Comprehensive Physiology Wiley Online Library

Functional Ultrastructure of the Proximal Tubule

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Location of Proximal Tubule
2 Fixation of Proximal Tubule Cells for Electron Microscopy
3 Ultrastructure of the Mammalian Proximal Tubule Cell
3.1 General Cytology
3.2 Cell Shape
3.3 Segmentation of the Mammalian Proximal Tubule
3.4 Luminal Cell Surface
3.5 Basal and Lateral Cell Surface
3.6 Junctions
3.7 Nucleus
3.8 Mitochondria
3.9 Endoplasmic Reticulum
3.10 Golgi Apparatus
3.11 Vacuolar Apparatus (Lysosomes and Endocytic Vacuoles)
3.12 Peroxisomes
3.13 Cytoskeleton
3.14 Cytoplasmic Ground Substance and Inclusions
4 Structure of Proximal Tubule Cells in Submammalian Species
4.1 Birds
4.2 Reptiles
4.3 Amphibians
4.4 Fishes
5 Ultrastructure of Experimentally Perfused Tubules
6 Quantitative Ultrastructure of Proximal Tubules
7 Transepithelial Transport Routes
7.1 The Transcellular Route
7.2 The Paracellular Route
8 Functions of the Vacuolar Apparatus
8.1 Protein Absorption by the Proximal Tubule Cells
8.2 Transtubular Transport of Proteins
8.3 Basolateral Binding and Uptake of Proteins
8.4 Endocytosis of Nonproteins
8.5 Autophogocytosis
8.6 Lysosomal Accumulation of Metals and Other Substances
Figure 1. Figure 1.

Diagram of the different zones of mammalian kidney showing relationships of segments of nephrons to zones of kidney.

Adapted from Maunsbach 374
Figure 2. Figure 2.

Electron micrograph of rat kidney cortex showing several proximal tubules with open lumens and evenly arranged brush borders. This micrograph illustrates some differences between the two segments of convoluted part of proximal tubule. In the first segment (S1) the cells are taller, microvilli of brush border longer, and apical endocytic vacuoles more numerous than in the second segment (S2). Lysosomes in the first segment have light contents, whereas those in second segment show densely stained contents. Tissue was fixed by vascular perfusion with glutaraldehyde. × 2,100

From Maunsbach 366
Figure 3. Figure 3.

Electron micrographs of proximal tubule epithelium from rat kidney illustrating the two segments in convoluted part of proximal tubule. A: first segment (S1); B: second segment (S2). In both segments mitochondria (M) are oriented perpendicular to basement membrane, and endocytic vacuoles (E) are numerous. The brush border (BB) is higher in S1 than in S2. Matrix of lysosomes (L) in S1 is lightly stained but rather homogeneous and densely stained in S2. × 8,900.

Figure 4. Figure 4.

Survey pictures of proximal tubule cells from third segment (S3) of rat (A) and rabbit (B). Mitochondria in S3 are more randomly oriented than in S1 and S2, and less numerous in rabbit cells than in rat cells. In both species lysosomes in S3 cells appear smaller and fewer as compared to S1 and S2 of the rat. The brush border of this segment is significantly higher in rat than in rabbit. Part of a cilium (C) is present in the brush border in A, and peroxisomes (P) are seen in the cytoplasm. Capillary, CAP. × 9,800.

Figure 5. Figure 5.

Basal regions of cells from the three segments of rat proximal tubule. A: first segment (S1), B: second segment (S2), and C: third segment (S3). A: notice close apposition of mitochondria (M) to plasma membrane of interdigitating processes and basement membrane ridges (arrows) penetrating between small basal villi. B: no basement membrane ridges are seen penetrating basal villi. Endothelial capillary in lower part of micrograph shows many fenestrations. C, basal plasma membrane shows very few interdigitations or basal villi, × 36,800.

Figure 6. Figure 6.

Diagram of ultrastructure of epithelium in the three segments of rat proximal tubule, illustrating differences in cell shapes and different distributions of mitochondria (M), lysosomes (L), endocytic vacuoles (E), and peroxisomes (microbodies) (P). S1, first segment. S2, second segment. S3, third segment.

From Maunsbach 374
Figure 7. Figure 7.

A: cross‐sectioned brush border projections from cells in convoluted part of rat proximal tubule fixed in situ by vascular perfusion with glutaraldehyde. × 37,000. [From Maunsbach 374.] B: at higher magnification, plasma membrane of microvilli is triple‐layered and has irregular, amorphous cell coat attached to its outer leaflet (arrows). Cross‐sectioned thin filaments are present within the microvilli × 118,000. [From Maunsbach 374.] C: cross‐section of rat proximal tubule cells halfway between lumen and basement membrane, illustrating the complex interdigitation of the cells. Nuclei (N) of two cells are seen to the left and right. The border between these two cells can be followed from asterisk to asterisk (except for short parts where the membranes are obliquely sectioned). The mitochondria are generally cut perpendicular to their long axis and are located very close to plasma membranes along at least part of their periphery. Cytoplasm contains numerous ribosomes arranged predominantly as free polysomes; some are attached to rough‐surfaced endoplasmic reticulum. Golgi apparatus (G) consists of flattened cisternae, some large vacuoles, many small uncoated vesicles, and some small, coated vesicles (arrows), × 35,000. [From Maunsbach 374.] D: rat proximal tubule cells showing numerous small basal villi in section cut parallel with and close to basement membrane, × 30,000.

From Maunsbach 374
Figure 8. Figure 8.

Diagram of three‐dimensional appearance of proximal tubule cell from convoluted part of rat proximal tubule, illustrating appearance of lateral and basal ridges and processes.

Adapted from Maunsbach 374
Figure 9. Figure 9.

Brush borders of two adjacent proximal tubules microperfused simultaneously in the same rat kidney for 5 min but at different flow rates. A: tubule perfused at rate of 45 nl/min and showing separation of microvilli. B: tubule perfused at rate of 5 nl/min and showing more densely packed microvilli, × 25,000

From Maunsbach et al. 386
Figure 10. Figure 10.

A: tight junction (arrowheads) between two rat proximal tubule cells close to tubule lumen (LU). Triple‐layered plasma membranes are completely apposed. Tight junction has a depth in the luminal‐basal direction of only 100–200 A and is followed on its peritubular side by an intermediate junction, × 167,000. [From Maunsbach 366.] B: tangential section through luminal part of proximal tubule cells showing intermediate junction, which extends between two pairs of arrowheads. When junction is sectioned at ight angles, cytoplasm next to the triple‐layered plasma membranes has increased density, and dense material fills gap between the membranes (compare with normal lateral intercellular space at LIS). Lumen (LU) is seen in upper right corner, × 145,000. [From Maunsbach 374.] C: higher magnification of gap junction between proximal tubule cells from Necturus maculosus. The 20 Å space between the two plasma membranes is clearly observable (arrowheads), × 204,000.

From Maunsbach 374
Figure 11. Figure 11.

A and B: parts of proximal tubule cells from rat kidney illustrating smooth‐surfaced endoplasmic reticulum adjacent to lateral plasma membrane. This so‐called paramembraneous endoplasmic reticulum (PER) has fenestrated cisternae (arrows) that closely follow the lateral plasma membrane. However, it is never in contact with this membrane, nor is it in continuity with the plasma membrane facing the tubule lumen (LU), endocytic vacuoles (E) or lysosomes. Cells illustrated in B were incubated for glucose‐6‐phospha‐tase (dense reaction product, arrows), associated with smooth‐surfaced endoplasmic reticulum, including the PER. A, × 95,000; B, × 34,500.

From Maunsbach 378
Figure 12. Figure 12.

A: part of rat proximal convoluted tubule cell injected by micropuncture into tubule lumen with canonized ferritin 20 sec before fixation. Ferritin appears in small endocytic vesicles or invaginations (EI), but dense apical tubules (AT) generally do not contain ferritin. Large endocytic vacuole connected to several dense apical tubules (arrows) contains ferritin throughout, × 56,000. [From Christensen 98.] B: apical region of rat proximal tubule cells fixed 3 h after start of i.v. infusion of low molecular weight dextran. Dextran is visualized as an electron‐dense precipitate located in large endocytic vacuoles (E). Dextran is absent from dense apical tubules (AT) but is present in some profiles, which represent endocytic invaginations or small endocytic vesicles covered with a clathrin coat (long arrows). Short arrows delineate transverse periodic pattern seen in apical tubules, × 52,000.

From Christensen and Maunsbach 107
Figure 13. Figure 13.

A and B illustrate variable ultrastructural appearances of lysosomes in rat proximal tubule cells. A: electron micrograph showing round lysosome with electron‐dense matrix devoid of inclusions and located close to Golgi apparatus. Lysosome is limited by a triple‐layered membrane. × 49,000. B: electron micrograph showing lysosome of irregular shape with different types of inclusion materials. Lysosomes of this type presumably represent old lysosomes, or telolysosomes. × 34,000. [From Maunsbach 370.] C: lysosomes in rat proximal tubule cells demonstrated by cytochemistry. Electron‐dense precipitate was formed during incubation for acid phosphatase and is located in lysosomes of different ultrastructure. × 48,000.

From Maunsbach 370
Figure 14. Figure 14.

Electron micrographs illustrating cytoplasmic components presumed to be involved in autophagocytosis in proximal tubule cells. A: horseshoe‐shaped structure consisting of two membranes similar to those of endoplasmic reticulum and closely apposed to form a five‐layered structure. This structure is probably in the process of enclosing part of the cytoplasm, × 98,000. [From Maunsbach 370.] B: cytoplasmic body enclosed by two membranes apposed to a five‐layered structure. This body is interpreted as newly formed autophagosome that encloses part of the cytoplasm, × 80,000. [From Maunsbach 374.] C: cytoplasmic body limited by single membrane and containing different inclusions, including an altered mitochondrion. This organelle represents an autolysosome. × 45,000.

From Maunsbach 374
Figure 15. Figure 15.

A, Peroxisomes (P) (microbodies) from rat proximal tubule cell limited by single membrane and showing uniformly stained matrix. Smooth‐surfaced endoplasmic reticulum closely surrounds peroxisomes and is seen in continuity with rough endoplasmic reticulum at arrow, × 44,000. B: Peroxisomes (P) in cells of isolated perfused proximal tubule of rabbit. In this species part of limiting membrane is straight, thickened, and electron‐dense. Limiting membrane is closely related to smooth endoplasmic reticulum. Since this tubule was incubated with horseradish peroxidase (HRP) in the bath, intercellular spaces, except in gap junction (GJ), are filled with reaction product for HRP. Reaction product is also seen in small endocytic vesicle (V). × 45,000.

B from Nielsen and Christensen 427
Figure 16. Figure 16.

A: longitudinally sectioned microvilli from rat proximal tubule showing thin actin filaments inside microvilli (arrows). × 90,000. B: thin section cut almost parallel to basement membrane (BM) of proximal tubule cells and demonstrating a bundle of thin actin filaments (arrows), × 160,000.

From Maunsbach 374
Figure 17. Figure 17.

A: proximal tubule wall of Ambystoma tigrinum. The peritubular cell membrane exhibits pronounced surface amplification due to numerous small cytoplasmic folds that project into the basal extracellular labyrinth (BEL). Small cytoplasmic folds also project into lateral intercellular space (LIS) but in smaller numbers. Notice that cytoplasmic processes (*), like pillars, reach down to basement membrane (BM). Mitochondria (M) and lysosomes (L) are predominantly present in middle regions of cytoplasm. Some mitochondria are also located close to basolateral membrane but not in small basal membrane folds. CAP, peritubular capillary, × 6,200. B: basal part of proximal tubule cell in Ambystoma showing basal extracellular labyrinth (BEL). Thin cytoplasmic folds (bold arrows) project from all directions into BEL. Footlike cytoplasmic processes (F) separate BEL from peritubular space (PS), but several openings devoid of junctions (light vertical arrows) are observed between these processes. Mitochondria (M) are located close to BEL but never in cytoplasmic folds. Endothelium of peritubular capillary (CAP) shows some fenestrae (arrowheads), × 24,100.

From Maunsbach and Boulpaep 382
Figure 18. Figure 18.

Electron micrographs of isolated proximal tubules from Ambystoma tigrinum (outer tubule) and rabbit perfused in vitro. Tubules are shown at same magnification (x 1,800) and mounted concentrically to illustrate dimensional differences between tubules from the two species. Both tubules show well‐preserved ultrastructure.

Ambystoma tubule from Tripathi et al. 613; rabbit tubule from Nielsen and Christensen 426
Figure 19. Figure 19.

Part of isolated proximal convoluted tubule from rabbit perfused in vitro for 60 min before fixation. Cells show normal architecture with mitochondria oriented perpendicular to basement membrane (BM), endocytic vacuoles (E), and lysosomes (L), regular brush border (BB), and basement membrane (BM). × 16,600.

From Nielsen and Christensen 426
Figure 20. Figure 20.

Diagram illustrating possible transepithelial transport pathways for water and solutes in proximal tubules of (A) mammals, where cells interdigitate extensively; (B) Necturus maculosus, where the basolateral plasma membrane shows only moderate surface amplifications; and (C) Ambystoma tigrinum, where basal part of basolateral membrane is greatly enlarged. Arrows indicate transcellular pathways, that are either translateral 1 or transbasal 2, and a paracellular pathway 3. BB, brush border; TJ, tight junction; LIS, lateral intercellular space; BV, basal villi; BM, basement membrane.

Figure 21. Figure 21.

A: part of the tubule wall in proximal tubule from Necturus maculosus. Oil block was microinjected into most proximal part of tubule, thus creating reversed hydrostatic pressure gradient across epithelium with low luminal pressure. Cells have increased height, and lateral intercellular spaces (arrows) are wider than they are in free‐flow tubules, × 3,900. B: tubule wall from Necturus proximal tubule with increased intraluminal pressure due to oil block in distal part of proximal tubule. Cells are somewhat flattened, as are nuclei, and lateral intercellular spaces (arrows) appear decreased in width as compared to spaces in free‐flow tubules with lower intraluminal pressure, × 3,500.

From Maunsbach and Boulpaep 380
Figure 22. Figure 22.

A: part of tubule wall of isolated, perfused proximal tubule from Ambystoma tigrinum. Tubule was perfused in vitro with substrate‐free Ringer in the lumen and hyperosmolar Ringer in the bath, which creates osmotic water flow from lumen to bath. Lateral intercellular spaces (arrows) are more dilated than in controls. × 5,400. B: parts of tubule wall of isolated, perfused proximal tubule from Ambystoma tigrinum. Tubule was perfused with hyperosmolar Ringer in lumen and substrate Ringer in the bath, which creates osmotic water flow from bath to lumen. Lateral intercellular spaces (arrows) are much narrower than in control tubules, × 5,400.

From Maunsbach et al. 391
Figure 23. Figure 23.

Electron microscope autoradiograph of rat proximal tubule cells that were fixed 10 min after microperfusion of homologous 125I‐labeled albumin into tubule lumen (LU). Location of absorbed 125I‐labeled albumin is indicated by irregular silver grains present in apical region of cells and predominantly located over large and small apical endocytic vacuoles. Lysosomes and other cytoplasmic structures deeper in cells are not labeled, × 15,000.

From Maunsbach 365
Figure 24. Figure 24.

A: part of rat proximal convoluted tubule microperfused with cationized ferritin 20 sec before fixation. Ferritin molecules are attached to microvilli (MV) and present in endocytic invaginations (EI). Ferritin is not seen in intercellular space (LIS) beyond tight junction (TJ) or in dense apical tubules (arrow). × 60,000. [From Christensen 98.] B: apical part of proximal tubule cell from kidney fixed 5 min after intravenous injection of 125I‐labeled cytochrome c. Labeled protein is present in an endocytic vacuole and appears preferentially associated with inner side of its limiting membrane, × 36,500. [From Christensen and Maunsbach 105.] C: electron microscope autoradiograph of 125I‐labeled insulin uptake in rat proximal tubule, fixed 25 min after start of microinfusion of insulin. Grains are mainly located over lysosomes in apical part of cytoplasm (arrows). Endocytic vacuoles (E) and some lysosomes (L) located deep in the cytoplasm do not contain [125I]insulin. × 16,000.

From Hellfritzsch et al. 239
Figure 25. Figure 25.

Thin section from segment S2 of rabbit proximal tubule perfused in vitro with native insulin at a concentration of 58 ng/ml for 30 min, fixed in glutaraldehyde, and embedded at low temperature in Lowicryl K4M. The section was incubated first with insulin antiserum and then protein A‐coated gold particles. Gold particles (6 nm in diameter) are located over an endocytic vacuole (arrows) and a lysosome (L). × 60,000.

From Nielsen and Christensen 430
Figure 26. Figure 26.

Isolated, perfused proximal tubule of rabbit exposed to both canonized ferritin (CF) and HRP in the perfusate for 30 min and then fixed after 30 min chase period. Clusters of ferritin‐like particles are visible in basolateral intercellular spaces (arrows). Vacuoles (V) with CF and HRP reaction product are seen not far from intercellular spaces. Lysosome (L) contains both CF and HRP reaction product. B, bath. Unstained section, × 48,000.

From Nielsen et al. 428
Figure 27. Figure 27.

Immunocytochemical localization of folic acid binding protein in cryoultramicrotomy section of rat renal proximal tubule. The protein is localized to the limiting membrane of an endocytic vacuole (E) and in dense apical tubules (arrows) with the aid of a polyclonal antibody that is detected by means of 10 nm gold particles covered with protein A. × 60,000.

Figure 28. Figure 28.

A: isolated perfused proximal tubule of rabbit, incubated with cationized ferritin in the bath for 30 min. Cationized ferritin molecules have penetrated the basement membrane (BM) into the intercellular spaces (arrow) and are present in an endocytic invagination (EI), × 100,000. B: isolated perfused proximal tubule of rabbit incubated with horseradish peroxidase in the bath for 30 min. Reaction product is seen in lateral intercellular spaces (LIS) but not in lumen (LU). Note reaction product in a multivesicular body (MVB) and in lysosomes (L). Unstained section, × 15,000.

From Nielsen and Christensen 427
Figure 29. Figure 29.

Demonstration of dextran in rat proximal tubule cells 1 h after termination of intravenous infusion of dextran T‐40. Kidney was fixed in vivo by dripping a lead‐containing fixative onto kidney surface. Small dense particles representing dextran are present in tubule lumen (arrowheads), in endocytic vacuoles (vertical arrows), and in lysosomes (horizontal arrows), where dextran is located adjacent to dense matrix material. A peroxisome (P) with a fingerlike projection is well stained by the lead‐containing fixative, × 15,800.

From Christensen and Maunsbach 104
Figure 30. Figure 30.

Diagram illustrating relationships between different components of the vacuolar apparatus in proximal tubule cells. Unbroken arrows designate proven pathways and broken arrows indicate routes suggested by indirect evidence. Merging arrows indicate fusion of structures. The heterophagic pathway is shown in right part of diagram and begins with formation of endocytic vesicles from invaginations of luminal plasma membrane. Invaginations are coated with clathrin (dots) and take up protein molecules (smaller peptides represented by crosses, larger proteins by asterisks) from the tubule lumen and pinch off to form small vesicles. The latter then fuse to larger endocytic vacuoles, which transfer protein to lysosomes for digestion. Membrane of endocytic vacuoles is probably recycled back to apical cell membranes as dense apical tubules. Small amounts of protein may be carried to lateral intercellular spaces (transcytosis). Small molecules, in particular amino acids, formed as result of intralysosomal digestion, presumably diffuse through the lysosome membrane into cytoplasm and may in part pass the basolateral plasma membrane. Heterolysosomes have a long half‐life and fuse with many endocytic vacuoles, including a small number of vesicles derived from basolateral endocytosis, until they are eventually worn out and set aside as telolysosomes and finally extruded from the cell into the tubule lumen. Acid hydrolases are fed continuously into the heterolysosomes through Golgi vesicles, which represent primary lysosomes. Probable relationship between autophagic components of the vacuolar apparatus is shown in lower left part of diagram. Smooth‐surfaced endoplasmic reticulum probably participates in initial stages of formation of autolysosomes. Degradation of small peptides takes place at brush border by means of peptidases localized in brush border cell membrane.

Adapted from Maunsbach 374


Figure 1.

Diagram of the different zones of mammalian kidney showing relationships of segments of nephrons to zones of kidney.

Adapted from Maunsbach 374


Figure 2.

Electron micrograph of rat kidney cortex showing several proximal tubules with open lumens and evenly arranged brush borders. This micrograph illustrates some differences between the two segments of convoluted part of proximal tubule. In the first segment (S1) the cells are taller, microvilli of brush border longer, and apical endocytic vacuoles more numerous than in the second segment (S2). Lysosomes in the first segment have light contents, whereas those in second segment show densely stained contents. Tissue was fixed by vascular perfusion with glutaraldehyde. × 2,100

From Maunsbach 366


Figure 3.

Electron micrographs of proximal tubule epithelium from rat kidney illustrating the two segments in convoluted part of proximal tubule. A: first segment (S1); B: second segment (S2). In both segments mitochondria (M) are oriented perpendicular to basement membrane, and endocytic vacuoles (E) are numerous. The brush border (BB) is higher in S1 than in S2. Matrix of lysosomes (L) in S1 is lightly stained but rather homogeneous and densely stained in S2. × 8,900.



Figure 4.

