Comprehensive Physiology Wiley Online Library

Ultrastructure of Glomerulus and Juxtaglomerular Apparatus

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Glomerulus
1.1 Cells
1.2 Extracellular Matrices
1.3 Biosynthetic Features
1.4 Ultrafiltration Unit
1.5 Permeability Characteristics
1.6 Glomerular Polyanions: Structure and Function
1.7 Role of Sialoglycoproteins
1.8 null
2 Juxtaglomerular Apparatus
2.1 Polar Cushion
2.2 Afferent and Efferent Arterioles
2.3 Macula Densa
2.4 Peripolar Cells
2.5 Structural—Functional Relationships
Figure 1. Figure 1.

A: low‐magnification electron micrograph of network of glomerular capillaries (Cap). Capillaries are made of 3 cell types: visceral epithelial (Ep), endothelial (En), and mesangial (Me); and 2 extraglomerular matrices: glomerular basement membrane (GBM) and mesangial matrix (MM). Parietal epithelium (Pe) lines Bowman's capsule (BC) from inside. RBC, red blood cell, × 3,000. B: high magnification electron micrograph of ultrafiltration unit, consisting of epithelial foot processes (fp) of epithelial cell (Ep) with intervening slit diaphragms (Sd), GBM, and fenestrated (fn) endothelium (En). GBM consists of lamina densa (LD), lamina rara interna (LRI), and lamina rara externa (LRE). × 60,000.

From Kanwar 114
Figure 2. Figure 2.

A: electron micrograph of portion of glomerulus showing anatomical relationships of epithelium (Ep), endothelium (En), and mesangial (Me) cells with glomerular basement membrane (GBM) and mesangial matrix (MM). GBM consists of lamina densa (LD), lamina rara interna (LRI), and lamina rara externa (LRE). GBM is covered by the visceral epithelial foot processes (fp) from outside, whereas it is lined inside by fenestrated (fn) endothelium. Mesangial cell (Me) is embedded in MM and surrounded by intercapillary channels (Ic). US, urinary space, × 6,000 B: Schematic drawing of A.

Courtesy of J. Anastasi
Figure 3. Figure 3.

Scanning electron micrograph of glomerular capillary viewed from outside (A) and inside (B). Podocytes (Po) send interdigitating foot processes (fp) that cover capillaries from outside. Endothelium (En, arrows) lines capillary from inside, and its cytoplasm is attenuated and has numerous fenestrae (arrowheads). RBC, red blood cell. A, × 5,000; B, × 10,000.

From Kanwar 114
Figure 4. Figure 4.

High‐magnification electron micrographs of portion of glomerular capillary. A: cell surface sialoglycoproteins (SGP) covering epithelial foot processes (fp) stained with colloidal iron. B: anionic sites of glomerular basement membrane (GBM) contain groups of cationic ferritin particles (arrowheads) in lamina rara externa and interna GBM. Cap, capillary lumen; US, Urinary space, × 80,000.

From Kanwar 114
Figure 5. Figure 5.

A: light micrograph of acellular glomerulus prepared by detergent treatment. Basement membranes (GBM), capillary loops (Cap), and mesangial matrices (MM) are evident. B: light‐microscopic autoradiogram of acellular glomeruli from kidneys perfused with [35S] sulfate to label proteoglycans of extracellular matrices. Autoradiographic grain density is much greater in the MM than in GBM, which indicate a higher turnover rate of sulfated molecules in MM. US, urinary space, × 800.

From Kanwar et al. 127
Figure 6. Figure 6.

Light immunohistomicrographs of glomeruli from kidney sections stained with antibodies to type IV collagen (A), core protein of heparan sulfate proteoglycan of glomerular basement membrane (B), fibronectin (C), laminin (D), entactin (E), and actomyosin (F).

Courtesy of Drs. Chung, Courtoy, Makino and Scheinman
Figure 7. Figure 7.

Electron‐microscopic autoradiograms of glomerular capillary loops (Cap) from kidneys, untreated (A) and treated with he‐paritinase (B), after perfusion with [35S] sulfate to label de novo synthesized proteoglycans. A: almost all grains are associated with basement membranes (GBM) or mesangial matrix (MM). B: after treatment with heparitinase all grains from GBM are removed; however, intracellular grains predominantly located in terminal saccules of Golgi apparatus of epithelial cell (Ep) are unaffected. US, urinary space; fp, foot processes; En, endothelium, × 15,000.

From Kanwar et al. 130
Figure 8. Figure 8.

A: electron micrograph of the slit diaphragm (Sd) as viewed en face, revealing highly organized zipperlike substructure. Central filament and cross‐bridges, indicated by bars, are well resolved, × 150,000 B: electron micrograph of loop of glomerular capillary (Cap) from kidney of animal that received cationic ferritin intravenously and was sacrificed 15 min later. Large number of particles are visible underneath Sd. GBM, glomerular basement membrane; fp, foot processes; US, urinary space; fn, fenestrae; En, endothelium, × 60,000.

A from Karnovsky 199.] [B from Kanwar, 114
Figure 9. Figure 9.

Effects of molecular size, charge, and shape on entry of macromolecules into hypothetical capillary membrane and filtrate. Filtering element of capillary is represented as gel comprised of intertwining elongated chains with fixed negatively charged moieties. A (top): entry of uncharged molecules into gel framework, and thus into filtrate, is governed by steric interactions only. Available water volume within gel for soluble molecules decreases with increasing molecular size. Middle: for molecules of equal size, entry of molecules into gels is determined by electrophysical interactions. Thus with decreasing net negative charge, filtration is enhanced. Bottom: Loosely coiled, elongated molecules without tertiary structure (e.g., dextrans), pictured on left, undergo deformation during filtration; transit of deformed molecules through gel is facilitated. This phenomenon is termed reptation. In contrast, globular proteins, pictured on right, are not susceptible to unravelling their polypeptide chains because of more rigid tertiary structure. Thus, for same hydrodynamic radii measured for them in free solution, transit of globular proteins through gel matrix is retarded relative to that of linear‐chain polymers. B: fractional clearances of cationic diethylaminoethyl (DEAE) dextran, neutral dextran, and anionic dextran sulfate, plotted as function of effective molecular radius in normal rats. Relative clearances of dextrans are as follows: DEAE dextran > neutral dextran » dextran sulfate.

A from Venkatachalam and Rennke 279; B from Bohrer et al. 21
Figure 10. Figure 10.

Diagrams summarizing permeability of glomerular capillary wall to peroxidatic (A) and dextran (B) tracers, determined by electron microscopy. Peroxidatic tracers, including cytochrome C (CYTO‐c), horseradish peroxidase (HRP), myeloperoxidase (MPO), and catalase, are restricted to a variable degree in the various strata of capillary; while dextrans either freely permeate across or are totally restricted by glomerular basement membrane (BM) at level of endothelium (En). Ep, epithelium; LRI, lamina rara interna; LRE, lamina rara externa; LD, lamina densa.

Data from Caulfield and Farquhar 42 and Karnovsky and Ainsworth 133
Figure 11. Figure 11.

Portions of glomerular capillary (Cap) loops from control kidneys that were perfused with native ferritin (A and B) and cationic ferritin (C and D). Native ferritin does not enter the normal glomerular basement membrane (GBM), whereas cationic ferritin binds to anionic sites in the lamina rara interna (LRI) and lamina rara externa (LRE) (A and C). After treatment with heparitinase (B and D), native ferritin penetrates into deeper layers of GBM (B), and cationic ferritin does not bind to anionic sites but forms a gradient across GBM (D) similar to that of native ferritin (B). Some ferritin particles can be seen beneath slits (arrow in D). fp, foot processes; US, urinary space; En, endothelial fenestrae; LD, lamina densa. × 80,000

From Kanwar 114
Figure 12. Figure 12.

Light microscopic autoradiograms of capillary loops (Cap) from control (A) and heparitinase‐treated (B) kidneys that were subsequently perfused with 125I‐labeled bovine serum albumin. After enzymatic treatment, capillary wall offers no restriction to passage of 125I‐labeled bovine serum albumin into urinary space (US). Magnification × 1,500.

From Rosenzweig and Kanwar 222
Figure 13. Figure 13.

Model illustrating clogging of glomerular basement membrane (GBM) by various macromolecules after neutralization of anionic charge of GBM by perfusion of kidneys with Krebs‐Ringer bicarbonate (KRB) buffers of high molarity. When kidneys are perfused with native ferritin (NF), bovine serum albumin (BSA), and insulin in vehicle of 0.15 M KRB (physiologic molarity), negatively charged GBM restricts passage of macromolecules on basis of their size and charge such that native ferritin does not reach urinary space (US) at all and bovine serum albumin does so only to limited extent. Insulin, which has an Einstein‐Stokes radius < 18, passes freely across GBM from capillary lumina (CL) to urinary space. In addition negatively charged groups of GBM (sulfates and carboxyls) protect GBM from being clogged because charged groups remain hydrated and prevent hydrophobic interactions between GBM and macromolecules in solution being filtered (in this case native ferritin, bovine serum albumin, and insulin), resulting in normal GFR. In contrast, neutralization of anionic charge of GBM by perfusion with high molarity (1.5 M) KRB (in which molarity is adjusted by addition of NaCl) results in abolition of charge barrier of GBM by deactivation of negative charges (by formation of sodium salts), leading to increase in entry and accumulation of macromolecules in GBM (clogging) and reduction in permeability of GBM to freely filterable molecules such as insulin and even water. Of GBM negative charges, only sulfates are depicted in diagram.

From Kanwar and Rosen‐zweig 126
Figure 14. Figure 14.

A: low‐power electron micrograph of glomerulus from kidney perfused with Krebs‐Ringer bicarbonate buffer (KRB) alone for 10 min. Note lacy pattern created by slender interdigitating foot processes. Epithelial cell (Ep) bodies remain separate from one another as well as from underlying foot processes (fp). × 5,000 B: low‐power electron micrograph of glomerulus from kidney perfused with KRB containing 50 μg ml protamine sulfate for 10 min. Note extensive effacement of epithelial foot process (fp) architecture. Large masses of epithelial cytoplasm are apposed to glomerular basement membrane. Epithelial cell bodies make intimate contact with one another and with underlying flattened foot processes, × 4,000 C: electron micrograph of capillary (Cap) of glomerulus incubated for 10 min with cationic ferritin. Note swelling of epithelial foot processes (fp) and obliteration of intervening space. Numerous patches of aggregated actin filaments (arrowheads) art visible in the cytoplasm of foot processes. CF, cationic ferritin; Ep epithelium; En, endothelium; Me, mesangium; US, urinary space, × 60,000

B From Seiler et al. 238; C from Kanwar 114
Figure 15. Figure 15.

