Comprehensive Physiology Wiley Online Library

Morphology of the Loop of Henle, Distal Tubule, and Collecting Duct

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Loops of Henle
1.1 Intermediate Tubule
1.2 Thick Ascending Limb
1.3 Macula Densa
2 Distal Segments
2.1 Definition and Nomenclature
2.2 General Cytological Organization of the Distal Segments
2.3 Distal Convoluted Tubule
2.4 Connecting Tubule
2.5 Cortical Collecting Duct
3 Medullary Collecting Ducts
3.1 Microanatomical Organization and Histotopographical Aspects
3.2 Outer Medullary Collecting Duct
3.3 Inner Medullary Collecting Duct
3.4 Cytochemical Aspects
3.5 Structure—Function Correlations
4 Intercalated Cells
4.1 Cell Structure
4.2 Intercalated Cells in the Cortex
4.3 Cytochemical Aspects
4.4 Distribution of Intercalated Cells in the Kidney Zones
4.5 Structure—Function Correlations
Figure 1. Figure 1.

Schematic showing locations and compositions of loops of Henle. Short loop (right, belonging to a superficial glomerulus) has a descending thick limb (pars recta of proximal tubule; hatched), a descending thin limb (turning back near border between inner stripe [IS] and inner medulla [IM], shown in white), and a thick ascending limb (cross‐hatched), which passes over into distal convoluted tubule a short distance beyond macula densa (shown in black). Long loop (belonging to a juxtamedullary glomerulus) contains a descending thin limb (subdivided into two parts, lightly dotted and medium dotted) and an ascending thin limb (densely dotted); the bend is located in the papilla. Two additional long loops (incompletely drawn) demonstrate heterogeneity among long loops turning back at different levels within inner medulla. Numbers 1–4 refer to type of epithelium encountered in corresponding thin limb part: type 1, DTL of short loops; type 2, upper part of DTL of long loops; type 3, lower part of DTL of long loops; type 4 (beginning short distance before bend), ascending thin limb. C, cortex; OS, outer stripe.

Figure 2. Figure 2.

Schematic showing salient features of thin limb epithelia. Type 1 epithelium (a) is found in descending thin limb of short loops. Type 2 epithelium (b and c) is found in upper part of descending thin limb of long loops; in most species, it is complexely organized (type 2, complex; b), in others (rabbit), it is much more simple (type 2, simple; c). Type 3 epithelium (d) occurs in lower parts of descending thin limb of long loops. Type 4 epithelium (e) is found in loop bend and in ascending thin limb.

Figure 3. Figure 3.

Descending thin limb of short loop, rat. a: overview of entire cross‐sectional profile. × ∼4,000. C, cilium. b: shows simplicity of type 1 epithelium. × ∼12,000. c: shows complex tight junction in freeze‐fracture replica. × ∼71,000. Intramembrane particle clusters (*) seen on P‐face of basolateral membrane correspond to desmosomes.

Figure 4. Figure 4.

Descending thin limb of long loop, upper part, in rat. a: overview of entire tubular profile; note many tight junctions (arrows). × ∼4,000. b: longitudinal section through epithelium; numerous tight junctions (arrows) indicate extensive cellular interdigitation. Note basolateral “labyrinth.” × ∼18,000. c: flat section through epithelium, showing star‐like shape of epithelial cells responsible for cellular interdigitation. Note microfilament bundles (*) in basal epithelium. × ∼13,500.

Figure 5. Figure 5.

Descending thin limb of long loops; freeze‐fracture electron microscopy. a: luminal aspect of rat epithelium, showing high degree of cellular interdigitation. Tight junctions consist of one single strand (arrows). × ∼12,700. [From Kriz et al. 254.] b: P‐face of Psammomys basolateral membrane, showing extremely high density of uniform intramembrane particles. BS, basal slit. × ∼28,500. [From Kriz et al. 255.] c: P‐face of rabbit luminal membrane; intramembrane particle density is somewhat less than in basolateral membrane, but nevertheless very high. × ∼41,000.

From Schiller et al. 375
Figure 6. Figure 6.

Type 3 epithelium of descending thin limb of long loops. a: overview of entire cross‐sectional profile from rat. Only two tight junctions (arrows) are encountered. × ∼3,750. b: shows simplicity of rat epithelium. × ∼16,500. c: freeze‐fracture electron microscopy shows complex tight junction in rat. × ∼52,000. L, tubular lumen. d: freeze‐fracture electron micrograph of basal aspect of epithelium in Psammomys, showing regularly arranged profiles of basal infoldings (BI). × ∼14,500.

Figure 7. Figure 7.

Descending thin limb of long loop, upper part of simple type, in rabbit. × ∼3,000. a: overview of entire cross‐sectional profile. Compare to Figure 4 to recognize simplicity of epithelium. Only three junctional complexes are present (arrows). b: Freeze‐fracture electron micrograph, showing complex tight junction (T) and high intramembrane particle density in both the luminal (L) and basolateral (BL) membrane. × ∼55,000

From Schiller et al. 375
Figure 8. Figure 8.

Ascending thin limb of long loop. a: overview of entire cross‐sectional profile in rat. × ∼3,000. Note many tight junctions (arrows). b: longitudinal section through rat epithelium, showing high degree of cellular interdigitation (junctions marked by arrows). × ∼11,500. c: freeze‐fracture electron micrograph, showing luminal aspect of interdigitating cell processes in Psammomys. × ∼1,000. Tight junctions (arrows) consist of one single strand. LU, lumen. d: freeze‐fracture electron micrograph, showing luminal aspect of two interdigitating cells in the rat. × ∼12,000. Note two different types of intramembrane textures.

Figure 9. Figure 9.

Thick ascending limb in rat, cortical (a) and medullary (b) parts. Note differences in outer diameter and epithelial thickness; epithelium of medullary part contains considerably more mitochondria and more basolateral membranes than cortical part. a, × ∼2,750; b, × ∼2,500.

Figure 10. Figure 10.

Thick ascending limb in rat, showing epithelia of the cortical (a) and medullary (b) parts. Organizations of both epithelia are identical. In taller epithelium of medullary part, basolateral membrane amplification achieved by cellular interdigitation is much greater and there are more and larger mitochondria. Apical cytoplasm is frequently filled with numerous vesicles and tubular profiles. Note many tight junctions in cortical part. a, × ∼20,000; b, × ∼11,000.

Figure 11. Figure 11.

Thick ascending limbs, details. a: apical cytoplasm of rat cortical part filled with many vesiculotubular profiles. × ∼25,500. b: tannic acid—stained specimen from rat. Lateral membranes of interdigitating cell processes are connected by intercellular skeleton that bridges intercellular spaces. Skeleton consists of regularly arranged strands (arrows) spanning entire width of intercellular spaces between opposite membranes. × ∼68,500. c: freeze‐fracture electron micrograph. Rabbit tight junction (T) consists of several densely arranged strands. LM, luminal membrane; BLM, basolateral membrane. × ∼34,000. d: freeze‐fracture electron micrograph. En face view of rabbit basal epithelial surface, showing basal slits between basal ridges. × ∼9,700.

c and d in collaboration with A. Schiller and R. Taugner
Figure 12. Figure 12.

Macula densa. a: light micrograph, showing location of rat macula densa (MD) within the end portion of the cortical thick ascending limb. Shortly after MD, cortical thick ascending limb transforms into distal convoluted tubule (short arrows). Long arrow indicates direction of tubular fluid flow. × ∼380. b: light micrograph of rat macula densa (MD) within cortical thick ascending limb. Epithelium of MD has, under control conditions, conspicuously dilated intercellular spaces; those spaces between thick ascending limb cells are narrow. EGM, extraglomerular mesangium. × ∼720. c: scanning electron micrograph. (CTAL) Cortical thick ascending limb is open at level of macula densa (MD); luminal aspect of rabbit MD cell plaque is visible. EGM, extraglomerular mesangium. × ∼2,000. d: longitudinal section through Psammomys macula densa plaque; in this example, intercellular spaces are closed. Note dense arrangement of cell nuclei. In contrast to thick ascending limb cells, MD cells do not interdigitate with lateral processes. Basal part of macula densa abuts extraglomerular mesangium (EGM). N, nerves. × ∼3,200.

Figure 13. Figure 13.

Schematic of salient features of a: macula densa, b: cortical thick ascending limb, and c: medullary thick ascending limb.

Figure 14. Figure 14.

Schematic of arrangement and location of distal segments and collecting ducts. Distal convoluted tubule (hatched) begins abruptly a short distance beyond macula densa (black) and transforms gradually into connecting tubule (dotted). Connecting tubules of deep and midcortical nephrons join to form an arcade, which ascends within the cortical labyrinth; they then pass over gradually into cortical collecting duct (white), which descends into medulla. Outer medullary collecting duct (OMCD) is subdivided into an outer stripe part (OS) and an inner stripe part (IS), followed by inner medullary collecting duct (IMCD). Intercalated cells (dark semicircles) may appear in terminal portion of distal convoluted tubule and are present in connecting tubule, cortical collecting duct, outer medullary collecting duct, and, in some species, the initial part of the inner medullary collecting duct. C, cortex; IM, inner medulla.

Figure 15. Figure 15.

Distal convoluted tubule in rat. a: overview, showing homogeneous composition by one cell type. Note typical location of cell nuclei in apical cytoplasm. × ∼3,300. b: longitudinal section through epithelium, demonstrating high degree of interdigitation by cell processes and close association between lateral membranes and large mitochondria within processes. C, cilium; T, tight junction. × ∼11,000.

Figure 16. Figure 16.

Connecting tubule in rat. Light micrograph of longitudinal section through renal cortex, showing several profiles of connecting tubules (arcades) alongside a cortical radial vein (CRV). Connecting tubule epithelium is heterogeneously composed of connecting tubule cells (asterisks) and intercalated cells (arrows). Note accumulation of intercalated cells close to afferent arteriole. (A). × ∼510.

Figure 17. Figure 17.

Connecting tubule cell in rat. a: differences between connecting tubule cell and distal convoluted tubule cell are most obvious when tracing basolateral cell membrane: in connecting tubule cell, “basal labyrinth” is predominantly established by infoldings of basal cell membrane; extracellular spaces between membranes do not belong to lateral intercellular spaces. There are comparably few mitochondria associated with basolateral cell membrane. G, Golgi apparatus. × ∼9,700. b: cell membranes of basal infoldings often are adorned with vesicular profiles (arrows). × ∼57,000.

Figure 18. Figure 18.

Cortical collecting duct in rat. Light micrograph of longitudinal section through superficial renal cortex. Cortical collecting duct epithelium is heterogenously composed of collecting duct cells (asterisks) and intercalated cells (arrows). P, proximal tubule; T, thick ascending limb. × ∼500.

Figure 19. Figure 19.

Cortical collecting duct cells. a: longitudinal section through rat cell; basal region of cell contains numerous infoldings, and cytoplasm between them is devoid of cell organelles. Mitochondria are located above this region. Note Golgi fields (G), endoplasmic reticulum, and many polysomes. Tight junction is deep. × ∼7,100. b: cross section through rabbit cortical collecting duct epithelium at level of basal infoldings; cell borders are marked by arrows. Note complicated extracellular space associated with basal infoldings (within marked outline of a cell), which does not necessarily communicate with lateral intercellular spaces (between opposite rows of arrows). × ∼7,500.

Figure 20. Figure 20.

Schematic showing salient features of a: DCT cell, b: CNT cell, and c: cortical CD cell.

Figure 21. Figure 21.

Outer medullary collecting duct in rat. Light micrograph of longitudinal section through outer stripe. Two OMCDs are shown, whose epithelium is thinner than that in cortical CD cells in superficial cortex (Fig. 18). Heterogeneous composition of epithelium containing cortical CD cells (asterisks) and intercalated cells (arrows) is apparent. P, proximal tubule; T, thick ascending limb. × ∼700.

Figure 22. Figure 22.

Light micrographs of longitudinal sections through rat papilla. a: overview showing increase in epithelial height along descent of the terminal portions of inner medullary collecting ducts (mainly IMCD3) toward the papilla. × ∼64. b: Epithelium of IMCD3 is homogeneously composed of one type of relatively tall cell (IMCD cells). × ∼300. c: cells making up the epithelium covering the surface of the papilla are obviously structurally different from IMCD cells. × ∼260.

Figure 23. Figure 23.

Outer medullary collecting duct, inner stripe part, in a: rat and b: rabbit. In both species, epithelium is heterogeneously composed of cortical CD cells (the majority) and intercalated cells (arrows). a, × ∼2,100; b, × ∼3,000.

Figure 24. Figure 24.

Outer medullary collecting duct in inner stripe in rat. a: as in cortical collecting duct, basal zone of cell contains numerous basal infoldings. Middle zone is filled with polysomes, Golgi fields (G), mitochondria, and lysosomal elements. × ∼17,300. b: in apical cytoplasm, accumulation of flat and elongated vesicles (believed to be aggrephores) is frequently found. × ∼36,000. c: elongated vesicles are often found to fuse with apical cell membrane in rectangular manner. × ∼72,000. d: elongated vesicles in apical cytoplasm, often carrying clathrin‐coated head (arrows). × ∼81,000.

Figure 25. Figure 25.

Longitudinal sections through epithelium of IMCDs in upper part (a), middle part (b), and terminal part (c) of the inner medulla in rat. (Note differences in magnification.) a: relatively flat cortical CD cells in IMCD1 are not different in epithelial organization from the cortical CD cells in outer medulla. Beneath smooth apical cell membrane, a thin cytoplasmic stripe is devoid of cell organelles. × ∼18,500. b: IMCD cells in IMCD2 are considerably taller than in upper part. Their luminal surface bears many short microvilli, many lateral folds project into lateral intercellular spaces (arrow). Basic organization of cells is retained: basal zone with basal infoldings; middle zone containing Golgi fields, mitochondria, and lysosomal elements; and thin apical zone with tubular and vesicular profiles. × ∼15,500. c: IMCD cells in IMCD3 are tall and contain a large nucleus. Relative to size of cells, few cell organelles are encountered. Apical cell membrane bears many stubby microvilli; lateral intercellular spaces (arrow) are filled with microfolds and microvilli projecting from lateral cell membranes. Cytoplasm immediately beneath apical cell membrane is devoid of cell organelles. × ∼8,500.

Figure 26. Figure 26.