Survey pictures of proximal tubule cells from third segment (S3) of rat (A) and rabbit (B). Mitochondria in S3 are more randomly oriented than in S1 and S2, and less numerous in rabbit cells than in rat cells. In both species lysosomes in S3 cells appear smaller and fewer as compared to S1 and S2 of the rat. The brush border of this segment is significantly higher in rat than in rabbit. Part of a cilium (C) is present in the brush border in A, and peroxisomes (P) are seen in the cytoplasm. Capillary, CAP. × 9,800.



Figure 5.

Basal regions of cells from the three segments of rat proximal tubule. A: first segment (S1), B: second segment (S2), and C: third segment (S3). A: notice close apposition of mitochondria (M) to plasma membrane of interdigitating processes and basement membrane ridges (arrows) penetrating between small basal villi. B: no basement membrane ridges are seen penetrating basal villi. Endothelial capillary in lower part of micrograph shows many fenestrations. C, basal plasma membrane shows very few interdigitations or basal villi, × 36,800.



Figure 6.

Diagram of ultrastructure of epithelium in the three segments of rat proximal tubule, illustrating differences in cell shapes and different distributions of mitochondria (M), lysosomes (L), endocytic vacuoles (E), and peroxisomes (microbodies) (P). S1, first segment. S2, second segment. S3, third segment.

From Maunsbach 374


Figure 7.

A: cross‐sectioned brush border projections from cells in convoluted part of rat proximal tubule fixed in situ by vascular perfusion with glutaraldehyde. × 37,000. [From Maunsbach 374.] B: at higher magnification, plasma membrane of microvilli is triple‐layered and has irregular, amorphous cell coat attached to its outer leaflet (arrows). Cross‐sectioned thin filaments are present within the microvilli × 118,000. [From Maunsbach 374.] C: cross‐section of rat proximal tubule cells halfway between lumen and basement membrane, illustrating the complex interdigitation of the cells. Nuclei (N) of two cells are seen to the left and right. The border between these two cells can be followed from asterisk to asterisk (except for short parts where the membranes are obliquely sectioned). The mitochondria are generally cut perpendicular to their long axis and are located very close to plasma membranes along at least part of their periphery. Cytoplasm contains numerous ribosomes arranged predominantly as free polysomes; some are attached to rough‐surfaced endoplasmic reticulum. Golgi apparatus (G) consists of flattened cisternae, some large vacuoles, many small uncoated vesicles, and some small, coated vesicles (arrows), × 35,000. [From Maunsbach 374.] D: rat proximal tubule cells showing numerous small basal villi in section cut parallel with and close to basement membrane, × 30,000.

From Maunsbach 374


Figure 8.

Diagram of three‐dimensional appearance of proximal tubule cell from convoluted part of rat proximal tubule, illustrating appearance of lateral and basal ridges and processes.

Adapted from Maunsbach 374


Figure 9.

Brush borders of two adjacent proximal tubules microperfused simultaneously in the same rat kidney for 5 min but at different flow rates. A: tubule perfused at rate of 45 nl/min and showing separation of microvilli. B: tubule perfused at rate of 5 nl/min and showing more densely packed microvilli, × 25,000

From Maunsbach et al. 386


Figure 10.

A: tight junction (arrowheads) between two rat proximal tubule cells close to tubule lumen (LU). Triple‐layered plasma membranes are completely apposed. Tight junction has a depth in the luminal‐basal direction of only 100–200 A and is followed on its peritubular side by an intermediate junction, × 167,000. [From Maunsbach 366.] B: tangential section through luminal part of proximal tubule cells showing intermediate junction, which extends between two pairs of arrowheads. When junction is sectioned at ight angles, cytoplasm next to the triple‐layered plasma membranes has increased density, and dense material fills gap between the membranes (compare with normal lateral intercellular space at LIS). Lumen (LU) is seen in upper right corner, × 145,000. [From Maunsbach 374.] C: higher magnification of gap junction between proximal tubule cells from Necturus maculosus. The 20 Å space between the two plasma membranes is clearly observable (arrowheads), × 204,000.

From Maunsbach 374


Figure 11.

A and B: parts of proximal tubule cells from rat kidney illustrating smooth‐surfaced endoplasmic reticulum adjacent to lateral plasma membrane. This so‐called paramembraneous endoplasmic reticulum (PER) has fenestrated cisternae (arrows) that closely follow the lateral plasma membrane. However, it is never in contact with this membrane, nor is it in continuity with the plasma membrane facing the tubule lumen (LU), endocytic vacuoles (E) or lysosomes. Cells illustrated in B were incubated for glucose‐6‐phospha‐tase (dense reaction product, arrows), associated with smooth‐surfaced endoplasmic reticulum, including the PER. A, × 95,000; B, × 34,500.

From Maunsbach 378


Figure 12.

A: part of rat proximal convoluted tubule cell injected by micropuncture into tubule lumen with canonized ferritin 20 sec before fixation. Ferritin appears in small endocytic vesicles or invaginations (EI), but dense apical tubules (AT) generally do not contain ferritin. Large endocytic vacuole connected to several dense apical tubules (arrows) contains ferritin throughout, × 56,000. [From Christensen 98.] B: apical region of rat proximal tubule cells fixed 3 h after start of i.v. infusion of low molecular weight dextran. Dextran is visualized as an electron‐dense precipitate located in large endocytic vacuoles (E). Dextran is absent from dense apical tubules (AT) but is present in some profiles, which represent endocytic invaginations or small endocytic vesicles covered with a clathrin coat (long arrows). Short arrows delineate transverse periodic pattern seen in apical tubules, × 52,000.

From Christensen and Maunsbach 107


Figure 13.

A and B illustrate variable ultrastructural appearances of lysosomes in rat proximal tubule cells. A: electron micrograph showing round lysosome with electron‐dense matrix devoid of inclusions and located close to Golgi apparatus. Lysosome is limited by a triple‐layered membrane. × 49,000. B: electron micrograph showing lysosome of irregular shape with different types of inclusion materials. Lysosomes of this type presumably represent old lysosomes, or telolysosomes. × 34,000. [From Maunsbach 370.] C: lysosomes in rat proximal tubule cells demonstrated by cytochemistry. Electron‐dense precipitate was formed during incubation for acid phosphatase and is located in lysosomes of different ultrastructure. × 48,000.

From Maunsbach 370


Figure 14.

Electron micrographs illustrating cytoplasmic components presumed to be involved in autophagocytosis in proximal tubule cells. A: horseshoe‐shaped structure consisting of two membranes similar to those of endoplasmic reticulum and closely apposed to form a five‐layered structure. This structure is probably in the process of enclosing part of the cytoplasm, × 98,000. [From Maunsbach 370.] B: cytoplasmic body enclosed by two membranes apposed to a five‐layered structure. This body is interpreted as newly formed autophagosome that encloses part of the cytoplasm, × 80,000. [From Maunsbach 374.] C: cytoplasmic body limited by single membrane and containing different inclusions, including an altered mitochondrion. This organelle represents an autolysosome. × 45,000.

From Maunsbach 374


Figure 15.

A, Peroxisomes (P) (microbodies) from rat proximal tubule cell limited by single membrane and showing uniformly stained matrix. Smooth‐surfaced endoplasmic reticulum closely surrounds peroxisomes and is seen in continuity with rough endoplasmic reticulum at arrow, × 44,000. B: Peroxisomes (P) in cells of isolated perfused proximal tubule of rabbit. In this species part of limiting membrane is straight, thickened, and electron‐dense. Limiting membrane is closely related to smooth endoplasmic reticulum. Since this tubule was incubated with horseradish peroxidase (HRP) in the bath, intercellular spaces, except in gap junction (GJ), are filled with reaction product for HRP. Reaction product is also seen in small endocytic vesicle (V). × 45,000.

B from Nielsen and Christensen 427


Figure 16.

A: longitudinally sectioned microvilli from rat proximal tubule showing thin actin filaments inside microvilli (arrows). × 90,000. B: thin section cut almost parallel to basement membrane (BM) of proximal tubule cells and demonstrating a bundle of thin actin filaments (arrows), × 160,000.

From Maunsbach 374


Figure 17.

A: proximal tubule wall of Ambystoma tigrinum. The peritubular cell membrane exhibits pronounced surface amplification due to numerous small cytoplasmic folds that project into the basal extracellular labyrinth (BEL). Small cytoplasmic folds also project into lateral intercellular space (LIS) but in smaller numbers. Notice that cytoplasmic processes (*), like pillars, reach down to basement membrane (BM). Mitochondria (M) and lysosomes (L) are predominantly present in middle regions of cytoplasm. Some mitochondria are also located close to basolateral membrane but not in small basal membrane folds. CAP, peritubular capillary, × 6,200. B: basal part of proximal tubule cell in Ambystoma showing basal extracellular labyrinth (BEL). Thin cytoplasmic folds (bold arrows) project from all directions into BEL. Footlike cytoplasmic processes (F) separate BEL from peritubular space (PS), but several openings devoid of junctions (light vertical arrows) are observed between these processes. Mitochondria (M) are located close to BEL but never in cytoplasmic folds. Endothelium of peritubular capillary (CAP) shows some fenestrae (arrowheads), × 24,100.

From Maunsbach and Boulpaep 382


Figure 18.

Electron micrographs of isolated proximal tubules from Ambystoma tigrinum (outer tubule) and rabbit perfused in vitro. Tubules are shown at same magnification (x 1,800) and mounted concentrically to illustrate dimensional differences between tubules from the two species. Both tubules show well‐preserved ultrastructure.

Ambystoma tubule from Tripathi et al. 613; rabbit tubule from Nielsen and Christensen 426


Figure 19.

Part of isolated proximal convoluted tubule from rabbit perfused in vitro for 60 min before fixation. Cells show normal architecture with mitochondria oriented perpendicular to basement membrane (BM), endocytic vacuoles (E), and lysosomes (L), regular brush border (BB), and basement membrane (BM). × 16,600.

From Nielsen and Christensen 426


Figure 20.

Diagram illustrating possible transepithelial transport pathways for water and solutes in proximal tubules of (A) mammals, where cells interdigitate extensively; (B) Necturus maculosus, where the basolateral plasma membrane shows only moderate surface amplifications; and (C) Ambystoma tigrinum, where basal part of basolateral membrane is greatly enlarged. Arrows indicate transcellular pathways, that are either translateral 1 or transbasal 2, and a paracellular pathway 3. BB, brush border; TJ, tight junction; LIS, lateral intercellular space; BV, basal villi; BM, basement membrane.



Figure 21.

A: part of the tubule wall in proximal tubule from Necturus maculosus. Oil block was microinjected into most proximal part of tubule, thus creating reversed hydrostatic pressure gradient across epithelium with low luminal pressure. Cells have increased height, and lateral intercellular spaces (arrows) are wider than they are in free‐flow tubules, × 3,900. B: tubule wall from Necturus proximal tubule with increased intraluminal pressure due to oil block in distal part of proximal tubule. Cells are somewhat flattened, as are nuclei, and lateral intercellular spaces (arrows) appear decreased in width as compared to spaces in free‐flow tubules with lower intraluminal pressure, × 3,500.

From Maunsbach and Boulpaep 380


Figure 22.

A: part of tubule wall of isolated, perfused proximal tubule from Ambystoma tigrinum. Tubule was perfused in vitro with substrate‐free Ringer in the lumen and hyperosmolar Ringer in the bath, which creates osmotic water flow from lumen to bath. Lateral intercellular spaces (arrows) are more dilated than in controls. × 5,400. B: parts of tubule wall of isolated, perfused proximal tubule from Ambystoma tigrinum. Tubule was perfused with hyperosmolar Ringer in lumen and substrate Ringer in the bath, which creates osmotic water flow from bath to lumen. Lateral intercellular spaces (arrows) are much narrower than in control tubules, × 5,400.

From Maunsbach et al. 391


Figure 23.

Electron microscope autoradiograph of rat proximal tubule cells that were fixed 10 min after microperfusion of homologous 125I‐labeled albumin into tubule lumen (LU). Location of absorbed 125I‐labeled albumin is indicated by irregular silver grains present in apical region of cells and predominantly located over large and small apical endocytic vacuoles. Lysosomes and other cytoplasmic structures deeper in cells are not labeled, × 15,000.

From Maunsbach 365


Figure 24.

A: part of rat proximal convoluted tubule microperfused with cationized ferritin 20 sec before fixation. Ferritin molecules are attached to microvilli (MV) and present in endocytic invaginations (EI). Ferritin is not seen in intercellular space (LIS) beyond tight junction (TJ) or in dense apical tubules (arrow). × 60,000. [From Christensen 98.] B: apical part of proximal tubule cell from kidney fixed 5 min after intravenous injection of 125I‐labeled cytochrome c. Labeled protein is present in an endocytic vacuole and appears preferentially associated with inner side of its limiting membrane, × 36,500. [From Christensen and Maunsbach 105.] C: electron microscope autoradiograph of 125I‐labeled insulin uptake in rat proximal tubule, fixed 25 min after start of microinfusion of insulin. Grains are mainly located over lysosomes in apical part of cytoplasm (arrows). Endocytic vacuoles (E) and some lysosomes (L) located deep in the cytoplasm do not contain [125I]insulin. × 16,000.

From Hellfritzsch et al. 239


Figure 25.

Thin section from segment S2 of rabbit proximal tubule perfused in vitro with native insulin at a concentration of 58 ng/ml for 30 min, fixed in glutaraldehyde, and embedded at low temperature in Lowicryl K4M. The section was incubated first with insulin antiserum and then protein A‐coated gold particles. Gold particles (6 nm in diameter) are located over an endocytic vacuole (arrows) and a lysosome (L). × 60,000.

From Nielsen and Christensen 430


Figure 26.

Isolated, perfused proximal tubule of rabbit exposed to both canonized ferritin (CF) and HRP in the perfusate for 30 min and then fixed after 30 min chase period. Clusters of ferritin‐like particles are visible in basolateral intercellular spaces (arrows). Vacuoles (V) with CF and HRP reaction product are seen not far from intercellular spaces. Lysosome (L) contains both CF and HRP reaction product. B, bath. Unstained section, × 48,000.

From Nielsen et al. 428


Figure 27.

Immunocytochemical localization of folic acid binding protein in cryoultramicrotomy section of rat renal proximal tubule. The protein is localized to the limiting membrane of an endocytic vacuole (E) and in dense apical tubules (arrows) with the aid of a polyclonal antibody that is detected by means of 10 nm gold particles covered with protein A. × 60,000.



Figure 28.

A: isolated perfused proximal tubule of rabbit, incubated with cationized ferritin in the bath for 30 min. Cationized ferritin molecules have penetrated the basement membrane (BM) into the intercellular spaces (arrow) and are present in an endocytic invagination (EI), × 100,000. B: isolated perfused proximal tubule of rabbit incubated with horseradish peroxidase in the bath for 30 min. Reaction product is seen in lateral intercellular spaces (LIS) but not in lumen (LU). Note reaction product in a multivesicular body (MVB) and in lysosomes (L). Unstained section, × 15,000.

From Nielsen and Christensen 427


Figure 29.

Demonstration of dextran in rat proximal tubule cells 1 h after termination of intravenous infusion of dextran T‐40. Kidney was fixed in vivo by dripping a lead‐containing fixative onto kidney surface. Small dense particles representing dextran are present in tubule lumen (arrowheads), in endocytic vacuoles (vertical arrows), and in lysosomes (horizontal arrows), where dextran is located adjacent to dense matrix material. A peroxisome (P) with a fingerlike projection is well stained by the lead‐containing fixative, × 15,800.

From Christensen and Maunsbach 104


Figure 30.

Diagram illustrating relationships between different components of the vacuolar apparatus in proximal tubule cells. Unbroken arrows designate proven pathways and broken arrows indicate routes suggested by indirect evidence. Merging arrows indicate fusion of structures. The heterophagic pathway is shown in right part of diagram and begins with formation of endocytic vesicles from invaginations of luminal plasma membrane. Invaginations are coated with clathrin (dots) and take up protein molecules (smaller peptides represented by crosses, larger proteins by asterisks) from the tubule lumen and pinch off to form small vesicles. The latter then fuse to larger endocytic vacuoles, which transfer protein to lysosomes for digestion. Membrane of endocytic vacuoles is probably recycled back to apical cell membranes as dense apical tubules. Small amounts of protein may be carried to lateral intercellular spaces (transcytosis). Small molecules, in particular amino acids, formed as result of intralysosomal digestion, presumably diffuse through the lysosome membrane into cytoplasm and may in part pass the basolateral plasma membrane. Heterolysosomes have a long half‐life and fuse with many endocytic vacuoles, including a small number of vesicles derived from basolateral endocytosis, until they are eventually worn out and set aside as telolysosomes and finally extruded from the cell into the tubule lumen. Acid hydrolases are fed continuously into the heterolysosomes through Golgi vesicles, which represent primary lysosomes. Probable relationship between autophagic components of the vacuolar apparatus is shown in lower left part of diagram. Smooth‐surfaced endoplasmic reticulum probably participates in initial stages of formation of autolysosomes. Degradation of small peptides takes place at brush border by means of peptidases localized in brush border cell membrane.