A: glomerular capillary from control kidney perfused sequentially with buffer, aldehyde fixative, and colloidal iron (CI), pH 1.6, to demonstrate the sialic acid‐rich surface coats on epithelial foot processes (fp) and endothelial (En) membranes. Staining is noticeably heavier on tops and sides of foot processes (above slit membranes) where they face urinary spaces (US) than at base of foot processes where they face glomerular basement membrane (GBM). Note that CI particles also bind to lamina rara interna (LRI) and lamina rare externa (LRE). B: portion of glomerulus [including part of mesangial region (Me)] from kidney perfused with neuraminidase before perfusion with aldehyde fixative and CI. Several areas (*) where there is detachment of foot processes (fp) from the GBM are evident, as is general detachment of endothelium. There is complete absence of CI binding to epithelial cell surface, indicating complete removal of sialic acid. Split diagraphs are broken and disrupted in places (arrow) and GBM appears thin and pale‐staining (especially to left). CI deposits on luminal side of GBM are assumed to represent residues of unfiltered CI. LD, lamina deansa; Cap, capillary lumen, × 80,000.

From, Kanwar and Farquhar 118
Figure 16. Figure 16.

A: a portion of glomerular capillary from kidney perfused with native ferritin in Krebs‐Ringer bicarbonate‐bovine serum albumin (KRB‐BSA). A few particles enter glomerular basement membrane (GBM) and most are retained in inner layers of GBM. × 100,000 B: a region of glomerular capillary from neuraminidase‐treated kidney that was subsequently perfused with native ferritin in KRB‐BSA. Epithelium is detached from GBM, creating subepithelial pocket (between asterisks). Native ferritin penetrates GBM, accumulates in subepithelial pocket, and from there reaches urinary space (US) by means of gaps in slit diaphragms between detached foot processes (fp). Cap, capillary lumen, × 100,000.

From Kanwar and Rosenzweig 125
Figure 17. Figure 17.

Light micrograph (a), its schematic drawing (b), and scanning micrograph of methyl methacrylate cast (c) showing relationship of various components of juxtaglomerular apparatus (JGA) with glomerular capillaries (Cap). A, afferent arteriole; E, efferent arteriole; EGMR, extraglomerular mesangial region; En, endothelium; Gc, granular cell; MD, macula densa; US, urinary space.

Courtesy of J. Anastasi and H. Rennke
Figure 18. Figure 18.

A: electron micrograph of portion of juxtaglomerular apparatus showing arteriolar endothelial (En) lining, granular cell (Gc) and distal tubular epithelial cell (DTEc) of macula densa (MD). Gc contains numerous membrane‐bound granules (gr). × 8,000. B: high‐magnification electron micrograph of Gc showing various forms of granules (gr), most of which are round, some rhomboid, and others elongated with crystalline appearance. Some resemble lysosomes (Ly). Nu, nucleus; Go, Golgi complex, × 16,000.

Figure 19. Figure 19.

Light micrograph (immunoperoxidase) of glomeruli from serial sections of kidney stained with antirenin (A) and angiotensin II (B) antibodies. Co‐localization of renin and angiotensin II (indicated by brown reaction product, arrows) is observed in arteriolar walls. G, glomerulus; T, tubules, × 800.

Courtesy of T. Inagami
Figure 20. Figure 20.

Electron micrographs of granular cell with immunolabeled Golgi complexes (Go), secondary vacuoles (Sv), and immature protogranules (Ig). Labeling is seen in the form of electron‐dense colloidal gold particles. In B, immature granule contains crystalline material (arrow), probably representing immunoreactivity toward renin. A, × 35,000; B, × 55,000; C, × 30,000.

From La Casse and Cantin 152
Figure 21. Figure 21.

Electron micrographs of part of granular cell with immunolabeled Golgi complexes (Go), immature protogranules (Ig), and mature granules (Mg). Immunogold particles indicate presence of renin in various types of granules, × 35,000.

Courtesy J. La Casse and M. Cantin


Figure 1.

A: low‐magnification electron micrograph of network of glomerular capillaries (Cap). Capillaries are made of 3 cell types: visceral epithelial (Ep), endothelial (En), and mesangial (Me); and 2 extraglomerular matrices: glomerular basement membrane (GBM) and mesangial matrix (MM). Parietal epithelium (Pe) lines Bowman's capsule (BC) from inside. RBC, red blood cell, × 3,000. B: high magnification electron micrograph of ultrafiltration unit, consisting of epithelial foot processes (fp) of epithelial cell (Ep) with intervening slit diaphragms (Sd), GBM, and fenestrated (fn) endothelium (En). GBM consists of lamina densa (LD), lamina rara interna (LRI), and lamina rara externa (LRE). × 60,000.

From Kanwar 114


Figure 2.

A: electron micrograph of portion of glomerulus showing anatomical relationships of epithelium (Ep), endothelium (En), and mesangial (Me) cells with glomerular basement membrane (GBM) and mesangial matrix (MM). GBM consists of lamina densa (LD), lamina rara interna (LRI), and lamina rara externa (LRE). GBM is covered by the visceral epithelial foot processes (fp) from outside, whereas it is lined inside by fenestrated (fn) endothelium. Mesangial cell (Me) is embedded in MM and surrounded by intercapillary channels (Ic). US, urinary space, × 6,000 B: Schematic drawing of A.

Courtesy of J. Anastasi


Figure 3.

Scanning electron micrograph of glomerular capillary viewed from outside (A) and inside (B). Podocytes (Po) send interdigitating foot processes (fp) that cover capillaries from outside. Endothelium (En, arrows) lines capillary from inside, and its cytoplasm is attenuated and has numerous fenestrae (arrowheads). RBC, red blood cell. A, × 5,000; B, × 10,000.

From Kanwar 114


Figure 4.

High‐magnification electron micrographs of portion of glomerular capillary. A: cell surface sialoglycoproteins (SGP) covering epithelial foot processes (fp) stained with colloidal iron. B: anionic sites of glomerular basement membrane (GBM) contain groups of cationic ferritin particles (arrowheads) in lamina rara externa and interna GBM. Cap, capillary lumen; US, Urinary space, × 80,000.

From Kanwar 114


Figure 5.

A: light micrograph of acellular glomerulus prepared by detergent treatment. Basement membranes (GBM), capillary loops (Cap), and mesangial matrices (MM) are evident. B: light‐microscopic autoradiogram of acellular glomeruli from kidneys perfused with [35S] sulfate to label proteoglycans of extracellular matrices. Autoradiographic grain density is much greater in the MM than in GBM, which indicate a higher turnover rate of sulfated molecules in MM. US, urinary space, × 800.

From Kanwar et al. 127


Figure 6.

Light immunohistomicrographs of glomeruli from kidney sections stained with antibodies to type IV collagen (A), core protein of heparan sulfate proteoglycan of glomerular basement membrane (B), fibronectin (C), laminin (D), entactin (E), and actomyosin (F).

Courtesy of Drs. Chung, Courtoy, Makino and Scheinman


Figure 7.

Electron‐microscopic autoradiograms of glomerular capillary loops (Cap) from kidneys, untreated (A) and treated with he‐paritinase (B), after perfusion with [35S] sulfate to label de novo synthesized proteoglycans. A: almost all grains are associated with basement membranes (GBM) or mesangial matrix (MM). B: after treatment with heparitinase all grains from GBM are removed; however, intracellular grains predominantly located in terminal saccules of Golgi apparatus of epithelial cell (Ep) are unaffected. US, urinary space; fp, foot processes; En, endothelium, × 15,000.

From Kanwar et al. 130


Figure 8.

A: electron micrograph of the slit diaphragm (Sd) as viewed en face, revealing highly organized zipperlike substructure. Central filament and cross‐bridges, indicated by bars, are well resolved, × 150,000 B: electron micrograph of loop of glomerular capillary (Cap) from kidney of animal that received cationic ferritin intravenously and was sacrificed 15 min later. Large number of particles are visible underneath Sd. GBM, glomerular basement membrane; fp, foot processes; US, urinary space; fn, fenestrae; En, endothelium, × 60,000.

A from Karnovsky 199.] [B from Kanwar, 114


Figure 9.

Effects of molecular size, charge, and shape on entry of macromolecules into hypothetical capillary membrane and filtrate. Filtering element of capillary is represented as gel comprised of intertwining elongated chains with fixed negatively charged moieties. A (top): entry of uncharged molecules into gel framework, and thus into filtrate, is governed by steric interactions only. Available water volume within gel for soluble molecules decreases with increasing molecular size. Middle: for molecules of equal size, entry of molecules into gels is determined by electrophysical interactions. Thus with decreasing net negative charge, filtration is enhanced. Bottom: Loosely coiled, elongated molecules without tertiary structure (e.g., dextrans), pictured on left, undergo deformation during filtration; transit of deformed molecules through gel is facilitated. This phenomenon is termed reptation. In contrast, globular proteins, pictured on right, are not susceptible to unravelling their polypeptide chains because of more rigid tertiary structure. Thus, for same hydrodynamic radii measured for them in free solution, transit of globular proteins through gel matrix is retarded relative to that of linear‐chain polymers. B: fractional clearances of cationic diethylaminoethyl (DEAE) dextran, neutral dextran, and anionic dextran sulfate, plotted as function of effective molecular radius in normal rats. Relative clearances of dextrans are as follows: DEAE dextran > neutral dextran » dextran sulfate.

A from Venkatachalam and Rennke 279; B from Bohrer et al. 21


Figure 10.

Diagrams summarizing permeability of glomerular capillary wall to peroxidatic (A) and dextran (B) tracers, determined by electron microscopy. Peroxidatic tracers, including cytochrome C (CYTO‐c), horseradish peroxidase (HRP), myeloperoxidase (MPO), and catalase, are restricted to a variable degree in the various strata of capillary; while dextrans either freely permeate across or are totally restricted by glomerular basement membrane (BM) at level of endothelium (En). Ep, epithelium; LRI, lamina rara interna; LRE, lamina rara externa; LD, lamina densa.

Data from Caulfield and Farquhar 42 and Karnovsky and Ainsworth 133


Figure 11.

Portions of glomerular capillary (Cap) loops from control kidneys that were perfused with native ferritin (A and B) and cationic ferritin (C and D). Native ferritin does not enter the normal glomerular basement membrane (GBM), whereas cationic ferritin binds to anionic sites in the lamina rara interna (LRI) and lamina rara externa (LRE) (A and C). After treatment with heparitinase (B and D), native ferritin penetrates into deeper layers of GBM (B), and cationic ferritin does not bind to anionic sites but forms a gradient across GBM (D) similar to that of native ferritin (B). Some ferritin particles can be seen beneath slits (arrow in D). fp, foot processes; US, urinary space; En, endothelial fenestrae; LD, lamina densa. × 80,000

From Kanwar 114


Figure 12.

Light microscopic autoradiograms of capillary loops (Cap) from control (A) and heparitinase‐treated (B) kidneys that were subsequently perfused with 125I‐labeled bovine serum albumin. After enzymatic treatment, capillary wall offers no restriction to passage of 125I‐labeled bovine serum albumin into urinary space (US). Magnification × 1,500.