Inner medullary collecting duct in rabbit; freeze‐fracture electron micrographs. a: cortical CD cell whose smooth luminal membrane is separated from basolateral membrane by prominent tight junction consisting of several anastomosing junctional strands. × ∼16,300. b: Basal aspect of cortical CD cell. Polygonal shape of this cell is recognized by contours of basal slits through which lateral intercellular spaces (LIS) open into interstitium. Basal openings of extracellular spaces between basal infoldings (BI) are separated from lateral intercellular spaces. × ∼4,100.

b from Kriz and Kaissling 249
Figure 27. Figure 27.

Schematic showing salient features of middle one‐third of IMCD cell.

Figure 28. Figure 28.

Inner medullary collecting ducts in rat; freeze‐fracture electron micrograph. a: luminal membrane, showing intramembrane particle clusters (arrows); they are frequently located within pits of luminal membrane. × ∼40,000. [From Lacy 265.] b: basolateral membrane, containing orthogonally arranged particle clusters (arrows) whose functional relevance is unknown. × ∼54,000.

Figure 29. Figure 29.

a: Two rabbit cortical collecting ducts with homogeneous population of intercalated cells (arrows), revealing constricted apical cell pole adorned with tuft of long microvilli. × ∼810. b: rat cortical collecting duct with heterogeneous population of intercalated cells. Probably the two cells marked by single arrows are type A cells; other two cells marked by double arrows are type B cells. × ∼2,200.

Figure 30. Figure 30.

Intercalated cell, type A, in rat connecting tubule. a: broad apical cell pole densely covered by finger‐like microprojections. Mitochondria have narrowly arranged cristae and are accumulated in apical cell portion. Specific vesicles are sparse in this example of intercalated cell and are totally lacking in basal cell portion. G, Golgi apparatus; P, polysomes and rough endoplasmic reticulum. × ∼9,000. b: finger‐like microprojections of type A cells reveal coat of “studs” (arrowheads) on cytoplasmic membrane face. × ∼45,000. c: specific “flat” (long arrow) and invaginated (double arrows) vesicles also reveal studs and are interspersed between profiles of smooth endoplasmic reticulum (ER), clathrin vesicles (arrowheads), microtubules (T), and polysomes (P). × ∼45,000.

Figure 31. Figure 31.

Intercalated cell type B in rat cortical collecting duct. a: cell has an approximately elliptical profile; mitochondria are distributed predominantly in basal and lateral cell portions, numerous small vesicles are apparent in apical and basal cell portions. × ∼9,000. b: small invaginated vesicles are interspersed among profiles of smooth endoplasmic reticulum and a few flat vesicles. Only a few specific vesicles reveal studs. × ∼27,500. c: numerous invaginated vesicles (mostly without studs) are often found in basal cell portion. × ∼45,000. d: in some type B IC cells, basal infoldings reveal same dense coat of studs on cytoplasmic membrane face (arrowheads) as apical microprojections of type A cells. × ∼45,000.

Figure 32. Figure 32.

Intercalated cell in inner stripe of rat outer medullary collecting duct. a: intercalated cells in medulla generally have a characteristic flattened nucleus, rather few mitochondria, and numerous vesicles in apical cell portion. × ∼10,300. b: flat studded vesicles (single arrow) may be particularly abundant among invaginated studded vesicles (double arrows) within apical cytoplasm. × ∼45,000.

Figure 33. Figure 33.

Intercalated cells in rat cortex. Freeze‐fracture electron micrographs. a: luminal membrane LM of intercalated cell is densely stuffed with arrays of rod‐shaped particles that probably correspond to studs in transmission electron micrographs. × 32,500. b: rod‐shaped particles are also found on the P‐face of cytoplasmic flat vesicles (single arrow); corresponding depressions are seen (double arrows) on E‐face. × 45,000. c: in other intercalated cells, rod‐shaped particles are found on basolateral membrane (arrows). T, tight junctions; LM, luminal membrane. × ∼27,000.

Figure 34. Figure 34.

Schematic of salient features of intercalated cells. a: type A. b: type B. c: medullary type.

Figure 35. Figure 35.

Light micrograph of connecting tubule in rat chronically treated with furosemide, showing intercalated type A cells (arrows) forming clusters around afferent arteriole (A). × ∼900.



Figure 1.

Schematic showing locations and compositions of loops of Henle. Short loop (right, belonging to a superficial glomerulus) has a descending thick limb (pars recta of proximal tubule; hatched), a descending thin limb (turning back near border between inner stripe [IS] and inner medulla [IM], shown in white), and a thick ascending limb (cross‐hatched), which passes over into distal convoluted tubule a short distance beyond macula densa (shown in black). Long loop (belonging to a juxtamedullary glomerulus) contains a descending thin limb (subdivided into two parts, lightly dotted and medium dotted) and an ascending thin limb (densely dotted); the bend is located in the papilla. Two additional long loops (incompletely drawn) demonstrate heterogeneity among long loops turning back at different levels within inner medulla. Numbers 1–4 refer to type of epithelium encountered in corresponding thin limb part: type 1, DTL of short loops; type 2, upper part of DTL of long loops; type 3, lower part of DTL of long loops; type 4 (beginning short distance before bend), ascending thin limb. C, cortex; OS, outer stripe.



Figure 2.

Schematic showing salient features of thin limb epithelia. Type 1 epithelium (a) is found in descending thin limb of short loops. Type 2 epithelium (b and c) is found in upper part of descending thin limb of long loops; in most species, it is complexely organized (type 2, complex; b), in others (rabbit), it is much more simple (type 2, simple; c). Type 3 epithelium (d) occurs in lower parts of descending thin limb of long loops. Type 4 epithelium (e) is found in loop bend and in ascending thin limb.



Figure 3.

Descending thin limb of short loop, rat. a: overview of entire cross‐sectional profile. × ∼4,000. C, cilium. b: shows simplicity of type 1 epithelium. × ∼12,000. c: shows complex tight junction in freeze‐fracture replica. × ∼71,000. Intramembrane particle clusters (*) seen on P‐face of basolateral membrane correspond to desmosomes.



Figure 4.

Descending thin limb of long loop, upper part, in rat. a: overview of entire tubular profile; note many tight junctions (arrows). × ∼4,000. b: longitudinal section through epithelium; numerous tight junctions (arrows) indicate extensive cellular interdigitation. Note basolateral “labyrinth.” × ∼18,000. c: flat section through epithelium, showing star‐like shape of epithelial cells responsible for cellular interdigitation. Note microfilament bundles (*) in basal epithelium. × ∼13,500.



Figure 5.

Descending thin limb of long loops; freeze‐fracture electron microscopy. a: luminal aspect of rat epithelium, showing high degree of cellular interdigitation. Tight junctions consist of one single strand (arrows). × ∼12,700. [From Kriz et al. 254.] b: P‐face of Psammomys basolateral membrane, showing extremely high density of uniform intramembrane particles. BS, basal slit. × ∼28,500. [From Kriz et al. 255.] c: P‐face of rabbit luminal membrane; intramembrane particle density is somewhat less than in basolateral membrane, but nevertheless very high. × ∼41,000.

From Schiller et al. 375


Figure 6.

Type 3 epithelium of descending thin limb of long loops. a: overview of entire cross‐sectional profile from rat. Only two tight junctions (arrows) are encountered. × ∼3,750. b: shows simplicity of rat epithelium. × ∼16,500. c: freeze‐fracture electron microscopy shows complex tight junction in rat. × ∼52,000. L, tubular lumen. d: freeze‐fracture electron micrograph of basal aspect of epithelium in Psammomys, showing regularly arranged profiles of basal infoldings (BI). × ∼14,500.



Figure 7.

Descending thin limb of long loop, upper part of simple type, in rabbit. × ∼3,000. a: overview of entire cross‐sectional profile. Compare to Figure 4 to recognize simplicity of epithelium. Only three junctional complexes are present (arrows). b: Freeze‐fracture electron micrograph, showing complex tight junction (T) and high intramembrane particle density in both the luminal (L) and basolateral (BL) membrane. × ∼55,000

From Schiller et al. 375


Figure 8.

Ascending thin limb of long loop. a: overview of entire cross‐sectional profile in rat. × ∼3,000. Note many tight junctions (arrows). b: longitudinal section through rat epithelium, showing high degree of cellular interdigitation (junctions marked by arrows). × ∼11,500. c: freeze‐fracture electron micrograph, showing luminal aspect of interdigitating cell processes in Psammomys. × ∼1,000. Tight junctions (arrows) consist of one single strand. LU, lumen. d: freeze‐fracture electron micrograph, showing luminal aspect of two interdigitating cells in the rat. × ∼12,000. Note two different types of intramembrane textures.



Figure 9.

Thick ascending limb in rat, cortical (a) and medullary (b) parts. Note differences in outer diameter and epithelial thickness; epithelium of medullary part contains considerably more mitochondria and more basolateral membranes than cortical part. a, × ∼2,750; b, × ∼2,500.



Figure 10.

Thick ascending limb in rat, showing epithelia of the cortical (a) and medullary (b) parts. Organizations of both epithelia are identical. In taller epithelium of medullary part, basolateral membrane amplification achieved by cellular interdigitation is much greater and there are more and larger mitochondria. Apical cytoplasm is frequently filled with numerous vesicles and tubular profiles. Note many tight junctions in cortical part. a, × ∼20,000; b, × ∼11,000.



Figure 11.

Thick ascending limbs, details. a: apical cytoplasm of rat cortical part filled with many vesiculotubular profiles. × ∼25,500. b: tannic acid—stained specimen from rat. Lateral membranes of interdigitating cell processes are connected by intercellular skeleton that bridges intercellular spaces. Skeleton consists of regularly arranged strands (arrows) spanning entire width of intercellular spaces between opposite membranes. × ∼68,500. c: freeze‐fracture electron micrograph. Rabbit tight junction (T) consists of several densely arranged strands. LM, luminal membrane; BLM, basolateral membrane. × ∼34,000. d: freeze‐fracture electron micrograph. En face view of rabbit basal epithelial surface, showing basal slits between basal ridges. × ∼9,700.

c and d in collaboration with A. Schiller and R. Taugner


Figure 12.

Macula densa. a: light micrograph, showing location of rat macula densa (MD) within the end portion of the cortical thick ascending limb. Shortly after MD, cortical thick ascending limb transforms into distal convoluted tubule (short arrows). Long arrow indicates direction of tubular fluid flow. × ∼380. b: light micrograph of rat macula densa (MD) within cortical thick ascending limb. Epithelium of MD has, under control conditions, conspicuously dilated intercellular spaces; those spaces between thick ascending limb cells are narrow. EGM, extraglomerular mesangium. × ∼720. c: scanning electron micrograph. (CTAL) Cortical thick ascending limb is open at level of macula densa (MD); luminal aspect of rabbit MD cell plaque is visible. EGM, extraglomerular mesangium. × ∼2,000. d: longitudinal section through Psammomys macula densa plaque; in this example, intercellular spaces are closed. Note dense arrangement of cell nuclei. In contrast to thick ascending limb cells, MD cells do not interdigitate with lateral processes. Basal part of macula densa abuts extraglomerular mesangium (EGM). N, nerves. × ∼3,200.



Figure 13.

Schematic of salient features of a: macula densa, b: cortical thick ascending limb, and c: medullary thick ascending limb.



Figure 14.

Schematic of arrangement and location of distal segments and collecting ducts. Distal convoluted tubule (hatched) begins abruptly a short distance beyond macula densa (black) and transforms gradually into connecting tubule (dotted). Connecting tubules of deep and midcortical nephrons join to form an arcade, which ascends within the cortical labyrinth; they then pass over gradually into cortical collecting duct (white), which descends into medulla. Outer medullary collecting duct (OMCD) is subdivided into an outer stripe part (OS) and an inner stripe part (IS), followed by inner medullary collecting duct (IMCD). Intercalated cells (dark semicircles) may appear in terminal portion of distal convoluted tubule and are present in connecting tubule, cortical collecting duct, outer medullary collecting duct, and, in some species, the initial part of the inner medullary collecting duct. C, cortex; IM, inner medulla.



Figure 15.

Distal convoluted tubule in rat. a: overview, showing homogeneous composition by one cell type. Note typical location of cell nuclei in apical cytoplasm. × ∼3,300. b: longitudinal section through epithelium, demonstrating high degree of interdigitation by cell processes and close association between lateral membranes and large mitochondria within processes. C, cilium; T, tight junction. × ∼11,000.



Figure 16.

Connecting tubule in rat. Light micrograph of longitudinal section through renal cortex, showing several profiles of connecting tubules (arcades) alongside a cortical radial vein (CRV). Connecting tubule epithelium is heterogeneously composed of connecting tubule cells (asterisks) and intercalated cells (arrows). Note accumulation of intercalated cells close to afferent arteriole. (A). × ∼510.



Figure 17.

Connecting tubule cell in rat. a: differences between connecting tubule cell and distal convoluted tubule cell are most obvious when tracing basolateral cell membrane: in connecting tubule cell, “basal labyrinth” is predominantly established by infoldings of basal cell membrane; extracellular spaces between membranes do not belong to lateral intercellular spaces. There are comparably few mitochondria associated with basolateral cell membrane. G, Golgi apparatus. × ∼9,700. b: cell membranes of basal infoldings often are adorned with vesicular profiles (arrows). × ∼57,000.



Figure 18.

Cortical collecting duct in rat. Light micrograph of longitudinal section through superficial renal cortex. Cortical collecting duct epithelium is heterogenously composed of collecting duct cells (asterisks) and intercalated cells (arrows). P, proximal tubule; T, thick ascending limb. × ∼500.



Figure 19.

Cortical collecting duct cells. a: longitudinal section through rat cell; basal region of cell contains numerous infoldings, and cytoplasm between them is devoid of cell organelles. Mitochondria are located above this region. Note Golgi fields (G), endoplasmic reticulum, and many polysomes. Tight junction is deep. × ∼7,100. b: cross section through rabbit cortical collecting duct epithelium at level of basal infoldings; cell borders are marked by arrows. Note complicated extracellular space associated with basal infoldings (within marked outline of a cell), which does not necessarily communicate with lateral intercellular spaces (between opposite rows of arrows). × ∼7,500.



Figure 20.

Schematic showing salient features of a: DCT cell, b: CNT cell, and c: cortical CD cell.



Figure 21.