Adapted from Maunsbach 374
References
 1. Abrahamson, D. R., M. H. Irwin, P. L. St. John, E. W. Perry, M. A. Accavitti, L. W. Heck, and J. R. Couchman. Selective immunoreactivities of kidney basement membranes to monoclonal antibodies against laminin: localization of the end of the long arm and the short arms to discrete microdomains. Cell Biol. 109: 3477–3491, 1989.
 2. Ainsworth, S. K. An ultrastructural method for the use of polyvinylpyrrolidone and dextrans as electron opaque tracers. J. Histochem. Cytochem. 25: 1254–1259, 1977.
 3. Albertine, K. H., and C. C. C. O'Morchoe. Distribution and density of the canine renal cortical lymphatic system. Kidney Int. 16: 470–480, 1979.
 4. Allen, A. C. The Kidney—Medical and Surgical Diseases (2nd ed.). New York: Grune & Stratton, 1962, p. 1.
 5. Allen, J. M., M. E. Beard, and S. Kleinbergs. The localization of α‐hydroxy acid oxidase: localization in renal micro‐bodies. Science 149: 1507–1509, 1965.
 6. Andersen, K.‐J., H.‐J. Haga, and M. Dobrota. Lysosomes of the renal cortex: heterogeneity and role in protein handling. Kidney Int. 31: 886–897, 1987.
 7. Anderson, B. G., and R. D. Loewen. Renal morphology of freshwater trout. Am. J. Anat. 143: 93–114, 1975.
 8. Anderson, E. The ultramicroscopic structure of a reptilian kidney. J. Morphol. 106: 205–231, 1960.
 9. Anderson, R. G. W., J. R. Falck, J. L. Goldstein, and M. S. Brown. Visualization of acidic organelles in intact cells by electron microscopy. Proc. Natl. Acad. Sci. USA 81: 4838–4842, 1984.
 10. Anderson, W. A. The use of exogenous myoglobin as an ultrastructural tracer. Reabsorption and translocation of protein by the renal tubule. J. Histochem. Cytochem. 20: 672–684, 1972.
 11. Andrews, P. M. Scanning electron microscopy of human and rhesus monkey kidneys. Lab. Invest. 32: 610–618, 1975.
 12. Andrews, P. M., and S. B. Bates. Filamentous actin bundles in the kidney. Anat. Rec. 210: 1–9, 1984.
 13. Andrews, P. M., and K. R. Porter. A scanning electron microscopic study of the nephron. Am. J. Anat. 140: 81–116, 1974.
 14. Angermüller, S., and H. D. Fahimi. Heterogenous staining of d‐amino acid oxidase in peroxisomes of rat liver and kidney. A light and electron microscopic study. Histohemistry 88: 277–285, 1988.
 15. Angermüller, S., C. Leupold, K. Zaar, and H. D. Fahimi. Electron microscopic cytochemical localization of α‐hydroxy‐acid oxidase in rat kidney cortex. Heterogeneous staining of peroxisomes. Histochemistry 85: 411–418, 1986.
 16. Aperia, A., and L. Larsson. Correlation between fluid reabsorption and proximal tubule ultrastructure during development of the rat kidney. Acta Physiol. Scand. 105: 11–22, 1979.
 17. Aperia, A. and L. Larsson. Induced development of proximal tubular NaKATPase, basolateral cell membranes and fluid absorption. Acta Physiol. Scand. 121: 133–141, 1984.
 18. Aperia, A., L. Larsson, and R. Zetterström. Hormonal induction of Na‐K‐ATPase in developing proximal tubular cells. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F356–360. 1981.
 19. Asan, E., P. Kugler, and T. H. Schiebler. Sex‐related differences in the handling of fluorescent ovalbumin by the proximal tubule of the rat kidney. Histochemistry 84: 408–417, 1986.
 20. Azzali, G., G. Bucci, R. Gatti, and G. Orlandini. Topography and ultrastructure of kidney lymphatics in some hibernating bats. Lymphology 21: 212–223, 1988.
 21. Bachmann, S., W. Kriz, C. Kuhn, and W. W. Franke. Differentiation of cell types in the mammalian kidney by immunofluorescence microscopy using antibodies to intermediate filament proteins and desmoplakins. Histochemistry 77: 365–394, 1983.
 22. Barajas, L. Innervation of the renal cortex. Federation Proc. 37: 1192–1201, 1978.
 23. Bargmann, W. Niere und Ableitende Harnwege. In Handbuch der Mikroskopischen Anatomie des Menschen, edited by W. Bargmann. Berlin: Springer‐Verlag, 1978, vol. VII/5, p. 118–171.
 24. Bargmann, W., A. Knoop, and T. H. Schiebler. Histologische, cytochemische und elektronenmikroskopische Untersuchungen am Nephron (mit Berücksichtingung der Mitochondrien). Z. Zellforsch. 42: 386–422, 1955.
 25. Bargmann, W., B. Krisch, H. Leonhardt, and M. Mályusz. Lipids in the proximal convoluted tubule of the cat kidney and the reabsorption of cholesterol. Cell Tissue Res. 177: 523–538, 1977.
 26. Bariéty, J., P. Druet, F. Laliberté, M.‐F. Belair, M. Paing, and C. Sapin. Ultrastructural evidence by immunohistochemical techniques for a tubular reabsorption of endogenous albumin and certain circulating proteins in normal rat. In: Functional Ultrastructure of the Kidney, edited by A. B. Maunsbach, T. Steen Olsen, and E. I. Christensen. London: Academic, 1980, p. 303–314.
 27. Bariéty, J., P. Druet, F. Laliberté, C. Sapin, M.‐F. Belair, and M. Paing. Ultrastructural evidence, by immunoperoxidase technique, for a tubular reasborption of endogenous albumin in normal rat. Lab. Invest 38: 175–180, 1978.
 28. Barrett, J. M., and P. H. Heidger. Microbodies of the rat renal proximal tubule: ultrastructural and cytochemical investigations. Cell Tissue Res. 157: 283–305, 1975.
 29. Baudhuin, P., M. Müller, B. Poole, and C. De Duve. Non‐mitochondrial oxidizing particles (microbodies) in rat liver and kidney and in Tetrahymena pyriformis. Biochem. Biophys. Res. Commun. 20: 53–59, 1965.
 30. Baumann, K. Renal transport of proteins. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer‐Verlag, 1981, p. 118–133.
 31. Beard, M. E., and A. B. Novikoff. Distribution of peroxisomes (microbodies) in the nephron of the rat. A cytochemical study. J. Cell Biol. 42: 501–518, 1969.
 32. Beattie, D. S., R. E. Basford, and S. B. Koritz. The turnover of the protein components of mitochondria from rat liver, kidney, and brain. J. Biol. Chem. 242: 4584–4586, 1967.
 33. Beck, L. V., and N. Fedynskyj. Evidence from combined immunoassay and radioautography procedures that intact insulin 125I molecules are concentrated by mouse kidney proximal tubule cells. Endocrinology 81: 475–485, 1967.
 34. Behnke, O., and T. Zelander. Preservation of intercellular substances by the cationic dye alcian blue in perparative procedures for electron microscopy. J. Ultrastruct. Res. 31: 424–438, 1970.
 35. Bendayan, M. Ultrastructural localization of actin in muscle, epithelial and secretory cells by applying the protein A‐gold immunocytochemical technique. Histochem. J. 15: 39–58, 1983.
 36. Bengele, H. H., and A. P. Evan. The effects of Ringer‐Locke or blood infusions on the lateral intercellular spaces of the rat proximal tubule. Anat. Rec. 182: 201–214, 1975.
 37. Bentzel, C. J. Proximal tubule structure‐function relationships during volume expansion in Necturus. Kidney Int. 2: 324–335, 1972.
 38. Bentzel, C. J., B. Parsa, and D. K. Hare. Osmotic flow across proximal tubule of Necturus: correlations of physiologic and anatomic studies. Am. J. Physiol. 217: 570–580, 1969.
 39. Bentzel, C. J., D. R. Tourville, B. Parsa, and T. B. Tomasi, Jr.. Bidirectional transport of horseradish peroxidase in proximal tubule of Necturus kidney. J. Cell Biol. 48: 197–202, 1971.
 40. Bergelin, I. S. S., and B. W. Karlsson. Functional structure of the glomerular filtration barrier and the proximal tubuli in the developing foetal and neonatal pig kidney. Anat. Embryol. (Berl.) 148: 223–234, 1975.
 41. Berger, S. J., and B. Sacktor. Isolation and biochemical characterization of brush borders from rabbit kidney. J. Cell Biol. 47: 637–645, 1970.
 42. Bergeron, M., and B. Droz. Protein renewal in mitochondria as revealed by electron microscope radioautoradiography. J. Ultrastruct. Res. 26: 17–30, 1969.
 43. Bergeron, M., P. Gaffiero, and G. Thiéry. Segmental variations in the organization of the endoplasmic reticulum of the rat nephron. Cell Tissue Res. 247: 215–225, 1987.
 44. Bergeron, M., D. Guerette, J. Forget, and G. Thiéry. Three‐dimensional characteristics of the mitochondria of the rat nephron. Kidney Int. 17: 175–185, 1980.
 45. Bergeron, M., and G. Thiéry. Three‐dimensional characteristics of the endoplasmic reticulum of rat renal tubule cells, an electron microscopy study in thick sections. Biol. Cell. 42: 43–48, 1981.
 46. Berkenstam, A., J. Ahlberg, and H. Glaumann. Isolation and characterization of autophagic vacuoles from rat kidney cortex. Virchows Arch. [B]. 44: 275–286, 1983.
 47. Bernard, A., A. O. Amor, C. Viau, and R. Lauwerys. The renal uptake of proteins: a nonselective process in conscious rats. Kidney Int. 34: 175–185, 1988.
 48. Berry, C. A. Heterogeneity of tubular transport processes in the nephron. Annu. Rev. Physiol. 44: 181–201, 1982.
 49. Berry, C. A. Water permeability and pathways in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F279–F294, 1983.
 50. Biava, C. G., A. Grossmann, and M. West. Ultrastructural observations on renal glycogen in normal and pathologic human kidneys. Lab. Invest. 15: 330–356, 1966.
 51. Bindslev, N., J. M. Tormey, and E. M. Wright. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium. J. Membr. Biol. 19: 357–380, 1974.
 52. Bjerke, T., E. I. Christensen, and N. Boye. Tubular handling of neurotensin in the rat kidney as studied by micropuncture and HPLC. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F100–F106, 1989.
 53. Bjerke, T., S. Nielsen, M. Hellfritzsch, E. I. Christensen, and E. Nexø. Renal tubular handling of epidermal growth factor in rat and rabbit. In: Contributions to Nephrology: Kidney and Proteins in Health and Disease, edited by C. Bianchi, V. Bocci, F. A. Carone, and R. Rabkin. Basel: Karger, 1988, p. 98–103.
 54. Bocci, V., A. B. Maunsbach, and E. K. Mogensen. Autoradiographic demonstration of human 125I‐interferon alpha in lysosomes of rabbit proximal tubule cells. Submicrosc. Cytol. 16: 753–757, 1984.
 55. Bode, F., K. Baumann, and R. Kinne. Analysis of the pinocytic process in rat kidney. II. Biochemical composition of pinocytic vesicles compared to brush border microvilli, lysosomes and basolateral plasma membranes. Biochim. Biophys. Acta 433: 294–310, 1976.
 56. Bode, F., H. Pockrandt‐Hemstedt, K. Baumann, and R. Kinne. Analysis of the pinocytic process in rat kidney. I. Isolation of pinocytic vesicles from rat kidney cortex. J. Cell Biol. 63: 998–1008, 1974.
 57. Bohman, S.‐O., and A. B. Maunsbach. Effects on tissue fine structure of variations in colloid osmotic pressure of glutaraldehyde fixatives. Ultrastruct. Res. 30: 195–208, 1970.
 58. Booth, A. G., and A. J. Kenny. A rapid method for the preparation of microvilli from rabbit kidney. Biochem. J. 142: 575–581, 1974.
 59. Booth, A. G., and A. J. Kenny. Proteins of the kidney microvillus membrane. Identification of subunits after sodium dodecyl sulphate/polyacrylamide‐gel electrophoresis. Biochem. J. 159: 395–407, 1976.
 60. Boulpaep, E. L. Electrophysiological properties of the proximal tubule: importance of cellular and intercellular transport pathways. In: Electrophysiology of Epithelial Cells, edited by G. Giebisch. Stuttgart: Schauttauer, 1971, p. 91–112.
 61. Boulpaep, E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222: 517–531, 1972.
 62. Boulpaep, E. L. Electrophysiology of the kidney. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1979, vol. 4A, p. 97–144.
 63. Boulpaep, E. L., and H. Sackin. Role of the paracellular pathway in isotonic fluid movement across the renal tubule. Yale J. Biol. Med. 50: 115–131, 1977.
 64. Bourdeau, J. E., and F. A. Carone. Protein handling by the renal tubule. Nephron 13: 22–34, 1974.
 65. Bourdeau, J. E., F. A. Carone, and C. E. Ganote. Serum albumin uptake in isolated perfused renal tubules. J. Cell Biol. 54: 382–398, 1972.
 66. Bourdeau, J. E., E. R. Y. Chen, and F. A. Carone. Insulin uptake in the renal proximal tubule. Am. J. Physiol. 225: 1399–1404, 1973.
 67. Brightman, M. W., and T. S. Reese. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40: 648–677, 1969.
 68. Brown, D., S. Hirsch, and S. Gluck. Localization of a proton‐pumping ATPase in rat kidney. J. Clin. Invest. 82: 2114–2126, 1988.
 69. Brown, D., A. Kunz, A. Wohlwend, J. D. Vassalli, and L. Orci. Ultrastructural detection of glycocalyx heterogeneity in convoluted and straight proximal tubules of rat kidney, using lectin gold complexes. C. R. Acad. Sci. 297: 501–506, 1983.
 70. Brown, D., and L. Orci. Junctional complexes and cell polarity in the urinary tubule. J. Electron Microsc. Tech. 9: 145–170, 1988.
 71. Brown, W. J., and M. G. Farquhar. The distribution of 215‐kilodalton mannose‐6‐phosphate receptors within cis (heavy) and trans (light) Golgi subfractions varies in different cell types. Proc. Natl. Acad. Sci. USA 84: 9001–9005, 1987.
 72. Bulger, R. E. The shape of rat kidney tubular cells. Am. J. Anat. 116: 237–256, 1965.
 73. Bulger, R. E. The fine structure of the aglomerular nephron of the toadfish, Opsanus tau. Am. J. Anat. 117: 171–192, 1965.
 74. Bulger, R. E. Kidney morphology. In: Strauss and Welt's Diseases of the Kidney, edited by L. E. Early and C. W. Gottschalk. Boston: Little Brown, 1979, p. 3–39.
 75. Bulger, R. E., R. E. Cronin, and D. C. Dobyan. Survey of the morphology of the dog kidney. Anat. Rec. 194: 41–66, 1979.
 76. Bulger, R. E., and D. C. Dobyan. Recent advances in renal morphology. Annu. Rev. Physiol. 44: 147–179, 1982.
 77. Bulger, R. E., and S. C. Hebert. Structural‐functional relationships in the kidney. In: Disease of the Kidney, edited by R. A. Schrier, and C. W. Gottschalk. Boston: Little, Brown, 1988, p. 3–63.
 78. Bulger, R. E., W. B. Lorentz Jr., R. E. Colindres, and C. W. Gottschalk. Morphologic changes in rat renal proximal tubules and their tight junctions with increased intraluminal pressure. Lab. Invest. 30: 136–144, 1974.
 79. Bulger, R. E., F. L. Seigel, and R. Pendergrass. Scanning and transmission electron microscopy of the rat kidney. Am. J. Anat. 139: 483–502, 1974.
 80. Bulger, R. E., C. C. Tisher, C. H. Myers, and B. F. Trump. Human renal ultrastructure. II. The thin limb of Henle's loop and the interstitium in healthy individuals. Lab. Invest. 16: 124–141, 1967.
 81. Bulger, R. E., and B. F. Trump. Renal morphology of the English sole (Parophrys vetulus). Am. J. Anat. 123: 195–226, 1968.
 82. Bulger, R. E., and B. F. Trump. A mechanism for rapid transport of colloidal particles by flounder renal epithelium. J. Morphol. 127: 205–224, 1969.
 83. Burg, M. B. Renal handling of sodium, chloride, water, amino acids, and glucose. In: The Kidney, 3rd. ed., edited by B. M. Brenner and F. C. Rector, Jr. Philadelphia: Ardmore Medical Books, 1986, p. 145–177.
 84. Burg, M. B., and J. J. Grantham. Ion movements in renal tubules. In: Membranes and Ion Transport, edited by E. E. Bittar. London: Wiley‐Interscience, 1971, vol. III, p. 49–77.
 85. Burg, M., J. Grantham, M. Abramow, and J. Orloff. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210: 1293–1298, 1966.
 86. Butkowski, R. J., P. Todd, J. J. Grantham, and B. G. Hudson. Rabbit tubular basement membrane. Isolation and analysis of polypeptides. J. Biol. Chem. 254: 10503–10513, 1979.
 87. Butlen, D., S. Vadrot, S. Roseau, and F. Morel. Insulin receptors along the rat nephron: 125I insulin binding in microdissected glomeruli and tubules. Pflugers Arch. 412: 604–612, 1988.
 88. Caplan, M. J., H. C. Anderson, G. E. Palade, and J. D. Jamieson. Intracellular sorting and polarized cell surface delivery of (Na+,K+) ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell 46: 623–631, 1986.
 89. Carone, F. A., E. I. Christensen, and G. Flouret. Degradation and transport of AVP by proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1120–F1128, 1987.
 90. Carone, F. A., and D. R. Peterson. Hydrolysis and transport of small peptides by the proximal tubule. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F151–F158, 1980.
 91. Carone, F. A., T. N. Pullmann, S. Oparil, and S. Nakamura. Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubule. Am. J. Physiol. 230: 1420–1424, 1976.
 92. Caulfield, J. B. Application of the electron microscope to renal diseases. N. Eng. J. Med. 270: 183–194, 1964.
 93. Caulfield, J. B., and B. F. Trump. Correlation of ultrastructure with function in the rat kidney. Am. J. Pathol. 40: 199–218, 1962.
 94. Caulfield, J. P., and M. G. Farquhar. The permeability of glomerular capillaries to graded dextrans: identification of the basement membrane as the primary filtration barrier. J. Cell Biol. 63: 883–903, 1974.
 95. Chamberlain, M. J., and L. Stimmler. The renal handling of insulin. J. Clin. Invest. 46: 911–919, 1967.
 96. Christensen, A. K. The structure of the functional pronephros in larvae of Ambystoma opacum as studied by light and electron microscopy. Am. J. Anat. 115: 257–278, 1964.
 97. Christensen, E. I. Rapid protein uptake and digestion in proximal tubule lysosomes. Kidney Int. 10: 301–310, 1976.
 98. Christensen, E. I. Rapid membrane recycling in renal proximal tubule cells. Eur. J. Cell Biol. 29: 43–49, 1982.
 99. Christensen, E. I. Evidence for a decreased membrane recycling in the cells of renal proximal tubules exposed to high concentrations of ferritin. Cell Tissue Res. 243: 101–108, 1986.
 100. Christensen, E. I., and T. Bjerke. Renal tubular uptake of protein: effect of pH. Renal Physiol. 9: 160–166, 1986.
 101. Christensen, E. I., F. A. Carone, and H. G. Rennke. Effect of molecular charge on endocytic uptake of ferritin in renal proximal tubule cells. Lab. Invest. 44: 351–358, 1981.
 102. Christensen, E. I., and K. M. Madsen. Renal age changes: observations on the rat kidney cortex with special reference to structure and function of the lysosomal system in the proximal tubule. Lab. Invest. 39: 289–297, 1978.
 103. Christensen, E. I., and A. B. Maunsbach. Intralysosomal digestion of lysozyme in renal proximal tubule cells. Kidney Int. 6: 396–407, 1974.
 104. Christensen, E. I., and A. B. Maunsbach. Effects of dextran on lysosomal ultrastructure and protein digestion in renal proximal tubule. Kidney Int. 16: 301–311, 1979.
 105. Christensen, E. I., and A. B. Maunsbach. Digestion of protein in lysosomes of proximal tubule cells. In: Functional Ultrastructure of the Kidney, edited by A. B. Maunsbach, T. Steen Olsen, and E. I. Christensen. London: Academic, 1980, p. 341–359.
 106. Christensen, E. I., and A. B. Maunsbach. Proteinuria induced by sodium maleate in rats. Effects on ultrastructure and protein handling in renal proximal tubule. Kidney Int. 17: 771–787, 1980.
 107. Christensen, E. I., and A. B. Maunsbach. Dextran is resistant to lysosomal digestion in kidney tubules. Virchows Arch. [B]. 37: 49–59, 1981.
 108. Christensen, E. I., A. B. Maunsbach, and R. Lüllmann‐Rauch. Renal lysosomal protein digestion in experimental lipidosis. Virchows Arch. [B]. 43: 309–316, 1983.
 109. Christensen, E. I., S. Nielsen, M. Hellfritzsch, and J. T. Nielsen. Luminal uptake of insulin in renal proximal tubules. In: Contributions to Nephrology: Kidney and Proteins in Health and Disease, edited by C. Bianchi, V. Bocci, F. A. Carone, and R. Rabkin. Basel: Karger, 1988, p. 78–85.
 110. Christensen, E. I., H. G. Rennke, and F. A. Carone. Renal tubular uptake of protein: effect of molecular charge. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F436–F441, 1983.
 111. Clapp, W. L., C. H. Park, K. M. Madsen, and C. C. Tisher. Axial heterogeneity in the handling of albumin by the rabbit proximal tubule. Lab. Invest. 58: 549–558, 1988.
 112. Clark, S. L., Jr.. Cellular differentiation in the kidneys of newborn mice studied with the electron microscope. J. Biophys. Biochem. Cytol. 3: 349–366, 1957.
 113. Claude, P. An electron microscopic study of the urinary tubules of Necturus maculosus. Dissertation, Univ. of Pennsylvania, 1968.