From Rosenzweig and Kanwar 222


Figure 13.

Model illustrating clogging of glomerular basement membrane (GBM) by various macromolecules after neutralization of anionic charge of GBM by perfusion of kidneys with Krebs‐Ringer bicarbonate (KRB) buffers of high molarity. When kidneys are perfused with native ferritin (NF), bovine serum albumin (BSA), and insulin in vehicle of 0.15 M KRB (physiologic molarity), negatively charged GBM restricts passage of macromolecules on basis of their size and charge such that native ferritin does not reach urinary space (US) at all and bovine serum albumin does so only to limited extent. Insulin, which has an Einstein‐Stokes radius < 18, passes freely across GBM from capillary lumina (CL) to urinary space. In addition negatively charged groups of GBM (sulfates and carboxyls) protect GBM from being clogged because charged groups remain hydrated and prevent hydrophobic interactions between GBM and macromolecules in solution being filtered (in this case native ferritin, bovine serum albumin, and insulin), resulting in normal GFR. In contrast, neutralization of anionic charge of GBM by perfusion with high molarity (1.5 M) KRB (in which molarity is adjusted by addition of NaCl) results in abolition of charge barrier of GBM by deactivation of negative charges (by formation of sodium salts), leading to increase in entry and accumulation of macromolecules in GBM (clogging) and reduction in permeability of GBM to freely filterable molecules such as insulin and even water. Of GBM negative charges, only sulfates are depicted in diagram.

From Kanwar and Rosen‐zweig 126


Figure 14.

A: low‐power electron micrograph of glomerulus from kidney perfused with Krebs‐Ringer bicarbonate buffer (KRB) alone for 10 min. Note lacy pattern created by slender interdigitating foot processes. Epithelial cell (Ep) bodies remain separate from one another as well as from underlying foot processes (fp). × 5,000 B: low‐power electron micrograph of glomerulus from kidney perfused with KRB containing 50 μg ml protamine sulfate for 10 min. Note extensive effacement of epithelial foot process (fp) architecture. Large masses of epithelial cytoplasm are apposed to glomerular basement membrane. Epithelial cell bodies make intimate contact with one another and with underlying flattened foot processes, × 4,000 C: electron micrograph of capillary (Cap) of glomerulus incubated for 10 min with cationic ferritin. Note swelling of epithelial foot processes (fp) and obliteration of intervening space. Numerous patches of aggregated actin filaments (arrowheads) art visible in the cytoplasm of foot processes. CF, cationic ferritin; Ep epithelium; En, endothelium; Me, mesangium; US, urinary space, × 60,000

B From Seiler et al. 238; C from Kanwar 114


Figure 15.

A: glomerular capillary from control kidney perfused sequentially with buffer, aldehyde fixative, and colloidal iron (CI), pH 1.6, to demonstrate the sialic acid‐rich surface coats on epithelial foot processes (fp) and endothelial (En) membranes. Staining is noticeably heavier on tops and sides of foot processes (above slit membranes) where they face urinary spaces (US) than at base of foot processes where they face glomerular basement membrane (GBM). Note that CI particles also bind to lamina rara interna (LRI) and lamina rare externa (LRE). B: portion of glomerulus [including part of mesangial region (Me)] from kidney perfused with neuraminidase before perfusion with aldehyde fixative and CI. Several areas (*) where there is detachment of foot processes (fp) from the GBM are evident, as is general detachment of endothelium. There is complete absence of CI binding to epithelial cell surface, indicating complete removal of sialic acid. Split diagraphs are broken and disrupted in places (arrow) and GBM appears thin and pale‐staining (especially to left). CI deposits on luminal side of GBM are assumed to represent residues of unfiltered CI. LD, lamina deansa; Cap, capillary lumen, × 80,000.

From, Kanwar and Farquhar 118


Figure 16.

A: a portion of glomerular capillary from kidney perfused with native ferritin in Krebs‐Ringer bicarbonate‐bovine serum albumin (KRB‐BSA). A few particles enter glomerular basement membrane (GBM) and most are retained in inner layers of GBM. × 100,000 B: a region of glomerular capillary from neuraminidase‐treated kidney that was subsequently perfused with native ferritin in KRB‐BSA. Epithelium is detached from GBM, creating subepithelial pocket (between asterisks). Native ferritin penetrates GBM, accumulates in subepithelial pocket, and from there reaches urinary space (US) by means of gaps in slit diaphragms between detached foot processes (fp). Cap, capillary lumen, × 100,000.

From Kanwar and Rosenzweig 125


Figure 17.

Light micrograph (a), its schematic drawing (b), and scanning micrograph of methyl methacrylate cast (c) showing relationship of various components of juxtaglomerular apparatus (JGA) with glomerular capillaries (Cap). A, afferent arteriole; E, efferent arteriole; EGMR, extraglomerular mesangial region; En, endothelium; Gc, granular cell; MD, macula densa; US, urinary space.

Courtesy of J. Anastasi and H. Rennke


Figure 18.

A: electron micrograph of portion of juxtaglomerular apparatus showing arteriolar endothelial (En) lining, granular cell (Gc) and distal tubular epithelial cell (DTEc) of macula densa (MD). Gc contains numerous membrane‐bound granules (gr). × 8,000. B: high‐magnification electron micrograph of Gc showing various forms of granules (gr), most of which are round, some rhomboid, and others elongated with crystalline appearance. Some resemble lysosomes (Ly). Nu, nucleus; Go, Golgi complex, × 16,000.



Figure 19.

Light micrograph (immunoperoxidase) of glomeruli from serial sections of kidney stained with antirenin (A) and angiotensin II (B) antibodies. Co‐localization of renin and angiotensin II (indicated by brown reaction product, arrows) is observed in arteriolar walls. G, glomerulus; T, tubules, × 800.

Courtesy of T. Inagami


Figure 20.

Electron micrographs of granular cell with immunolabeled Golgi complexes (Go), secondary vacuoles (Sv), and immature protogranules (Ig). Labeling is seen in the form of electron‐dense colloidal gold particles. In B, immature granule contains crystalline material (arrow), probably representing immunoreactivity toward renin. A, × 35,000; B, × 55,000; C, × 30,000.

From La Casse and Cantin 152


Figure 21.

Electron micrographs of part of granular cell with immunolabeled Golgi complexes (Go), immature protogranules (Ig), and mature granules (Mg). Immunogold particles indicate presence of renin in various types of granules, × 35,000.