Outer medullary collecting duct in rat. Light micrograph of longitudinal section through outer stripe. Two OMCDs are shown, whose epithelium is thinner than that in cortical CD cells in superficial cortex (Fig. 18). Heterogeneous composition of epithelium containing cortical CD cells (asterisks) and intercalated cells (arrows) is apparent. P, proximal tubule; T, thick ascending limb. × ∼700.



Figure 22.

Light micrographs of longitudinal sections through rat papilla. a: overview showing increase in epithelial height along descent of the terminal portions of inner medullary collecting ducts (mainly IMCD3) toward the papilla. × ∼64. b: Epithelium of IMCD3 is homogeneously composed of one type of relatively tall cell (IMCD cells). × ∼300. c: cells making up the epithelium covering the surface of the papilla are obviously structurally different from IMCD cells. × ∼260.



Figure 23.

Outer medullary collecting duct, inner stripe part, in a: rat and b: rabbit. In both species, epithelium is heterogeneously composed of cortical CD cells (the majority) and intercalated cells (arrows). a, × ∼2,100; b, × ∼3,000.



Figure 24.

Outer medullary collecting duct in inner stripe in rat. a: as in cortical collecting duct, basal zone of cell contains numerous basal infoldings. Middle zone is filled with polysomes, Golgi fields (G), mitochondria, and lysosomal elements. × ∼17,300. b: in apical cytoplasm, accumulation of flat and elongated vesicles (believed to be aggrephores) is frequently found. × ∼36,000. c: elongated vesicles are often found to fuse with apical cell membrane in rectangular manner. × ∼72,000. d: elongated vesicles in apical cytoplasm, often carrying clathrin‐coated head (arrows). × ∼81,000.



Figure 25.

Longitudinal sections through epithelium of IMCDs in upper part (a), middle part (b), and terminal part (c) of the inner medulla in rat. (Note differences in magnification.) a: relatively flat cortical CD cells in IMCD1 are not different in epithelial organization from the cortical CD cells in outer medulla. Beneath smooth apical cell membrane, a thin cytoplasmic stripe is devoid of cell organelles. × ∼18,500. b: IMCD cells in IMCD2 are considerably taller than in upper part. Their luminal surface bears many short microvilli, many lateral folds project into lateral intercellular spaces (arrow). Basic organization of cells is retained: basal zone with basal infoldings; middle zone containing Golgi fields, mitochondria, and lysosomal elements; and thin apical zone with tubular and vesicular profiles. × ∼15,500. c: IMCD cells in IMCD3 are tall and contain a large nucleus. Relative to size of cells, few cell organelles are encountered. Apical cell membrane bears many stubby microvilli; lateral intercellular spaces (arrow) are filled with microfolds and microvilli projecting from lateral cell membranes. Cytoplasm immediately beneath apical cell membrane is devoid of cell organelles. × ∼8,500.



Figure 26.

Inner medullary collecting duct in rabbit; freeze‐fracture electron micrographs. a: cortical CD cell whose smooth luminal membrane is separated from basolateral membrane by prominent tight junction consisting of several anastomosing junctional strands. × ∼16,300. b: Basal aspect of cortical CD cell. Polygonal shape of this cell is recognized by contours of basal slits through which lateral intercellular spaces (LIS) open into interstitium. Basal openings of extracellular spaces between basal infoldings (BI) are separated from lateral intercellular spaces. × ∼4,100.

b from Kriz and Kaissling 249


Figure 27.

Schematic showing salient features of middle one‐third of IMCD cell.



Figure 28.

Inner medullary collecting ducts in rat; freeze‐fracture electron micrograph. a: luminal membrane, showing intramembrane particle clusters (arrows); they are frequently located within pits of luminal membrane. × ∼40,000. [From Lacy 265.] b: basolateral membrane, containing orthogonally arranged particle clusters (arrows) whose functional relevance is unknown. × ∼54,000.



Figure 29.

a: Two rabbit cortical collecting ducts with homogeneous population of intercalated cells (arrows), revealing constricted apical cell pole adorned with tuft of long microvilli. × ∼810. b: rat cortical collecting duct with heterogeneous population of intercalated cells. Probably the two cells marked by single arrows are type A cells; other two cells marked by double arrows are type B cells. × ∼2,200.



Figure 30.

Intercalated cell, type A, in rat connecting tubule. a: broad apical cell pole densely covered by finger‐like microprojections. Mitochondria have narrowly arranged cristae and are accumulated in apical cell portion. Specific vesicles are sparse in this example of intercalated cell and are totally lacking in basal cell portion. G, Golgi apparatus; P, polysomes and rough endoplasmic reticulum. × ∼9,000. b: finger‐like microprojections of type A cells reveal coat of “studs” (arrowheads) on cytoplasmic membrane face. × ∼45,000. c: specific “flat” (long arrow) and invaginated (double arrows) vesicles also reveal studs and are interspersed between profiles of smooth endoplasmic reticulum (ER), clathrin vesicles (arrowheads), microtubules (T), and polysomes (P). × ∼45,000.



Figure 31.

Intercalated cell type B in rat cortical collecting duct. a: cell has an approximately elliptical profile; mitochondria are distributed predominantly in basal and lateral cell portions, numerous small vesicles are apparent in apical and basal cell portions. × ∼9,000. b: small invaginated vesicles are interspersed among profiles of smooth endoplasmic reticulum and a few flat vesicles. Only a few specific vesicles reveal studs. × ∼27,500. c: numerous invaginated vesicles (mostly without studs) are often found in basal cell portion. × ∼45,000. d: in some type B IC cells, basal infoldings reveal same dense coat of studs on cytoplasmic membrane face (arrowheads) as apical microprojections of type A cells. × ∼45,000.



Figure 32.

Intercalated cell in inner stripe of rat outer medullary collecting duct. a: intercalated cells in medulla generally have a characteristic flattened nucleus, rather few mitochondria, and numerous vesicles in apical cell portion. × ∼10,300. b: flat studded vesicles (single arrow) may be particularly abundant among invaginated studded vesicles (double arrows) within apical cytoplasm. × ∼45,000.



Figure 33.

Intercalated cells in rat cortex. Freeze‐fracture electron micrographs. a: luminal membrane LM of intercalated cell is densely stuffed with arrays of rod‐shaped particles that probably correspond to studs in transmission electron micrographs. × 32,500. b: rod‐shaped particles are also found on the P‐face of cytoplasmic flat vesicles (single arrow); corresponding depressions are seen (double arrows) on E‐face. × 45,000. c: in other intercalated cells, rod‐shaped particles are found on basolateral membrane (arrows). T, tight junctions; LM, luminal membrane. × ∼27,000.



Figure 34.

Schematic of salient features of intercalated cells. a: type A. b: type B. c: medullary type.



Figure 35.

Light micrograph of connecting tubule in rat chronically treated with furosemide, showing intercalated type A cells (arrows) forming clusters around afferent arteriole (A). × ∼900.

References
 1. Abdelkhalek, M. B., C. Barlet, and A. Doucet. Presence of an extramitochondrial anion‐stimulated ATPase in the rabbit kidney: localization along the nephron and effect of corticosteroids. J. Membr. Biol. 89: 225–240, 1986.
 2. Abramow, M., and L. Orci. On the “tightness” of the rabbit descending limb of the loop of Henle: physiological and morphological evidence. Int. J. Biochem. 12: 23–27, 1980.
 3. Aithal, H. N., F. G. Toback, S. Dube, G. S. Getz, and B. H. Spargo. Formation of renal medullary lysosomes during potassium depletion nephropathy. Lab. Invest. 36: 107–113, 1977.
 4. Alcorn, D., W. P. Anderson, and G. B. Ryan. Morphological changes in the renal macula densa during natriuresis and diuresis. Renal Physiol. 9: 335–347, 1986.
 5. Allen, F., and C. C. Tisher. Morphology of the ascending thick limb of Henle. Kidney Int. 9: 8–22, 1976.
 6. Almeida, A. J., and M. B. Burg. Sodium transport in the rabbit connecting tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F330–F334, 1982.
 7. Alper, S. L., J. Natale, S. Gluck, H. F. Lodish, and D. Brown. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vascular H+‐ATPase. Proc. Natl. Acad. Sci. USA 80: 5429–5433, 1989.
 8. Altschuler, E. M., R. B. Nagle, E. J. Braun, S. L. Lindstedt, and P. H. Krutzsch. Morphological study of the desert heteromyid kidney with emphasis on the genus Perognathus. Anat. Rec. 194: 461–468, 1979.
 9. Andrews, P. M. Scanning electron microscopy of human and rhesus monkey kidneys. Lab. Invest. 32: 510–518, 1975.
 10. Arend, L. J., W. K. Sonnenburg, W. L. Smith, and W. S. Spielman. A1 and A2 receptors in the rabbit cortical collecting tubule cells—modulation of hormone‐stimulated cAMP. J. Clin. Invest. 79: 710–714, 1987.
 11. Ausiello, D. A., and J. H. Hartwig. Microfilament organization and vasopressin action. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1985, p. 89–96.
 12. Bachmann, S. Tamm‐Horsfall protein‐mRNA synthesis is localized to the thick ascending limb of Henle's loop in rat kidney. Histochemistry 94: 517–523, 1990.
 13. Bachmann, S., P. Gilbert, and W. W. Minuth. Electron‐microscopic immunogold localization of a collecting‐duct antigen (Pcd 2) in intercalated and principal cells of rabbit kidney. Cell Tissue Res. 249: 633–640, 1987.
 14. Bachmann, S., I. Koeppen‐Hagemann, and W. Kriz. Ultra‐structural localization of Tamm‐Horsfall glycoprotein (THP) in rat kidney as revealed by protein A‐gold immunocytochemistry. Histochemistry 83: 531–538, 1985.
 15. Bachmann, S., and W. Kriz. Histotopography and ultrastructure of the thin limbs of the loop of Henle in the hamster. Cell Tissue Res. 225: 111–127, 1982.
 16. Bachmann, S., W. Kriz, C. Kuhn, and W. W. Franke. Differentiation of cell types in the mammalian kidney by immunofluorescence microscopy using antibodies to intermediate filament proteins and desmoplakins. Histochemistry 77: 365–394, 1983.
 17. Bankir, L., N. Bouby, M. M. Trinh‐Trang‐Tan, and B. Kaissling. Thick ascending limb‐anatomy and function: role in urine concentrating mechanisms. In: Advances in Nephrology. From the Necker Hospital, edited by J. P. Gruenfeld, J. F. Bach, J. Crosnier, J. L. Funck‐Brentano, and M. H. Maxwell, Year Book: Chicago, vol. 16, 1987, p. 69–102.
 18. Bankir, L., and C. De Rouffignac. Anatomical and functional heterogeneity of nephrons in the rabbit: microdissection studies and SNGFR measurements. Pflugers Arch. 366: 89–93, 1976.
 19. Bankir, L. and C. De Rouffignac. Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 18): R643–R666, 1985.
 20. Bankir, L., C. Fischer, S. Fischer, K. Jukkala, H.‐C. Specht, and W. Kriz. Adaptation of the rat kidney to altered water intake and urine concentration. Pflugers Arch. 412: 42–53, 1988.
 21. Bankir, L., B. Kaissling, C. De Rouffignac, and W. Kriz. The vascular organization of the kidney of Psammomys obesus. Anat. Embryol. 155: 149–160, 1979.
 22. Barajas, L. The ultrastructure of the juxtaglomerular apparatus as disclosed by three‐dimensional reconstructions from serial sections: the anatomical relationship between the tubular and vascular components. J. Ultrastruct. Res. 33: 116–147, 1970.
 23. Barajas, L. Renin secretion: an antomical basis for tubular control. Science 172: 485–487, 1971.
 24. Barajas, L. Anatomy of the juxtaglomerular apparatus. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F333–F343, 1979.
 25. Barajas, L. The JGA: anatomical considerations in feedback control of glomerular filtration rate. Federation Proc. 40: 78–86, 1981.
 26. Barajas, L., and H. Latta. A three‐dimensional study of the juxtaglomerular apparatus in the rat: light and electron microscopy. Lab. Invest. 12: 257–269, 1963.
 27. Barajas, L., K. Powers, O. Carretero, A. G. Scicli, and T. Inagami. Immunocytochemical localization of renin and kallikrein in the rat renal cortex. Kidney Int. 29: 965–970, 1986.
 28. Barajas, L., K. Powers, and P. Wang. Innervation of the late distal nephron: an autoradiographic and ultrastructural study. J. Ultrastruct. Res. 92: 146–157, 1985.
 29. Barajas, L., E. C. Salido, N. P. Laborde, and D. A. Fisher. Nerve growth factor immunoreactivity in mouse kidney: an immunoelectron microscopic study. J. Neurosci. Res. 18: 418–424, 1987.
 30. Barajas, L., E. C. Salido, J. Lechago, N. P. Laborde, and D. A. Fisher. Immunocytochemical localization of nerve growth factor in mouse kidney. J. Neurosci. Res. 16: 457–465, 1986.
 31. Barrett, J. M., W. Kriz, B. Kaissling, and C. De Rouffignac. The ultrastructure of the nephrons of the desert rodent (Psammomys obesus) kidney. I. Thin limbs of Henle of short‐looped nephrons. Am. J. Anat. 151: 487–498, 1978.
 32. Barrett, J. M., W. Kriz, B. Kaissling, and C. De Rouffignac. The ultrastructure of the nephrons of the desert rodent (Psammomys obesus) kidney. II. Thin limbs of Henle of long‐looped nephrons. Am. J. Anat. 151: 499–514, 1978.
 33. Barrett, J. M., and R. A. Majack. The ultrastructure organization of long and short nephrons in the kidney of the rodent Octodon degus, abstracted. Anat. Rec. 187: 530–531, 1977.
 34. Baskin, D. G., and W. L. Stahl. Immunocytochemical localization of Na+,K+‐ATPase in the rat kidney. Histochemistry 73: 535–548, 1982.
 35. Beasley, D., N. B. Oza, and N. G. Levinskey. Micropuncture localization of kallikrein secretion in the rat nephron. Cell Tissue Res. 249: 325–329, 1987.
 36. Beck, F. X., A. Dörge, E. Blümner, G. Giebisch, and K. Thurau. Cell rubidium uptake: a method for studying functional heterogeneity in the nephron. Kidney Int. 33: 642–651, 1988.
 37. Beck, F. X., A. Dörge, R. Rick, M. Schramm, and K. Thurau. Effect of potassium adaptation on the distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells. Pflugers Arch. 409: 477–485, 1987.
 38. Beck, F. X., A. Dörge, R. Rick, M. Schramm, and K. Thurau. The distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells: effects of acute metabolic alkalosis. Pflugers Arch. 411: 259–270, 1988.
 39. Becker, B. Quantitative Beschreibung der Innenzone der Rattenniere. Münster, FRG: Univ. of Münster, 1978. Dissertation.
 40. Beeuwkes, R. III. Efferent vascular patterns and early vascular‐tubular relations in the dog kidney. Am. J. Physiol. 221: 1361–1374, 1971.
 41. Beeuwkes, R., III.. Vascular‐tubular relationships in the human kidney. In: Renal Pathophysiology, edited by A. Leaf, G. Giebisch, L. Bolis, and S. Gorini. New York: Raven, 1980, p. 155–163.
 42. Bell, P. D., K. Kirk, M. Ribadeneira, and D. Barfuss. Direct visualization of the isolated and perfused macula densa. Kidney Int. 27: 303, 1985.
 43. Bengele, H. H., C. Lechene, and E. A. Alexander. Sodium and chloride transport along the inner medullary collecting duct: effect of saline expansion. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F504–F508, 1980.
 44. Bentley, A. G., K. M. Madsen, R.G. Davis, and C. C. Tisher. Response of the medullary thick ascending limb to hypothyroidism in the rat. Am. J. Pathol. 120: 215–221, 1985.
 45. Bergeron, M., Gaffiero, P., and G. Thiery. Segmental variations in the organization of the endoplasmic reticulum of the rat nephron: a stereomicroscopical study. Cell Tissue Res. 247: 215–225, 1987.
 46. Bergeron, M., D. Guerette, J. Forget, and G. Thiery. Three‐dimensional characteristics of the mitochondria of the rat nephron. Kidney Int. 17: 175–185, 1980.
 47. Bohle, A., J. Christensen, D. S. Meyer, et al. Juxtaglomerular apparatus of the human kidney: correlation between structure and function. Kidney Int. 22 (Suppl. 12): S‐18–S‐23, 1982.
 48. Bonsib, S. M. The macula densa tubular basement membrane: a unique plaque of basement membrane specialization. J. Ultrastruct. Mol. Struct. Res. 97: 103–108, 1986.
 49. Borke, J. L., A. Caride, A.‐K. Verma, T.‐J. Penniston, and R. Kumari. Plasma membrane calcium pump and 28‐KDa calcium binding protein in cells of rat kidney distal tubules. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F842–F849, 1989.
 50. Borke, J. L., J. Minami, A. Verma, J. T. Penniston, and R. Kumar. Monoclonal antibodies to human erythrocyte membrane Ca++‐Mg++ adenosine triphosphatase pump recognize an epitope in the basolateral membrane of human kidney distal tubule cells. J. Clin. Invest. 80: 1225–1231, 1987.
 51. Bouby, N., and L. Bankir. Effect of high protein intake on sodium, potassium‐dependent adenosine triphosphate activity in the thick ascending limb of Henle's loop in the rat. Clin. Sci. 74: 319–329, 1988.
 52. Bouby, N., L. Bankir, M.‐M. Trinh‐Trang‐Tan, W. W. Minuth, and W. Kriz. Selective ADH‐induced hypertrophy of the medullary thick ascending limb in Brattleboro rats. Kidney Int. 28: 456–466, 1985.
 53. Bouby, N., M. M. Trinh‐Trang‐Tan, W. Kriz, and L. Bankir. Possible role of the thick ascending limb and of the urine concentrating mechanism in the protein‐induced increase in GFR and kidney mass. Kidney Int. Suppl. 22 32: S57–S61, 1987.
 54. Bourdeau, J. E., C. B. Langman, and R. Bouillon. Parathyroid hormone‐stimulated calcium absorption in cTAL from vitamin D‐deficient rabbits. Kidney Int. 31: 913–917, 1987.
 55. Breyer, M. D., J. P. Kokko, and H. R. Jacobson. Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension and bicarbonate concentration. J. Clin. Invest. 77: 1650–1660, 1986.
 56. Brezis, M., S. Rosen, K. Spokes, et al. Transport‐dependent anoxic cell injury in the isolated perfused rat kidney. Am. J. Pathol. 116/2: 327–341, 1984.
 57. Briggs, J. P., and J. Schnermann. The tubuloglomerular feedback mechanism: functional and biochemical aspects. Annu. Rev. Physiol. 49: 251–273, 1987.
 58. Brown, D. Anatomy of the H+ secreting mechanism in collecting duct epithelial cells. In: Nephrology, edited by A. M. Davidson. London: Bailliere Tindall, 1988, vol. I, p. 332–340.
 59. Brown, D. Membrane recycling and epithelial cell function. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1–F12, 1989.
 60. Brown, D. Vesicle recycling and cell‐specific function in kidney epithelial cells. Annu. Rev. Physiol. 51: 771–784, 1989.
 61. Brown, D., S. Gluck, and J. Hartwig. Structure of the novel membrane‐coating material in proton‐secreting epithelial cells and identification as a proton translocating ATPase. J. Cell Biol. 105: 1637–1648, 1987.
 62. Brown, D., S. Hirsch, and S. Gluck. An H+‐ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331: 622–624, 1988.
 63. Brown, D., S. Hirsch, and S. Gluck. Localization of a proton‐pumping ATPase in rat kidney. J. Clin. Invest. 82: 2114–2126, 1988.
 64. Brown, D., and T. Kumpulainen. Immunocytochemical localization of carbonic anhydrase on ultrathin frozen sections with protein A‐gold. Histochemistry 83: 153–158, 1985.
 65. Brown, D., J. Kumpulainen, J. Roth, and L. Orci. Immunohistochemical localization of carbonic anhydrase in postnatal and adult rat kidney. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F110–F118, 1983.
 66. Brown, D., and L. Orci. Vasopressin stimulates formation of coated pits in rat kidney collecting ducts. Nature 302: 253–255, 1983.
 67. Brown, D., and L. Orci. The “coat” of kidney intercalated cell tubulovesicles does not contain clathrin. Am. J. Physiol. 250 (Cell Physiol. 19): C605–608, 1986.
 68. Brown, D., and L. Orci. Junctional complexes and cell polarity in the urinary tubule. J. Electron Microsc. Technique 9: 145–170, 1988.
 69. Brown, D., J. Roth, T. Kumpulainen, and L. Orci. Ultra‐structural immunocytochemical localization of carbonic anhydrase. Histochemistry 75: 209–213, 1982.
 70. Brown, D., J. Roth, and L. Orci. Lectin‐gold cytochemistry reveals intercalated cell heterogeneity along rat kidney collecting ducts. Am. J. Physiol. 248 (Cell Physiol. 17): C348–C356, 1985.
 71. Brown, D., Sorscher, E.‐J., Ausiello, A.‐A., and D. J. Benos. Immunocytochemical Localization of Na‐channels in rat kidney medulla. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 26): F366–F369, 1989.
 72. Brown, D., P. Weyer, and L. Orci. Nonclathrin‐coated vesicles are involved in endocytosis in kidney collecting duct intercalated cells. Anat. Rec. 218: 237–242, 1987.
 73. Bucher, O., and B. Kaissling. Morphologie des juxtaglomerulären Apparates. Verb. Anat. Ges. 67: 109–136, 1973.
 74. Bulger, R. E., R. E. Cronin, and D. C. Dobyan. Survey of the morphology of the dog kidney. Anat. Rec. 194: 41–66, 1979.
 75. Bulger, R. E., and D. C. Dobyan. Recent advances in renal morphology. Annu. Rev. Physiol. 44: 147–179, 1982.
 76. Bulger, R. E., and D. C. Dobyan. Recent structure‐function relationships in normal and injured mammalian kidneys. Anat. Rec. 205: 1–11, 1983.
 77. Bulger, R. E., C. C. Tisher, C. H. Myers, and B. F. Trump. Human renal ultrastructure. II. The thin limb of Henle's loop and the interstitium in healthy individuals. Lab. Invest. 16: 124–141, 1967.
 78. Burg, M. G. Thick ascending limb of Henle's loop. Kidney Int. 22: 454–464, 1982.
 79. Burg, M. B., and J. E. Bourdeau. Function of the thick ascending limb of Henle's loop. In: New Aspects of Renal Function (Workshop Conferences Hoechst), edited by H. G. Vogel and K. J. Ullrich. Amsterdam: Excerpta Medica, 1978, vol. IV, p. 91–102.
 80. Chabardes, D., M. Gagnan‐Brunette, and M. Imbert‐Teboul. Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J. Clin. Invest. 65: 439–448, 1980.
 81. Chabardes, D., M. Imbert‐Teboul, M. Gagnan‐Brunette, and F. Morel. Different hormonal target sites along the mouse and rabbit nephrons. In: Current Problems in Clinical Biochemistry, 8: Biochemical Nephrology, edited by W. Guder and U. Schmidt. Bern: Huber, 1978, p. 447–454.
 82. Chevalier, J., J. Bourguet, and J. S. Hugon. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 152: 129–140, 1974.
 83. Chizuko, K., Y. Yamaguchi, M. Furusawa, and H. Endou. Isolation by monoclonal antibody of intercalated cells of rabbit kidney. Kidney Int. 33: 543–554, 1988.
 84. Chone, L. Luminale Schaltzellenoberflächenvariabilität im Sammelrohrsystem der Kaninchenniere. Heidelberg, FRG: Univ. of Heidelberg, 1984. Dissertation.
 85. Christensen, J. A., H. A. Bjaerke, D. S. Meyer, and A. Bohle. The normal juxtaglomerular apparatus in the human kidney. A morphological study. Acta Anat. 103: 374–383, 1979.
 86. Christensen, J. A., and A. Bohle. The juxtaglomerular apparatus in the normal rat kidney. Virchows Arch. [A] 379: 143–150, 1978.
 87. Christensen, J., D. Meyer, and A. Bohle. The structure of the human juxtaglomerular apparatus: a morphometric light microscopic study on serial sections. Virchows Arch. [A] 367: 83–92, 1975.
 88. Clapp, W. L., K. M. Madsen, J. W. Verlander, and C. C. Tisher. Intercalated cells of the rat inner medullary collecting duct. Kidney Int. 31: 1080–1087, 1987.
 89. Crayen, M. L., and W. Thoenes. Architektur und cytologische Charakterisierung des distalen Tubuls der Rattenniere. Fortschr. Zool. 23: 279–288, 1975.
 90. Crayen, M. L., and W. Thoenes. Architecture and cell structures in the distal nephron of the rat kidney. Eur. J. Cell Biol. 17: 197–211, 1978.
 91. Davis, R. G., K. M. Madsen, M. J. Fregly, and C. C. Tisher. Kidney structure in hypothyroidism. Am. J. Pathol. 113: 41–49, 1983.
 92. Dawson, T. P., R. Gandhi, M. Le Hir, and B. Kaissling. Ecto‐5'‐nucleotidase: localization by light microscopic histochemistry and immunohistochemistry methods in the rat kidney. J. Histochem. Cytochem. 37: 39–47, 1989.
 93. DiBona, D. R., K. L. Kirk, and R. D. Johnson. Microscopic investigation of structure and function in living epithelial tissues. Federation Proc. 44: 2693–2703, 1985.
 94. Diezi, J., P. Michoud, J. Aceves, and G. Giebisch. Micro‐puncture of the electrolyte transport across papillary collecting duct of the rat. Am. J. Physiol. 224: 623–634, 1973.
 95. Dieterich, H. J., J. M. Barrett, W. Kriz, and J. P. Bülhoff. The ultrastructure of the thin loop limbs in the mouse kidney. Anat. Embryol. 147: 1–13, 1975.
 96. Dobyan, D. C., and R. E. Bulger. Renal carbonic anhydrase. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F311–F324, 1982.
 97. Dobyan, D. C., and R. E. Bulger. Morphology of the minipig kidney. J. Electron Microsc. Technique 9: 213–234, 1988.
 98. Dobyan, D. C., L. S. Magill, P. A. Friedman, S. C. Hebert, and R. E. Bulger. Carbonic anhydrase histochemistry in rabbit and mouse kidneys. Anat. Rec. 204: 185–197, 1982.
 99. Dorup, J. Structural adaptation of intercalated cells in rat renal cortex to acute metabolic acidosis and alkalosis. J. Ultrastruct. Res. 92: 119–131, 1985.
 100. Dorup, J. Ultrastructure of distal nephron cells in rat renal cortex. J. Ultrastruct. Res. 92: 101–118, 1985.
 101. Dorup, J. Ultrastructure of three‐dimensionally localized distal nephron segments in superficial cortex of rat kidney. J. Ultrastruct. Mol. Ren. 99: 69–87, 1988.
 102. Doucet, A., C. Barlet, and K. Baddouri. Effect of water intake on Na‐K‐ATPase in nephron segments of the desert rodent, Jaculus orientalis. Pflugers Arch. 408: 129–132, 1987.
 103. Doucet, A., and G. El Mernissi. Site et mecanisme de regulation de la Na‐K‐ATPase tubulaire par l'aldosterone. Nephrologie 6: 119–122, 1985.
 104. Doucet, A., A. Hus‐Citharel, and F. Morel. In vitro stimulation of Na‐K‐ATPase in rat thick ascending limb by dexamethasone. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F851–F857, 1986.
 105. Doucet, A. and A. Katz. Renal potassium adaption: Na‐K‐ATPase activity along the nephron after chronic potassium loading. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F380–F386, 1980.
 106. Doucet, A., and S. Marsy. Characterization of K‐ATPase activity in distal nephron: stimulation by potassium depletion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F418–F423, 1987.
 107. Drenckhahn, D., K. Schlüter, D. P. Allen, and V. Bennett. Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230: 1287–1289, 1985.
 108. Elalouf, J. M., A. Di Stefano, and C. De Rouffignac. Sensitivities of rat kidney thick ascending limbs and collecting ducts to vasopressin in vivo. Proc. Natl. Acad. Sci. USA 83: 2276–2280, 1986.
 109. Elalouf, J. M., N. Roinel, and C. De Rouffignac. Stimulation by human calcitonin of electrolyte transport in distal tubules of rat kidney. Pflugers Arch. 399: 111–118, 1983.
 110. Elalouf, J. M., N. Roinel, and C. De Rouffignac. ADH‐like effects of calcitonin on electrolyte transport by Henle's loop of rat kidney. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F638–F649, 1984.
 111. Elalouf, J. M., N. Roinel, C. De Rouffignac, P. Malorey, P. Philippe, N. Soyeux, and A. Zimmermann. Effects of glucagon and PTH on the loop of Henle of rat juxtamedullary nephrons. Kidney Int. 29: 807–813, 1986.
 112. El Mernissi, G., D. Chabardes, A. Doucet, A. Hus‐Citharel, M. Imbert‐Teboul, F. le Bouffant, M. Montegut, S. Siaume, and F. Morel. Changes in tubular basolateral membrane markers after chronic DOCA treatment. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F100–F109, 1983.
 113. El Mernissi, G., and A. Doucet. Stimulation of Na‐K‐ATPase in the rat collecting tubule by two diuretics: furosemide and amiloride. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F485–F490, 1984.
 114. Engbretson, B. G., and L. C. Stoner. Flow dependent potassium secretion by rabbit cortical collecting tubule in vitro. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F896–F903, 1987.
 115. Ernst, S. A. Transport ATPase cytochemistry: ultrastructural localization of potassium‐dependent and potassium‐independent phosphatase activities in rat kidney cortex. J. Cell Biol. 66: 586–608, 1975.
 116. Ernst, S. A., and J. H. Schreiber. Ultrastructural localization of Na+,K+‐ATPase in rat and rabbit kidney medulla. J. Cell Biol. 91: 803–813, 1981.
 117. Evan, A. P., V. H. Gattone, and P. M. Blomgren. Application of scanning electron microscopy to kidney development and nephron maturation. Scanning Electron Microsc. 1: 455–473, 1984.
 118. Evan, A., J. Huser, H. H. Bengele, and E. A. Alexander. The effect of alterations in dietary potassium on collecting system morphology in the rat. Lab. Invest. 42: 668–675, 1980.
 119. Eveloff, J., W. Haase, and R. Kinne. Separation of renal medullary cells: isolation of cells from the thick ascending limb of Henle's loop. J. Cell Biol. 87: 672–681, 1980.
 120. Faarup, P. On the morphology of the juxtaglomerular apparatus. Acta Anat. 60: 20–38, 1965.
 121. Faarup, P. Morphological Aspects of the Renin‐Angiotensin System. Copenhagen: Bogtrykkeriet Forum, 1971.
 122. Fasth, A., J. R. Hoyer, and M. W. Seiler. Renal tubular immune complex formation in mice immunized with Tamm‐Horsfall protein. Am. J. Pathol. 125: 555–562, 1986.
 123. Fetterman, G. H., N. A. Shuplock, F. J. Philipp, and H. S. Gregg. The growth and maturation of human glomeruli and proximal convolutions from tern to adulthood: studies by microdissection Pediatrics 35: 601–619, 1965.
 124. Figueroa, C. D., I. Caorsi, J. Subiabre, and C. P. Vio. Immunoreactive kallikrein localization in the rat kidney: an immunoelectron‐microscopic study. J. Histochem. Cytochem. 32: 117–121, 1984.
 125. Figueroa, C. D., I. Caorsi, and C. P. Vio. Visualization of renal kallikrein in luminal and basolateral membranes: effects of the tissue processing method. J. Histochem. Cytochem. 32: 1238–1240, 1984.
 126. Gandhi, R., M. Le Hir, and B. Kaissling. Immunolocalization of ecto‐5'‐nucleotidase in the kidney by a monoclonal antibody. Histochemistry 95: 165–174, 1990.
 127. Ganote, C. E., J. J. Grantham, H. L. Moses, et al. Ultra‐ structural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J. Cell Biol. 36: 355–367, 1968.
 128. Garg, L. C., M. Knepper, and M. Burg. Mineralocorticoid stimulation of Na‐K‐ATPase in nephron segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F536–F544, 1981.
 129. Garg, L. C., S. Mackie, and C. C. Tisher. Effect of low potassium diet on Na‐K‐ATPase in rat nephron segments. Pflugers Arch. 394: 113–117, 1982.
 130. Garg, L. C., and N. Narang. Renal adaptation to potassium in the adrenalectomized rabbit. J. Clin. Invest. 76: 1065–1070, 1985.
 131. Garg, L. C., and N. Narang. Effects of potassium bicarbonate on distal nephron Na‐K‐ATPase in adrenalectomized rabbits. Pflugers Arch. 409: 126–131, 1987.
 132. Garg, L. C., and C. C. Tisher. Effects of thyroid hormone on Na‐K‐adenosine triphosphatase activity along the rat nephron. J. Lab. Clin. Med. 106: 568–572, 1985.
 133. Giacomelli, F., and J. Wiener. Specialized junction in the distal convoluted tubule of rat kidney. Anat. Rec. 185: 197–207, 1976.
 134. Giebsch, G. Mechanisms of renal tubular acidification. Klin. Wochenschr. 64: 853–861, 1986.
 135. Gilbert, P., W. W Minuth, and S. Bachnann. Microheterogeneity of the collecting duct system in rabbit kidney as revealed by monoclonal antibodies. Cell Tissue Res. 248: 611–618, 1987.
 136. Gluck, S., and J. Caldwell. Immunoaffinity purification and characterization of vacuolar H+ ATPase from bovine kidney. J. Biol. Chem. 262: 15780–15789, 1987.
 137. Gluck, S., C. Cannon, and Q. Al‐Awqati. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci. USA 79: 4327–4331, 1982.
 138. Gonzalez, E., M. Salomonsson, C. Müller‐Suur, and A. E. G. Persson. NaCl transport and osmotic water permeability of macula densa cells contained in isolated and perfused rabbit kidney tubules. In: The Juxtaglomerular Apparatus, edited by A. E. G. Persson and U. Boberg. Amsterdam: Elsevier, 1988, p. 97–119.
 139. Gorgas, K. Structure and innervation of the juxtaglomerular apparatus of the rat. Adv. Anat. Embryol. Cell Biol. 54: 5–84, 1978.
 140. Grantham, J. J., and M. B. Burg. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259, 1966.
 141. Grantham, J. J., C. E. Ganote, M. B. Burg, and J. Orloff. Paths of transtubular water flow in isolated renal collecting tubules. J. Cell Biol. 41: 562–576, 1969.
 142. Greger, R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian kidney. Physiol. Rev. 65: 760–797, 1985.
 143. Greger, R., E. Schlatter, and F. Lang. Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 396: 308–314, 1983.
 144. Griffith, L. D., Bulger, R. E., and B. F. Trump. Fine structure and staining of mucosubstances on “intercalated cells” from the rat distal convoluted tubule and collecting duct. Anat. Rec. 160: 643–662, 1968.
 145. Gross, J. B., M. Imai, and J. P. Kokko. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J. Clin. Invest. 55: 1284–1294, 1975.
 146. Guder, W. G., J. Hallbach, E. Fink, B. Kaissling, and G. Wirthensohn. Kallikrein (kininogenese) in the mouse nephron: effect of dietary potassium. Biol. Chem. Hoppe Seyler 368: 637–645, 1987.
 147. Guder, W. G., and B. D. Ross. Enzyme distribution along the nephron. Kidney Int. 26: 101–111, 1984.
 148. Guder, W. G., S. Wagner, and G. Wirthensohn. Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int. 29: 41–45, 1986.
 149. Hagege, J. Morphologie et histophysiologie des cellules intercalaires du tube urinaire des vertèbres tetrapodes. Ann. Biol. 11: 106–143, 1972.
 150. Hagege, J., M. Gabe, and G. Richet. Scanning of the apical pole of distal tubular cells under differing acid—base conditions. Kidney Int. 5: 137–146, 1974.
 151. Hagege, J., and G. Richet. Dark cells of the distal convoluted tubules and collecting ducts. I. Morphological data. Fortschr. Zool. 23: 289–298, 1975.
 152. Hansen, G. P., C. C. Tisher, and R. R. Robinson. Response of the collecting duct to disturbances of acid—base and potassium balance. Kidney Int. 17: 326–337, 1980.
 153. Harmanci, M. C., W. A. Kachadorian, H. Valtin, and V. A. DiScala. Antidiuretic hormone‐induced intramembranous alterations in mammalian collecting ducts. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F440–F443, 1978.
 154. Harmanci, M. C., P. Stern, W. A. Kachadorian, H. Valtin, and V. A. DiScala. Vasopressin and collecting duct intramembranous particle clusters: a dose—response relationship. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F560–F564, 1980.
 155. Hayashi, M., and A. I. Katz. The kidney in potassium depletion. I. Na+‐K+‐ATPase activity and [3H]ouabain binding in MCT. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F437–F446, 1987.
 156. Hayashi, M., and A. I. Katz. The kidney in potassium depletion. II. K+ handling by the isolated perfused rat kidney. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F447–F452, 1987.
 157. Hayhurst, R. A., and R. G. O'Neil. Time course of Na‐dependent aldosterone stimulation of cortical collecting duct (CCD) Na‐K‐ATPase activity. Kidney Int. 29: 397A, 1986.
 158. Hays, R. M. Alteration of luminal membrane structure by antidiuretic hormone. Am. J. Physiol. 245 (Cell Physiol. 14): C289–C296, 1983.
 159. Hays, R. M., G. Ding, and N. Franki. Morphological aspects of the action of ADH. Kidney Int. 32 (Suppl. 21): S‐51–S‐55, 1987.
 160. Hazen‐Martin, D. J., G. Pasternack, R. A. Hennigar, S. S. Spicer, and D. A. Sens. Immunocytochemistry of band 3 protein in kidney and other tissues of control and cystic fibrosis patients. Pediatr. Res. 21: 235–237, 1987.
 161. Healy, D. P., and D. D. Fanestil. Localization of atrial natriuretic peptide binding sites within the rat kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F573–F578, 1986.
 162. Hebert, S. C., and T. E. Andreoli. Control of NaCl transport in the thick ascending limb. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F745–F756, 1984.
 163. Hennigar, R. A., B. A. Schulte, and S. S. Spicer. Heterogeneous distribution of glycoconjugates in human kidney tubules. Anat. Rec. 211: 376–390, 1985.
 164. Holthöfer, H. Lectin binding sites in kidney: a comparative study of 14 animal species. J. Histochem. Cytochem. 31: 531–537, 1983.
 165. Holthöfer, H. Ontogeny of cell type‐specific enzyme reactivities in kidney collecting ducts. Pediatr. Res. 22: 504–508, 1987.
 166. Holthöfer, H., B. A. Schulte, G. Pasternack, G. J. Siegel, and S. S. Spicer. Immunocytochemical characterization of carbonic‐anhydrase‐rich cells in the rat kidney collecting duct. Lab. Invest. 57: 150–156, 1987.
 167. Holthöfer, H., B. A. Schulte, G. Pasternack, G. J. Siegel, and S. S. Spicer. Three distinct cell populations in rat kidney collecting duct. Am. J. Physiol. 253 (Cell Physiol. 22): C323–C328, 1987.
 168. Holthöfer, H., B. A. Schulte, and S. S. Spicer. Expression of binding sites for Dolichos biflorus agglutinin at the apical aspect of collecting duct cells in rat kidney. Cell Tissue Res. 249: 481–485, 1987.
 169. Hoyer, J. R., J. S. Resnick, A. F. Michael, and R. L. Vernier. Ontogeny of Tamm‐Horsfall urinary glycoprotein. Lab. Invest. 30: 757–761, 1974.
 170. Hoyer, J. R., and M. W. Seiler. Pathophysiology of Tamm‐Horsfall protein. Kidney Int. 16: 279–289, 1979.
 171. Hoyer, J. R., S. P. Sisson, and R. L. Vernier. Tamm‐Horsfall glycoprotein ultrastructural immunoperoxidase localization in rat kidney. Lab. Invst. 41: 168–173, 1979.
 172. Humbert, F., R. Montesano, A. Gross, R. C. DeSonsa, and L. Orci. Particle aggregates in plasma and intracellular membranes of toad bladder. Experientia 33: 1364–1367, 1977.
 173. Humbert, F., C. Pricam, A. Perrelet, and L. Orci. Freeze‐fracture differences between plasma membranes of descending and ascending branches of the rat Henle's thin loop. Lab. Invest. 33: 407–411, 1975.
 174. Humbert, F., C. Pricam, A. Perrelet, and L. Orci. Specific plasma membrane differentiations in the cells of the kidney collecting tubule. J. Ultrastruct. Res. 52: 13–20, 1975.
 175. Iannaccone, A., P. Boscolo, and C. Cavallotti. Glucose‐6‐phosphate‐dehydrogenase in kidneys of lead poisoned rats and adrenalectomized rats. Nephron 20: 220–226, 1978.
 176. Imai, M. Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro. Am. J. Physiol. 232z (Renal Fluid Electrolyte Physiol. 1): F201–F209, 1977.
 177. Imai, M. The connecting tubule: a functional subdivision of the rabbit distal nephron segments. Kidney Int. 15: 346–356, 1979.
 178. Imai, M. Functional heterogeneity of the descending limbs of Henle's loop. II. Interspecies differences among rabbits, rats, and hamsters. Pflugers Arch. 402: 393–401, 1984.
 179. Imai, M., M. Hayashi, and M. Araki. Functional heterogeneity of the descending limbs of Henle's loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch. 402: 385–392, 1984.
 180. Imai, M., M. Hayashi, M. Araki, and K. Tabei. Function of the thin limb of Henle's loop. In: Nephrology, edited by R. R. Robinson. New York: Springer, 1984, vol. 1, p. 196–207.
 181. Imai, M., and J. P. Kokko. Mechanism of sodium and chloride transport in the thin ascending limb of Henle. Clin. Invest. 58: 1054–1060, 1976.
 182. Imai, M., and R. Nakamura. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int. 22: 465–472, 1982.
 183. Imbert, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflugers Arch. 354: 213–228, 1975.
 184. Imbert, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule: single isolated segments. Pflugers Arch. 357: 173–186, 1975.
 185. Imbert‐Teboul, M., D. Chabardes, and F. Morel. Vasopressin catecholamine sites of action along rabbit, mouse and rat nephron. In: Contributions to Nephrology: Disturbance of Water and Electrolyte Metabolism, edited by J. Bahlman and J. Brod. Basel: Karger, 1980, vol. 21, p. 41–47.
 186. Imbert‐Teboul, M., A. Doucet, S. Marsy, and S. Siaume‐Perez. Alterations of enzymatic activities along rat collecting tubule in potassium depletion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F408–F417, 1987.
 187. Inke, G. The Protolobar Structure of the Human Kidney: Its Biological and Clinical Significance. New York: Alan R. Liss, 1988.
 188. Jacobson, H. R. Functional segmentation of the mammalian nephron. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F203–F218, 1981.
 189. Jamison, R. L. Micropuncture study of segments of thin loops of Henle in the rat. Am. J. Physiol. 215: 236–242, 1968.
 190. Jamison, R. L., and W. Kriz. Urinary Concentrating Mechanism: Structure and Function. New York: Oxford, 1982.
 191. Jonas, L., L. Hoffmann, and D. Serfling. Detection of carbonic anhydrase in the human kidney from the viewpoint of acid—base regulation (an immunohistochemical study in urolithiasis patients). Z. Urol. Nephrol 76: 311–317, 1983.
 192. Jones, D. B. Scanning electron microscopy of isolated dog renal tubules. Scanning Electron Microsc. 2: 805–813, 1982.
 193. Jones, D. B. Scanning electron microscopy of basolateral surfaces of rat renal tubules isolated by sequential digestion. Anat. Rec. 213: 121–130, 1985.
 194. Jones, S. M., and J. P. Hayslett. Demonstration of active potassium secretion in the late distal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F83–F88, 1983.
 195. Kachadorian, W. A., S. D. Levine, J. B. Wade, V. A. DiScala, and R. M. Hays. Relationship of aggregated intra‐membraneous particles to water permeability in vasopressin‐treated toad urinary bladder. J. Clin. Invest. 59: 576–581, 1977.
 196. Kachadorian, W. A., J. B. Wade, and V. A. DiScala. Vasopressin‐induced structural changes in toad bladder luminal membrane. Science 190: 67–69, 1975.
 197. Kaissling, B. Ultrastructural characterization of the connecting tubule and the different segments of the collecting duct system in the rabbit kidney. In: Current Problems in Clinical Biochemistry, edited by U. Schmidt and W. G. Guder. Bern: Huber, 1978, vol. 8, p. 435–446.
 198. Kaissling, B. Ultrastructural organization of the transition from the distal nephron to the collecting duct in the desert rodent Psammomys obesus. Cell Tissue Res. 212: 475–495, 1980.
 199. Kaissling, B. Structural aspects of adaptive changes in renal electrolyte excretion. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol 12): F211–F226, 1982.
 200. Kaissling, B. Cellular heterogeneity of the distal nephron and its relation to function. Klin. Wochenschr. 63: 868–876, 1985.
 201. Kaissling, B. Structural adaptation to altered electrolyte metabolism by cortical distal segments. Federation Proc. 44: 2710–2716, 1985.
 202. Kaissling, B., S. Bachmann, and W. Kriz. Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F374–F381, 1985.
 203. Kassling, B., C. De Rouffignac, J. M. Barrett, and W. Kriz. The structural organization of the kidney of the desert rodent Psammomys obesus. Anat. Embryol. 148: 121–143, 1975.
 204. Kaissling, B., B. M. Koeppen, M. LeHir, and J. B. Wade. Effect of mineralocorticoids on the structure of intercalated cells in renal cortical collecting ducts. Acta Anat. 111: 72, 1981.
 205. Kaissling, B., and W. Kriz. Structural analysis of rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 206. Kaissling, B., and W. Kriz. Axial heterogeneity of the “distal tubule.” Contrib. Nephrol. 33: 29–47, 1982.
 207. Kaissling, B., and W. Kriz. Variability of intercellular spaces between macula densa cells: a transmission electron microscopic study in rabbits and rats. Kidney Int. 12: S9–S17, 1982.
 208. Kaissling, B., and B. Stanton. Structure‐function correlation in electrolyte transporting epithelia. In: The Kidney: Physiology and Pathophysiology, 2nd Ed., edited by D. W. Seldin and G. Giebisch, New York: Raven, Ch. 26, pp. 1–23 (in press).
 209. Kaissling, B., and M. Le Hir. Distal tubular segments of the rabbit kidney after adaptation to altered Na‐ and K‐intake. I. Structural changes. Cell Tissue Res. 224: 469–493, 1982.
 210. Kaissling, B., and M. Le Hir. Anpassung distaler Tubulus‐segmente an Änderungen im Elektrolythaushalt. Acta Histochem. Suppl. (Jena) XXXI: 185–191, 1985.
 211. Kaissling, B., S. Peter, and W. Kriz. The transition of the thick ascending limb of Henle's loop into the distal convoluted tubule in the nephron of the rat kidney. Cell Tissue Res. 182: 111–118, 1977.
 212. Kaissling, B., and B. Stanton. Adaptation of distal tubule and collecting duct to increased sodium delivery. I. Ultrastructure. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1256–F1268, 1988.
 213. Kaissling, B., and B. Stanton. Chronic furosemide treatment alters the ultrastructure of intercalated cells in renal collecting ducts. Clin. Res. 36: 521A, 1988.
 214. Kashgarian, M., T. Ardito, D. T. Hirsch, and J. P. Hayslett. Response of collecting tubule cells to aldosterone and potassium loading. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F8–F14, 1987.
 215. Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush. Monoclonal antibody to Na,K‐ATPase: immunocytochemical localization along nephron segments. Kidney Int. 28: 899–913, 1985.
 216. Katz, A. I. Renal Na,K‐ATPase: its role in tubular sodium and potassium transport. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F207–F219, 1982.
 217. Katz, A. I. Distribution and function of classes of ATPases along the nephron. Kidney Int. 29: 21–40, 1986.
 218. Katz, A. I., M. A. Chekal, and M. Hayashi. Evidence for a reabsorptive K pump in kidneys of potassium depleted rats. Kidney Int. 29: 400A, 1986.
 219. Katz, A. I., A. Doucet, and F. Morel. Na‐K‐ATPase activity along the rabbit, rat, and mouse nephron. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F114–F120, 1979.
 220. Katz, A. I., and M. Hayashi. The kidney in potassium depletion. I. Na+‐K+‐ATPase activity and [3H] ouabain binding in MCT. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F437–F446, 1987.
 221. Khadouri, C., C. Bas‐Barlet, and A. Doucet. Mechanism of increased tubular Na‐K‐ATPase during streptozotocin induced diabetes. Pflugers Arch. 409: 296–301, 1987.
 222. Kirk, K. L., P. D. Bell, D. W. Barfuss, and M. Ribadeneira. Direct visualization of the isolated and perfused macula densa. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F890–F894, 1985.
 223. Kirk, K. L., A. Buku, and P. Eggena. Cell specifity of vasopressin binding in renal collecting duct computer‐enhanced imaging of a fluorescent hormone analog. Proc. Natl. Acad. Sci. USA 84: 6000–6004, 1987.
 224. Kirk, K. L., D. R. DiBona, and J. A. Schafer. Morphologic response of the rabbit cortical collecting tubule to peritubular hypotonicity: quantitative examination with differential interference contrast microscopy. J. Membr. Biol. 79: 53–64, 1984.
 225. Kirk, K. L., J. A. Schafer, and D. R. DiBona. Quantitative analysis of the structural events associated with antidiuretic hormone‐induced volume reabsorption in the rabbit cortical collecting tubule. J. Membr. Biol. 79: 65–74, 1984.
 226. Kleinman, J. G., S. S. Blumenthal, J. H. Wiessner, K. L. Reetz, D. L. Lewand, N. S. Mandel, G. S. Mandel, J. C. Garancis, and E. J. Cragoe, Jr.. Regulation of pH in rat papillary tubule cells in primary culture. J. Clin. Invest. 80: 1660–1669, 1987.
 227. Knepper, M. A., R. A. Danielson, G. M. Saidel, and R. S. Post. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 12: 313–323, 1977.
 228. Knepper, M. A., J. M. Sands, H. Nonoguchi, R. A. Star, and R. K. Packer. Inner medullary collecting duct. In: Nephrology: Proceedings of the Xth International Congress of Nephrology, edited by A. M. Davidson. London: Bailliere Tindall, 1988, vol. I, p. 317–331.
 229. Koechlin, N., J. M. Elalouf, B. Kaissling, N. Roinel, and C. de Rouffignac. A structural study of the rat proximal and distal nephron: effect of peptide and thyroid hormones. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F814–F822, 1989.
 230. Koeppen, B. M. Electrophysiological identification of principal and intercalated cells in the rabbit outer medullary collecting duct. Pflugers Arch. 409: 138–141, 1987.
 231. Koeppen, B. M. Electrophysiology of the outer medullary collecting duct. In: Nephrology: Proceedings of the Xth International Congress of Nephrology, edited by A. M. Davidson. London: Bailliere Tindall, 1988, vol. I, p. 304–316.
 232. Koeppen‐Hagemann, I., S. Bachmann, W. W. Minuth, and W. Kriz. Immunohistochemical localization of a protein fraction derived from rabbit renal papilla. Histochemistry 81: 457–464, 1984.
 233. Koepsell, H., W. Kriz, and J. Schnermann. Pattern of luminal diameter changes along the descending and ascending thin limbs of the loop of Henle in the inner medullary zone of the rat kidney. Z. Anat. Entwickl. Gesch. 138: 321–328, 1972.
 234. Kokko, J. P. Sodium chloride and water transport in the descending limb of Henle. J. Clin. Invest. 49: 1838–1846, 1970.
 235. Kokko, J. P. Urea transport in the proximal tubule and the descending limb of Henle. J. Clin. Invest. 51: 1999–2008, 1972.
 236. Kone, B. C., K. M. Madsen, and C. C. Tisher. Ultrastructure of the thick ascending limb of Henle in the rat kidney. Am. J. Anat. 171: 217–226, 1984.
 237. Koob, R., M. Zimmerman, W. Schoner, and D. Drenckhahn. Colocalization and coprecipitation of ankyrin and Na+,K+‐ATPase in kidney epithelial cells. Eur. J. Cell Biol. 45: 230–237, 1988.
 238. Koseki, C., Y. Hayashi, S. Torikai, M. Furuya, N. Ohnuma, and M. Imai. Localization of binding sites for rat atrial natriuretic polypeptide in rat kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F210–F216, 1986.
 239. Koushanpour, E., and W. Kriz. Renal Physiology: Principles, Structure and Function (2nd ed.). New York: Springer, 1986, p. 162–175.
 240. Kretschmer, J. Der Verlauf und die histotopographischen Beziehungen oberflächlich gelegener Nephrone der men‐schlichen Niere. Heidelberg, FRG: Univ. of Heidelberg, 1980. Dissertation.
 241. Kriz, W. Der architektonische und funktionelle Aufbau der Rattenniere. Z. Zellforsch. 82: 495–535, 1967.
 242. Kriz, W. Structural organization of the renal medulla: comparative and functional aspects. Am. J. Physiol. 241 (Regulatory Integrative Comp. Physiol 10): R3–R16, 1981.
 243. Kriz, W. Structural organization of the renal medullary counterflow system. Federation Proc. 42: 2379–2385, 1983.
 244. Kriz, W. A periarterial pathway for intrarenal distribution of renin. Kidney Int., Suppl. S‐51–S‐56, 1987.
 245. Kriz, W., and L. Bankir. ADH‐induced changes in the epithelium of the thick ascending limb in Brattleboro rats with hereditary hypothalamic diabetes insipidus. Ann. N.Y. Acad. Sci. 394: 424–434, 1982.
 246. Kriz, W., L. Bankir, et al. A standard nomenclature for structures of the kidney. Pflugers Arch. 411: 113–120, 1988.
 247. Kriz, W., J. M. Barrett, and S. Peter. The renal vasculature: anatomical‐functional aspects. Int. Rev. Physiol. 11: 1–21, 1976.
 248. Kriz, W., J. Dieterich, and S. Hoffmann. Aufbau der Gefässbündel im Nierenmark von Wüstenmäusen. Naturwis‐senschaften 50: 40, 1968.
 249. Kriz, W., and B. Kaissling. Structural organization of the mammalian kidney. In: The Kidney: Physiology and Pathophysiology, 2nd Ed., edited by D. W. Seldin and G. Giebisch. New York: Raven, p. 265–306 (in press).
 250. Kriz, W., B. Kaissling, and M. Psczolla. Morphological characterization of the cells in Henle's loop and the distal tubule. In: New Aspects of Renal Function, edited by H. G. Vogel and K. Ullrich. Amsterdam: Excerpta Medica, 1978, p. 67–78.
 251. Kriz, W., B. Kaissling, A. Schiller, and R. Taugner. Morphologische Merkmale transportierender Epithelien. Klin. Wochenschr. 57: 967–975, 1979.
 252. Kriz, W., and H. Koepsell. The structural organization of the mouse kidney. Z. Anat. Entwickl. Gesch. 144: 137–163, 1974.
 253. Kriz, W., and T. Sakai. Has the macula densa signal a mechanical component? In: The Juxtaglomerular Apparatus, edited by A. E. G. Persson and U. Boberg. Amsterdam: Elsevier, 1988, p. 27–37.
 254. Kriz, W., A. Schiller, B. Kaissling, and R. Taugner. Comparative and functional aspects of the thin loop limb ultrastructure. In: Functional Ultrastructure of the Kidney, edited by A. B. Maunsbach, T. S. Olsen, and E. I. Christensen. London: Academic, 1980, p. 239–250.
 255. Kriz, W., A. Schiller, and R. Taugner. Freeze‐fracture studies on the thin limbs of Henle's loop in Psammomys obesus. Am. J. Anat. 162: 23–34, 1981.
 256. Kriz, W., J. Schnermann, and H. J. Dieterich. Differences in the morphology of descending limbs of short and long loops of Henle in the rat kidney. In: Recent Advances in Renal Physiology, edited by H. Wire and F. Spinelli. Basel: Karger, 1972, p. 140–144.
 257. Kriz, W., J. Schnermann, and H. Koepsell. The position of short and long loops of Henle in the rat kidney. Z. Anat. Entwickl. Gesch. 138: 301–319, 1972.
 258. Krompecher‐Kiss, E., and O. Bucher. Comparison of the activities of some dehydrogenases in the juxtaglomerular complex of kidneys of Wistar rats and desert rats (Meriones unguiculati). Histochemistry 53: 265–269, 1977.
 259. Krompecher‐Kiss, E., and O. Bucher. Circadian changes of some enzyme activities in the macula densa of the kidney of Mongolian gerbils Meriones unguiculatus. Z. Mikrosk. Anat. Forsch. 92: 509–513, 1978.
 260. Kühn, K., and E. Reale. Junctional complexes of the tubular cells in the human kidney as revealed with freeze‐fracture. Cell Tissue Res. 160: 193–205, 1975.
 261. Küttler, T. Verlauf und histotopographische Beziehungen oberflächlich gelegener Nephrone der Katzenniere. Heidelberg, FRG: Univ. of Heidelberg, 1980. Dissertation.
 262. Kuwahara, T., H. Mayahara, C. Kawai, and K. Ogawa. Histochemical study on the ouabain‐sensitive potassium‐dependent p‐nitrophenyl phosphatase activity along the nephron in several mammals. Acta Histochem. 15: 717–733, 1982.
 263. Kyte, J. Immunoferritin determination of the distribution of (Na+‐K+)ATPase over the plasma membranes of renal convoluted tubules. J. Cell Biol. 68: 287–303, 1976.
 264. Lacy, E. R. Intramembranous particles (IMP) of different segments of the collecting duct epithelium in antidiuretic and water diuretic rats. Eur. J. Cell Biol. 22: 581, 1980.
 265. Lacy, E. R. Marked reduction in intramembranous particle clusters in the terminal portion of inner medullary collecting ducts of antidiuretic rats. Cell Tissue Res. 221: 583–595, 1982.
 266. LeFurgey, A., and C. C. Tisher. Morphology of rabbit collecting duct. Am. J. Anat. 155: 111–124, 1979.
 267. LeHir, M., and U. C. Dubach. Activities of enzymes of the tricaroboxylic acid cycle in segments of the rat nephron. Pflugers Arch. 395: 239–243, 1982.
 268. LeHir, M., and U. C. Dubach. The cellular specificity of lectin binding in the kidney. I. A light microscopical study in the rat. Histochemistry 74: 521–530, 1982.
 269. LeHir, M., and U. C. Dubach. The cellular specificity of lectin binding in the kidney. II. A light microscopical study in the rabbit. Histochemistry 74: 531–540, 1982.
 270. LeHir, M., and B. Kaissling. Distribution of 5'‐nucleotidase in the renal interstitium of the rat. Cell Tissue Res. 258: 177–182, 1989.
 271. LeHir, M., B. Kaissling, and U. C. Dubach. Distal tubular segments in the rabbit kidney after adaptation to altered Na‐and K‐intake. II. Changes in Na‐K‐ATPase. Cell Tissue Res. 224: 493–503, 1982.
 272. LeHir, M., B. Kaissling, B. M. Koeppen, and J. B. Wade. Binding of peanut lectin to specific epithelial cell types in kidney. Am. J. Physiol. 242 (Cell Physiol. 11): C117–C120, 1982.
 273. Lemley, K. V., and W. Kriz. Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int. 31: 538–548, 1987.
 274. Levine, D. Z., and H. R. Jacobson. The regulation of renal acid secretion: new observations from studies of distal nephron segments. Kidney Int. 29: 1099–1109, 1986.
 275. Lombes, M., N. Farman, M. E. Oblin, E. E. Baulieu, J. P. Bonvalet, B. F. Erlanger, and J. M. Gasc. Immunohistochemical localization of renal mineralocorticoid receptor by using an anti‐idiotypic antibody that is an internal image of aldosterone. Proc. Natl. Acad. Sci. USA 87: 1086–1088, 1990.
 276. Lönnerholm, G. Histochemical demonstration of carbonic anhydrase activity in the human kidney. Acta Physiol. Scand. 88: 455–468, 1973.
 277. Lönnerholm, G. Carbonic anhydrase in the monkey kidney. Histochemistry 78: 195–209, 1983.
 278. Lönnerholm, G., and Y. Ridderstrale. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 17: 162–174, 1980.
 279. Lönnerholm, G., and P. J. Wistrand. Carbonic anhydrase in the human kidney: a histochemical and immunocytochemical study. Kidney Int. 25: 886–898, 1984.
 280. Lönnerholm, G., P. J. Wistrand, and E. Barany. Carbonic anhydrase isoenzymes in the rat kidney: effects of chronic acetazolamide treatment. Acta Physiol. Scand. 126: 51–60, 1986.
 281. Madsen, K. M., W. L. Clapp, and J. W. Verlander. Structure and function of the inner medullary collecting duct. Kidney Int. 34: 441–454, 1988.
 282. Madsen, K. M., R. H. Harris, and C. C. Tisher. Uptake and intracellular distribution of ferritin in the rat distal convoluted tubule. Kidney Int. 21: 354–361, 1982.
 283. Madsen, K. M., and C. C. Tisher. Cellular response to acute respiratory acidosis in rat medullary collecting duct. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F670–F679, 1983.
 284. Madsen, K. M., and C. C. Tisher. Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab. Invest. 51: 268–276, 1984.
 285. Madsen, K. M., and C. C. Tisher. Structure ‐function relationships in H+‐secreting epithelia. Federation Proc. 44: 2704–2709, 1985.
 286. Madsen, K., and C. C. Tisher. Structural‐functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1–F15, 1986.
 287. Madsen, K., J. W. Verlander, and C. C. Tisher. Relationship between structure and function in distal tubule and collecting duct. J. Electron Microsc. Tech. 9: 187–208, 1988.
 288. Madsen, K. M., J. W. Verlander, and C. S. Wingo. Morphology of intercalated cells (IC) in docpivalate (DOCP9‐treated, HCO3‐ loaded rats. Kidney Int. 29: 223A, 1986.
 289. Majack, R. A., W. K. Paull, and J. M. Barrett. The ultra‐structural localization of membrane ATPase in rat thin limbs of the loop of Henle. Histochemistry 63: 23–33, 1979.
 290. Mandel, L. J., and R. S. Balaban. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F357–F371, 1981.
 291. Marsh, D. J. Solute and water flows in thin limbs of Henle's loop in the hamster kidney. Am. J. Physiol. 218: 824–831, 1970.
 292. Marsh, D. J., and S. P. Azen. Mechanism of NaCl reabsorption by hamster thin ascending limbs of Henle's loops. Am. J. Physiol. 228: 71–79, 1975.
 293. Mayahara, H., T. Ando, T. Fujimoto, and K. Ogawa. Membrane Na/K‐adenosine triphosphatase (ATPase) (K‐P‐nitrophenylphosphatase) in epithelial cells. J. Histochem. Cytochem. 31: 224–226, 1983.
 294. McKinney, T. D., and K. K. Davidson. Bicarbonate transport in collecting tubules from outer stripe of outer medulla of rabbit kidneys. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F816–F822, 1987.
 295. Messina, A., D. Alcorn, and G. B. Ryan. Intercellular spaces between macula densa cells: an ultrastructural study comparing high pressure perfusion fixation with in situ drip‐fixation of rat kidney. Cell Tissue Res. 250: 461–464, 1987.
 296. Meyer, R. Der Vesikelapparat in den Schaltzellen der Kanin‐chenniere. Morphologische und histochemische Charakterisierung im Vergleich zu entsprechenden Vesikeln anderer Tubuluszellen. Heidelberg, FRG: Univ. of Heidelberg, 1981. Dissertation.
 297. Möllendorff, W. V. Handbuch der Mikroskopischen Anatomie des Menschen. Berlin: Springer, vol. 7, 1930, p. 1–327.
 298. Moffat, D. B. The Mammalian Kidney. Cambridge: Cambridge University Press, 1975.
 299. Moffat, D. B., and J. Fourman. The vascular pattern of the rat kidney. J. Anat. 97: 543–553, 1963.
 300. Molony, D. A., W. B. Reeves, and T. E. Andreoli. Some transport characteristics of mammalian renal diluting segments. Miner. Electrolyte Metab. 13: 442–450, 1987.
 301. Morel, F., D. Chabardes, and M. Imbert. Functional segmentation of the rabbit distal tubule by microdetermination of hormone‐dependent adenylate cyclase activity. Kidney Int. 9: 264–277, 1976.
 302. Morel, F., and A. Doucet. Hormonal control of kidney functions at the cell level. Physiol. Rev. 66: 377–468, 1986.
 303. Morel, F., M. Imbert‐Teboul, M. Chabardes, M. Montegut, and A. Clique. Impaired response to vasopressin of adenylate cyclase of the thick ascending limb of Henle loop in Brattleboro rats with diabetes insipidus. Renal Physiol. 1: 3–10, 1978.
 304. Mounier, F., N. Hinglais, A. Brehier, et al. Ontogenesis of 28 kDa vitamin D‐induced calcium binding protein in human kidney. Kidney Int. 31: 121–129, 1987.
 305. Mühr, T. Die Henleschen Schleifen der Ratte im Rasterelektronen‐mikroskop. Heidelberg, FRG: Univ. of Heidelberg, 1984. Dissertation.
 306. Mujais, S. K., M. A. Chekal, W. J. Jones, J. P. Hayslett, and A. I. Katz. Modulation of renal sodium‐potassium‐adenosine triphosphatase by aldosterone. J. Clin. Invest. 76: 170–176, 1985.
 307. Mujais, S. K., M. A. Chekal, S. Lee, and A. I. Katz. Relationship between adrenal steroids and renal Na‐K‐ATPase. Effect of short‐term hormone administration on the rat cortical collecting tubule. Pflugers Arch. 402: 48–51, 1984.
 308. Mujais, S. K., and N. A. Kurtzman. Regulation of renal Na‐K‐ATPase in the rat: effect of uninephrectomy. Am. J. Physiol. 251 (Renal Fluid Electrolyte, Physiol. 20): F506–F512, 1986.
 309. Muller, J., W. A. Kachadorian, and V. A. DiScala. Evidence that ADH stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell Biol. 85: 83–95, 1980.
 310. Muto, S., G. Giebisch, and S. Sansom. Effects of adrenalectomy on CCD. Evidence for differential response to two cell types. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F342–F352, 1987.
 311. Muto, S., S. C. Sansom, and G. Giebisch. Effects of high K diet on the transport properties of the isolated cortical collecting duct (CCD) of the adrenalectomized (ADX) rabbit. Kidney Int. 29: 403A, 1986.
 312. Muto, S., K. Yasoshima, K. Yoshitomi, M. Imai, and Y. Asano. Electrophysiologial identification of alpha and beta‐intercalated cells and their distribution along the rabbit distal nephron segments. J. Clin. Invest. 86: 1829–1839, 1990.
 313. Myers, C. E., R. E. Bulger, C. C. Tisher, and B. F. Trump. Human renal ultrastructure. IV. Collecting duct of healthy individuals. Lab. Invest. 15: 1921–1950, 1966.
 314. Nagle, R. B., E. M. Altschuler, D. C. Dobyan, S. Dong, and R. E. Bulger. The ultrastructure of the thin limbs of Henle in kidneys of the heteromyid (Perognathus penicillatus). Am. J. Anat. 161: 34–47, 1981.
 315. Neiss, W. F. Morphogenesis and histogenesis of the connecting tubule in the rat kidney. Anat. Embryol. 165: 81–96, 1982.
 316. Norgaard, T. Quantitative measurement of glucose‐6‐phos‐phate‐dehydrogenase in cortical fractions of the rabbit nephron. Histochemistry 63: 103–114, 1979.
 317. Norgaard, T. The ultrastructure of the macula densa during altered sodium intake: a morphometric study of the macula densa in the rabbit nephron. Acta Pathol. Microbiol. Immunol. Scand. [A] 90: 67–73, 1982.
 318. Nungesser, W. C., and E. W. Pfeiffer. Water balance and maximum concentrating capacity in the primitive rodent, Aplodontia rufa. Comp. Biochem. Physiol. 14: 289–297, 1965.
 319. Oka, Y., K. Fujiwara, and H. Endou. Epidermal growth factor in the mouse kidney: developmental changes and intra‐nephron localizations. Pediatr. Nephrol. 2: 124–128, 1988.
 320. Oliver, J. Nephrons and Kidneys. New York: Harper & Row (Hoeber Medical Division), 1968.
 321. Oliver, J., M. MacDowell, L. G. Welt, M. A. Holliday, W. Hollander, R. W. Winters, T. F. Williams, W. E. Segar. The renal lesions of electrolyte imbalance. I. The structural alterations in potassium‐depleted rats. J. Exp. Med. 106: 563–574, plates 50–59, 1957.
 322. Omata, K., O. A. Carretero, S. Itoh, and A. G. Scicli. Active and inactive kallikrein in rabbit connecting tubules and urine during low and normal sodium intake. Kidney Int. 24: 714–718, 1983.
 323. Omata, K., O. A. Carretero, A. G. Scicli, and B. A. Jackson. Characterization of active and inactive kallikrein (kininogenase activity) in the microdissected rabbit nephron. Kidney Int. 22: 602–607, 1982.
 324. O'Neil, R. G. Potassium secretion by the cortical collecting tubule. Federation Proc. 40: 2403–2407, 1981.
 325. O'Neil, R. G., and R. A. Hayhurst. Functional differentiation of cell types of cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte, Physiol. 17): F449–F453, 1985.
 326. O'Neil, R. G., and R. A. Hayhurst. Sodium‐dependent modulation of the renal Na‐K‐ATPase: influence of mineralocorticoids on the cortical collecting duct. J. Membr. Biol. 85: 169–179, 1985.
 327. O'Neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influence of DOCA and diet. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F544–F588, 1977.
 328. Orci, L., and D. Brown. Distribution of filipin‐sterol complexes in plasma membranes of the kidney. II. The thin limbs of Henle's loop. Lab. Invest. 48: 80–89, 1983.
 329. Orci, L., F. Humbert, D. Brown, and A. Perrelet. Membrane ultrastructure in urinary tubules. Int. Rev. Cytol. 73: 183–242, 1981.
 330. Ordonez, N. G., and B. H. Spargo. The morphologic relationship of light and dark cells of the collecting tubule in potassium depleted rats. Am. J. Pathol. 84: 317–326, 1976.
 331. Orstavik, T. B., and T. Inagami. Localization of kallikrein in the rat kidney and its anatomical relationship to renin. J. Histochem. Cytochem. 30: 385–390, 1982.
 332. Orstavik, T. B., K. Nustad, P. Brandtzaeg, and J. V. Pierce. Cellular origin of urinary kallikreins. J. Histochem. Cytochem. 24: 1037–1039, 1976.
 333. Osvaldo‐Decima, L. Ultrastructure of the lower nephron. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: American Physiological Society, 1973, sect. 8, chapt. 3, p. 81–102.
 334. Parmentier, M., M. Ghysens, F. Rypens, D. E. Lawson, J. L. Pasteels, and R. Pochet. Calbindin in vertebrate classes: immunohistochemical localization and Western blot analysis. Gen. Comp. Endocrinol. 65: 399–407, 1987.
 335. Pennell, J. P., V. Sanjana, N. R. Frey, and R. L. Jamison. The effect of urea infusion on the urinary concentrating mechanism in protein‐depleted rats. J. Clin. Invest. 55: 399–409, 1975.
 336. Pennica, D., W. J. Kohr, W.‐J. Kuang, D. Glaister, B. B. Aggarwal, E. Y. Chen, and D. V. Goeddel. Identification of human uromodulin as the Tamm‐Horsfall urinary glycoprotein. Science 236: 83–88, 1987.
 337. Peter, K. Untersuchungen über Bau und Entwicklung der Niere. Jena, Germany: Fischer, 1909, 1927.
 338. Petty, K. J., J. P. Kokko, and D. Marver. Secondary effect of aldosterone on Na‐K‐ATPase activity in the rabbit cortical collecting tubule. J. Clin. Invest. 68: 1514–1521, 1981.
 339. Pfaller, W. Structure function correlation on rat kidney: quantitative correlation of structure and function in the normal and injured rat kidney. Adv. Anat. Embryol. Cell Biol. 70: 1–106, 1982.
 340. Pfaller, W., W. M. Fischer, N. Strieder, H. Wurnig, and P. Deetjen. Morphologic changes of cortical nephron cells in potassium‐adapted rats. Lab. Invest. 31: 678–684, 1974.
 341. Pfeiffer, E. W., W. C. Nungesser, D. A. Iverson, and J. F. Wallerius. The renal anatomy of the primitive rodent, Aplodontia rufa, and a consideration of its functional significance. Anat. Rec. 137: 227–235, 1960.
 342. Poujeol, P., P. Ronco, M. Tauc, et al. Immunological segmentation of the rabbit distal, connecting, and collecting tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F412–F422, 1987.
 343. Pricam, C., F. Humbert, A. Perrelet, and L. Orci. A freezeetch study of the tight junction of the rat kidney tubules. Lab. Invest. 30: 286–291, 1974.
 344. Rasch, R. Changes in macula densa of the juxtaglomerular apparatus in experimental diabetes. Diabetologia 27: 323A–324A, 1984.
 345. Rasch, R. Nonglomerular lesions in diabetic kidney. In: Nephrology, edited by A. M. Davidson. London: Balliere Tindall, 1988, vol. II, p. 744–757.
 346. Rastegar, A., D. Biemesderfer, M. Kashgarian, and J. P. Hayslett. Changes in membrane surfaces of collecting duct cells in potassium adaption. Kidney Int. 18: 293–301, 1980.
 347. Reinking, L. N., and B. Schmidt‐Nielsen. Peristaltic flow of urine in the renal papillary collecting ducts of hamsters. Kidney Int. 20: 55–60, 1981.
 348. Rhoten, W. B., and S. Christakos. Immuno‐cytochemical localization of vitamin D dependent calcium binding protein in mammalian nephron. Endocrinology 109: 981–983, 1981.
 349. Richardson, R. M. A., and R. T. Kunau. Bicarbonate reabsorption in the papillary collecting duct: effect of acetazolamide. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F74–F80, 1982.
 350. Richet, G., and J. Hagege. Dark cells of the distal convoluted tubules and collecting ducts. II. Physiological significance. Fortschr. Zool. 23: 299–306, 1975.
 351. Ridderstrale, Y. Intracellular localization of carbonic anhydrase in some vertebrate nephrons. Acta Physiol. Scand. Suppl. 488: 1–22, 1980.
 352. Ridderstrale, Y., M. Kashgarian, G. Giebisch, B. Koeppen, and B. Stanton. Rabbit collecting duct heterogeneity: localization of carbonic anhydrase and Na‐K‐ATPase. Kidney Int. 31: 441, 1987.
 353. Rielle, J. C., D. Brown, and L. Orci. Differences in glycocalix composition between bells of the cortical thick ascending loop of Henle and the macula densa as revealed by lectin gold cytochemistry. Anat. Rec. 218: 243–248, 1987.
 354. Rollhäuser, H., W. Kriz, and W. Heinke. Das Gefäbsystem der Rattenniere. Z. Zellforsch. 64: 381–403, 1964.
 355. Ronco, P., M. Brunisholz, M. Legendre‐Geniteau, F. Chatelet, P. Verroust, and G. Richet. Physiopathological aspects of the Tamm‐Horsfall protein: a phylogenetically conserved marker of the thick ascending limb of Henle's loop. In: Actualites nephrologiques de l'hopital Necker, edited by J. Crosnier, J. L. Funck‐Brentano, J. F. Bach, and J. P. Gruenfeld. Paris: Flammarion, 1986, p. 101–120.
 356. Rosen, S. Localization of carbonic anhydrase activity in the vertebrate nephron. Histochem. J. 4: 35–48, 1972.
 357. Rostgaard, J., and O. Moller. Localization of Na+,K+‐ATPase to the inside of the basolateral cell membranes of epithelial cells of proximal and distal tubules in rabbit kidney. Cell Tissue Res. 212: 17–28, 1980.
 358. Roth, J., D. Brown, A. W. Norman, and L. Orci. Localization of the vitamin D‐dependent calcium‐binding protein in mammalian kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F243–F252, 1982.
 359. Roth, J., and D. J. Taatjes. Glycocalix heterogeneity of rat kidney urinary tubule: demonstration with lectin‐gold technique specific for sialic acid. Eur. J. Cell Biol. 39: 449–457, 1985.
 360. de Rouffignac, C., and F. Morel. Micropuncture study of water, electrolyte and urea movements along the loops of Henle in Psammomys. J. Clin. Invest. 48: 474–486, 1969.
 361. Rundle, S. E., A. I. Smith, D. Stockman, and J. W. Funder. Immunocytochemical demonstratin of mineralocorticoid receptors in rat and human kidney. J. Steroid. Biochem. 33: 1235–1242, 1989.
 362. Salido, E. C., L. Barajas, J. Lechago, N. P. Laborde, and D. A. Fisher. Immunocytochemical localization of nerve growth factor in mouse kidney. J. Neurosci. Res. 16: 457–465, 1986.
 363. Salido, E. C., L. Barajas, J. Lechago, N. P. Laborde, and D. A. Fisher. Immunocytochemical localization of epidermal growth factor in mouse kidney. J. Histochem. Cytochem. 34: 1155–1160, 1986.
 364. Salido, E. C., D. A. Fisher, and L. Barajas. Immunoelectron microscopy of epidermal growth factor in mouse kidney. J. Ultrastruct. Mol. Struct. Res. 96: 105–113, 1986.
 365. Sansom, S. C., and R. G. O'Neil. Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F858–F868, 1985.
 366. Sansom, S. C., and R. G. O'Neil. Effects of mineralocorticoids on transport properties of cortical collecting duct basolateral membrane. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F743–F757, 1986.
 367. Satlin, L. M., A. P. Evan, V. H. Gattone, and G. J. Schwartz. Postnatal maturation of the rabbit cortical collecting duct. Pediatr. Nephrol. 2: 135–145, 1988.
 368. Satlin, L. M., and G. J. Schwartz. Postnatal maturation of rabbit renal collecting duct intercalated cell function. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F622–F635, 1987.
 369. Satlin, G. M., and J. G. Schwartz. Cellular remodeling of HCO3− ‐ secreting cells in rabbit renal collecting duct in response to an acidic environment. J. Cell Biol. 109: 1279–1288, 1989.
 370. Sato, A., and S. S. Spicer. Cell specialization in collecting tubules of the guinea pig kidney: carbonic anhydrase activity and glycosaminoglycan production in different cells. Anat. Rec. 202: 431–433, 1982.
 371. Scherzer, P., H. Wald, and M. M. Popovtzer. Enhanced glomerular filtration and Na+‐K+‐ATPase with furosemide administration. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F910–F915, 1987.
 372. Schiller, A., W. G. Forssmann, and R. Taugner. The tight junctions of renal tubules in the cortex and outer medulla: a quantitative study of the kidneys of six species. Cell Tissue Res. 212: 395–413, 1980.
 373. Schiller, A., and R. Taugner. Are there specialized junctions in the pars maculata of the distal tubules? Cell Tissue Res. 200: 337–344, 1979.
 374. Schiller, A., and R. Taugner. Heterogeneity of tight junctions along the collecting duct in the renal medulla: a freeze‐fracture study in rat and rabbit. Cell Tissue Res. 223: 603–614, 1982.
 375. Schiller, A., R. Taugner and W. Kriz. The thin limbs of Henle's loop in the rabbit: a freeze‐fracture study. Cell Tissue Res. 207: 249–265, 1980.
 376. Schiller, A., R. Taugner, and B. Roesinger. Vergleichende Morphologie der Zonulae occludentes am Nierentubulus. Verb. Anat. Ges. 72: 229–234, 1978.
 377. Schmidt, U., and U. C. Dubach. Activity of [Na+‐K+]‐stimulated adenosinetriphosphatase in the rat nephron. Pflugers Arch. 306: 210–217, 1969.
 378. Schmidt, U., J. Schmidt, H. Schmid, and U. C. Dubach. Sodium and potassium activated ATPase: a possible target of aldosterone. J. Clin. Invest. 55: 655–660, 1975.
 379. Schmidt‐Nielsen, B., J. M. Barrett, B. Graves, and B. Crossley. Physiological and morphological responses of the rat kidney to reduced dietary protein. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F31–F42, 1985.
 380. Schmidt‐Nielsen, B., and B. Graves. Changes in fluid compartments in hamster renal papilla due to peristaltics of the pelvic wall. Kidney Int. 22: 613–625, 1982.
 381. Schmidt‐Nielsen, B., and L. N. Reinking. Morphometry and fluid reabsorption during peristaltic flow in hamster renal papillary collecting ducts. Kidney Int. 20: 789–798, 1981.
 382. Schmittinger, U. Untersuchungen zur Innervation der Arkaden der Kaninchenniere. Heidelberg, FRG: Univ. of Heidelberg, 1985. Dissertation.
 383. Schneeberger, P. R., and C. W. Heizmann. Parvalbumin in rat kidney: purification and localization. FEBS Lett. 201: 5–56, 1986.
 384. Schnermann, J., and D. Marver. ATPase activity in macula densa cells of the rabbit kidney. Pflugers Arch. 407: 82–99, 1986.
 385. Schon, D. A., K. A. Backman, and J. P. Hayslett. Role of the medullary collecting duct in potassium excretion in potassium‐adapted animals. Kidney Int. 20: 655–662, 1981.
 386. Schreiner, D. S., S. S. Jande, C. O. Parkes, D. E. M. Lawson, and M. Thomasset. Immunocytochemical demonstration of two vitamin D‐dependent calcium‐binding proteins in mammalian kidney. Acta Anat. 117: 1–14, 1983.
 387. Schurek, H. J., and W. Kriz. Morphologic and functional evidence for oxygen deficiency in the isolated perfused rat kidney. Lab. Invest. 533 145–155, 1985.
 388. Schuster, V. L., S. M. Bonsib, and M. L. Jennings. Two types of collecting duct mitochondria‐rich (intercalated) cells: lectin and band 3 cytochemistry. Am. J. Physiol. 251 (Cell Physiol. 20): C347–355, 1986.
 389. Schwartz, G. J., J. Barasch, and Q. Al‐Awqati. Plasticity of functional epithelial polarity. Nature 318: 368–371, 1985.
 390. Schwartz, G. J., L. M. Satlin, and J. E. Bergemann. Fluorescent characterization of collecting duct cells: a second H+‐secreting type. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1003–F1014, 1988.
 391. Schwartz, M. M., M. J. Karnovsky, and M. A. Venkatachalam. Regional membrane specialization in the thin limbs of Henle's loop as seen by freeze‐fracture electron microscopy. Kidney Int. 16: 577–589, 1979.
 392. Schwartz, M. M., and M. A. Venkatachalam. Structural differences in thin limbs of Henle: physiological implications. Kidney Int. 6: 193–208, 1974.
 393. Shareghi, G. R., and L. C. Stoner. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F367–F375, 1978.
 394. Sikri, K. L., and C. L. Foster. Light and electron microscopic observations on the macula densa of the Syrian hamster kidney. J. Anat. 132: 57–69, 1981.
 395. Sikri, K. L., C. L. Foster, F. J. Bloomfield, and R. D. Marshall. Localization by immunofluorescence and by light microscopic and electron microscopic immunoperoxidase techniques of Tamm‐Horsfall glycoprotein in adult hamster kidney. Biochem. J. 181: 525–532, 1979.
 396. Sikri, K. L., C. L. Foster, N. MacHugh, and R. D. Marshall. Localization of Tamm‐Horsfall glycoprotein in the human kidney using immuno‐fluorescence and immuno‐electron microscopical techniques. J. Anat. 132: 597–605, 1981.
 397. Snarski, J., A. Snarski, M. Bachelet, C. Baser, and A. Ulman. (Na‐K)ATPase activity along the nephrons in normal and adrenalectomized rats measured by quantitative cytochemistry. Cell Biochem. Funct. 3: 127–132, 1985.
 398. Spanidis, A., H. Wunsch, B. Kaissling, and W. Kriz. Three‐dimensional shape of a Goormaghtigh cell and its contact with a granular cell in the rabbit kidney. Anat. Embryol. 165: 239–252, 1982.
 399. Sperber, I. Studies on the mammalian kidney. Zool. Bidr. Uppsala 22: 249–432, 1944.
 400. Spicer, S. S., D. A. Baron, A. Sato, and B. A. Schulte. Variability of cell surface glycoconjugates—relation to differences in cell function. J. