultured bovine parathyroid cells. Bone Miner. 17: 1992. Abstract nr. 91.
 470. Watson, S., and S. Arkinstall, The G‐Protein Linked Receptor Facts Book. New York: Academic, 1994.
 471. Weber, A., S., Kapas, D. B. Grant, A. Grossman, and A. J. Clark. Functional characterization of the cloned human ACTH receptor: impaired responsiveness of a mutant receptor in familial glucocorticoid deficiency. Biochem. Biophys. Res. Commun. 197: 172–178, 1993.
 472. Weber, C. J., T. M., O'Dorisio, B. Howe, V. D'Agati, L. Ward, J. Russell, and C. R. Feind. Vasoactive intestinal polypeptide‐, neurotensin‐, substance P, gastrin releasing peptide‐, calcitonin‐, CGRP‐ and somatostatin‐like immunoreactivities in human parathyroid glands. Surgery 110: 1078–1085, 1991.
 473. Weisinger, J. R., M.J., Favus, C. B. Langman, and D. Bushinsky. Regulation of 1,25‐dihydroxyvitamin D3 by calcium in the parathyroidectomized, parathyroid hormone‐replete rat. J. Bone. Miner. Res. 4: 929–935, 1989.
 474. Welsch, U., and C. Schubert. Observations on the fine structure, enzyme histochemistry, and innervation of parathyroid gland and ultimobranchial body of Chthonerpeton indistinctum (Gymnophiona Amphibia). Cell Tissue Res. 164: 105–119, 1975.
 475. Wernerson, A., O., Svensson, and F. P. Reinholt. Quantitive and three‐dimensional aspects of the rat parathyroid gland in normo‐, hypo‐, and hypercalcemia. Microsc. Res. Tech. 32: 129–147, 1995.
 476. Wernerson, A., S. M., Widholm, O. Svensson, and F. P. Rein‐holt. Parathyroid cell number and size in hypocalcemic young rats. APMIS 99: 1096–1102, 1991.
 477. Wideman, R. J. Innervation of the parathyroid in the European starling (Sturnus vulgaris). J. Morphol. 166: 65–80, 1980.
 478. Wild, P., and E. M. Schraner. Parathyroid cell polarity as revealed by cytochemical localization of ATPases, alkaline phosphatase and 5'‐nucleotidase. Histochemistry 94: 409–414, 1990.
 479. Wild, P., and T. Setoguti. Mammalian parathyroids: morphological and functional implications. Microsc. Res. Techn. 32: 120–128, 1995.
 480. Williams, G. A., S. C., Kukreja, R. S. Longley, E. N. Bowser, G. K. Hargis, N. M. Vora, and W. J. Henderson. Effect of the parasympathetic system on secretion of parathyroid hormone. Metabolism 34: 612–615, 1985.
 481. Williams, G. A., S. C., Kukreja, R. Sethi, G. K. Hargis, and E. N. Bowser. Parathyroid hormone and calcitonin secretion in man: effect of dopamine agonists and antagonists. Horm. Metab. Res. 18: 64–66, 1986.
 482. Windeck, R., E. M., Brown, D. G. Gardner, and G. D. Aurbach. Effect of gastrointestinal hormones on isolated bovine parathyroid cells. Endocrinology 103: 2020–2026., 1978.
 483. Wiren, K. M., L., Ivahkiv, P. Ma, M. W. Freeman, J. R. Potts, and H. M. Kronemberg. Mutations in signal sequence cleavage domain of preproparathyroid hormone alter protein translocation, signal sequence cleavage, and membrane‐binding properties. Mol. Endocrinol. 3: 240–250, 1989.
 484. Wongsurawat, N., and H. J. Ambrecht. Comparison of calcium effect on in vitro calcitonin and parathyroid hormone release by young and aged thyroparathyroid glands. Exp. Gerontol. 22: 263–269, 1987.
 485. Yamaguchi, T., M., Fukase, M. Nishikawa, T. Fujimi, and T. Fujita. Parathyroid hormone degradation by chymotryspin‐like endopeptidase in the opossum kidney cell. Endocrinology 123: 2812–2817, 1988.
 486. Yamamoto, M., T., Igarishi, M. Muramatsu, M. Fukagawa, T. Motokura, and E. Ogata. Hypocalcemia increases and hypercalcemia decreases the steady state level of parathyroid hormone messenger RNA in the rat. J. Clin. Invest. 83: 1053–1056, 1989.
 487. Yassa, R., A., Saunders, C. Nastase, and Y. Camille. Lithiuminduced thyroid disorders: a prevalence study. J. Clin. Psychiatry 49: 14–16, 1988.
 488. Ye, C.‐P., M. Kanazirska, S. J. Quinn, E. M. Brown, and P. M. Vassilev. Modulation by polycationic Ca2+‐sensing receptor agonists of nonselective cation channels in rat hippocampal neurons. Biochem. Biophys. Res. Commun. 224: 271–280, 1996.
 489. Young, G., R., Marcus, J. R. Minhoff, L. V. Kim, and G. V. Segre. Age‐related rise in parathyroid hormone in man: the use of intact and midmolecule antisera to distinguish hormone secretion from retention. J. Bone Miner. Res. 2: 367–374, 1987.
 490. Zaidi, M., H. K., Datta, A. Patchell, B. Moonga, and I. Mac‐Intyre. “Calcium‐activated” intracellular calcium elevation: a novel mechanism of osteoclast regulation. Biochem. Biophys. Res. Commun. 183: 1461–1465, 1989.
 491. Zaidi, M., J., Kerby, C. L. Huang, T. Alam, H. Rathod, T.J. Chambers, and B. Moonga. Divalent cations mimic the inhibitory effect of extracellular ionised calcium on bone resoprtion by isolated rat osteoclasts: further evidence for a “calcium receptor.” J. Cell. Physiol. 149: 422–427, 1991.
 492. Zawistowski, S. Histochemical studies on the adrenergic innervation of the parathyroid gland of the albino rat. Z. Mikrosk. Anat. Forsch. 74: 39–45, 1965.
 493. Zhang, J. X., B. H., Fasciotto, and D. V. Cohn. Dexamethasone and calcium interact in the regulation of parathormone and chromogranin‐A secretion and messenger ribonucleic acid levels in parathyroid cells. Endocrinology 133: 152–158, 1993.
 494. Zhou, Q. V., D. K., Grandy, L. Thambi, J. A. Kushner, H. H. Van Tol, R. Cone, D. Pribnow, J. Salon, J. R. Bunzow, and O. Civelli. Cloning and expression of human and rat D1 dopamine receptors. Nature 347: 76–80, 1990.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Ruben Diaz, Ghada El‐Hajj Fuleihan, Edward M. Brown. Parathyroid Hormone and Polyhormones: Production and Export. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 605-662. First published in print 2000. doi: 10.1002/cphy.cp070316