Courtesy J. La Casse and M. Cantin
References
 1. Abrahamson, D. R. Origin of the glomerular basement membrane visualized after in vivo labeling of laminin in newborn rat kidney. Cell Biol. 100: 1988–2000, 1985.
 2. Abrahamson, D. R., and J. P. Caulfield. Proteinuria and structural alterations in rat glomerular basement membranes induced by intravenously injected anti‐laminin immunoglobulin G. J. Exp. Med. 156: 128–145, 1982.
 3. Abrahamson, D. R., A. Hein, and J. P. Caulfield. Laminin in glomerular basement membrane of aminonucleoside nephrotic rats. Increased proteinuria induced by anti‐laminin immuno‐globulin G. Lab. Invest. 49: 38–47, 1983.
 4. Andres, G. A., C. Morgan, K. C. Hsu, R. A. Rifkind, and B. C. Seegal. Electron microscopic studies of experimental nephritis with ferritin‐conjugated antibody. J. Exp. Med. 115: 929–936, 1962.
 5. Andrews, P. M. Investigation of cytoplasmic contractile and cytoskeletal elements in the kidney glomerulus. Kidney Int. 20: 549–562, 1981.
 6. Ausiello, D. A., J. I. Kreisberg, C. Roy, and M. J. Karnovsky. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J. Clin. Invest. 65: 754–760, 1980.
 7. Barajas, L. The development and ultrastructure of the juxtaglomerular granule. J. Ultrastruct. Res. 15: 400–413, 1966.
 8. Barajas, L. The ultrastructure of the juxtaglomerular apparatus as disclosed by three‐dimensional reconstructions from serial sections. The anatomical relationship between tubular and vascular components. J. Ultrastruct. Res. 33: 116–147, 1970.
 9. Barajas, L. Renin secretion: an anatomical basis for tubular control. Science 172: 485–487, 1971.
 10. Barajas, L. The juxtaglomerular apparatus: anatomical considerations in feedback control of glomerular filtration rate. Federation Proc. 40: 78–86, 1981.
 11. Barajas, L., and H. Latta. Structure of the juxta‐glomerular apparatus. Circ. Res. 21 [Suppl 2]: 15–28, 1967.
 12. Barajas, L., and J. Muller. The innervation of the juxtaglomerular apparatus and surrounding tubules: a quantitative analysis by serial section electron microscopy. J. Ultrastruct. Res. 43: 107–132, 1973.
 13. Barnes, J. L., R. A. Radnik, E. P. Gilchrist, and M. A. Venkatachalam. Size and charge selective permeability defects induced in glomerular basement membrane by a polycation. Kidney Int. 25: 11–19, 1984.
 14. Behnke, O., and T. Zelander. Preservation of intra‐cellular substances by the cationic dye alcian blue in preparative procedures for electron microscopy. J. Ultrastruct. Res. 31: 424–428, 1970.
 15. Bennett, C. M., R. J. Glassock, R. L. S. Chang, W. M. Deen, C. R. Robertson, B. M. Brenner, J. L. Troy, I. R. Ueki, and B. Rasmussen. Permselectivity of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using dextran sulfate. J. Clin. Invest. 57: 1287–1294, 1976.
 16. Bertolatus, J. A., and L. G. Hunsicker. Glomerular sieving of anionic and neutral bovine albumins in proteinuric rats. Kidney Int. 28: 467–476, 1985.
 17. Biava, C., and M. West. Fine morphology of human juxtaglomerular cells in patients with benign essential hypertension. Lab. Invest. 15: 1902–1920, 1966.
 18. Blau, E. B., and J. E. Haas. Glomerular sialic acid and proteinuria in human renal disease. Lab. Invest. 28: 477–481, 1973.
 19. Blobel, G., and B. Dobberstein. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane‐bound ribosomes of murine myelona. J. Cell Biol. 67: 835–851, 1975.
 20. Bohman, S. O., G. Jaremko, A. B. Bohlin, and U. Berg. Foot process fusion and glomerular filtration rate in minimal change nephrotic syndrome. Kidney Int. 25: 696–700, 1984.
 21. Bohrer, M. P., C. Baylis, H. D. Humes, R. J. Glassock, C. R. Robertson, and B. M. Brenner. Permselectivity of the glomerular capillary walls. Facilitated filtration of circulating polycations. J. Clin. Invest. 61: 72–78, 1978.
 22. Bohrer, M. P., C. Baylis, C. R. Robertson, B. M. Brenner, J. L. Troy and W. T. Willis. Mechanism of puromycin‐induced defects in the transglomerular passage of water and macromolecules. J. Clin. Invest. 60: 152–161, 1977.
 23. Border, W. A., S. Okuda, L. R. Languino and E. Ruoslahti. Transforming growth factor‐β regulates production of proteoglycans by mesangial cells. Kidney Int. 37: 689–695, 1990.
 24. Bowman, W. On the structure and use of the Malpighian bodies of the kidney, with observations on the circulation through that gland. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 132: 57–80, 1842.
 25. Brenner, B. M., M. P. Bohrer, C. Baylis, and W. M. Deen. Determinants of glomerular permselectivity: Insights derived from observations in vivo. Kidney Int. 12: 229–237, 1977.
 26. Brenner, B. M., T. H. Hostetter, and H. D. Humes. Molecular basis of proteinuria of glomerular origin. N. Engl. J. Med. 298: 826–833, 1978.
 27. Bridges, C. R., B. D. Myers, B. M. Brenner, and W. M. Deen. Glomerular charge alterations in human minimal change nephropathy. Kidney Int. 22: 677–684, 1982.
 28. Brown, D. M., A. F. Michael, and T. R. Oegema. Glycosaminoglycan synthesis by glomeruli in vivo and in vitro. Biochim. Biophys. Acta 674: 96–104, 1981.
 29. Burghardt, W., H. Schweisfurth, and H. Dahlheim. Juxtaglomerular angiotensin II formation. Kidney Int. Suppl 12: S49–S54, 1982.
 30. Buss, H., B. Lamberts, and D. Renner. Metabolische und morphologische Untersuchungen an isolieren Glomerula der Rattenniere. I. Ultrastruktur nach verschiedenen Spulmedien wahrend der Isolierung. Z. Gesamte Exp. Med. Einschl. Exp. Chir. 156: 216–231, 1971.
 31. Butkowski, R., J. Langeveld, J. Wieslander, J. Hamilton, and B. Hudson. Localization of the Goodpasture's epitope to a novel chain of the basement membrane collagen. J. Biol. Chem. 252: 7874–7877, 1987.
 32. Camazine, S. M., G. B. Ryan, E. R. Unanue, and M. J. Karnovsky. Isolation of phagocytic cells from the rat glomerulus. Lab. Invest. 35: 315–326, 1976.
 33. Cantin, M., M. D. Araujo‐Nascimento, S. Benchimol, and Y. Désormeaux. Metaplasia of smooth muscle cells into juxtaglomerular cells in the juxtaglomerular apparatus, arteries, and arterioles of the ischemic (endocrine) kidney. An ultrastructural‐cytochemical and autoradiographic study. Am. J. Pathol. 87: 581–602, 1977.
 34. Cantin, M., J. Gutkowska, J. Lacasse, M. Ballak, S. Lecoux, T. Inagami, J. Beuzeron, and J. Genest. Ultrastructural immunocytochemical localization of renin and angiotensin II in juxtaglomerular cells of the ischemic kidney in experimental renal hypertension. Am. J. Pathol. 115: 212–224, 1984.
 35. Carrie, B. J., and B. D. Myers. Proteinuria and functional characteristics of the glomerular barrier in diabetic nephropathy. Kidney Int. 17: 699–676, 1980.
 36. Carrie, B. J., W. R. Salyer, and B. D. Myers. Minimal change nephropathy: an electrochemical disorder of the glomerular membrane. Am. J. Med. 70: 262–268, 1981.
 37. Carlin, B., R. Jaffe, B. Bender, and A. E. Chung. Entactin, a novel basal lamina‐associated sulfated glycoprotein. J. Biol. Chem. 256: 5209–5214, 1981.
 38. Castellot, J. J., R. L. Hoover, and P. A. Harper. Heparin and glomerular epithelial cell‐secreted heparin like species inhibit mesangial‐cell proliferation. Am. J. Pathol. 120: 427–435, 1987.
 39. Catchpole, H. R. Connective tissue, basement membrane, extracellular matrix. Pathobiol. Annu. 12: 1–33, 1982.
 40. Caulfield, J. P. Alterations in the distribution of alcian blue staining fibrillar anionic sites in the glomerular basement membrane in aminonucleoside nephrosis. Lab. Invest. 40: 503–511, 1979.
 41. Caulfield, J. P., and M. G. Farquhar. Loss of anionic sites from the glomerular basement membrane in aminonucleoside nephrosis. Lab. Invest. 505–512, 1978.
 42. Caulfield, J. P., and M. G. Farquhar. The permeability of glomerular capillaries to graded dextrans. Identification of the basement membrane as the primary filtration barrier. J. Cell Biol. 63: 883–903, 1974.
 43. Caulfield, J. P., and M. G. Farquhar. Distribution of anionic sites in glomerular basement membranes: their possible role in filtration and attachment. Proc. Natl. Acad. Sci. USA 73: 1646–1650, 1976.
 44. Celio, M. R., and T. Inagami. Angiotensin II immunoreactivity coexists with renin in juxtaglomerular granular cells of the kidney. Proc. Natl. Acad. Sci. USA 8: 3897–3900, 1981.
 45. Celio, M. R., and T. Inagami. Renin in the human kidney. Immunochistochemical localization. Histochemistry 72: 1–10, 1981.
 46. Chandra, S., J. C. Hubbard, F. R. Skelton, L. L. Bernardis, and S. Kamura. Genesis of juxtaglomerular cell granules. A physiologic, light and electron microscopic study concerning experimental renal hypertension. Lab. Invest. 14: 1834–1847, 1965.
 47. Chang, R. L. S., W. M. Deen, C. R. Robertson, and B. M. Brenner. Permselectivity of the glomerular capillary wall. III. Restricted transport of polyanions. Kidney Int. 8: 212–218, 1975.
 48. Chang, R. L. S., C. R. Robertson, W. M. Deen, and B. M. Brenner. Permselectivity of the glomerular capillary wall to macromolecules. I. Theoretical considerations. Biophys. J. 15: 861–886, 1975.
 49. Chang, R. L., I. F. Ueki, J. L. Troy, W. M. Deen, C. R. Robertson, and B. M. Brenner. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. Biophys. J. 15: 887–906, 1975.
 50. Chen, D. S., and A. M. Poisner. Direct stimulation of renin release by calcium. Proc. Soc. Exp. Biol. Med. 152: 565–567, 1976.
 51. Chiu, J., and K. N. Drummond. Chemical and histochemical studies of glomerular sialoprotein in nephrotoxic nephritis in rats. Am. J. Pathol. 68: 391–406, 1972.
 52. Cohen, M. P., and M. L. Surma. In vivo biosynthesis and turnover of 35S‐labelled glomerular basement membrane. Biochim. Biophys. Acta 716: 337–340, 1982.
 53. Cohen, M. P., M. L. Surma, and V. Y Wu. In vivo biosyntheis and turnover of glomerular basement membrane in diabetic rats. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F385–F389, 1982.
 54. Conti, F. G., L. J. Striker, M. A. Lesniak, K. MacKay, J. Roth, and G. E. Striker. Studies on binding and mitogenic effect of insulin and IGF‐1 on glomerular mesangial cells. Endocrinology 122: 2788–2795, 1988.
 55. Cook, W. F. The detection of renin in juxtaglomerular cells. J. Physiol. Lond. 194: 73–74, 1968.
 56. Cotran, R. S., and H. G. Rennke. Anionic sites and mechanisms of proteinuria. [Editorial] N. Engl. J. Med. 309: 1050–1052, 1983.
 57. Crabtree, C. E. The structure of Bowman's capsule as an index of age and sex variations in normal mice. Anat. Rec. 79: 395–413, 1941.
 58. Courtoy, P. J., Y. S. Kanwar, R. D. Hynes, and M. G. Farquhar. Fibronectin localization in the rat glomerulus. J. Cell Biol. 87: 691–696, 1980.
 59. Courtoy, P. J., R. Timpl, and M. G. Farquhar. Comparative distribution of laminin, type IV collagen, and fibronectin in the rat glomerulus. J. Histochem. Cytochem. 30: 874–886, 1982.
 60. Davis, J. O., and R. H. Freeman. Mechanisms regulating renin release. Physiol. Rev. 56: 1–56, 1976.
 61. Dean, D. C., J. F. Barr, J. W. Freytag, and B. G. Hudson. Isolation of type IV procollagen‐like polypeptides from glomerular basement membrane. Characterizatioin of pro‐αl (IV). J. Biol. Chem. 258: 590–596, 1983.
 62. Deen, W. M., M. P. Bohrer, C. R. Robertson, and B. M. Brenner. Determinants of the transglomerular passage of macromolecules. Federation Proc. 36: 2614–2618, 1977.
 63. Deen, W. M., C. R. Bridges, B. M. Brenner, and B. D. Myers. Heteroporous model of glomerular size‐selectivity: application to normal and nephrotic humans. Am. J. Physiol. 249: F374–389, 1985.
 64. Desormeaux, Y., M. Ballak, S. Benchimol, J. Lacasse, M. Cantin, and J. Genest. Synthesis and migration of proteins and glycoproteins in juxtaglomerular cells of sodium deficient rats. An ultrastructural radioautographic study. Cell Tissue Res. 222: 53–67, 1982.
 65. Dixit, S. N. Isolation and characterization of two α chain size collagenous polypeptide chains C and D from glomerular basement membrane. FEBS Lett. 106: 379–384, 1979.
 66. Dixit, S. N., J. M. Stuart, J. M. Seyer, J. Risteli, R. Timpl, and A. H. Kang. Type IV collagens' isolation and characterization of 7S collagen from human kidney, liver and lung. Collagen Relat. Res. 1: 549–556, 1981.
 67. Dorfman, A. Proteoglycan biosynthesis. In: Cell Biology of Extracellular Matrix, edited by E. D. Hay. New York: Plenum, 1981, p. 115–138.
 68. Dyck, R. F., C. M. Lockwood, M. Kershaw, N. McHugh, V. C. Duance, M. L. Baltz, and M. B. Pepys. Amyloid P component is a constituent of normal human glomerular basement membrane. J. Exp. Med. 152: 1162–1174, 1980.
 69. Dzau, V. J. and J. Kriesberg. Cultured glomerular mesangial cells contain renin: Influence of calcium & isoproterenol. J. Cardiovasc. Pharmacol. 8: S6–S10, 1986.
 70. Ekblom, P. Formation of basement membrane in the embryonic kidney: an immunohistological study. J. Cell Biol. 91: 1–10, 1981.
 71. Ekblom, P., K. Alitalo, A. Vaheri, R. Timpl, and L. Saxen. Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc. Natl. Acad. Sci. USA 77: 485–489, 1980.
 72. Farquhar, M. G. Editorial: The primary glomerular filtration barrier: basement membrane or epithelial slits? Kidney Int. 8: 197–211, 1975.
 73. Farquhar, M. G., P. J. Courtoy, M. C. Lemkin, and Y. S. Kanwar. Current knowledge of the functional architecture of the glomerular basement membrane. In: New Trends in Basement Membrane Research, edited by K. Kuehn, H.‐H. Schoene, and R. Timpl. New York: Raven, 1982, p. 9–29.
 74. Farquhar, M. G., M. C. Lemkin, and J. L. Stow. Role of proteoglycans in glomerular function and pathology. In: Nephrology, edited by R. R. Robinson. New York: Springer‐Verlag, 1985, vol. 1, p. 580–600.
 75. Farquhar, M. G., and G. E. Palade. Behavior of colloidal particles in the glomerulus (abstract). Anat. Rec. 133: 378–379, 1959.
 76. Farquhar, M. G., and G. E. Palade. Functional evidence for the existence of a third cell type in the renal glomerulus. J. Cell Biol. 13: 55–87, 1962.
 77. Farquhar, M. G., and G. E. Palade. The Golgi apparatus (complex)‐1954–1981‐from artifact to center stage. J. Cell Biol. 91: 77s–103s, 1981.
 78. Farquhar, M. G., S. L. Wissig, and G. E. Palade. Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J. Exp. Med. 113: 47–66, 1961.
 79. Finke, R., R. Gross, E. Hackentahal, J. Huber, and H. R. Kirchheim. Threshold pressure for pressure‐dependent renin release in the autoregulating kidney of conscious dogs. Pflugers Arch. 399: 102–110, 1983.
 80. Fisher, E. R. Lysosomal nature of juxtaglomerular granules. Science 152: 1752–1753, 1966.
 81. Flamenbaum, W. and R. J. Hamburger. Superficial and deep juxtaglomerular apparatus renin activity of rat kidney, effect of surgical preparation and NaCl intake. J. Clin. Invest. 54: 1373–1381, 1974.
 82. Fleischer, B., and F. Zambrano. Golgi apparatus of rat kidney, preparation and role in sulfatide formation. J. Biol. Chem. 249: 5995–6003, 1974.
 83. Foidart, J. M., K. Tryggvason, P. G. Robey, L. A. Liotta, and G. R. Martin. Biosynthesis of type IV and V (α A‐α B) collagens by placenta. Collagen Relat. Res. 1: 137–150, 1981.
 84. Fray, J. C. S. Stretch receptor model for renin release with evidence from perfused rat kidney. Am. J. Physiol. 231: 936–944, 1976.
 85. Fray, J. C. S., D. J. Lush, and A. N. Valentine. Cellular mechanisms of renin secretion. Federation Proc. 42: 3150–3154, 1983.
 86. Goormaghtigh, N. Existence of endocrine gland in media of the renal arteriole. Proc. Soc. Exp. Biol. Med. 42: 688–689, 1939.
 87. Graham, R. C. Jr., and M. J. Karnovsky. Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J. Exp. Med. 124: 1123–1134, 1966.
 88. Graham, R. C. Jr., and R. W. Kellermeyer. Bovine lactoperoxidase as a cytochemical protein tracer for electron microscopy. J. Histochem. Cytochem. 16: 275–278, 1968.
 89. Gregoire, F. Oxidative metabolism of the normal rat glomerulus. Kidney Int. 7: 86–93, 1975.
 90. Gregor, H. P., and C. D. Gregor. Synthetic membrane technology. Sci. Am 239: 112–128, 1978.
 91. Groniowski, J., W. Biczyskowa, and M. Walski. Electron microscope studies on the surface coat of the nephron. J. Cell Biol. 40: 585–601, 1969.
 92. Gundersen, H. J., T. B. Jensen, and R. Osterby. Distribution of membrane thickness determined by lineal analysis. J. Microsc. 113: 27–43, 1978.
 93. Gundersen, H. J., and R. Osterby. Optimizing sampling efficiency of stereological studies in biology: or “Do more less well!” J. Microsc. 121: 65–73, 1981.
 94. Hackenthal, E., R. Hackenthal, and U. Hilgenfeldt. Isorenin, pseudorenin, cathepsin D. and renin, a comparative enzymatic study of angiotensin‐forming enzymes. Biochim. Biophys. Acta 522: 574–588, 1978.
 95. Hackenthal, E., U. Schwertschlag, and H. W. Seyberth. Prostaglandins and renin release. Studies in the isolated perfused rat kidney. In: Hormones and the Kidney, edited by G. S. Stokes and J. H. Mahony. Basel: Karger, 1980, p. 98–107. (Prog. Biochem. Pharmacol., vol. 17).
 96. Hackenthal, E., U. Schwertschlag, and R. Taugner. Cellular mechanisms of renin release. Clin. Exp. Hypertens. Part A Theory Pract. 5: 975–993, 1983.
 97. Hascall, V. C., and Hascall, G. K. Proteoglycans, In: Cell Biology of Extracellular matrix, edited by E. D. Hay. New York: Plenum, 1981, p. 39–63.
 98. Hassell, J. R., P. G. Robey, H. J. Barrach, J. Wilczek, S. I. Rennard, and G. R. Martin. Isolation of a heparan sulfate‐containing proteoglycan from basement membrane. Proc. Natl. Acad. Sci. USA 77: 4494–4498, 1980.
 99. Hay, E. D. Extracellular matrix. J. Cell Biol. 9: 205s–223s, 1981.
 100. Heinegard, D., and M. Paulsson. Structure and metabolism of proteoglycans. In: Extracellular Matrix Biochemistry, edited by K. A. Piez and A. H. Reddi. New York: Elsevier, 1984, p. 277–328.
 101. Heptinstall, R. H. The role of juxtaglomerular apparatus in experimental renal hypertension in the rat. Lab. Invest. 14: 2150–2159, 1965.
 102. Hirose, K., H. Tsuchida, R. Osterby, H. J. Gundersen. A strong correlation between glomerular filtration rate and filtration surface in diabetic kidney hyperfunction. Lab. Invest. 43: 434–437, 1980.
 103. Hirose, K., R. Osterby, M. Nozawa, and H. J. Gundersen. Development of glomerular lesions in experimental long‐term diabetes in the rat. Kidney Int. 21: 889–895, 1982.
 104. Hjelle, J. T., E. C. Carlson, K. Brendel, and E. Meezan. Biosynthesis of basement membrane matrix by isolated rat renal glomeruli. Kidney Int. 15: 20–32, 1979.
 105. Horii, Y., A. Muraguchi, M. Iwano, T. Matsuda, T. Hirayama, H. Yamada, Y. Fujii, K. Dohi, H. Ishikawa, Y. Ohmoto. Involvement of IL‐6 in mesangial proliferative glomerulonephritis. J. Immunol. 143: 3949–3955, 1989.
 106. Houser, M. T., J. I. Scheinman, J. Basgen, M. W. Steffes, and A. F. Michael. Preservation of mesangium and immunohistochemically defined antigen in glomerular membrane isolated by detergent extraction. J. Clin. Invest. 69: 1169–1175, 1982.
 107. Huang, T. W. and J. C. Langlois. Podoendin. A new cell surface protein of podocyte and endothelium. J. Exp. Med. 162: 245–267, 1985.
 108. Hunsicker, L. G., T. P. Shearer, and S. J. Shaffer. Acute reversible proteinuria induced by infusion of the polycation hexadimethrine. Kidney Int. 20: 7–17, 1981.
 109. Ichikawa, I. Hemodynamic influence of altered distal salt delivery on glomerular microcirculation. Kidney Int. [Suppl] 22: S109–S113, 1982.
 110. Inagami, T., M. Kawamura, K. Naruse, and T. Okamura. Localization of components of the renin‐angiotensin system within the kidney. Federation Proc. 45: 1414–1419, 1986.
 111. Jensen, E. B., H. J. Gundersen, and R. Osterby. Determination of membrane thickness distribution from orthogonal intercepts. J. Microsc. 115: 19–33, 1979.
 112. Jones, D. B. Mucosubstances of the glomerulus. Lab. Invest. 21: 119–125, 1969.
 113. Kaissling, B., and W. Kriz. Variability of intracellular spaces between macula densa dells: a transmission electron microscopic study in rabbit and rats. Kidney Int. Suppl. 12: S9–S17, 1982.
 114. Kanwar, Y. S. Biophysiology of glomerular filtration and proteinuria. Lab. Invest. 51: 7–21, 1984.
 115. Kanwar, Y. S., and M. G. Farquhar. Anionic sites in the glomerular basement membrane, in vivo and in vitro localization to the laminae rarae by cationic probes. J. Cell Biol. 81: 137–153, 1979.
 116. Kanwar, Y. S., and M. G. Farquhar. Presence of heparan sulfate in the glomerular basement membrane. Proc. Natl. Acad. Sci. USA 76: 1303–1307, 1979.
 117. Kanwar, Y. S., and M. G. Farquhar. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc. Natl. Acad. Sci. USA 76: 4493–4497, 1979.
 118. Kanwar, Y. S., and M. G. Farquhar. Detachment of endothelium and epithelium from the glomerular basement membrane produced by kidney perfusion with neuraminidase. Lab. Invest. 42: 375–384, 1980.
 119. Kanwar, Y. S., V. C. Hascall, and M. G. Farquhar. Partial characterization of newly synthesized proteoglycans isolated from the glomerular basement membrane. J. Cell Biol. 90: 527–532, 1981.
 120. Kanwar, Y. S., V. C. Hascall, M. L. Jakubowski, and J. T. Gibbons. Effect of β‐d‐xyloside on the glomerular proteoglycans. I. Biochemical studies. J. Cell Biol. 99: 715–722, 1984.
 121. Kanwar, H. S., and M. L. Jakubowski. Unaltered anionic sites of glomerular basement membrane in aminonucleoside nephrosis. Kidney Int. 25: 613–618, 1984.
 122. Kanwar, Y. S., M. L. Jakubowski, and L. J. Rosenzweig. Distribution of sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Eur. J. Cell Biol. 31: 290–295, 1983.
 123. Kanwar, Y. S., M. L. Jakubowski, L. J. Rosenzweig, and J. T. Gibbons. De novo cellular synthesis of sulfated proteoglycans of the developing renal glomerulus in vivo. Proc. Natl. Acad. Sci. USA 81: 7108–7111, 1984.
 124. Kanwar, Y. S., A. Linker, and M. G. Farquhar. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J. Cell Biol. 86: 688–693, 1980.
 125. Kanwar, Y. S., and L. J. Rosenzweig. Altered glomerular permeability as a result of focal detachment of the visceral epithelium. Kidney Int. 21: 565–574, 1982.
 126. Kanwar, Y. S., and L. J. Rosenzweig. Clogging of the glomerular basement membrane. J. Cell Biol. 93: 489–494, 1982.
 127. Kanwar, Y. S., L. J. Rosenzweig, and M. L. Jakubowski. Distribution of de novo synthesized sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Lab. Invest. 49: 216–255, 1983.
 128. Kanwar, Y. S., L. J. Rosenzweig, and D. I. Kerjaschki. Glycosaminogly cans of the glomerular basement membrane in normal and nephrotic states. Renal Physiol 4: 121–130, 1981.
 129. Kanwar, Y. S., L. J. Rosenzweig, A. Linker, and M. L. Jakubowski. Decreased de novo synthesis of glomerular proteoglycan in diabetes: biochemical and autoradiographic evidence. Proc. Natl. Acad. Sci. USA 80: 2272–2277, 1983.
 130. Kanwar, Y. S., A. Veis, J. H. Kimura, and M. L. Jakubowski. Characterization of heparan sulfate proteoglycan of glomerular basement membranes. Proc. Natl. Acad. Sci. USA 81: 762–766, 1984.
 131. Karlsson‐Parra, A., E. Dimeny, B. Fellstrom, and L. Klareskog. HIV receptor (CD4) antigen) in normal human glomerular cells. N. Engl. J. Med. 320: 741, 1989.
 132. Karnovsky, J. J. The structural bases of glomerular filtration. In: Kidney Disease. Present Status, edited by J. Churg, B. H. Spargo, F. K. Mostofi, and M. R. Abell. Baltimore: Williams & Wilkins Co., 1979, p. 1–41.
 133. Karnovsky, M. J., and S. K. Ainsworth. The structural basis of glomerular filtration. Adv. Nephrol. 2: 35–60, 1972.
 134. Kashihara, N., T. Dalecki and Y. S. Kanwar. Modulation of glomerular basement membrane proteoglycan synthesis by interleukin‐1. Kidney Int. 37: 418, 1990.
 135. Kazatchkine, M. D., D. T. Fearon, M. D. Appay, C. Mandet, and J. Bariety. Immunohistochemical study of human glomerular C3b receptor in normal kidney and in seventy‐five cases of renal diseases: loss of C3b receptor antigen in focal hyalinosis and in proliferative nephritis of systemic lupus erythematosus. J. Clin. Invest. 69: 900–912, 1982.
 136. Kefalides, N. A. Isolation of collagen from basement membranes containing three identical alpha chains. Biochem. Biophys. Res. Commun. 45: 226–234, 1971.
 137. Kefalides, N. A. Structure and biosynthesis of basement membranes. Int. Rev. Connect. Tissue Res. 6: 63–104, 1973.
 138. Kelley, V. E., and T. Cavallo. Glomerular permeability: transfer of native ferritin in glomeruli with decreased anionic sites. Lab. Invest. 39: 547–553, 1978.
 139. Kerjaschki, D., and M. G. Farquhar. Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J. Exp. Med. 157: 667–686, 1983.
 140. Kerjaschki, D., D. J. Sharkey, and M. G. Farquhar. Identification and characterization of podocalyxin—the major sialoprotein of the renal glomerular epithelial cell. J. Cell Biol. 98: 1591–1596, 1984.
 141. Kerjaschki, D., A. T. Vernillo, and M. G. Farquhar. Reduced sialylation of podocalyxin—the major sialoprotein of the rat kidney glomerulus—in aminonucleoside nephrosis. Am. J. Pathol. 118: 343–349, 1985.
 142. Kerjaschki, D., P. P. Ojha, M. Susani, R. Horvat, S. Binder, A. Hovorka, P. Hillemanns, and R. Pytela. A β1‐integrin receptor for fibronectin in human kidney glomeruli. Am J. Pathol. 134: 481–489, 1989.
 143. Kirkman, H., and R. E. Stowell. Renal filtration surface in the albino rat. Anat. Rec. 82: 373–391, 1942.
 144. Klein, D. J., D. M. Brown, and T. R. Oegema. Glomerular basement membrane proteoglycans are derived from a large precursor. J. Cell Biol. 106: 963–970, 1988.
 145. Kleinman, H. K., M. L. McGarvey, and J. R. Hassell. Formation of supramolecular complex is involved in reconstitution of basement membrane components. Biochemistry 22: 4969–4974, 1983.
 146. Kopp, U. C., and G. F. Di Bona. Interaction between neural and non‐neural mechanisms controlling renin secretion rate. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F620–F626, 1984.
 147. Kreisberg, J. I., M. Venkatachalam, and D. Troyer. Contractile properties of cultured glomerular mesangial cells. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F457–F463, 1985.
 148. Kreisberg, J. I., D. B. Wayne, and M. J. Karnovsky. Rapid and focal loss of negative charge associated with mononuclear cell infiltration early in nephrotoxic serum nephritis. Kidney Int. 16: 290–300, 1979.
 149. Kreisberg, J. I., M. J. Karnovsky, and L. Levine. Prostaglandin production by homogeneous cultures of rat glomerular epithelial and mesangial cells. Kidney Int. 22: 355–359, 1982.
 150. Kroustrup, J. P., H. J. Gundersen, and R. Osterby. Glomerular size 8 and structure in diabetes mellitus. III. Early enlargement of the capillary surface. Diabetologia 13: 207–210, 1977.
 151. Kugler, P. Histochemistry of angiotensinase A in the glomerulus and the juxtaglomerular apparatus. Kidney Int. Suppl. 22: S44–S48, 1982.
 152. Lacasse, J., M. Ballak, C. Mercure, J. Gutkowska, C. Chapeau, S. Foote, J. Menard, P. Corvol, M. Cantin, and J. Genest. Immunocytochemical localization of renin in juxtaglomerular cells. J. Histochem. Cytochem. 33: 323–332, 1985.
 153. Lambert, P. P., B. Aeikens, A. Bohle, F. Hanus, S. Pegoff, and M. Van Damme. A network model of glomerular function. Microvasc. Res. 23: 99–128, 1982.
 154. Larsen, B. Increased permeability to albumin induced with protamine in modified gelatine membranes. Nature 215: 641–642, 1967.
 155. Latta, H., W. H. Johnston, and T. M. Stanley. Sialoglycoproteins and filtration barriers in the glomerular capillary wall. J. Ultrastruc. Res. 51: 354–376, 1975.
 156. Latta, H., A. B. Maunbach, and S. C. Madden. The centrolobular region of the renal glomerulus studied by electron microscopy. J. Ultrastruct. Res. 4: 455–472, 1960.
 157. Latta, H., and A. B. Maunsbach. The juxtaglomerular apparatus as studied electron microscopically. J. Ultrastruct. Res. 6: 547–561, 1962.
 158. Laureant, T. C. In vitro studies on the transport of macromolecules through the connective tissue. Federation Proc. 25: 1128–1134, 1966.
 159. Lelongt, B., H. Makino, T. M. Dalecki and Y. S. Kanwar. Role of proteoglycans in renal development. Dev. Biol. 128: 256–276, 1988.
 160. Lovett, D. H., J. L. Ryan, and R. B. Sterzel. Stimulation of rat mesangial cell proliferation by macrophage interleukin 1. J. Immunol. 131: 2830–2836, 1983.
 161. Lovett, D. H., R. B. Sterzel, and M. Kashgarian. Neutral proteinase activity produced in vitro by cells of glomerular mesangium. Kidney Int. 23: 342–349, 1983.
 162. Ludwig, C. F. Beitrage zur Lehre vom Mechanismus der Harnsecretion. Marburg: N. G. Elwert, 1843, p. 1–42.
 163. MacKay, K., L. J. Striker, J. W. Stauffer, T. Doi, L. Y. Agodoa and G. E. Striker. Transforming growth factor‐beta. Murine glomerular receptors and responses of isolated glomerular cells. J. Clin. Invest. 83: 1160–1167, 1989.
 164. Madri, J. A., F. J. Roll, H. Furthmayr, and J. M. Foidart. Ultrastructural localization of fibronectin and laminin in the basement membranes of the murine kidney. J. Cell Biol. 86: 682–687, 1980.
 165. Makino, H., J. T. Gibbons, M. K. Reddy, and Y. S. Kanwar. Nephritogenicity of antibodies to proteoglycans of the glomerular basement membrane‐I. J. Clin. Invest. 77: 142–156, 1986.
 166. Martin, J., M. Davies, G. Thomas, and D. H. Lovett. Human mesangial cells secrete a GBM‐degrading neutral proteinase and a specific inhibitor. Kidney Int. 36: 790–801, 1989.
 167. Martinez‐Hernandez, A., and P. S. Amenta. The basement membrane in pathology. Lab. Invest. 48: 656–677, 1983.
 168. Martinez‐Hernandez, A., S. Gay, and E. J. Miller. Ultra‐structural localization of type V collagen in rat kidney. J. Cell Biol. 92: 343–349, 1982.
 169. Matthews, M. B., and I. Lozaityte. Sodium chondroitin sulfate‐protein complexes of cartilage. I. Molecular weight and shape. Arch. Biochem. Biophys. 74: 158–174, 1958.
 170. Menefee, M. G., C. B. Mueller, A. L. Bell, and J. K. Meyers. Transport of globin by the renal glomerulus. J. Exp. Med. 120: 1129–1138, 1964.
 171. Michael, A. F. The glomerular mesangium. Contrib. Nephrol. 40: 7–16, 1984.
 172. Michael, A. F., E. Blau, and R. L. Vernier. Glomerular polyanions. Alteration in aminonucleoside nephrosis. Lab. Invest. 23: 649–657, 1970.
 173. Michael, A. F., A. J. Fish, and R. A. Good. Glomerular localization and transport of aggregated proteins in mice. Lab. Invest. 17: 14–29, 1967.
 174. Michael, A. F., W. F. Keane, L. Raij, R. L. Vernier, and S. M. Mauer. The glomerular mesangium. Kidney Int. 17: 141–154, 1980.
 175. Mohos, S. C., and L. Skoza. Glomerular sialoprotein. Science 164: 1519–1521, 1969.
 176. Mohos, S. C., and L. Skoza. Histochemical demonstration and localization of sialoproteins in the glomerulus. Exp. Mol. Pathol. 12: 316–323, 1970.
 177. Morris, B. J., and C. I. Johnston. Isolation of renin granules from rat kidney cortex and evidence for an inactive form of renin (prorenin) in granules and plasma. Endocrinology 98: 1466–1474, 1976.
 178. Myers, B. D., T. B. Okarma, S. Friedman, C. Bridges, J. Ross, S. Asseff, and W. M. Deen. Mechanisms of proteinuria in human glomerulonephritis. J. Clin. Invest. 70: 732–746, 1982.
 179. Myers, B. D., J. A. Winetz, F. Chui, and A. S. Michaels. Mechanisms of proteinuria in diabetic nephropathy: a study of glomerular barrier function. Kidney Int. 21: 633–641, 1982.
 180. Navar, L. G., and L. Rosivall. Contribution of the renin angiotensin system to the control of intrarenal hemodynamics. Kidney Int. 25: 857–868, 1984.
 181. Nevins, T. E., and A. F. Michael. Isolation of anionic sialoproteins from the rat glomerulus. Kidney Int. 19: 553–563, 1981.
 182. Nicholes, B. K., C. A. Krakower, and S. A. Greenspon. The chemically isolated lamina densa of the renal glomerulus. Proc. Soc. Exp. Biol. Med. 142: 1316–1321, 1973.
 183. Noonan, D. M., E. A. Horigan, S. R. Ledbetter, G. Vogeli, M. Sasaki, Y. Yamada and J. R. Hassell. Identification of cDNA clones encoding different domains of basement membrane heparan sulfate proteoglycan. J. Biol. Chem. 263: 16379–16387, 1988.
 184. Norgaard, J. O. A new method for isolation of ultrastructurally preserved glomeruli. Kidney Int. 9: 278–285, 1976.
 185. Norgaard, J. O. Retraction of epithelial foot processes during culture of isolated glomeruli. Lab. Invest. 38: 320–329, 1978.
 186. Norgaard, J. O. Cellular outgrowth from isolated glomeruli: Origin and characterization. Lab. Invest. 48: 526–543, 1983.
 187. Olivetti, G., P. Anversa, W. Rigamonti, L. Vitali‐Mazza, and A. V. Loud. Morphometry of the renal corpuscle during normal postnatal growth and compensatory hypertrophy. J. Cell Biol. 75: 573–585, 1977.
 188. Olivetti, G., P. Anversa, M. Melissari, and A. V. Loud. Morphometry of the renal corpuscle during postnatal growth and compensatory hypertrophy. Kidney Int. 17: 438–454, 1980.
 189. Olivetti, G., F. Giacomelli, and J. Wiener. Morphometry of superficial glomeruli in acute hypertension in the rat. Kidney Int. 27: 31–38, 1985.
 190. Olsen, B. R. Collagen biosynthesis. In: Cell Biology of Extracellular Matrix, edited by E. D. Hay. New York: Plenum, 1981, p. 139–177.
 191. Olson, J. L., H. G. Rennke, and M. A. Venkatachalam. Alteration in charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats. Lab. Invest. 44: 271–279, 1981.
 192. Orci, L., D. Brown, M. Amherdt, and A. Perrelet. Distribution of intramembrane particles and filipin‐sterol complexes in plasma membranes of kidney. I. Corpuscle of Malpighi. Lab. Invest. 46: 545–553, 1982.
 193. Orikasa, M., K. Matsui, T. Oite and F. Shimizu. Massive proliferation induced in rats by a single intravenous injection of a monoclonal antibody. J. Immunol. 141: 807–814, 1988.
 194. Osborn, J. L., G. F. Di Bona, and M. D. Thames. Beta‐1 receptor mediation of renin secretion elicited by low frequency renal nerve stimulation. J. Pharmacol. Exp. Ther. 216: 265–269, 1981.
 195. Osborne, M. J., B. Droz, P. Meyer, and F. Morel. Angiotensin II: renal localization in glomerular mesangial cells by autoradiography. Kidney Int. 8: 245–254, 1975.
 196. Osterby, R., and H. J. Gundersen. Fast accumulation of basement membrane material and the rate of morphological changers in acute experimental diabetic glomerular hypertrophy. Diabetologia 18: 493–500, 1980.
 197. Palade, G. E. Intracellular aspects of the process of protein synthesis. Science 189: 347–358, 1975.
 198. Panthier, J. J., S. Foote, B. Chambraud, A. D. Strosberg, P. Corvol, and F. Rougeon. Complete amino acid sequence and maturation of the mouse submaxillary gland renin procursor. Nature 298: 90–92, 1982.
 199. Pappenheimer, J. R. Passage of molecules through capillary walls. Physiol. Rev. 33: 387–423, 1953.
 200. Parthasarathy, N. and R. G. Spiro. Characterization of the glycosaminoglycan component of the renal glomerular basement membrane and its relationship to the peptide portion. J. Biol. Chem. 256: 507–513, 1981.
 201. Pinto, J. A., and D. B. Brewer. Glomerular morphometry. I. Combined light and electron microscope studies in normal rats. Lab. Invest. 30: 657–663, 1974.
 202. Platt, J. L., T. W. LeBien, and A. F. Michael. Stages of renal ontogenesis identified by monoclonal antibodies reactive with lymphohemopoietic differentiation antigens. J. Exp. Med. 157: 155–172, 1983.
 203. Price, R. G., and R. G. Spiro. Studies on the metabolism of the renal glomerular basement membrane. Turnover measurements in the rat with the use of radiolabeled amino acids. J. Biol. Chem. 252: 8597–8602, 1977.
 204. Purtell, J. N., A. J. Pesce, D. H. Clyne, W. C. Miller, and V. E. Pollak. Isoelectric point of albumin: effect on renal handling of albumin. Kidney Int. 16: 366–376, 1979.
 205. Rand‐Weaver, M., and R. G. Price. Macromolecular associations, antigenicity and variation in disease. Rev. Biosci. Rep. 3: 713–740, 1983.
 206. Reeves, W. H., J. P. Caulfield, and M. G. Farquhar. Differentiation of epithelial foot processes and filtration slits, sequential appearance of occluding junctions, epithelial polyanion and slit membranes in developing glomeruli. Lab. Invest. 39: 90–100, 1978.
 207. Reeves, W. H., Y. S. Kanwar, and M. G. Farquhar. Assembly of the glomerular filtration surface, differentiation of anionic sites in glomerular capillaries of newborn rat kidney. J. Cell Biol. 85: 735–753, 1980.
 208. Remuzzi, A., and W. M. Deen. Theoretical effects of a distribution of capillary dimensions on glomerular ultrafiltration. Microvasc. Res. 32: 131–144, 1986.
 209. Renkin, E. M., and J. P. Gilmore. Glomerular filtration. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, Sect. 8, p. 185–248.
 210. Renkin, E. M., and R. R. Robinson. Glomerular filtration. N. Engl. J. Med. 290: 785–792, 1974.
 211. Rennke, H. G., R. S. Cotran, and M. A. Venkatachalam. Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J. Cell Biol. 67: 638–646, 1975.
 212. Rennke, H. G., Y. Patel, and M. A. Venkatachalam. Glomeruler filtration of proteins: clearance of anionic, neutral, and cationic horseradish peroxidase in the rat. Kidney Int. 13: 278–288, 1978.
 213. Rennke, H. G., and M. A. Venkatachalam. Glomerular permeability: in vivo tracer studies with polyanionic and polycationic ferritins. Kidney Int. 11: 44–53, 1977.
 214. Rennke, H. G., and M. A. Venkatachalam. Structural determinants of glomerular permselectivity. Federation Proc. 36: 2519–2526, 1977.
 215. Rennke, H. G., and M. A. Venkatachalam. Glomerular permeability of macromolecules: effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat. J. Clin. Invest. 63: 713–717, 1979.
 216. Risteli, J., H. P. Bächinger, J. Engel, H. Furthmayr, and R. Timpl. 7‐S collagen: characterization of an unusual basement membrane structure. Eur. J. Biochem. 108: 239–250, 1980.
 217. Robson, A. M., J. Giangiacomo, R. A. Keinstra, S. T. Naqvi, and J. R. Ingelfinger. Normal glomerular permeability and its modification by minimal change nephrotic syndrome. J. Clin. Invest. 54: 1190–1199, 1974.
 218. Roden, L. Structure and metabolism of connective tissue proteoglycans. In: The Biochemistry of Glycoproteins and Proteoglycans, edited by W. J. Lennarz. New York: Plenum, 1980, p. 267–371.
 219. Rodewald, R., and M. J. Karnovsky. Porous structure of the glomerular slit diaphragm in the rat and mouse. J. Cell Biol. 60: 423–433, 1974.
 220. Roll, J. F., J. A. Madri, J. Albert, and H. Furthmayr. Codistribution of collagen types IV and AB2 in basement membranes and mesangium of the kidney: an immunoferritin study of ultrathin frozen sections. J. Cell. Biol. 85: 597–616, 1980.
 221. Romen, W., B. Schultze, and K. Hempel. Synthesis of glomerular basement membrane in the rat kidney. Autoradiographic studies with the light and electron microscope. Virchows Arch. B Cell Pathol. 20: 125–137, 1976.
 222. Rosenzweig, L. J., and Y. S. Kanwar. Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125I‐bovine serum albumin. Lab. Invest. 47: 177–184, 1982.
 223. Roth, J., D. Brown, and L. Orci. Regional distribution of N‐acetyl‐d‐galactosamine residues in the glycocalyx of glomerular podocytes. J. Cell Biol. 96: 1189–1196, 1983.
 224. Rouiller, C., and L. Orci. The structure of the juxtaglomerular complex. In: The Kidney: Morphology, Biochemistry, Physiology, edited by C. Rouiller and A. F. Muller. New York: Academic, 1971, vol. 4, p. 1–80.
 225. Ruoslahti, E. and M. D. Pierschbacher. Arg‐Gly‐Asp: a versatile cell recognition signal. Cell 44: 517–518, 1986.
 226. Rubin, R. P. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22: 389–428, 1970.
 227. Ryan, G. B., D. Alcorn, J. P. Coghlan, P. A. Hill, and R. Jacobs. Ultrastructural morphology of granule release from juxtaglomerular myoepithelioid and peripolar cells. Kidney Int. Suppl. 12: S3–S8, 1982.
 228. Ryan, G. B., and M. J. Karnovsky. Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. Kidney Int. 9: 36–445, 1976.
 229. Ryan, G. B., S. J. Hein, and M. J. Karnovsky. Glomerular permeability to proteins. Effects of hemodynamic factors on the distribution of endogenous immunoglobulin G and exogenous catalase in the rat glomerulus. Lab. Invest. 34: 415–427, 1976.
 230. Ryan, G. B., and M. J. Karnovsky. An ultrastructural study of mechanism of proteinuria in aminonucleoside nephrosis. Kidney Int. 8: 219–232, 1975.
 231. Sagnella, G. A., and W. S. Peart. Studies on the isolation and properties of renin granules from the rat kidney cortex. Biochem. J. 182: 301–309, 1979.
 232. Schnabel, E., J. M. Anderson, and M. G. Farquhar. The tight junction protein ZO‐1 is concentrated along slit diaphragms of the glomerular epithelium. J. Cell Biol. 111: 1255–1263, 1990.
 233. Schnermann, J., and J. Briggs. Role of the renin‐angiotensin system in tubuloglomerular feedback. Federation Proc. 45: 1426–1430, 1986.
 234. Schreiner, G. F., and R. S. Cotran. Localization of an labearing glomeruler cell in the mesangium. J. Cell Biol. 94: 483–488, 1982.
 235. Schurer, J. W., D. Kalicharan, P. J. Hoedemaeker, and I. Molenaar. The use of polyethylenimine for demonstration of anionic sites in basement membranes and collagen fibrils. J. Histochem. Cytochem. 26: 688–689, 1978.
 236. Schwertschlag, U., and E. Hackenthal. Forskolin stimulates renin release from the isolated perfused rat kidney. Eur. J. Pharmacol. 84: 111–113, 1982.
 237. Seamon, K., and J. W. Daly. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J. Biol. Chem. 256: 9799–9801, 1981.
 238. Seiler, M. W., H. G. Rennke, M. A. Venkatachalam, and R. S. Cotran. Pathogenesis of polycation‐induced alterations (“fusion”) of glomerular epithelium. Lab. Invest. 36: 48–61, 1977.
 239. Seiler, M. W., M. A. Venkatachalam, and R. S. Cotran. Glomerular epithelium: structural alterations induced by polycations. Science 189: 390–393, 1975.
 240. Shea, S. M. Glomerular hemodynamics and vascular structure. The pattern and dimensions of a single rat glomerular capillary network reconstructed from ultrathin sections. Microvasc. Res. 18: 129–143, 1979.
 241. Shea, S. M. The relation between structure and function in the glomerular capillary bed. Acta Endocrinol. Suppl. 242: 47–50, 1981.
 242. Shea, S. M., and A. B. Morrison. A stereological study of the glomerular filter in the rat. Morphometry of the slit diaphragm and basement membrane. J. Cell Biol. 67: 436–443, 1975.
 243. Shea, S. M., J. Raskova, and A. B. Morrison. A stereological study of glomerular hypertrophy in the subtotally nephrectomized rat. Am J. Pathol. 90: 201–210, 1978.
 244. Shea, S. M., and J. Raskova. Glomerular hemodynamics and vascular structure in uremia: a network analysis of glomerular path lengths and maximal blood transit times computed for a licrocascular model reconstructed from subserial ultrathin sections. Microvasc. Res. 28: 37–50, 1984.
 245. Shea, S. M., and J. Raskova. Glomerular morphometry in the Munich Wistar rat. Microcirc. Endothelium Lymphatics 2: 457–475, 1985.
 246. Shin, M. L., M. C. Gelkfand, R. B. Nagle, J. R. Carlo, I. Green, and M. M. Frank. Localization of receptors for activated complement on visceral epithelial cells of the human renal glomerulus. J. Immunol. 118: 869–873, 1977.
 247. Simionescu, N., M. Simionescu, and G. E. Palade. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferrential distribution of anionic sites. J. Cell Biol. 90: 605–613, 1981.
 248. Simionescu, M., N. Simionescu. J. E. Silbert, and G. E. Palade. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J. Cell Biol. 90: 614–621, 1981.
 249. Simonson, M. S., S. Wann, P. Mene, G. R. Dubyak, M. Kester and M. J. Dunn. Endothelin‐1 activates the phosphoinositide cascade in cultured glomerular mesangial cells. J. Cardiovasc. Pharmacol. 13: S80–S83, 1989.
 250. Soltesz, B. M., S. Z. Gomba, and M. Szokol. Lysosomal enzymes in the juxtaglomerular cell granules. Experientia 35: 533–534, 1979.
 251. Spargo, B. H., A. E. Seymour, and N. G. Ordonez. Renal Biopsy Pathology with Diagnostic and Therapeutic Implications. New York: Wiley, 1980.
 252. Spiro, R. G. Studies on the renal glomerular basement membrane. preparation and chemical composition. J. Biol. Chem. 242: 1915–1922, 1967.
 253. Spiro, R. G. Basement membranes and collagens. In: Glycoproteins (2nd ed.), edited by A. Gottschalk. Amsterdam: Elsevier, 1972, pt. B., p. 964–999.
 254. Stow, J. L., H. Sawada, and M. G. Farquhar. Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc. Natl. Acad. Sci. USA 82: 3296–3300, 1985.
 255. Striker, G. E., P. D. Killen, and F. M. Farin. Human glomerular cells in vivo: isolation and characterization. Transplant Proc. 12: 88–89, 1980.
 256. Striker, G. E., C. Soderland, D. F. Bowen‐Pope, A. M. Gown, G. Schmer, A. Johnson, D. Luchtel, R. Ross, and L. J. Striker. Isolation, characterization, and propagation in vitro of human glomerular endothelial cells. J. Exp. Med. 160: 323–328, 1984.
 257. Striker, G. E., and L. J. Striker. Glomerular cell culture. Lab. Invest. 53: 122–131, 1985.
 258. Striker, G. E., M. A. Lange, K. MacKay, K. Berenstein and L. J. Striker. Glomerular cells In Vitro. Adv. Nephrol. 16: 169–186, 1987.
 259. Tanaka, T. Gels. Sci. Am. 244: 124–136, 1981.
 260. Taugner, R., C. P. Buhrle, E. Hackenthal, E. Mannek, and R. Nobiling. Morphology of the juxtaglomerular apparatus and secretory mechanisms. Contrib. Nephrol. 43: 76–101, 1984.
 261. Taugner, R., E. Hackenthal, E. Rix, R. Nobiling, and K. Poulsen. Immunocytochemistry of the renin‐angiotensin system: renin, angiotensinogen, angiotensin‐I, angiotensin‐II and converting enzyme in the kidneys of mice, rats and tree shrews. Kidney Int. Suppl 12: S33–S43, 1982.
 262. Taugner, R., E. Manner, R. Nobiling, C. P. Buhrle, E. Hackenthal, D. Ganten, T. Inagami, and H. Schroder. Coexistence of renin and angiotensin II ion epithelioid cell secretory granules of rat kidney. Histochemistry 81: 39–45, 1984.
 263. Taugner, R., A. Whalley, S. Angermuller, C. P. Buhrle, and E. Hackenthal. Are the renin‐containing granules of juxtaglomerular epithelioid cells modified lysosomes? Cell Tissue Res. 239: 575–587, 1985.
 264. Terranova, V. P., D. H. Rohrbach, and G. R. Martin. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell 22: 719–726, 1980.
 265. Thurau, K., A. Gruner, J. Mason, and H. Dahlheim. Tubular signal for the renin activity in the juxtaglomerular apparatus. Kidney Int. Suppl. 12: S55–S62, 1982.
 266. Thurau, K., J. Schnermann, W. Nagel, M. Horster, and M. Wahl. Composition of tubular fluid in the macula densa segment as a factor regulating the function of the juxtaglomerular apparatus. Circ. Res. Suppl. 21: 79–89, 1967.
 267. Timpl, R., S. Fujiwara, M. Dziadek, M. Aumailley, S. Weber, and J. Engel. Laminin, proteoglycan, nidogen and collagen IV: structural models and molecular interactions. In: Basement Membranes and Cell Movement. Ciba Foundation Symposium 108. London: Pitman Press, 1984, pp. 25–43.
 268. Timpl, R., H. Rohde, G. P. Robey, S. I. Rennard, J. M. Foidart, and G. R. Martin. Laminin—a glycoprotein from basement membranes. J. Biol. Chem. 254: 9933–9937, 1979.
 269. Timpl, R., H. Wiedemann, V. Van Delden, H. Furthmayr, and K. Kuhn. A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 120: 203–211, 1981.
 270. Tobian, L., J. Janecek, and A. Tomboulian. Correlation between granulation of juxtaglomerular cells and extractable renin in rats with experimental hypertension. Proc. Soc. Exp. Biol. Med. 100: 94–96, 1959.
 271. Torbohm, I., B. Berger, M. Schonermark, J. Von Kampis, K. Rother and G. M. Mansch. Modulation of collagen synthesis in human glomerular epithelial cells by interleukin‐1. Clin. Exp. Immunol. 75: 427–431, 1989.
 272. Tucker, B. J., and R. C. Blantz. Factors determining superficial nephron filtration in the mature, growing rat. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F97–F104, 1977.
 273. Uitto, J., H. P. Hoffman, and D. J. Prockop. Retention of nonhelical procollagen containing cis‐hydroxyproline in rough endoplasmic reticulum. Science 190: 1202–1204, 1975.
 274. Vehaskari, V. M., E. R. Root, F. G. Germuth, Jr., and A. M. Robson. Glomerular charge and urinary excretion: effects of systemic and intrarenal polycation infusion in the rat. Kidney Int. 22: 127–135, 1982.
 275. Venkatachalam, M. A., R. S. Cotran, and M. J. Karnovsky. An ultrastructural study of glomerular permeability in aminonucleoside nephrosis using catalase as a tracer protein. J. Exp. Med. 132: 1168–1180, 1970.
 276. Venkatachalam, M. A., M. J. Karnovsky, and R. S. Cotran. Glomerular permeability. Ultrastructural studies in experimental nephrosis using horseradish peroxidase as tracer. J. Exp. Med. 130: 381–399, 1969.
 277. Venkatachalam, M. A., M. J. Karnovsky, H. D. Fahimi, and R. S. Cotran. An ultrastructural study of glomerular permeability using catalase and peroxidase as tracer proteins. J. Exp. Med. 132: 1153–1167, 1970.
 278. Venkatachalam, M. A., and J. I. Kreisberg. Agonist induced isotonic contraction in cultured mesangial cells after multiple passage. Am J. Physiol. 249 (Cell Physiol.): C48–C55, 1985.
 279. Venkatachalam, M. A., and H. G. Rennke. The structural and molecular basis of glomerular filtration. Circ. Res. 43: 337–347, 1978.
 280. Venkatachalam, M. A., and H. G. Rennke. Glomerular filtration of macromolecules: structural, molecular, and functional determinants. In: Renal Pathophysiology—recent Advances, edited by A. Leaf, G. Giebisch, L. Bolis, and S. Gorini. New York: Raven, 1980, p. 43–56.
 281. Vernier, R. L., and A. Birch‐Andersen. Studies of human fetal kidney I. Development of the glomerulus. J. Pediatr. 60: 754–768, 1962.
 282. Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134: 50–595, 1941.
 283. Wallenius, G. Renal clearance of dextran as a measure of glomerular permeability. Acta. Soc. Med. Upsl. Suppl. 59: 1–91, 1954.
 284. Watanabe, Y., T. Dalecki and Y. S. Kanwar. Effect of IGF‐1 on glomerular proteoglycans “submitted.”.
 285. Wearn, J. T., and A. N. Richards. Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Am. J. Physiol. 71: 209–227, 1924.
 286. Wright, F. S., and J. P. Briggs. Feedback control of glomerular blood flow, pressure and filtration rate. Physiol. Rev. 59: 958–1006, 1979.
 287. Yamamoto, T., K. Yamamoto, K. Kawasaki, E. Yaoita, F. Shimizu, and I. Kihara. Immunoelectron microscopic demonstration of THY‐1 antigen on the surfaces of mesangial cells in the rat glomerulus. Nephron 43: 293–298, 1986.
 288. Young, R. W. The role of the Golgi complex in sulfate metabolism. J. Cell Biol. 57: 175–189, 1973.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Yashpal S. Kanwar, Manjeeri A. Venkatachalam. Ultrastructure of Glomerulus and Juxtaglomerular Apparatus. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 3-40. First published in print 1992. doi: 10.1002/cphy.cp080101