 114. Claude, P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occluder. J. Membr. Biol. 39: 219–232, 1978.
 115. Claude, P., and D. A. Goodenough. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia J. Cell Biol. 58: 390–400, 1973.
 116. Cohn, Z. A., and B. Benson. The in vitro differentiation of mononuclear phagocytes. III. The reversibility of granule and hydrolytic enzyme formation and the turnover of granule constituents. Exp. Med. 122: 455–465, 1965.
 117. Cojocel, C., M. Franzen‐Sieveking, G. Beckmann, and K. Baumann. Inhibition of renal accumulation of lysozyme (basic low molecular weight protein) by basic proteins and other basic substances Pflugers Arch. 390: 211–215, 1981.
 118. Cole, B. R., J. G. Boylan, T. E. Bross, H. B. Burch, and O. H. Lowry. Progressive enzyme changes within anatomically defined segments of rabbit nephron: demonstration with a new technique. J. Histochem. Cytochem. 36: 285–289, 1988.
 119. Coleman, S. E., J. Duggan, and R. L. Hackett. Plasma membrane changes in freeze‐fractured rat kidney cortex following renal ischemia. Lab. Invest. 35: 63–70, 1976.
 120. Cortney, M. A., L. L. Sawin, and D. D. Weis. Renal tubular protein absorption in the rat. J. Clin. Invest. 49: 1–4, 1970.
 121. Coudrier, E., D. Kerjaschki, and D. Louvard. Cytoskeleton organization and submembranous interactions in intestinal and renal brush borders. Kidney Int. 34: 309–320, 1988.
 122. Curran, P. F., and J. R. MacIntosh. A model system for biological water transport. Nature 193: 347–348, 1962.
 123. Danon, D., L. Goldstein, Y. Marikovsky, and E. Skutelsky. Use of cationized ferritin as a label of negative charges on cell surfaces. J. Ultrastruct. Res. 38: 500–510, 1972.
 124. Danscher, G., and J. O. R. Nørgaard. Ultrastructural autometallography: a method for silver amplification of catalytic metals. J. Histochem. Cytochem. 33: 706–710, 1985.
 125. Dantzler, W. H., O. H. Brokl, R. B. Nagle, D. J. Welling, and L. W. Welling. Morphological changes with Na+‐free fluid absorption in isolated perfused snake tubules. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F150–F155, 1986.
 126. Davidson, S. J. Protein absorption by renal cells. II. Very rapid lysosomal digestion of exogenous ribonuclease in vitro. J. Cell Biol. 59: 213–222, 1973.
 127. Davidson, S. J., W. L. Hughes, and A. Barnwell. Renal protein absorption into sub‐cellular particles. I. Studies with intact kidneys and fractionated homogenates. Exp. Cell Res. 67: 171–187, 1971.
 128. Davis, L. E., and B. Schmidt‐Nielsen. Ultrastructure of the crocodile kidney (Crocodylus acutus) with special reference to electrolyte and fluid transport. J. Morphol. 121: 255–276, 1967.
 129. Davis, L. E., B. Schmidt‐Nielsen, and H. Stolte. Anatomy and ultrastructure of the excretory system of the lizard, Sceloporus cyanogenys. J. Morphol. 149: 279–326, 1976.
 130. De Brabander, M., R. Nuydens, H. Geerts, and C. R. Hopkins. Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil. Cytoskeleton 9: 30–47, 1988.
 131. De Duve, C. The peroxisome: a new cytoplasmic organelle. Proc. R. Soc. Lond. 173: 71–83, 1969.
 132. De Duve, C., and P. Baudhuin. Peroxisomes (microbodies and related particles). Physiol. Rev. 46: 323–357, 1966.
 133. De Duve, C., and R. Wattiaux. Functions of lysosomes. Annu. Rev. Physiol. 28: 435–492, 1966.
 134. De Martino, C., L. Accinni, and G. Procicchiani. Ultra‐structural study on contractile structures in mammalian nephron. Z. Zellforsch. 140: 101–124, 1973.
 135. De Martino, C., and L. Zamboni. A morphologic study of the mesonephros of the human embryo. J. Ultrastruct. Res. 16: 399–427, 1966.
 136. Desjardins, M., and M. Bendayan. Heterogenous distribution of type IV collagen, entactin, heparan sulfate proteoglycan, and laminin among renal basement membranes as demonstrated by quantitative immunocytochemistry. J. Histochem. Cytochem. 37: 885–897, 1989.
 137. Diamond, J. M. The mechanism of isotonic water transport. J. Gen. Physiol. 48: 15–42, 1964.
 138. Diamond, J. M., and W. H. Bossert. Standing‐gradient osmotic flow: a mechanism for coupling of water and solute transport in epithelia. J. Gen Physiol. 50: 2061–2083, 1967.
 139. Dieterich, H. J. Electron microscopic studies of the innervation of the rat kidney. Z. Anat. Entwickl.‐Gesch. 145: 169–186, 1974.
 140. Dietert, S. E. The columnar cells occurring in the parietal layer of Bowman's capsule. J. Cell Biol. 35: 435–444, 1967.
 141. Dingle, J. T., and A. J. Barrett. Uptake of biologically active substances by lysosomes. Proc. R. Soc. Lond. 173: 85–93, 1969.
 142. Diomi, P., A. Engberg, J. L. E. Ericsson, N. A. Normal, and J. A. Shearer. Studies on renal tubular morphology, toxicity and function after large doses of dextran 40 in the dog. Acta Chtr. Scand. 135: 345–355, 1969.
 143. Di Scala, V. A., W. Mautner, J. A. Cohen, M. F. Levitt, J. Churg, and S. L. Yunis. Tubular alterations produced by osmotic diuresis with mannitol. Ann. Intern. Med. 63: 767–775, 1965.
 144. Dobbs, G. H., and A. L. De Vries. The aglomerular nephron of Antarctic teleosts: a light and electron microscopic study. Tissue Cell 7: 159–170, 1975.
 145. Dobyan, D. C., and R. E. Bulger. Morphology of the minipig kidney. J. Electron Microsc. Technique 9: 213–234, 1988.
 146. Drenckhahn, D., and V. Bennett. Polarized distribution of Mr 210,000 and 190,000 analogs of erythrocyte ankyrin along the plasma membrane of transporting epithelia, neurons and photoreceptors. Eur. J. Cell Biol. 43: 479–486, 1987.
 147. Drenckhahn, D., and R. Dermietzel. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J. Cell Biol. 107: 1037–1048, 1988.
 148. Dørup, J., G. K. Andersen, and A. B. Maunsbach. Electron microscope analysis of tissue components identified and located by computer‐assisted 3‐D reconstructions: ultrastructural segmentation of the developing human proximal tubule. J. Ultrastruct. Res. 85: 82–94, 1983.
 149. Ekblom, P. Formation of basement membranes in the embryonic kidney: an immunohistological study. J. Cell Biol. 89: 276–283, 1981.
 150. Elling, F., E. Hasselager, and C. Friis. Perfusion fixation of kidneys in adult pigs for electron microscopy. Acta Anat. 98: 340–342, 1977.
 151. Engberg, A., and J. L. E. Ericsson. Effects of dextran 40 on proximal renal tubule. Acta Chir. Scand. 135: 263–274, 1969.
 152. Engberg, A., J. L. E. Ericsson, and S. Orrenius. Electron microscopic observations on iron‐labelled secondary lysosomes in renal tubules in mice. Z. Zellforsch. 98: 378–398, 1969.
 153. Ericsson, J. L. E. Absorption and decomposition of homologous hemoglobin in renal proximal tubular cells. An experimental light and electron microscopic study. Acta Pathol. Microbiol. Immunol. Scand. (Suppl) 168: 1–121, 1964.
 154. Ericsson, J. L. E. Transport and digestion of hemoglobin in the proximal tubule. I. Light microscopy and cytochemistry of acid phosphatase. Lab. Invest. 14: 1–15, 1965.
 155. Ericsson, J. L. E. Transport and digestion of hemoglobin in the proximal tubule. II. Electron microscopy. Lab. Invest. 14: 16–39, 1965.
 156. Ericsson, J. L. E. Mechanism of cellular autophagy. In: Lysosomes in Biology and Pathology, edited by J. T. Dingle, and H. B. Fell. Amsterdam: North‐Holland, 1969, p. 345–394.
 157. Ericsson, J. L. E. Studies on induced cellular autophagy. I. Electron microscopy of cells with in vivo labelled lysosomes. Exp. Cell Res. 55: 95–106, 1969.
 158. Ericsson, J. L. E., A. Bergstrand, G. Andres, H. Bucht, and G. Cinotti. Morphology of the renal tubular epithelium in young, healthy humans. Acta Pathol. Microbiol. Immunol. Scand. 63: 361–384, 1965.
 159. Ericsson, J. L. E., and H. J. Helminen. Observations on the localization of arylsulphatase activity in renal cortical tubules. Histochemie 9: 170–180, 1967.
 160. Ericsson, J. L. E., and S. Olsen. On the fine structure of the aglomerular renal tubuli in Lophius piscatoris. Z. Zellforsch. 104: 240–258, 1970.
 161. Ericsson, J. L. E., and B. F. Trump. Electron microscopic studies of the epithelium of the proximal tubule of the rat kidney. I. The intracellular localization of acid phosphatase. Lab. Invest. 13: 1427–1456, 1964.
 162. Ericsson, J. L. E., and B. F. Trump. Electron microscopic studies of the epithelium of the proximal tubule of the rat kidney. III. Microbodies, multivesicular bodies, and the Golgi apparatus. Lab. Invest. 15: 1610–1633, 1966.
 163. Ericsson, J. L. E., and B. F. Trump. Electron microscopy of the uriniferous tubules. In: The Kidney: Morphology, Biochemistry, Physiology, edited by C. Rouiller and A. F. Muller. New York: Academic, 1969, vol. I, p. 351–447.
 164. Ericsson, J. L. E., B. F. Trump, and J. Weibel. Electron microscopic studies of the proximal tubule of the rat kidney. II. Cytosegresomes and cytosomes: their relationship to each other and to the lysosome concept. Lab. Invest. 14: 1341–1365, 1965.
 165. Ernst, B., W. Bostelman, and C. Engelmann. Jodmarkiertes Dextran für den elektronenoptischen Nachweis von Stofftran‐sportvorgängen. Acta Biol. Med. Ger. 23: 345–350, 1969.
 166. Ernst, S. A. Transport ATPase cytochemistry: ultrastructural localization of potassium‐dependent and potassium‐independent phosphatase activities in rat renal cortex. J. Cell Biol 66: 586–608, 1975.
 167. Ernst, S. A., and S. R. Hootman. Microscopical methods for the localization of Na,K‐ATPase. Histochem. J. 13: 397–418, 1981.
 168. Ernst, S. A., and J. H. Schreiber. Ultrastructural localization of Na+,K+‐ATPase in rat and rabbit kidney medulla. J. Cell Biol. 91: 803–813, 1981.
 169. Ernster, L., and B. Kuylenstierna. Structure, composition and function of mitochondrial membranes. Federation Eur. Biochem. Soc. Symp. 17: 5–31, 1969.
 170. Essner, E. Observations on hepatic and renal peroxisomes (microbodies) in the developing chick. J. Histochem. Cytochem. 18: 80–92, 1970.
 171. Evan, A. P. SEM observations of intact and isolated proximal and collecting tubular cells from rat, rabbit and frog. Biomed. Res Suppl 2: 317–323, 1981.
 172. Evan, A. P., J. T. Baker, and H. H. Bengele. Zonulae occludentes of the rat nephron under conditions of experimental expansion of blood and/or fluid volume. Anat. Rec. 186: 139–150, 1976.
 173. Evan, A. P., W. G. Dail, D. Dammrose, and C. Palmer. Scanning electron microscopy of cell surfaces following removal of extracellular material. Anat. Rec. 185: 433–446, 1976.
 174. Evan, A. P., V. H. Gattone II, and P. M. Blomgren. Application of scanning electron microscopy to kidney development and nephron maturation. Scan. Electron Microsc. 1984: 455–473, 1984.
 175. Evan, A. P., V. H. Gattone II, and G. J. Schwartz. Development of solute transport in rabbit proximal tubule. II. Morphologic segmentation. Am J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F391–F407, 1983.
 176. Evan, A. P., D. A. Hay, and W. G. Dail. SEM of the proximal tubule of the adult rabbit kidney. Anat. Rec. 191: 397–414, 1978.
 177. Farquhar, M. G. Progress in unraveling pathways of Golgi traffic. Annu. Rev. Cell Biol. 1: 447–488, 1985.
 178. Farquhar, M. G., and G. E. Palade. Functional complexes in various epithelia. J. Cell Biol. 17: 375–412, 1963.
 179. Fawcett, D. W. The submicroscopic structure of the kidney in Rana pipiens. Anat. Record 120: 733–734, 1954.
 180. Ferguson, M., and C. Bell. Ultrastructural localization and characterization of sensory nerves in the rat kidney. J. Comp. Neurol. 274: 9–16, 1988.
 181. Feria‐Velasco, A. The ultrastructural bases of the initial stages of renal tubular excretion. Lab. Invest. 30: 190–200, 1974.
 182. Foote, J. J., and A. L. Grafflin. Cell contours in the two segments of the proximal tubule in the cat and dog nephron. Am. J. Anat. 70: 1–20, 1942.
 183. Forssmann, W. G. A method for in vivo diffusion tracer studies combining perfusion fixation with intravenous tracer injection. Histochemie 20: 277–286, 1969.
 184. Forster, J., P. S. Steels, and E. L. Boulpaep. Organic substrate effects on and heterogeneity of Necturus proximal tubule function. Kidney Int. 17: 479–490, 1979.
 185. Foulkes, E. C. Tubular reabsorption of low molecular weight proteins. Physiologist 25: 56–59, 1982.
 186. Fox, H. Tissue degeneration: an electron microscopic study of the pronephros of Rana Temporaria. J. Embryol. Exp. Morphol. 24: 139–157, 1970.
 187. Friederich, H. H. R. The surface structure of some renal cell membranes. Lab. Invest. 21: 459–471, 1969.
 188. Friis, C. Postnatal development of the pig kidney: ultrastructure of the glomerulus and the proximal tubule J. Anat. 130: 513–526, 1980.
 189. Fujimoto, T., and K. Ogawa. Immunoelectron microscopy of fodrin in the rat uriniferous and collecting tubular epithelium. J. Histochem. Cytochem. 37: 1345–1352, 1989.
 190. Gaffiero, P., M. Bergeron, and G. Thiéry. Morphological study of cell organelles during development. I. The nuclear sac and the endoplasmic reticulum of the rat nephron. Biol. Cell. 49: 79–82, 1983.
 191. Gaffiero, P., M. Bergeron, and G. Thiéry. Morphological study of cell organelles during development. II. The mitochondria of the renal and intestinal epithelium. Biol. Cell. 49: 163–168, 1983.
 192. Galaske, R. E., J. B. Van Liew, and L. G. Feld. Filtration and reabsorption of endogenous low‐molecular‐weight protein in the rat kidney. Kidney Int. 16: 394–403, 1979.
 193. Garg, L. C., M. A. Knepper, and M. B. Burg. Mineralocorticoid effects on Na‐K‐ATPase in individual nephron segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F536–F544, 1981.
 194. Gauthier, C., H. Nguyen‐Simonnet, C. Vincent, J.‐P. Revillard, and M. V. Pellet. Renal tubular absorption of (beta)2 microglobulin. Kidney Int. 26: 170–175, 1984.
 195. George, S. G., and A. J. Kenny. Studies on the enzymology of purified preparations of brush border from rabbit kidney. Biochemistry 134: 43–57, 1973.
 196. Geuze, H. J., J. W. Slot, G. J. A. M. Strous, H. F. Lodish, and A. L. Schwartz. Intracellular site of asialoglycoprotein receptor‐ligand uncoupling: double‐label immunoelectron microscopy during receptor‐mediated endocytosis. Cell 32: 277–287, 1983.
 197. Giebisch, G. Some electrical properties of single renal tubule cells. J. Gen. Physiol. 51: 315s–325s, 1968.
 198. Giebisch, G., and P. S. Aronson. The proximal nephron. In: Physiology of Membrane Disorders (2nd. ed.), edited by T. E. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schultz. New York: Plenum 1986, Chapt. 37, p. 669–700.
 199. Giebisch, G., and E. W. Windhager. Electrolyte transport across renal tubular membranes. In: Handbook of Physiology, Section 8: Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, D.C.: American Physiological Society, 1973, Chapt. 11, p. 315–377.
 200. Ginn, F. L., J. D. Shelburne, and B. F. Trump. Disorders of cell volume regulation. Am. J. Pathol 53: 1041–1071, 1968.
 201. Giurgea‐Marion, L., G. Toubeau, G. Laurent, J. A. Heuson‐Stiennon, and P. M. Tulkens. Impairment of lysosomepinocytic vesicle fusion in rat kidney proximal tubules after treatment with gentamicin at low doses. Toxicol. Appl. Pharmacol 86: 271–285, 1986.
 202. Glaumann, B. Effect of mannitol, dextran (Macrodex®), allopurinol, and methylprednisolone on the morphology of the proximal tubule of the rat kidney made ischemic in vivo. Virchows Arch. B. 23: 297–323, 1977.
 203. Glaumann, B., H. Glaumann, I. K. Berezesky, and B. F. Trump. Studies on the pathogenesis of ischemic cell injury. II. Morphological changes of the pars convoluta (P1 and P2) of the proximal tubule of the rat kidney made ischemic in vivo. Virchows Arch. [B] 19: 281–302, 1975.
 204. Glaumann, B., and B. F. Trump. Studies on the pathogenesis of ischemic cell injury. III. Morphological changes of the proximal pars recta tubules (P3) of the rat kidney made ischemic in vivo. Virchows Arch. [B] 19: 303–323, 1975.
 205. Goldfischer, S. The cytochemical demonstration of lysosomal aryl sulfatase activity by light and electron microscopy. J. Histochem. Cytochem. 13: 520–523, 1965.
 206. Goldstone, A., and H. Koenig. Physicochemical modifications of lysosomal hydrolases during intracellular transport. Biochem. J. 132: 267–282, 1973.
 207. Goligorsky, M., and K. A. Hruska. Transcytosis in cultured proximal tubular cells. J. Membr. Biol. 93: 237–247, 1986.
 208. Goyer, R. A., and R. Krall. Ultrastructural transformation in mitochondria isolated from kidney of normal and lead‐intoxicated rats. J. Cell Biol. 41: 393–400, 1969.
 209. Grafflin, A. L., and J. Foote. The Bodian technic as applied to the complicated cell boundaries of the renal epithelium in mammals. Anat. Rec. 72: 115–118, 1938.
 210. Graham, R. C. Jr., and M. J. Karnovsky. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14: 291–302, 1966.
 211. Grantham, J. J., C. E. Ganote, M. B. Burg, and J. Orloff. Paths of transtubular water flow in isolated renal collecting tubules. J. Cell Biol. 41: 562–576, 1969.
 212. Green, R., R. J. Moriarty, and G. Giebisch. Ionic requirements of proximal tubular fluid reabsorption: flow dependence of fluid transport. Kidney Int. 20: 580–587, 1981.
 213. Griffith, L. D., R. E. Bulger, and B. F. Trump. The ultra‐structure of the functioning kidney. Lab. Invest. 16: 220–246, 1967.
 214. Griffiths, G., B. Hoflack, K. Simons, I. Mellman, and S. Kornfeld. The mannose 6‐phosphate receptor and the biogenesis of lysosomes. Cell 52: 329–341, 1988.
 215. Griffiths, G., and K. Simons. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234: 438–443, 1986.
 216. Grinnell, F., M. Q. Tobleman, and C. R. Hackenbrock. The distribution and mobility of anionic sites on the surfaces of baby hamster kidney cells. J. Cell Biol. 66: 470–479, 1975.
 217. Gritzka, T. L. The ultrastructure of the proximal convoluted tubule of a euryhaline teleost, Fundulus heteroclitus. Anat. Rec. 145: 235–236, 1963.
 218. Groniowski, J., W. Biczyskowa, and M. Walski. Electron microscope studies on the surface coat of the nephron. J. Cell Biol. 40: 585–601, 1969.
 219. Guggino, W. B., E. E. Windhager, E. L. Boulpaep, and G. Giebisch. Cellular and paracellular resistances of the Necturus proximal tubule. J. Membr. Biol. 67: 143–154, 1982.
 220. Gumbiner, B. Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253 (Cell Physiol. 22): C749–C758, 1987.
 221. Gurich, R. W., and D. G. Warnock. Electrically neutral Na+‐H+ exchange in endosomes obtained from rabbit renal cortex. Am J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F702–F709, 1986.
 222. Haase, W. and H. Koepsell. Electron microscopic immunohistochemical localization of components of Na+‐cotransporters along the rat nephron. Eur. J. Cell Biol. 48: 360–374, 1989.
 223. Hackenbrock, C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport‐linked ultrastructural transformations in mitochondria. J. Cell Biol. 37: 345–369, 1968.
 224. Haddad, A., G. Bennett, and C. P. Leblond. Formation and turnover of plasma membrane glycoproteins in kidney tubules of young rats and adult mice, as shown by autoradiography after an injection of 3H‐fucose. Am. J. Anat. 148: 241–274, 1977.
 225. Haga, H.‐J. Kidney lysosomes. Int. J. Biochem. 21: 343–345, 1989.
 226. Haga, H.‐J., K.‐J. Andersen, T. Rygh, B. M. Iversen, and R. Matre. Changes in lysosome populations in the rat kidney cortex induced by experimental proteinuria. Int. J. Biochem. 20: 793–800, 1988.
 227. Hajra, A. K., and D. Wu. Preparative isolation of peroxisomes from liver and kidney using metrizamide density gradient centrifugation in a vertical rotor. Anal. Biochem. 148: 233–244, 1985.
 228. Haley, D. P., and R. E. Bulger. The aging male rat: structure and function of the kidney. Am. J. Anat. 167: 1–13, 1983.
 229. Hammerman, M. R. Interaction of insulin with the renal proximal tubular cell. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F1–F11, 1985.
 230. Hammerman, M. R., and J. R. Gavin III.. Insulin‐stimulated phosphorylation and insulin binding in canine renal basolateral membranes. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F408–F417, 1984.
 231. Hanssen, O. E., and L. Herman. The presence of an axial structure in the microvillus of the mouse convoluted proximal tubular cell. Lab. Invest. 11: 610–616, 1962.
 232. Harrison, J. F., and A. D. Barnes. The urinary excretion of lysozyme in dogs. Clin. Sci. 38: 533–547, 1970.
 233. Hatae, T., and M. Fujita. Secretion of lipoprotein particles by the cells of the kidney proximal segment in the migrating Arctic lamprey, Lampetra japonica. Cell Tissue Res. 249: 25–30, 1987.
 234. Hatae, T., M. Fujita, and K. Okuyama. Electron‐microscopic demonstration of carbohydrates and proteins in the apical tubules of kidney proximal tubule cells. Acta Histochem. Cytochem. 22: 35–46, 1989.
 235. Hatae, T., M. Fujita, and H. Sagara. Helical structure in the apical tubules of several absorbing epithelia. Cell Tissue Res. 244: 39–46, 1986.
 236. Hatae, T., M. Fujita, H. Sagara, and K. Okuyama. Formation of apical tubules from large endocytic vacuoles in kidney proximal tubule cells during absorption of horseradish peroxidase. Cell Tissue Res. 246: 271–278, 1986.
 237. Hay, D. A., and A. P. Evan. Maturation of the proximal tubule in the puppy kidney: a comparison to the adult. Anat. Rec. 195: 273–300, 1979.
 238. Heidrich, H. G., R. Kinne, E. Kinne‐Saffran, and K. Hannig. The polarity of the proximal tubule cell in rat kidney. J. Cell Biol. 54: 232–245, 1972.
 239. Hellfritzsch, M., E. I. Christensen, and O. Sonne. Luminal uptake and intracellular transport of insulin in renal proximal tubules. Kidney Int. 29: 983–988, 1986.
 240. Hellfritzsch, M., S. Nielsen, E. I. Christensen, and J. T. Nielsen. Basolateral tubular handling of insulin in the kidney. In: Contributions to Nephrology: Kidney and Proteins in Health and Disease, edited by C. Bianchi, V. Bocci, F. A. Carone, and R. Rabkin. Basel: Karger, 1988, p. 86–91.
 241. Hermo, L., N. Spier, and N. J. Nadler. Role of apical tubules in endocytosis in nonciliated cells of the ducturi efferentes of the rat: a kinetic analysis. Am. J. Anat. 182: 107–119, 1988.
 242. Hickman, C. P., and B. F. Trump. The kidney. In: Fish Physiology. Excretion, Ionic Regulation and Metabolism, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1969, vol. I, p. 91–239.
 243. Himmelhoch, S. R., and M. J. Karnovsky. Oxidative and hydrolytic enzymes in the nephron of Necturus maculosus. Histochemical, biochemical, and electron microscopical studies. J. Biophys. Biochem. Cytol. 9: 893–908, 1961.
 244. Hjelle, J. T., E. I. Christensen, F. A. Carone, and J. Selhub. Cell fractionation and electron microscope studies of kidney folate‐binding protein. Am. J. Physiol. 260 (Cell Physiol. 29): C338–C346, 1991.
 245. Hjelle, J. T., J.‐P. Morin, and A. Trouet. Analytical cell fractionation of isolated rabbit renal proximal tubules. Kidney Int. 20: 71–77, 1981.
 246. Hjelle, J. T., S. Oparil, and D. R. Peterson. Subcellular sites of insulin hydrolysis in renal proximal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F409–F416, 1984.
 247. Holthöfer, H., A Miettinen, V.‐P. Lehto, E. Lehtonen, and I. Virtanen. Expression of vimentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys. Lab. Invest. 50: 552–559, 1984.
 248. Hopsu‐Havu, V. K., A. U. Arstila, H. J. Helminen, and H. O. Kalimo. Improvements in the method for the electron microscopic localization of arylsulphatase activity. Histochemie 8: 54–64, 1967.
 249. Horster, M., and L. Larsson. Mechanisms of fluid absorption during proximal tubule development. Kidney Int. 10: 348–363, 1976.
 250. Hruban, Z., and M. Rechcigl, Jr.. Microbodies and related particles. Morphology, biochemistry and physiology. Int. Rev. Cytol., Suppl. 1: 1–296, 1969.
 251. Humbert, F., A. Grandchamp, C. Pricam, A. Perrelet, and L. Orci. Morphological changes in tight junctions of Necturus maculosus proximal tubules undergoing saline diuresis. J. Cell Biol. 69: 90–96, 1976.
 252. Igarashi, Y., A. Aperia, L. Larsson, and R. Zetterström. Effect of betamethasone on Na+‐K+‐ATPase activity and basal lateral cell membranes in proximal tubular cells during early development. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F232–F237, 1983.
 253. Iwano, T., A. Yamamoto, K. Omori, M. Akayama, T. Kumazawa, and Y. Tashiro. Quantitative immunocytochemical localization of Na+,K+‐ATPase α‐subunit in the lateral wall of rat cochlear duct. J. Histochem. Cytochem. 37: 353–363, 1989.
 254. Jacobsen, N. O. Enzyme histochemical observations on the segmentation of the proximal tubules in the kidney of the female rat. Histochemistry 43: 11–32, 1975.
 255. Jacobsen, N. O., and F. Jørgensen. Ultrastructural observations on the pars descendens of the proximal tubule in the kidney of the male rat. Z. Zellforsch. 136: 479–499, 1973.
 256. Jacobsen, N. O., F. Jørgensen, and Å. C. Thomsen. On the localization of some phosphatases in three different segments of the proximal tubules in the rat kidney. J. Histochem. Cytochem. 15: 456–469, 1967.
 257. Jacobsen, N. O., and J. Jørgensen. Further enzyme histochemical observations on the segmentation of the proximal tubules in the kidney of the male rat. Histochemie 34: 11–32, 1973.
 258. Jacobson, H. R. Functional segmentation of the mammalian nephron. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F203–F218, 1981.
 259. Jacques, Y. V., and D. F. Bainton. Changes in pH within the phagocytic vacuoles of human neutrophils and monocytes. Lab. Invest. 39: 179–185, 1978.
 260. Jakobsson, S., and J. Ericsson. Glucose‐6‐phosphatase in kidney cortex membranes. Exp. Cell Res. 58: 455–456, 1969.
 261. Jamison, R. L., and W. Kriz. Urinary Concentrating Mechanism: Structure and Function. New York: Oxford, 1982, p. 1–332.
 262. Janigan, D. T., A. Santamaria, and B. F. Trump. Sucrose nephrosis: electron microscopic and histochemical observations, J. Histochem. Cytochem. 8: 385–386, 1960.
 263. Jones, D. B. Scanning electron microscopy of isolated dog renal tubules. Scanning Electron Microsc. 1982: 805–813, 1982.
 264. Jørgensen, P. L. Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60: 864–917, 1980.
 265. Just, M., G. Erdman, and E. Habermann. The renal handling of polybasic drugs. I. Gentamycin and aprotinin in intact animals. Naunyn Schmiedebergs Arch. Pharmacol. 300: 57–66, 1977.
 266. Just, M., and E. Habermann. The renal handling of polybasic drugs: in vitro studies with brush border and lysosomal preparations. Naunyn Schmiedebergs Arch. Pharmacol. 300: 67–76, 1977.
 267. Just, M., A. Röckel, A. Stanjek, and F. Bode. Is there any transtubular reabsorption of filtered proteins in rat kidney? Naunyn Schmiedebergs Arch. Pharmacol. 289: 229–236, 1975.
 268. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 269. Kaissling, B., and W. Kriz. Structure‐function correlation in transporting epithelia. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 307–315.
 270. Kalmbach, P., and H. D. Fahimi. Peroxisomes: identification in freeze‐etch preparations of rat kidney. Cell Biol. Int. Rep. 2: 389–396, 1978.
 271. Karnovsky, M. J. The fine structure of mitochondria in the frog nephron correlated with cytochrome oxidase activity. Exp. Mol. Pathol. 2: 347–366, 1963.
 272. Karnovsky, M. J., and D. F. Rice. Exogenous cytochrome c as an ultrastructural tracer. J. Histochem. Cytochem. 17: 751–753, 1969.
 273. Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush. Monoclonal antibody to Na,K‐ATPase: immunocytochemical localization along nephron segments. Kidney Int. 28: 899–913, 1985.
 274. Kaskel, F. J., A. M. Kumar, E. A. Lockhart, A. Evan, and A. Spitzer. Factors affecting proximal tubular reabsorption during development. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F188–F197, 1987.
 275. Katz, A. I. Renal Na‐K‐ATPase: its role in tubular sodium and potassium transport. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F207–F219, 1982.
 276. Katz, A. I., A. Doucet, and F. Morel. Na,K‐ATPase activity along the rabbit, rat, and mouse nephron. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F114–F120, 1979.
 277. Katz, A. I., and A. H. Rubenstein. Metabolism of proinsulin, insulin and C‐peptide in the rat. J. Clin. Invest. 52: 1113–1121, 1973.
 278. Katz, J., S. Rosenfeld, and A. L. Sellers. Role of the kidney in plasma albumin catabolism. Am. J. Physiol. 198: 814–818, 1960.
 279. Katz, S. M., and J. J. Morgan. Cilia in the human kidney. Ultrastruct. Pathol. 6: 285–294, 1984.
 280. Kenny, A. J., I. S. Fulcher, K. A. McGill, and D. Kershaw. Proteins of the kidney microvillar membrane. Reconstitution of endopeptidase in liposomes shows that it is a short‐stalked protein. Biochem. J. 211: 755–762, 1983.
 281. Kenny, A. J., and S. Maroux. Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev. 62: 91–128, 1982.
 282. Kerjaschki, D., L. Noronha‐Blob, B. Sacktor, and M. G. Farquhar. Microdomains of distinctive glycoprotein composition in the kidney proximal tubule brush border. J. Cell Biol. 98: 1505–1513, 1984.
 283. Kerjaschki, D., H. Sawada, and M. G. Farquhar. Immunoelectron microscopy in kidney research: some contributions and limitations. Kidney Int. 30: 229–245, 1986.
 284. Kessel, R. G. The permeability of dragonfly Malpighian tubule cells to protein using horseradish peroxidase as a tracer. J. Cell Biol. 47: 299–303, 1970.
 285. Kidawa, Z., L. Cieciura, and K. Trznadel. Ultrastructural markers of renal tubular transport in rats under physiological conditions. Folia Histochem. Cytobiol. 26: 209–216, 1988.
 286. Kiesewetter, F., and P. Kugler. Sex different cytochrome‐c uptake in the proximal tubule of the rat kidney. Histochemistry 82: 557–564, 1985.
 287. Kinne, R., and E. Kinne‐Saffran. Isolierung und enzymatische Charakterisierung einer Bürstensaumfraktion der Rattenniere. Arch. Ges. Physiol. 308: 1–15, 1969.
 288. Koenig, H. Intravital staining of lysosomes by basic dyes and metallic ions. J. Histochem. Cytochem. 11: 120–121, 1963.
 289. Koob, R., M. Zimmermann, W. Schoner, and D. Drenckhahn. Colocalization and coprecipitation of ankyrin and Na+,K+‐ATPase in kidney epithelial cells. Eur. J. Cell Biol. 45: 230–237, 1987.
 290. Kragh‐Hansen, U., H. Røigaard‐Petersen, and M. I. Sheikh. Segmental localization of the rabbit renal proximal tubular Na+‐H+ exchange system. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F704–F712, 1985.
 291. Krisko, I., E. DeBernardo, and C. S. Sato. Isolation and characterization of rat tubular basement membrane. Kidney Int. 12: 238–243, 1977.
 292. Kriz, W., and L. Bankir. A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS). Kidney Int. 33, 1–7, 1988.
 293. Kriz, W., and H. J. Dieterich. Das Lymphgefässsystem der Niere bei einigen Säugetieren. Licht‐ und elektronenmikroskopische Untersuchungen. Z. Anat. Entwickl. Gesch. 131: 111–147, 1970.
 294. Kriz, W., and B. Kaissling. Structural organization of the mammalian kidney. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 265–306.
 295. Kriz, W., and H. Koepsell. The structural organization of the mouse kidney. Z. Anat. Entwickl. Gesch. 144: 137–163, 1974.
 296. Kriz, W., and P. Napitwotzky. Structural and functional aspects of the renal interstitium. Contrib. Nephrol. 16: 104–108, 1979.
 297. Kriz, W., A. Schiller, B. Kaissling, and R. Taugner. Morphologische Merkmale transportierender Epithelien. Klin. Wochenschr. 57: 967–975, 1979.
 298. Kugler, P. Localization of aminopeptidase A (angiotensinase A) in the rat and mouse kidney. Histochemistry 72: 269–278, 1981.
 299. Kugler, P. On angiotensin‐degrading aminopeptidases in the rat kidney. Advances in Anatomy, Embryology and Cell Biology, edited by F. Beck, W. Hild, J. van Limborgh, R. Ortmann, J. E. Pauly, and T. H. Schiebler. Berlin: Springer‐Verlag, 1982, vol. 76, p. 1–86.
 300. Kugler, P. Quantitative histochemistry of the lysosomal dipeptidyl aminopeptidase II in the proximal tubule of the rat kidney. Histochemistry 76: 557–566, 1982.
 301. Kugler, P., and G. Vornberger. Renal cathepsin‐B activities in rats after castration and treatment with sex hormones. Histochemistry 85: 157–161, 1986.
 302. Kühn, K., and E. Reale. Junctional complexes of the tubular cells in the human kidney as revealed with freeze‐fracture. Cell Tissue Res. 160: 193–205, 1975.
 303. Kyte, J. Immunoferritin determination of the distribution of (Na+ + K+)ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J. Cell Biol. 68: 304–318, 1976.
 304. Lambert, P. Sur les potentialités de résorption du tube contourné chez les urodèles. Soc. Biol. 110: 114–116, 1932.
 305. Langer, K. H. Feinstrukturen der Mikrokörper (Microbodies) des proximalen Nierentubulus. Z. Zellforsch. 90: 432–446, 1968.
 306. Langer, K. H. Zum Inhalt erweiterter Labyrinthspalten im proximalen Nierentubulus. Virchows Arch. [B] 8: 357–360, 1971.
 307. Langer, K. H. Niereninterstitium‐Feinstrukturen und Kapillarpermeabilität. I. Feinstrukturen der zellulären und extrazellulären Komponenten des peritubulären Niereninterstitiums. Cytobiologie 10: 161–184, 1975.
 308. Langer, K. H. Niereninterstitium‐Feinstrukturen und Kapillarpermeabilität. II. Elektronenmikroskopische Permeabilitätsstudien an peritubulären Kapillaren der Niere (zugleich ein Beitrag zur kapillären Porentheorie). Cytobiologie 10: 185–198, 1975.
 309. Langer, K. H., and W. Thoenes. Zur Genese “optisch leerer Vakuolen” im Epithel des energetisch insuffizienten proximalen Nierentubulus. Ver. Dtsch. Ges. Pathol. 53: 394–400, 1969.
 310. Langer, K. H., W. Thoenes, and M. Wiederholt. Lichtund elektronenmikroskopische Untersuchungen am proximalen Tubuluskonvolut der Rattenniere nach intraluminaler Ölinjektion. Pflugers Arch. 302: 149–165, 1968.
 311. Larsson, L. The ultrastructure of the developing proximal tubule in rat kidney. J. Ultrastruct. Res. 51: 119–139, 1975.
 312. Larsson, L. Effects of different fixatives on the ultrastructure of the developing proximal tubule in the rat kidney. J. Ultrastruct. Res. 51: 140–151, 1975.
 313. Larsson, L. Ultrastructure and permeability of intercellular contacts of developing proximal tubules in the rat kidney. J. Ultrastruct. Res. 52: 100–113, 1975.
 314. Larsson, L., W. L. Clapp III, C. H. Park, J. K. Cannon, and C. C. Tisher. Ultrastructural localization of acidic compartments in cells of isolated rabbit PCT. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F95–F103, 1987.
 315. Larsson, L., and M. Horster. Ultrastructure and net fluid transport in isolated perfused developing proximal tubules. J. Ultrastruct. Res. 54: 276–285, 1976.
 316. Larsson, L., and A. B. Maunsbach. Differentiation of the vacuolar apparatus in cells of the developing proximal tubule in the rat kidney. J. Ultrastruct. Res. 53: 254–270, 1975.
 317. Latta, H. Electron microscopic studies of renal disease. Calif. Med. 93: 272–287, 1960.
 318. Latta, H., S. A. Bencosme, K. M. Knigge, and S. C. Madden. Extracellular compartments in renal tubules associated with polyuria from glucose inhibition. Lab. Invest. 11: 569–579, 1962.
 319. Latta, H., A. B. Maunsbach, and S. C. Madden. Cilia in different segments of the rat nephron. J. Biophys. Biochem. Cytol. 11: 248–252, 1961.
 320. Latta, H., A. B. Maunsbach, and L. Osvaldo. The fine structure of renal tubules in cortex and medulla. In: Ultrastructure of the Kidney, edited by A. J. Dalton and F. Haguenau. New York: Academic, 1967, vol. II, p. 1–56.
 321. Latta, H., L. Osvaldo, J. D. Jackson, and M. L. Cook. Changes in renal cortical tubules during autolysis. Electron microscopic observations. Lab. Invest. 14: 635–657, 1965.
 322. Laurie, G. W., C. P. Leblond, S. Inoue, G. R. Martin, and A. Chung. Fine structure of the glomerular basement membrane and immunolocalization of five basement membrane components to the lamina densa (basal lamina) and its extensions in both glomeruli and tubules of the rat kidney. Am. J. Anat. 169: 463–481, 1984.
 323. Lazarow, P. B., and Y. Fujiki. Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1: 489–530, 1985.
 324. Leak, L. V. Ultrastructure of proximal tubule cells in mouse kidney as revealed by freeze etching. J. Ultrastruct. Res. 25: 253–270, 1968.
 325. Leber, P. D., and D. J. Marsh. Micropuncture study of concentration and fate of albumin in rat nephron. Am. J. Physiol. 219: 358–363, 1970.
 326. Leeson, T. S. An electron microscopic study of the mesonephros and metanephros of the rabbit. Am. J. Anat. 105: 165–195, 1959.
 327. Lefebvre, P. J., A. S. Luyckx, and A. H. Nizet. Renal handling of endogenous glucagon in the dog: comparison with insulin. Metabolism 23: 753–761, 1974.
 328. Le Hir, M., U. C. Dubach, and W. G. Guder. Distribution of acid hydrolases in the nephron of normal and diabetic rats. Int. J. Biochem. 12: 41–45, 1980.
 329. Le Hir, M., U. C. Dubach, and U. Schmidt. Quantitative distribution of lysosomal hydrolases in the rat nephron. Histochemistry 63: 245–251, 1979.
 330. Lin, C.‐T., J. Garbern, and J.‐Y. Wu. Light and electron microscopic immunocytochemical localization of clathrin in rat cerebellum and kidney. J. Histochem. Cytochem. 30: 853–863, 1982.
 331. Linshaw, M. A., and L. W. Welling. Basolateral membrane properties in proximal convoluted tubules of the newborn rabbit. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F172–F177, 1983.
 332. Linss, W. Licht‐ und elektronenmikroskopische Befunde an den Tubuli der Niere des Hechtes. Anat. Anz. 124: 85–104, 1969.
 333. Linss, W., and G. Geyer. Über die elektronenmikroskopische Struktur der Nierentubuli von Rana esculenta, Anat. Anz. 115: 281–296, 1964.
 334. Litwin, J. A., A. Völkl, J. Müller‐Höker, and H. D. Fahimi. Immunocytochemical demonstration of peroxisomal enzymes in human kidney biopsies. Virchows Arch.[B] 54: 207–213, 1988.
 335. Longley, J. B. Histochemistry of the kidney. In: The Kidney: Morphology, Biochemistry, Physiology, edited by C. Rouiller and A. F. Muller. New York: Academic, 1969, vol. I, p. 157–259.
 336. Lönnerholm, G., and Y. Ridderstråle. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 17: 162–174, 1980.
 337. Lüllmann‐Rauch, R. Drug‐induced lysosomal storage disorders. In: Lysosomes in Applied Biology and Therapeutics, edited by J. T. Dingle, P. J. Jacques, and I H. Shaw. Amsterdam: North‐Holland, 1979, p. 49–130.
 338. Maack, T. Changes in the activity of acid hydrolases during renal reabsorption of lysozyme. J. Cell Biol. 35: 268–273, 1967.
 339. Maack, T., V. Johnson, S. T. Kau, J. Figueiredo, and D. Sigulem. Renal filtration, transport, and metabolism of low‐molecular weight proteins: A review. Kidney Int. 16: 251–270, 1979.
 340. Maack, T., and W. B. Kinter. Transport of protein by flounder kidney tubules during long‐term incubation. Am. J. Physiol. 216: 1034–1043, 1969.
 341. Maack, T., D. D. S. Mackensie, and W. B. Kinter. Intracellular pathways of renal reabsorption of lysozyme. Am. J. Physiol. 221: 1609–1616, 1971.
 342. Maack, T., C. H. Park, and M. J. F. Camargo. Renal filtration, transport, and metabolism of proteins. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 2, p. 1773–1803.
 343. Madara, J. L., D. Barenberg, and S. Carlson. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J. Cell Biol. 102: 2125–2136, 1986.
 344. Madri, J. A., F. J. Roll, H. Furthmayr, and J.‐M. Foidart. Ultrastructural localization of fibronectin and laminin in the basement membranes of the murine kidney. J. Cell Biol. 86: 682–687, 1980.
 345. Madsen, K. M. Mercury accumulation in kidney lysosomes of proteinuric rats. Kidney Int. 18: 445–453, 1980.
 346. Madsen, K. M., and E. I. Christensen. Effects of mercury on lysosomal protein digestion in the kidney proximal tubules. Lab. Invest. 38: 165–174, 1978.
 347. Madsen, K. M., and E. I. Christensen. Decreased renal lysosomal protein digestion following short term mercury exposure. Virchows Arch. [B] 39: 159–171, 1982.
 348. Madsen, K. M., R. H. Harris, and C. C. Tisher. Uptake and intracellular distribution of ferritin in the rat distal convoluted tubule. Kidney Int. 21: 354–361, 1982.
 349. Madsen, K. M., and A. B. Maunsbach. Effects of chronic mercury exposure on the rat kidney cortex as studied morphometrically by light and electron microscopy. Virchows Arch. [B] 37: 137–152, 1981.
 350. Madsen, K. M., and C. H. Park. Lysosome distribution and cathepsin B and L activity along the rabbit proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1290–F1301, 1987.
 351. Mahadevan, S., C. J. Dillard, and A. L. Tappel. Degradation of polysaccharides, mucopolysaccharides, and glycoproteins by lysosomal glycosidases, Arch. Biochem. Biophys. 129: 525–533, 1969.
 352. Mahadevan, S., and A. L. Tappel. Lysosomal lipases of rat liver and kidney. J. Biol. Chem. 243: 2849–2854, 1968.
 353. Malathi, P., H. Preiser, P. Fairclough, P. Mallett, and R. K. Crane. A rapid method for the isolation of kidney brush border membranes. Biochim. Biophys. Acta 554: 259–263, 1979.
 354. Mályusz, M., P. Wrigge, D. Caliebe, and W. Junge. Renal handling of 125‐labelled homologous pancreatic lipase and amylase in the rat. J. Clin. Chem. Clin. Biochem. 26: 611–615, 1988.
 355. Marchesi, V. T. Stabilizing infrastructure of cell membranes. Annu. Rev. Cell Biol. 1: 531–561, 1985.
 356. Martínez‐Hernandez, A., and A. E. Chung. The ultrastructural localization of two basement membrane components. Entactin and laminin in rat tissues. J. Histochem. Cytochem. 32: 289–298, 1984.
 357. Martínez‐Hernandez, A., S. Gay, and E. J. Miller. Ultra‐structural localization of type V collagen in rat kidney. J. Cell Biol. 92: 343–349, 1982.
 358. Martínez‐Palomo, A., and D. Erlij. The distribution of lanthanum in tight junctions of the kidney tubule. Pflugers Arch. 343: 267–272, 1973.
 359. Martínez‐Palomo, A., and D. Erlij. Structure of tight junctions in epithelia with different permeability. Proc. Natl. Acad. Sci. USA 72: 4487–4491, 1975.
 360. Matlin, K., D. F. Bainton, M. Pesonen, D. Louvard, N. Genty, and K. Simons. Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin‐Darby canine kidney cells. I. Morphological evidence. J. Cell Biol. 97: 627–637, 1983.
 361. Maude, D. L., D. G. Handelsman, M. Babu, and E. E. Gordon. Handling of insulin by the isolated perfused rat kidney. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F288–F294, 1981.
 362. Maude, D. L., W. N. Scott, I. Shehadeh, and A. K. Solomon. Further studies on the behaviour of inulin and serum albumin in rat kidney tubule. Pflugers Arch. 285: 313–316, 1965.
 363. Maunsbach, A. B. Electron microscopic observations on ferritin absorption in microperfused renal proximal tubules. J. Cell Biol. 19: 48A–49A, 1963.
 364. Maunsbach, A. B. Electron microscopic observations of cytoplasmic bodies with crystalline patterns in rat kidney proximal tubule cells. J. Ultrastruct. Res. 14: 167–189, 1966.
 365. Maunsbach, A. B. Absorption of I125‐labeled homologous albumin by rat kidney proximal tubule cells. A study of micro‐perfused single proximal tubules by electron microscopic autoradiography and histochemistry. J. Ultrastruct. Res. 15: 197–241, 1966.
 366. Maunsbach, A. B. The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J. Ultrastuct. Res. 15: 242–282, 1966.
 367. Maunsbach, A. B. The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. II. Effects of varying osmolality, ionic strength buffer system and fixative concentration of glutaraldehyde solutions. J. Ultrastruct. Res. 15: 283–309, 1966.
 368. Maunsbach, A. B. Absorption of ferritin by rat kidney proximal tubule cells. Electron microscopic observations of the initial uptake phase in cells of microperfused single proximal tubules. J. Ultrastruct. Res. 16: 1–12, 1966.
 369. Maunsbach, A. B. Isolation and purification of acid phosphatase‐containing autofluorescent granules from homogenates of rat kidney cortex. J. Ultrastruct. Res. 16: 13–24, 1966.
 370. Maunsbach, A. B. Observations on the ultrastructure and acid phosphatase activity of the cytoplasmic bodies in rat kidney proximal tubule cells. With a comment on their classification. J. Ultrastruct. Res. 16: 197–238, 1966.
 371. Maunsbach, A. B. Observations on the segmentation of the proximal tubule in the rat kidney. Comparison of results from phase contrast, fluorescence and electron microscopy. J. Ultrastruct. Res. 16: 239–258, 1966.
 372. Maunsbach, A. B. Functions of lysosomes in kidney cells. In: Lysosomes in Biology and Pathology, edited by J. T. Dingle and Dame Honor Fell. Amsterdam: North‐Holland, 1969, p. 115–154.
 373. Maunsbach, A. B. Ultrastructure and digestive activity of lysosomes from proximal tubule cells. In: Proceedings of the Fourth International Congress on Nephrology, Stockholm, 1969. Embryology, Ultrastructure, Physiology, edited by N. Alwall, F. Berglund, and B. Josephson. Basel: Karger, 1970, vol. I, p. 102–115.
 374. Maunsbach, A. B. Ultrastructure of the proximal tubule. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington D.C.: Am. Physiol. Soc, 1973, Sect. 8, Chapt. 2, p. 31–79.
 375. Maunsbach, A. B. Isolation of kidney lysosomes. In: Methods in Enzymology, edited by S. Fleischer and L. Packer. New York: Academic, 1974, vol. 31, Chapt. 32, p. 330–339.
 376. Maunsbach, A. B. Cellular mechanisms of tubular protein transport. In: International Review of Physiology. Kidney and Urinary Physiology II, edited by K. Thurau. Baltimore: University Park Press, 1976, vol. 11, Chapt. 5, p. 145–167.
 377. Maunsbach, A. B. The tubule. In: Electron Microscopy in Human Medicine. Urogenital System and Breast, edited by J. V. Johannessen. New York: McGraw‐Hill, 1979, vol. 9, p. 143–165.
 378. Maunsbach, A. B. Ultrastructure of epithelia as related to models of iso‐osmotic transport. In: Physiology of Non‐excitable Cells, edited by J. Salánki. Budapest: Akadémiai Kiadó, 1981, vol. 3, p. 81–88. (Advances in Physiological Science Series).
 379. Maunsbach, A. B., and E. L. Boulpaep. Influence of hydrostatic pressure changes on paracellular shunt ultrastructure in proximal tubule. In: Functional Ultrastructure of the Kidney, edited by A. B. Maunsbach, T. S. Olsen, and E. I. Christensen. London: Academic, 1980, p. 207–221.
 380. Maunsbach, A. B., and E. L. Boulpaep. Hydrostatic pressure changes related to paracellular shunt ultrastructure in proximal tubule. Kidney Int. 17: 732–748, 1980.
 381. Maunsbach, A. B., and E. L. Boulpaep. Paracellular shunt ultrastructure and changes in fluid transport in Necturus proximal tubule. Kidney Int. 24: 610–619, 1983.
 382. Maunsbach, A. B., and E. L. Boulpaep. Quantitative ultra‐structure and functional correlates in proximal tubules of Ambystoma and Necturus. Am. J. Physiol. 246 (Renal Fluid Eletrolyte Physiol. 15): F710–F724, 1984.
 383. Maunsbach, A. B., and E. L. Boulpaep. Immunoelectron microscope localization of Na,K‐ATPase in transport pathways in proximal tubule epithelium. Micron Microsc. Acta 22: 55–56, 1991.
 384. Maunsbach, A. B., and E. I. Christensen. Lysosomal accumulation and digestion of β2‐microglobulin in rat kidney tubules. IRCS 2: 1737, 1974.
 385. Maunsbach, A. B., and E. I. Christensen. Uptake and digestion of low molecular weight protein in rat kidney tubules. Proceedings of the VI International Congress of Nephrology, Firenze, 1975. Edited by S. Giovannetti, V. Bonomini, and G. D'Amico. Basel: Karger, 1976, p. 387–391.
 386. Maunsbach, A. B., G. H. Giebisch, and B. A. Stanton. Effects of flow rate on proximal tubule ultrastructure. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F582–F587, 1987.
 387. Maunsbach, A. B., S. C. Madden, and H. Latta. Variations in fine structure of renal tubular epithelium under different conditions of fixation. J. Ultrastruct. Res. 6: 511–530, 1962.
 388. Maunsbach, A. B., S. C. Madden, and H. Latta. Light and electron microscopic changes in proximal tubules of rats after administration of glucose, mannitol, sucrose, or dextran. Lab. Invest. 11: 421–432, 1962.
 389. Maunsbach, A. B., and H. B. Neustein. Autoradiographic demonstration of hemoglobin in lysosomes of rabbit proximal tubule cells during experimental hemoglobinemia. J. Ultrastruct. Res. 25: 183–192, 1968.
 390. Maunsbach, A. B., E. Skriver, N. Deguchi, and P. L. Jørgensen. Ultrastructure of Na,K‐ATPase. Acta Histochem. Cytochem. 13: 103–112, 1980.
 391. Maunsbach, A. B., S. Tripathi, and E. L. Boulpaep. Ultra‐structural changes in isolated perfused proximal tubules during osmotic water flow. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1091–1104, 1987.
 392. Maunsbach, A. B., and C. Wirsén. Ultrastructural changes in kidney, myocardium and skeletal muscle of the dog during excessive mobilization of free fatty acids. J. Ultrastruct. Res. 16: 35–54, 1966.
 393. Meezan, E., D. J. Pillion, and A. Elgavish. Binding and degradation of 125I‐insulin by isolated rat renal brush border membranes: evidence for low affinity, high capacity insulin recognition sites. J. Membr. Biol. 105: 113–129, 1988.
 394. Mego, J. L. A biochemical method for the evaluation of heterolysosome formation and function. In: Lysosomes in Biology and Pathology, edited by J. T. Dingle. Amsterdam: North‐Holland, 1973, p. 527–537.
 395. Mellman, I., R. Fuchs, and A. Helenius. Acidification of the endocytic and exocytic pathways, Annu. Rev. Biochem. 55: 663–700, 1986.
 396. Miller, F. Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J. Biophys. Biochem. Cytol. 8: 689–718, 1960.
 397. Miller, F., and G. E. Palade. Lytic activities in renal protein absorption droplets. An electron microscopical cytochemical study. J. Cell Biol. 23: 519–552, 1964.
 398. Milton, A., M. Hellfritzsch, and E. I. Christensen. Basolateral binding and uptake of 125‐I‐insulin in proximal tubular cells after peritubular extraction in the avian kidney. Diabetes Res. 7: 189–195, 1988.
 399. Minuth, M., A. Schiller, and R. Taugner. The development of cell junctions during nephrogenesis. Anat. Embryol. 163: 307–319, 1981.
 400. Miyoshi, M. The fine structure of the mesonephros of the lamprey, Entosphenus japonicus Martens. Z. Zellforsch. 104: 213–230, 1970.
 401. Mogensen, C. E., and K. Sølling. Studies of renal tubular protein reabsorption: partial and near complete inhibition by certain amino acids. Scand. J. Clin. Lab. Invest. 37: 477–486, 1977.
 402. Mogensen, C. E., E. Vittinghus, and K. Sølling. Increased urinary excretion of albumin, light chains and β2‐microglobulin after intravenous arginine administration in normal man. Lancet: 1: 581–583, 1975.
 403. Møller, J. C., T. M. Jørgensen, and J. Mortensen. Proximal tubular atrophy: qualitative and quantitative structural changes in chronic obstructive nephropathy in the pig. Cell Tissue Res. 244: 479–491, 1986.
 404. Møller, J. C., and E. Skriver. Quantitative ultrastructure of human proximal tubules and cortical interstitium in chronic renal disease (hydronephrosis). Virchows Arch. [A] 406: 389–406, 1985.
 405. Møller, J. C., E. Skriver, T. S. Olsen, and A. B. Maunsbach. Perfusion‐fixation of human kidneys for ultrastructural analysis. Ultrastruct. Pathol. 3: 375–385, 1982.
 406. Møller, J. C., E. Skriver, T. S. Olsen, and A. B. Maunsbach. Ultrastructural analysis of human proximal tubules and cortical interstitium in chronic renal disease (hydronephrosis). Virchows Arch. [A] 402: 209–237, 1984.
 407. Møllgård, K., and J. Rostgaard. Morphological aspects of some sodium transporting epithelia suggesting a transcellular pathway via elements of endoplasmic reticulum. J. Membr. Biol. 40: 71–89, 1978.
 408. Møllgård, K., and J. Rostgaard. Morphologic aspects of transepithelial transport with special reference to the endoplasmic reticulum. In: Ion Transport by Epithelia, edited by S. G. Schultz. New York: Raven, 1981, p. 209–231.
 409. Morrow, J. S., C. D. Cianci, T. Ardito, A. S. Mann, and M. Kashgarian. Ankyrin liks fodrin to the alpha subunit of Na,K‐ATPase in Madin‐Darby canine kidney cells and in intact renal tubule cells. J. Cell Biol. 108: 455–465, 1989.
 410. Mostov, K. E., and D. L. Deitcher. Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell 46: 613–621, 1986.
 411. Mounier, F., J.‐M. Foidart, and M.‐C. Gubler. Distribution of extracellular matrix glycoproteins during normal development of human kidney. Lab. Invest. 54: 394–401, 1986.
 412. Müller, J., and L. Barajas. Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J. Ultrastruct. Res. 41: 533–549, 1972.
 413. Murata, F., S. Tsuyama, S. Suzuki, H. Hamada, M. Ozawa, and T. Muramatsu. Distribution of glycoconjugates in the kidney studied by use of labeled lectins. J. Histochem. Cytochem. 31: 139–144, 1983.
 414. Nagle, R. B. Intermediate filaments: a review of the basic biology. Am. J. Surg. Pathol. Suppl 12: 4–16, 1988.
 415. Nakamura, R., D. S. Emmanouel, and A. I. Katz. Insulin binding sites in various segments of the rabbit nephron. J. Clin. Invest. 72: 388–392, 1983.
 416. Narahara, H. T., N. B. Everett, B. S. Simmons, and R. H. Williams. Metabolism of insulin‐I131 and glucagon‐I131 in the kidney of the rat. Am. J. Physiol. 192: 227–231, 1958.
 417. Neiss, W. F. The electron density of light and dark lysosomes in the proximal convoluted tubule of the rat kidney. Histochemistry 77: 63–77, 1983.
 418. Neiss, W. F. Electron staining of the cell surface coat by osmium‐low ferrocyanide. Histochemistry 80: 231–242, 1984.
 419. Neiss, W. F. A coat of glycoconjugates on the inner surface of the lysosomal membrane in the rat kidney. Histochemistry 80: 603–608, 1984.
 420. Nelson, W. J., and R. W. Hammerton. A membranecytoskeletal complex containing Na+,K+‐ATPase, ankyrin, and fodrin in Madin‐Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J. Cell Biol. 108: 893–902, 1989.
 421. Nelson, W. J., and P. J. Veshnock. Ankyrin binding to (Na++K+)ATPase and implications for the organization of membrane domains in polarized cells. Nature 328: 533–536, 1987.
 422. Neuhaus, O. W. Renal reabsorption of low molecular weight proteins in adult male rats: α2μ‐globulin. Proc. Soc. Exp. Biol. Med. 182: 531–539, 1986.
 423. Neustein, H. B. Hemoglobin absorption in the proximal tubules of the kidney in the rabbit. J. Ultrastruct. Res. 17: 565–587, 1967.
 424. Neustein, H. B., and A. B. Maunsbach. Hemoglobin absorption by proximal tubule cells of the rabbit kidney. A study by electron microscopic autoradiography. J. Ultrastruct. Res. 16: 141–157, 1966.
 425. Newstead, J. D. Filaments in renal parenchymal and interstitial cells. J. Ultrastruct. Res. 34: 316–328, 1971.
 426. Nielsen, J. T., and E. I. Christensen. Ultrastructure of isolated perfused proximal tubules from rabbit kidney. A comparison with proximal tubules fixed by perfusion in vivo. Lab. Invest. 49: 400–411, 1983.
 427. Nielsen, J. T., and E. I. Christensen. Basolateral endocytosis of protein in isolated perfused proximal tubules. Kidney Int. 27: 39–45, 1985.
 428. Nielsen, J. T., S. Nielsen, and E. I. Christensen. Transtubular transport of proteins in rabbit proximal tubules. J. Ultrastruct. Res. 92: 133–145, 1985.
 429. Nielsen, J. T., S. Nielsen, and E. I. Christensen. Handling of lysozyme in isolated, perfused proximal tubules. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F822–F830, 1986.
 430. Nielsen, S., and E. I. Christensen. Insulin absorption in renal proximal tubules. A quantitative immunocytochemical study. J. Ultrastruct. Mol. Struct. Res. 102: 205–220, 1989.
 431. Nielsen, S., E. Nexø, and E. I. Christensen. Absorption of epidermal growth factor and insulin in rabbit renal proximal tubules. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E55–E63, 1989.
 432. Nielsen, S., and J. T. Nielsen. The influence of flow rate and perfused load on insulin absorption in isolated, proximal tubules. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F802–F812, 1988.
 433. Nielsen, S., J. T. Nielsen, and E. I. Christensen. Luminal and basolateral uptake of insulin in isolated, perfused, proximal tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F857–F867, 1987.
 434. Nielsen, S., S. P. Sheikh, M. I. Sheikh, and E. I. Christensen. Peptide YY luminal processing and axial heterogeneity of basolateral binding in renal proximal tubules. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F359–F367, 1991.
 435. Nilsson, O. The adrenergic innervation of the kidney. Lab. Invest. 14: 1392–1395, 1965.
 436. Novikoff, A. B. The proximal tubule cells in experimental hydronephrosis. J. Biophys. Biochem. Cytol. 6: 136–138, 1959.
 437. Novikoff, A. B. The rat kidney: cytochemical and electron microscopic studies. In: Biology of Pyelonephritis, edited by E. L. Quinn and E. H. Kass. Boston: Little, Brown, 1960, p. 113–144.
 438. Novikoff, A. B. Lysosomes in the physiology and pathology of cells: contributions of staining methods. In: Ciba Found. Symp., Lysosomes, edited by A. V. S. de Reuck and M. P. Cameron. Boston: Little, Brown, 1963, p. 36–77.
 439. Novikoff, A. B., E. Essner, S. Goldfisher, and M. Heus. Nucleoside‐diphosphatase activities of cytomembranes. Symp. Int. Soc. Cell Biol. 1: 149–192, 1962.
 440. Novikoff, A. B., and S. Goldfisher. Visualization of micro‐bodies for light and electron microscopy. J. Histochem. Cytochem. 16: 507, 1968.
 441. Novikoff, A. B., and W. Y. Shin. The endoplasmic reticulum in the Golgi zone and its relations to microbodies, Golgi apparatus and autophagic vacuoles in rat liver cells. J. Microsc. 3: 187–206, 1964.
 442. Novikoff, A. B., H. W. Spater, and N. Quintana. Transepithelial endoplasmic reticulum in rat proximal convoluted tubule. J. Histochem. Cytochem. 31: 656–661, 1983.
 443. Nørgaard, J. O. R., B. Møller‐Madsen, N. Hertel, and G. Danscher. Silver enhancement of tissue mercury: demonstration of mercury in autometallographic silver grains from rat kidney. J. Histochem. Cytochem. 37: 1545–1547, 1989.
 444. Ohkuma, S., and B. Poole. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA 75: 3327–3331, 1978.
 445. Ohno, S. Peroxisomes of the kidney. Int. Rev. Cytol. 95: 131–162, 1985.
 446. Ohtsuki, M., A. Fujioka, M. Nagano, and S. Mori. Membrane specialization in the proximal tubule cells of the mouse kidney. J. Electron Microsc. 35: 292–297, 1986.
 447. Oken, D. E., S. C. Cotes, and C. W. Mende. Micropuncture study of tubular transport of albumin in rats with amino‐nucleoside nephrosis. Kidney Int. 1: 3–11, 1972.
 448. Oken, D. E., and W. Flamenbaum. Micropuncture studies of proximal tubule albumin concentration in normal and nephrotic rats. J. Clin. Invest. 50: 1498–1505, 1971.
 449. Olbricht, C. J., J. K. Cannon, and C. C. Tisher. Cathepsin B and L in nephron segments of rats with puromycin aminonucleoside nephrosis. Kidney Int. 32: 354–361, 1987.
 450. Oliver, J., M. MacDowell, and Y. C. Lee. Cellular mechanisms of protein metabolism in the nephron. I. The structural aspects of proteinuria; tubular absorption, droplet formation, and the disposal of proteins. J. Exp. Med. 99: 589–604, 1954.
 451. Olsen, T. S. Ultrastructure of the base of renal tubule cells of marine teleosts. Nature 212: 95–96, 1966.
 452. Olsen, T. S. Ultrastructure of the nephron of a glomerular teleost: “Pleuronectes platessa”. Acta Pathol. Microbiol. Scand. Suppl. 212: 81–96, 1970.
 453. Olsen, T. S., and J. L. E. Ericsson. Ultrastructure of the tubule of the aglomerular teleost (Nerophis ophidion). Z. Zellforsch. 87: 17–30, 1968.
 454. Olsen, T. S., H. S. Olsen, and H. E. Hansen. Hypertrophy of actin bundles in tubular cells in acute renal failure. Ultrastruct. Pathol. 7: 241–250, 1984.
 455. Olsen, T. S., L. C. Racusen, and K. Solez. Ultrastructural investigation of renal biopsies: a discussion of artifacts and special methodology. J. Electron Microsc. Tech. 9: 283–291, 1988.
 456. Osvaldo, L., and H. Latta. The thin limbs of the loop of Henle. J. Ultrastruct. Res. 15: 144–168, 1966.
 457. Ottosen, P. D. Effect of intraluminal pressure on the ultra‐structure and protein transport in the proximal tubule. Kidney Int. 9: 252–263, 1976.
 458. Ottosen, P. D. Ultrastructure and segmentation of micro‐dissected kidney tubules in the marine flounder, Pleuronectes platessa. Cell Tisue Res. 190: 27–45, 1978.
 459. Ottosen, P. D. Reversible peritubular binding of a cationic protein (lysozyme) to flounder kidney tubules. Cell Tissue Res. 194: 207–218, 1978.
 460. Ottosen, P. D., F. Bode, K. M. Madsen, and A. B. Maunsbach. Renal handling of lysozyme in the rat. Kidney Int. 15: 246–254, 1979.
 461. Ottosen, P. D., K. M. Madsen, F. Bode, K. Baumann, and A. B. Maunsbach. Inhibition of protein reabsorption in the renal proximal tubule by basic amino acids. Renal Physiol. 8: 90–99, 1985.
 462. Ottosen, P. D., and A. B. Maunsbach. Transport of peroxidase in flounder kidney tubules studied by electron microscope histochemistry. Kidney Int. 3: 315–326, 1973.
 463. Park, C. H., and T. Maack. Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit. J. Clin. Invest. 73: 767–777, 1984.
 464. Parker, M. V., H. G. Swann, and J. G. Sinclair. The functional morphology of the kidney. Texas Rep. Biol. Med. 20: 425–445, 1962.
 465. Patrizi, G., and J. N. Middelkamp. The distribution and pattern of the agranular reticulum in rat kidney tubules. J. Microsc. 6: 91–94, 1967.
 466. Pease, D. C. Electron microscopy of the tubular cells of the kidney cortex. Anat. Rec. 121: 723–743, 1955.
 467. Pease, D. C. Infolded basal plasma membranes found in epithelia noted for their water transport. J. Biophys. Biochem. Cytol. 2, Suppl: 203–208, 1956.
 468. Pease, D. C. Polysaccharides associated with the exterior surface of epithelial cells: kidney, intestine, brain. J. Ultrastruct. Res. 15: 555–588, 1966.
 469. Pease, D. C. Myoid features of renal corpuscles and tubules. J. Ultrastruct. Res. 23: 304–320, 1968.
 470. Pedersen, J. C., A. E. G. Persson, and A. B. Maunsbach. Ultrastructure and quantitative characterization of the cortical interstitium in the rat kidney. In: Functional Ultrastructure of the Kidney, edited by A. B. Maunsbach, T. S. Olsen, and E. I. Christensen. London: Academic, 1980, p. 443–456.
 471. Perotti, M. E., E. Gavazzi, L. Trussardo, N. Malgaretti, and B. Curti. Immunoelectron microscopic localization of d‐amino acid oxidase in rat kidney and liver. Histochem. J. 19: 157–169, 1987.
 472. Peter, K. Nierenkanälchen des Menschen und einiger Säugetiere. In: Untersuchungen über Bau und Entwicklung der Niere. Jena: Fischer, 1909.
 473. Peterson, D. R., F. A. Carone, S. Oparil, and E. I. Christensen. Differences between renal tubular processing of glucagon and insulin. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F112–F118, 1982.
 474. Peterson, D. R., G. Chrabaszcz, W. R. Peterson, and S. Oparil. Mechanism for renal tubular handling of angiotensin. Am. J. Physiol. 236: F365–F372, 1979.
 475. Peterson, D. R., J. T. Hjelle, F. A. Carone, and P. A. Moore. Renal handling of plasma high density lipoprotein. Kidney Int. 16: 411–421, 1984.
 476. Peterson, D. R., S. Kubillus, W. Binstock, and D. Zikos. Effects of charge on membrane processing in the proximal nephron. Am. J. Physiol. 256 (Cell Physiol. 25): C304–C309, 1989.
 477. Peterson, D. R., S. Oparil, G. Flouret, and F. A. Carone. Handling of angiotensin II and oxytocin by renal tubular segments perfused in vitro. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 4): F319–F324, 1977.
 478. Peterson, P. A., P.‐E. Evrin, and I. Berggård. Differentiation of glomerular, tubular and normal proteinuria: determinations of urinary excretion of β2‐microglobulin, albumin and total protein. J. Clin. Invest. 48: 1189–1198, 1969.
 479. Pfaller, W. Structure function correlation on rat kidney. Quantitative correlation of structure and function in the normal and injured rat kidney. Adv. Anat. Embryol. Cell Biol. 70: 1–106, 1982.
 480. Pfaller, W., M. Joannidis, G. Gstraunthaler, and P. Kotanko. Quantitative morphologic changes of nephron structures and urinary enzyme activity pattern in sodium‐maleate‐induced renal injury. Renal Physiol. 12: 56–64, 1989.
 481. Pfaller, W., and J. Klima. A critical reevaluation of the structure of the rat uriniferous tubule as revealed by scanning electron microscopy. Cell Tisue Res. 166: 91–100. 1976.
 482. Pfeifer, U. Kombinierte elektronenmikroskopische Darstellung der Arylsulfatase und der sauren Phosphatase in Lysosomen des Nierentubules. Histochemie 17: 284–292, 1969.
 483. Pfeifer, U., and H. Scheller. A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J. Cell Biol. 64: 608–621, 1975.
 484. Pinter, G. G., and K. Gartner. Peritubular capillary, interstitium, and lymph of the renal cortex. Rev. Physiol. Biochem. Pharmacol. 99: 183–202, 1984.
 485. Pinto da Silva, P., and B. Kachar. On tight‐junction structure. Cell 28: 441–450, 1982.
 486. Pricam, C., F. Humbert, A. Pfrrelet, and L. Orci. A freeze‐etch study of the tight junctions of the rat kidney tubules. Lab. Invest. 30: 286–291, 1974.
 487. Priestley, G. C., and R. A. Malt. Membrane‐bound ribosomes in kidney. Methods of estimation and effect of compensatory renal growth. J. Cell Biol. 41: 886–893, 1969.
 488. Pullman, T. N., S. Oparil, and F. A. Carone. Fate of labeled angiotensin II microinfused into individual nephrons in the rat. Am. J. Physiol. 228: 747–751, 1975.
 489. Rabinowitz, M. Extranuclear DNA. Bull. Soc. Chim. Biol. 50: 311–348, 1968.
 490. Rabkin, R., and J. A. Colwell. The renal uptake and excretion of insulin in the dog. J. Lab. Clin. Med. 73: 893–900, 1969.
 491. Rabkin, R., and C. A. Mahoney. Hormones and the kidney. In: Diseases of the Kidney, 4th Ed., edited by R. W. Schrier and C. W. Gottschalk. Boston: Little, Brown, 1988, p. 309–355.
 492. Rabkin, R., J. Petersen, and R. Mamalok. Binding and degradation of insulin by isolated renal brush border membranes. Diabetes 31: 618–623, 1982.
 493. Rabkin, R., B. D. Ross, M. E. Mako, and A. H. Rubenstein. the handling of insulin, proinsulin and C‐peptide by the isolated rat kidney. Diabetes 27: 192–196, 1978.
 494. Rambourg, A., and C. P. Leblond. Electron microscope observations on the carbohydrate‐rich cell coat present at the surface of cells in the rat. J. Cell Biol. 32: 27–53, 1967.
 495. Rassat, J., H. Robenek, and H. Themann. Paracrystalline inclusions in lysosomes of mouse kidney tubule cells induced by vinblastine and vincristine. Virchows Arch. [B] 37: 199–205, 1981.
 496. Rawlins, F. A., E. González, M. Pérez‐González, and G. Whittembury. Effect of transtubular osmotic gradients on the paracellular pathway in toad kidney proximal tubule. Electron microscopic observations. Pflugers Arch. 353: 287–302, 1975.
 497. Reale, E., and L. Luciano. Kritische elektronenmikroskopische Studien über die Lokalisation des Aktivität alkalischer Phosphatase im Hauptstück der Niere von Mäusen. Histochemie 8: 302–314, 1967.
 498. Reeves, W. B. and T. E. Andreoli. Tubular sodium transport. In: Diseases of the Kidney, 4th Ed., edited by R. W. Schrier and C. W. Gottschalk. Boston: Little, Brown, 1988, Chapt. 4, p. 143–182.
 499. Reimer, K. A., C. E. Ganote, and R. B. Jennings. Alterations in renal cortex following ischemic injury. III. Ultrastructure of proximal tubules after ischemia or autolysis. Lab. Invest. 26: 347–363, 1972.
 500. Revel, J. P., and M. J. Karnovsky. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33: c7–cl2, 1967.
 501. Rhodin, J. Correlation of Ultrastructural Organization and Function in Normal and Experimentaly Changed Proximal Convoluted Tubule Cells of the Mouse Kidney. Stockholm: Aktiebolaget Godvil, 1954.
 502. Rhodin, J. Further studies on the nephron ultrastructure in mouse. Terminal part of proximal convolution. In: Proceedings, Conference on Electron Microscopy, Stockholm, 1956, edited by F. S. Sjöstrand and J. Rhodin. Stockholm: Almqvist & Wiksell, 1957, p. 180–181.
 503. Rhodin, J. Anatomy of kidney tubules. Int. Rev. Cytol. 7: 485–534, 1958.
 504. Rhodin, J. Structure of the kidney. In: Diseases of the Kidney, edited by M. B. Strauss and L. G. Welt. Boston: Little, Brown, 1963, p. 1–29.
 505. Roberts, J. S., and B. Schmidt‐Nielsen. Renal ultrastructure and excretion of salt and water by three terrestrial lizards. Am. J. Physiol. 211: 476–486, 1966.
 506. Rodman, J. S., D. Kerjaschki, E. Merisko, and M. G. Farquhar. Presence of an extensive clathrin coat on the apical plasmalemma of the rat kidney proximal tubule cell. J. Cell Biol. 98: 1630–1636, 1984.
 507. Rodman, J. S., M. Mooseker, and M. G. Farquhar. Cytoskeletal proteins of the rat kidney proximal tubule brush border. Eur. J. Cell Biol. 42: 319–327, 1986.
 508. Rodman, J. S., L. Seidman, and M. G. Farquhar. The membrane composition of coated pits, microvilli, endosomes, and lysosomes is distinctive in the rat kidney proximal tubule cell. J. Cell Biol. 102: 77–87, 1986.
 509. Roesinger, B., A. Schiller, and R. Taugner. A freeze‐fracture study of tight junctions in the pars convoluta and pars recta of the renal proximal tubule. Cell Tissue Res. 186: 121–133, 1978.
 510. Rogulski, J., A. Pacanis, W. Adamowicz, and S. Angielski. On the mechanism of maleate action on rat kidney mitochondria: effect on oxidative metabolism. Acta Biochim. Pol. 21: 403–413, 1974.
 511. Rohr, H. P., and H. U. Zollinger. Die sogenannte “Zuckerspeicherniere” unter besondere Berücksichtigung elektronenoptisch‐autoradiographischer Untersuchungen mit 14C‐saccharose. Arch. Pathol. Anat. Physiol. 341: 115–122, 1966.
 512. Romen, W., and I. Mäder‐Kruse. The basement membrane of the atrophic kidney tubule. Virchows Arch. [B] 26: 307–319, 1978.
 513. Ross, M. H., and E. J. Reith. Myoid elements in the mammalian nephron and their relationship to other specializations in the basal part of kidney tubule cells. Am. J. Anat. 129: 399–416, 1970.
 514. Rostgaard, J., B. I. Kristensen, and L. E. Nielsen. Electron microscopy of filaments in the basal part of rat kidney tubule cells, and their in situ interaction with heavy meromyosin. Z. Zellforsch. 132: 497–521, 1972.
 515. Rostgaard, J., B.J. Kristensen, and L. E. Nielsen. Myofilaments in nonmuscular cells. In: Proceedings of the Fourth International Congress of Histochemistry and Cytochemistry, Kyoto, 1972. Kyoto: Nakanishi Printing Co., 1972, p. 377–378.
 516. Rostgaard, J., and O. Møller. Localization of Na+,K+ ATPase to the inside of the basolateral cell membranes of epithelial cells of proximal and distal tubules in rabbit kidney. Cell Tissue Res. 212: 17–28, 1980.
 517. Rostgaard, J., and K. Møllgård. Morphologic evidence for a transcellular pathway via elements of endoplasmic reticulum in rat proximal tubules. In: Functional Ultrastructure of the Kidney, edited by A. B. Maunsbach, T. S. Olsen, and E. I. Christensen. New York: Academic, 1980, p. 251–266.
 518. Rostgaard, J., and L. Thuneberg. Electron microscopical observations on the brush border of proximal tubule cells of mammalian kidney. Z. Zellforsch. 132: 473–496, 1972.
 519. Roth, J. Application of lectin—gold complexes for electron microscopic localization of glycoconjugates on thin sections. J. Histochem. Cytochem. 31: 987–999, 1983.
 520. Rouiller, C. General anatomy and histology of the kidney. In: The Kidney Morphology, Biochemistry, Physiology, edited by C. Rouiller, and A. F. Muller. New York: Academic, 1969, vol. I, p. 61–156.
 521. Ruska, H., D. H. Moore, and J. Weinstock. The base of the proximal convoluted tubule cells of rat kidney. J. Biophys. Biochem. Cytol. 3: 249–254, 1957.
 522. sabolć, I., W. Haase, and G. Burckhardt. ATP‐dependent H+ pump in membrane vesicles from rat kidney cortex. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F835–F844, 1985.
 523. Sackin, H., and E. L. Boulpaep. Models for coupling of salt and water transport: proximal tubular reabsorption in Necturus kidney. J. Gen. Physiol. 66: 671–733, 1975.
 524. Sackin, H., and E. L. Boulpaep. Isolated perfused salamander proximal tubule: methods, electrophysiology, and transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F39–F52, 1981.
 525. Sacktor, B. The brush border of the renal proximal tubule and the intestinal mucosa. In: Mammalian Cell Membranes, edited by G. A. Jamieson and D. M. Robinson. London: Butterworths, 1977, vol. 4, p. 221–254.
 526. Sakaguchi, H., and Y. Suzuki. Fine structure of renal tubule cells. Keio J. Med. 7: 17–38, 1958.
 527. Sakai, T., R. Billo, R. Nobiling, K. Gorgas, and W. Kriz. Ultrastructure of the kidney of a South American caecilian, Typhlonectes compressicaudus (Amphibia, Gymnophiona). I. Renal corpuscle, neck segment, proximal tubule and intermediate segment. Cell Tissue Res. 252, 589–600, 1988.
 528. Sakai, T., and K. Kawahara. The structure of Japanese newts, Triturus (Cynops) pyrrhogaster. Anat. Embryol. 166: 31–52, 1983.
 529. Salzgeber, B., and R. Weber. La régression du mésonephros chez l'embryon de poulet étude des activités de la phosphatase acide et des cathepsines: analyse biochemique, histochemique et observation au microscope électronique. J. Embryol. Exp. Morphol. 15: 397–419, 1966.
 530. Schafer, J. A. Mechanisms coupling the absorption of solutes and water in the proximal nephron. Kidney Int. 25: 708–716, 1984.
 531. Schiebler, T. H., and K. G. Danner. The effect of sex hormones on the proximal tubules in the rat kidney. Cell Tissue Res. 192: 527–549, 1978.
 532. Schiller, A., and R. Taugner. The renal handling of low molecular weight polyvinylpyrrolidone and inulin in rats. In: Functional Ultrastructure of the Kidney, edited by A. B. Maunsbach, T. Steen Olsen, and E. I. Christensen. London: Academic, 1980, p. 315–326.
 533. Schiller, A., R. Taugner, and B. Roesinger. Vergleichende Morphologie der Zonulae occludentes am Nierentubulus. Verb. Anat. Ges. 72: 229–234, 1978.
 534. Schiller, A., and K. Tiedemann. The mature mesonephric nephron of the rabbit embryo. III. Freeze‐fracture studies. Cell Tissue Res. 221: 431–442, 1981.
 535. Schlatter, E., H. J. Schurek, and R. Zick. Renal handling of homologous and heterologous insulin in the isolated perfused rat kidney. Pflugers Arch. 393: 227–231, 1982.
 536. Schmidt, U., and U. C. Dubach. Activity of (Na+‐K+)‐stimulated adenosine‐triphosphatase in the rat nephron. Pflugers Arch. 306: 219–226, 1969.
 537. Schmidt‐Nielsen, B., and L. E. Davis. Fluid transport and tubular intercellular spaces in reptilian kidneys. Science 159: 1105–1108, 1968.
 538. Schønheyder, H. C., and A. B. Maunsbach. Ultrastructure of a specialized neck region in the rabbit nephron. Kidney Int. 7: 145–153, 1975.
 539. Schurek, H.‐J., and W. Kriz. Morphologic and functional evidence for oxygen deficiency in the isolated perfused rat kidney. Lab. Invest. 53: 145–155, 1985.
 540. Scott, E. B. Modification of the basal architecture of renal tubule cells in aged rats. Proc. Soc. Exp. Biol. Med. 117: 586–589, 1964.
 541. Scott, W. N., D. L. Maude, I. Shehadeh, and A. K. Solomon. Transtubular movement of albumin in Necturus kidney. Am. J. Physiol. 211: 1039–1042, 1966.
 542. Selhub, J., S. Nakamura, and F. A. Carone. Renal folate absorption and the kidney folate binding protein. II. Microin‐fusion studies. Am. J. Physiol 252 (Renal Fluid Electrolyte Physiol. 21): F757–F760, 1987.
 543. Sellers, A. L., H. C. Goodman, J. Marmorston, and M. Smith. Sex difference in proteinuria in the rat. Am. J. Physiol. 163: 662–667, 1950.
 544. Semenza, G. Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and pepsidases of enterocytes and renal tubuli. Annu. Rev. Cell Biol. 2: 255–313, 1986.
 545. Shanley, P. F., M. Brezis, K. Spokes, P. Silva, F. H. Epstein, and S. Rosen. Hypoxic injury in the proximal tubule of the isolated perfused rat kidney. Kidney Int. 29: 1021–1031, 1986.
 546. Shibko, S., and A. L. Tappel. Rat‐kidney lysosomes. Isolation and properties. Biochem. J. 95: 731–741, 1965.
 547. Silbernagl, S. The renal handling of amino acids and oligopeptides. Physiol. Rev. 68: 911–1007, 1988.
 548. Silverblatt, F. J., and R. E. Bulger. Gap junctions occur in vertebrate renal proximal tubule cells. J. Cell Biol. 47: 513–515, 1970.
 549. Silverblatt, F. J., G. E. Tyson, and R. E. Bulger. Effects of vinblastine on the phagolysosome system of proximal tubule cells of rat kidney. Lab. Invest. 31: 170–180, 1974.
 550. Simionescu, N., M. Simionescu, and G. E. Palade. Permeability of interstitial capillaries: pathway followed by dextrans and glycogens. J. Cell Biol. 53: 365–392, 1972.
 551. Simonnet, H., C. Gauthier, C. Vincent, and J.‐P. Revillard. The binding of β‐2‐microglobulin to renal brush‐border membrane: affinity measurement, inhibition by serum albumin. Biochim. Biophys. Acta 940: 247–254, 1988.
 552. Simons, K. Membrane traffic in an epithelial cell line derived from the dog kidney. Kidney Int. (Suppl. 23) 32: S201–S207, 1987.
 553. Simons, K., and S. D. Fuller. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1: 243–288, 1985.
 554. Sitte, H. Beziehungen zwischen Zellstruktur und Stofftransport in der Niere. In: Funktionelle und Morphologische Organization der Zelle. Sekretion und Exkretion. Berlin: Springer, 1965, p. 343.
 555. Sjöstrand, F. S. Über die Eigenfluoreszenz tierischer Gewebe mit besonderer Berücksichtigung der Säugetierniere. Acta Anat. Suppl. 1: 1–163, 1944.
 556. Sjöstrand, F. S. A comparison of plasma membrane, cytomembranes, and mitochondrial membrane elements with respect to ultrastructural features. J. Ultrastruct. Res. 9: 561–580, 1963.
 557. Sjöstrand, F. S. The structure of kidney mitochondria in low denaturation embedded and in freeze‐fractured material. J. Ultrastruct. Res. 72: 174–188, 1980.
 558. Sjöstrand, F. S. Deducing Function from Structure. Vol. 1. A Different View of Membranes. San Diego: Academic, 1990.
 559. Sjöstrand, F. S., and L. Barajas. Effect of modifications in conformation of protein molecules on structure of mitochondrial membranes. J. Ultrastruct. Res. 25: 121–155, 1968.
 560. Sjöstrand, F. S., and L. Barajas. A new model for mitochondrial membranes based on structural and on biochemical information. J. Ultrastruct. Res. 32: 293–306, 1970.
 561. Sjöstrand, F. S., and J. Rhodin. The ultrastructure of the proximal convoluted tubules of the mouse kidney as revealed by high resolution electron microscopy. Exp. Cell Res. 4: 426–456, 1953.
 562. Skou, J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta. 23: 394–401, 1957.
 563. Skou, J. C. Preparation from mammalian brain and kidney of the enzyme system involved in active transport of Na+ and K+. Biochim. Biophys. Acta 58: 314–325, 1962.
 564. Sly, W. S., M. Natowicz, A. Gonzalez‐Noriega, J. H. Grubb, and H. D. Fischer. The role of the mannose‐6‐phosphate recognition marker and its receptor in the uptake and intracellular transport of lysosomal enzymes. In: Lysosomes and Lysosomal Storage Diseases, edited by J. W. Callahan and J. A. Lowden. New York: Raven, 1981, p. 131–146.
 565. Sperber, I. Studies on the mammalian kidney. Zool. Bidrag Upps. 22: 249–431, 1944.
 566. Spring, K. R., and A. Hope. Size and shape of the lateral intercellular spaces in a living epithelium. Science 200: 54–57, 1978.
 567. Steinman, R. M., S. E. Brodie, and Z. A. Cohn. Membrane flow during pinocytosis. A stereologic analysis. J. Cell Biol. 68: 665–687, 1976.
 568. Stetler‐Stevenson, M. A., G. Flouret, S. Nakamura, B. Gulczynski, and F. A. Carone. In vivo metabolism of tritiated LHRH by the whole kidney and individual tubules of rat. Am. J. Physiol. 244 [Renal Fluid Electrolyte Physiol. 13): F628–F632, 1982.
 569. Stolte, H., B. Schmidt‐Nielsen, and L. Davis. Single nephron function in the kidney of the lizard, Sceloporus cyanogenys. Zool.]b. Physiol. 81: 219–244, 1977.
 570. Straus, W. Isolation and biochemical properties of droplets from the cells of rat kidney. J. Biol. Chem. 207: 745–755, 1954.
 571. Straus, W. Concentration of acid phosphatase, ribonuclease, desoxyribonuclease, β‐glucuronidase, and cathepsin in “droplets” isolated from the kidney cells of normal rats. J. Biophys. Biochem. Cytol. 2: 513–521, 1956.
 572. Straus, W. Changes in “droplet” fractions from rat kidney cells after intraperitoneal injection of egg white. J. Biophys. Biochem. Cytol. 3: 933–947, 1957.
 573. Straus, W. Rapid cytochemical identification of phagosomes in various tissues of the rat and their differentiation from mitochondria by the peroxidase method. J. Biophys. Biochem. Cytol. 5: 193–213, 1959.
 574. Straus, W. Cytochemical investigation of phagosomes and related structures in cryostat sections of the kidney and liver of rats after intravenous administration of horseradish peroxidase. Exp. Cell Res. 27: 80–94, 1962.
 575. Straus, W. Cytochemical observations on the relationship between lysosomes and phagosomes in kidney and liver by combined staining for acid phosphatase in intravenously injected horseradish peroxidase. J. Cell Biol. 20: 497–507, 1964.
 576. Straus, W. Cytochemical observations on the transport of horseradish peroxidase in different segments of the nephron. Histochem. J. 4: 517–529, 1972.
 577. Stricker, G. E., A. E. Smuckler, and E. A. Benditt. Ultra‐structural and functional changes in the kidney after administration of carbon tetrachloride. J. Cell Biol. 35: 130a, 1967.
 578. Strober, W., and T. A. Waldmann. The role of the kidney in the metabolism of plasma proteins. Nephron 13: 35–66, 1974.
 579. Stroup, R. F., E. Weinman, J. P. Hayslett, and M. Kashgarian. Effect of luminal permeability on net transport across the amphibian proximal tubule. Am. J. Physiol. 226: 1110–1116, 1974.
 580. Sumpio, B. E., and T. Maack. Kinetics, competition and selectivity of tubular absorption of proteins. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F379–F392, 1982.
 581. Suzuki, T. Zur Morphologie der Nierensekretion unter physiologischen und pathologischen Bedingungen. Jena: Fischer, 1912, p. 1.
 582. Suzuki, Y. An electron microscopy of the renal differentiation. I. Proximal tubule cells. J. Electron Microsc. (Tokyo) 6: 52–65, 1958.
 583. Sølling, K., C. E. Mogensen, E. Vittinghus, and A. Brock. The renal handling of amylase in normal man. Nephron 23: 282–286, 1979.
 584. Tauc, M., E. Chatelet, P. Verroust, A. Vandewalle, P. Poujeol, and P. Ronco. Characterization of monoclonal antibodies specific for rabbit renal brush‐border hydrolases: application to immunohistological localization. J. Histochem. Cytochem. 36: 523–532, 1988.
 585. Taugner, R., A. Schiller, and S. Ntokalou‐Knittel. Cells and intercellular contacts in glomeruli and tubules of the frog kidney. Cell Tissue Res. 226: 589–608, 1982.
 586. Ten Kate, R. W., G. Pals, A. W. Eriksson, A.J. M. Donker, and S. G. M. Meuwissen. The renal metabolism of pepsinogen A and C in man. Clin. Nephrol. 31: 103–106, 1989.
 587. Thoenes, W. Fine structure of lipid granules in proximal tubule cells of mouse kidney, J. Cell Biol. 12: 433–437, 1962.
 588. Thoenes, W. Transportwege in den Harnkanälchen der Säugerniere. In: Funktionelle und morphologische Organisationen der Zelle. Sekretion und Exkretion. Berlin: Springer, 1965, p. 315–329.
 589. Thoenes, W., K. Hierholzer, and M. Wiederholt. Gezielte Fixierung von Nierentubuli in vivo durch Mikroperfusion zur licht‐ und elektronenmikroskopischen Untersuchung. Klin. Wochenschr. 43: 794–795, 1965.
 590. Thoenes, W., and K. H. Langer. Die Endocytose‐Phase der Eiweissresorption im proximalen Nierentubulus. Arch. Pathol. Anat. Physiol. 2: 361–379, 1969.
 591. Thoenes, W., and K. H. Langer. Relationship between cell structures of renal tubules and transport mechanisms. In: Renal Transport and Diuretics. International Symposium, Feldafing. 1968, edited by K. Thurau and H. Jahrmärker. Berlin: Springer, 1969, p. 37–64.
 592. Thoenes, W., K. H. Langer, and U. Pfeifer. Eiweissresorp‐tion, Cytoplasmaeinschmelzung und lytische Aktivitäten im Nierentubulus. Untersuchungen am Ferritin‐resorbierenden Einzeltubulus der Rattenniere. Verb. Dtsch. Ges. Pathol. 52: 294–300, 1968.
 593. Thoenes, W., and M. Wiederholt. Resorption von Ferritin im proximalen Konvolut der Rattenniere (Nach intratubulärer Applikation durch Mikropunktion). Klin. Wochenschr. 44: 1379–1381, 1966.
 594. Thuneberg, L., and J. Rostgaard. Isolation of brush border fragments from homogenates of rat and rabbit kidney cortex. Exp. Cell Res. 51: 123–140, 1968.
 595. Thuneberg, L., and J. Rostgaard. Motility of microvilli. A film demonstration. J. Ultrastruct. Res. 29: 578, 1969.
 596. Tiedemann, K., L. W. Welling, and P. Basto. Structural and functional comparison of mesonephric and metanephric proximal tubules. Pediatr. Nephrol 1: 297–305, 1987.
 597. Tiedemann, K., and R. Wettstein. The mature mesonephric nephron of the rabbit embryo. I. SEM‐studies. Cell Tissue Res. 209: 95–109, 1980.
 598. Tiedemann, K., and K. Zaar. The pig mesonephros. II. The proximal tubule: SEM, TEM and freeze‐fracture images. Anat. Embryol. 168: 241–252, 1983.
 599. Tisher, C. C. Morphology of the chimpanzee kidney: a comparison with man. In: Handbook of Chimpanzee, edited by G. H. Bourne. New York: Karger, 1970, vol. II, p. 26–68.
 600. Tisher, C. C. Anatomy of the kidney. In: The Kidney, edited by B. M. Brenner and F. C. Rector. Philadelphia: Saunders, 1976, vol. I, p. 3–64.
 601. Tisher, C. C. Anatomy of the kidney. In: The Kidney, edited by B. M. Brenner and F. C. Rector. Philadelphia: Saunders, 1981, vol. 1, p. 3–175.
 602. Tisher, C. C., R. E. Bulger, and B. F. Trump. Human renal ultrastructure. I. Proximal tubule of healthy individuals. Lab. Invest. 15: 1357–1394, 1966.
 603. Tisher, C. C., R. M. Finkel, S. Rosen, and E. M. Kendig. Renal microbodies in the rhesus monkey. Lab. Invest. 19: 1–16, 1968.
 604. Tisher, C. C., J. P. Kokko. Relationship between peritubular oncotic pressure gradients and morphology in isolated proximal tubules. Kidney Int. 6: 146–156, 1974.
 605. Tisher, C. C., and K. M. Madsen. Anatomy of the kidney. In: The Kidney, edited by B. M. Brenner and F. C. Rector. Philadelphia: Saunders, 1986, vol. 1, p. 3–60.
 606. Tisher, C. C., and S. Rosen. Ultrastructure of renal proximal tubules of the rhesus monkey: a comparison with the human. Lab. Invest. 16: 637, 1967.
 607. Tisher, C. C., S. Rosen, and G. B. Osborne. Ultrastructure of the proximal tubule of the rhesus monkey kidney. Am. J. Pathol. 56: 469–517, 1969.
 608. Tisher, C. C., and W. E. Yarger. Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat. Kidney Int. 3: 238–250, 1973.
 609. Torhorst, J., O. Von Deimling, L. Richter, and H. P. Rohr. Ultrastrukturelle und histochemische Untersuchungen an der Rattenniere bei chronischer Mangelernährung. Arch. Pathol. Anat. Physiol. 342: 334–344, 1967.
 610. Tormey, J. M., and J. M. Diamond. The ultrastructural route of fluid transport in rabbit gall bladder. J. Gen Physiol. 50: 2031–2060, 1967.
 611. Trenchev, P., J. Dorling, J. Webb, and E. J. Holborow. Localization of smooth muscle—like contractile proteins in kidney by immunoelectron microscopy. J. Anat. 121: 85–95, 1976.
 612. Tripathi, S., and E. L. Boulpaep. Mechanism of water transport by epithelial cells. Q. J. Exp. Physiol. 74: 385–417, 1989.
 613. Tripathi, S., E. L. Boulpaep, and A. B. Maunsbach. Isolated perfused Ambystoma proximal tubule: hydrodynamics modulates ultrastructure. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1129–F1147, 1987.
 614. Trump, B. F. An electron microscope study of the uptake, transport and storage of colloidal materials by the cells of the vertebrate nephron. J. Ultrastruct. Res. 5: 291–310, 1961.
 615. Trump, B. F. Ion movements in cell injury. Effects on inhibition of sodium transport on ultrastructure of the nephron and related systems. In: Proceedings of the Fourth International Congress on Nephrology, Stockholm, 1969. Embryology, Ultrastructure, Physiology, edited by N. Alwall, F. Berglund, and B. Josephson. Basel: Karger, 1970, vol. I, p. 88–101.
 616. Trump, B. F., and R. E. Bulger. Studies of cellular injury in isolated flounder tubules. I. Correlation between morphology and function of control tubules and observations of autophagocytosis and mechanical cell damage. Lab. Invest. 16: 453–482, 1967.
 617. Trump, B. F., and R. E. Bulger. Studies of cellular injury in isolated flounder tubules. IV. Electron microscopic observations of changes during the phase of altered homeostasis in tubules treated with cyanide. Lab. Invest. 18: 731–739, 1968.
 618. Trump, B. F., and R. E. Bulger. Morphology of the kidney. In: Structural Basis of Renal Disease, edited by E. L. Becker. New York: Hoeber, 1968, p. 1–92.
 619. Trump, B. F., and R. E. Bulger. Experimental modification of lateral and basilar plasma membranes and extracellular compartments in the flounder nephron. Federation Proc. 30: 22–41, 1971.
 620. Trump, B. F., and J. L. E. Ericsson. The effect of the fixative solution on the ultrastructure of cells and tissues. A comparative analysis with particular attention to the proximal convoluted tubule of the rat kidney. Lab. Invest. 14: 1245–1323, 1965.
 621. Trump, B. F., and F. L. Ginn. Studies of cellular injury in isolated flounder tubules. II. Cellular swelling in high‐potassium media. Lab. Invest. 18: 341–351, 1968.
 622. Trump, B. F., and F. L. Ginn. The pathogenesis of subcellular reaction to lethal injury. In: Methods and Achievements in Experimental Pathology. Examples of Descriptive and Functional Morphology, edited by E. Bajusz and G. Jasmin. Basel: Karger, 1969, vol. IV, p. 1–29.
 623. Trump, B. F., and R. T. Jones. Correlation of structure and active transport in the teleost nephron. J. Exp. Zool. 199: 365–382, 1977.
 624. Ullrich, K. J. Sugar, amino acid, and Na+ cotransport in the proximal tubule. Annu. Rev. Physiol. 41: 181–195, 1979.
 625. Usuda, N., M. I. Usman, M. K. Reddy, T. Hashimoto, J. K. Reddy, and M. S. Rao. Immunocytochemical localization of urate oxidase, fatty acyl‐CoA oxidase and catalase in bovine kidney peroxisomes. J. Histochem. Cytochem. 36: 253–258, 1988.
 626. Usuda, N., S. Yokota, T. Hashimoto, and T. Nagata. Immunocytochemical localization of d‐amino acid oxidase in the central clear matrix of rat kidney peroxisomes. J. Histochem. Cytochem. 34: 1709–1718, 1986.
 627. Van Deurs, B., and E. I. Christensen. Endocytosis in kidney proximal tubule cells and cultured fibroblasts: a review of the structural aspects of membrane recycling between the plasma membrane and endocytic vacuoles. Eur. J. Cell Biol. 33: 163–173, 1984.
 628. Veenhuis, M., and S. D. Wendelaar Bonga. The cytochemical demonstration of catalase and d‐amino acid oxidase in the microbodies of teleost kidney cells. Histochem. J. 9: 171–181, 1977.
 629. Venkatachalam, M. A., D. B. Bernard, J. F. Donohoe, and N. G. Levinsky. Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2 and S3 segments. Kidney Int. 14: 31–49, 1978.
 630. Venkatachalam, M. A., and M. J. Karnovsky. Extravascular protein in the kidney. Lab. Invest. 27: 435–444, 1972.
 631. Verlander, J. W., K. M. Madsen, L. Larsson, J. K. Cannon, and C. C. Tisher. Immunocytochemical localization of intracellular acidic compartments: rat proximal nephron. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F454–F462, 1989.
 632. Vernier, R. L., and A. Birch‐Andersen. Studies of the human fetal kidney. II. Permeability characteristics of the developing glomerulus. J. Ultrastruct. Res. 8: 66–88, 1963.
 633. von Möllendorff, W. Der Exkretionsapparat. In: Handbuch der Mikroskopischen Anatomie des Menschen. Berlin: Springer, 1930, vol. VII, p. 1.
 634. Wade, J. B., R. G. O'Neill, J. L. Pryor, and E. L. Boulpaep. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell. Biol. 81: 439–445, 1979.
 635. Wartiovaara, J. Studies on kidney tubulogenesis. Ann. Med. Exp. Fenniae 44: 140–150, 1966.
 636. Wattiaux‐de‐Connick, S., M.‐J. Rutgeerts, and R. Wattiaux. Lysosomes in rat‐kidney tissue. Biochim. Biophys. Acta 105: 446–459, 1965.
 637. Waugh, D., R. S. A. Prentice, and D. Yadav. The structure of the proximal tubule: a morphological study of basement membrane cristae and their relationships in the renal tubule of the rat. Am. J. Anat. 121: 775–786, 1967.
 638. Weibel, E. R. Stereological Methods. Practical Methods for Biological Morphometry. London: Academic, 1979, vol. 1.
 639. Weiss, L. The Cell Periphery. In: International Review of Cytology, edited by G. H. Bourne, J. F. Danielli, and K. W. Jeon. New York: Academic, 1969, vol. 26, p. 63–105.
 640. Welling, D. J., L. W. Welling, and J. J. Hill. Phenomenological model relating cell shape to water reabsorption in proximal nephron. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F308–F317, 1978.
 641. Welling, L. W., A. P. Evan, V. H. Gattone II, S. Rollins, R. Saunders, F. J. Kaskel, and A. Spitzer. Correlation of structure and function in developing proximal tubule of guinea pig. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F13–F17, 1989.
 642. Welling, L. W., and J. J. Grantham. Physical properties of isolated perfused renal tubules and tubular basement membranes. J. Clin. Invest. 51: 1063–1075, 1972.
 643. Welling, L. W., and D. J. Welling. Surface areas of brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int. 8: 343–348, 1975.
 644. Welling, L. W., and D. J. Welling. Shape of epithelial cells and intercellular channels in the rabbit proximal nephron. Kidney Int. 9: 385–394, 1976.
 645. Welling, L. W., and D. J. Welling. Relationship between structure and function in renal proximal tubule. J. Electron Microsc. Technique 9: 171–185, 1988.
 646. Welling, L. W., D. J. Welling, J. W. Holsapple, and A. P. Evan. Morphometric analysis of distinct microanatomy near the base of proximal tubule cells. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F126–F140, 1987.
 647. Welling, L. W., D. J. Welling, and T. J. Ochs. Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F123–F129, 1983.
 648. Wendelaar Bonga, S. E. Morphometrical analysis with the light and electron microscope of the kidney of the anadromous three‐spined stickleback Gasterosteus aculeatus, form trachurus, from fresh water and from sea water. Z. Zellforsch. 137: 563–588, 1973.
 649. Wendelaar Bonga, S. E., and M. Veenhuis. The membranes of the basal labyrinth in kidney cells of the stickleback, Gasterosteus aculeatus, studied in ultrathin sections and freezeetch replicas. J. Cell Sci. 14: 587–609, 1974.
 650. Wettstein, R., and K. Tiedemann. The mature mesonephric nephron of the rabbit embryo. II. TEM‐studies. Cell Tissue Res. 218: 161–180, 1981.
 651. Whitlock, R. T., and H. O. Wheeler. Coupled transport of solute and water across rabbit gallbladder epithelium. J. Clin. Invest. 43: 2249–2265, 1964.
 652. Whittembury, G. Mechanisms of epithelial solute‐solvent coupling. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 199–214.
 653. Whittembury, G., and F. A. Rawlins. Evidence of a paracellular pathway for ion flow in the kidney proximal tubule: electromicroscopic demonstration of lanthanum precipitate in the tight junction. Pflugers Arch. 330: 302–309, 1971.
 654. Wiederholt, M., K. H. Langer, W. Thoenes, and K. Hierholzer. Funktionelle und morphologische Untersuchungen am proximalen und distalen Konvolut der Rattenmere zur Methode der gespaltenen Ölsäule (split‐oil droplet method). Pflugers Arch. 302: 166–191, 1968.
 655. Windhager, E. E., and G. Giebisch. Proximal sodium and fluid transport. Kidney Int. 9: 121–133, 1976.
 656. Woodhall, P. B., C. C. Tisher, C. A. Simonton, and R. R. Robinson. Relationship between para‐aminohippurate secretion and cellular morphology in rabbit proximal tubules. J. Clin. Invest. 61: 1320–1329, 1978.
 657. Yokota, S., K. Ichikawa, and T. Hashimoto. Light and electron microscopic localization of l‐alpha‐hydroxyacid oxidase in rat kidney revealed by immunocytochemical techniques. Histochemistry 82: 25–32, 1985.
 658. Yokota, S., and K. Kato. Involvement of cathepsins B and H in lysosomal degradation of horseradish peroxidase endocytosed by the proximal tubule cells of the rat kidney: II. Immunocytochemical studies using protein A‐gold technique applied to conventional and serial sections. Anat. Rec. 221: 791–801, 1988.
 659. Yokota, S., and K. Kato. The heterogeneity of rat kidney lysosomes revealed by immunoelectron microscopic staining for cathepsins B and H. Histochemistry 89: 499–504, 1988.
 660. Yokota, S., Y. Nishimura, and K. Kato. Localization of cathepsin L in rat kidney revealed by immunoenzyme and immunogold techniques. Histochemistry 90: 277–283, 1988.
 661. Yokota, S., H. Tsuji, and K. Kato. Immunocytochemical localization of cathepsin H in rat kidney. Light and electron microscopic study. Histochemistry 85: 223–230, 1986.
 662. Youson, J. H. The morphology of the kidney in young adult anadromous sea lampreys Petromyzon marinus L., adapted to seawater. I. General morphology and fine structure of the renal corpuscle and the proximal segments. Can. J. Zool. 60: 2351–2366, 1982.
 663. Youson, J. H., and D. B. McMillan. The opisthonephric kidney of the sea lamprey of the great lakes, Petromyzon marinus L. II. Neck and proximal segments of the tubular nephron. Am. J. Anat. 127: 233–258, 1970.
 664. Yun, J., and R. A. Kenney. Preparation of cat kidney tissue for ultrastructural studies. J. Electron Microsc. 25: 11–23, 1976.
 665. Zaar, K., F. Hartig, H. D. Fahimi, and K. Gorgas. Peroxisomal aggregates forming large stacks in the lipid segment of the canine kidney. Acta Histochemica, Suppl. 29: 165–168, 1984.
 666. Zaar, K., A. Völkl, and H. D. Fahimi. Isolation and characterization of peroxisomes from the renal cortex of beef, sheep, and cat. Eur. J. Cell. Biol. 40: 16–24, 1986.
 667. Zabel, M., and T. H. Schiebler. Histochemical, autoradiographic and electron microscopic investigations of the renal proximal tubule of male and female rats after castration. Histochemistry 69: 255–276, 1980.
 668. Zeller, J. Zur Cytochemie der Lysosomen in der Rattenniere unter normalen und experimentellen Bedingungen. Histochemie 35: 235–262, 1973.
 669. Zimmermann, H.‐D., and S. Boseck. Licht‐, elektronmikroskopische und beugunsanalytische Untersuchungen an intraepithelialen Filamentbündeln in der Niere des erwachsenen Menschen. Virchows Arch. [A.] 366: 27–49, 1975.
 670. Zimmermann, K. W. Zur Morphologie der Epithelzellen der Säugetierniere. Arch. Mikroscop. Anat. 78: 199–231, 1911.
 671. Zuasti, A., B. Agulleiro, and F. Hernandez. Ultrastructure of the kidney of the marine teleost Sparus auratus: the renal corpuscle and the tubular nephron. Cell Tissue Res. 228: 99–106, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Arvid B. Maunsbach, Erik Ilsø Christensen. Functional Ultrastructure of the Proximal Tubule. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 41-107. First published in print 1992. doi: 10.1002/cphy.cp080102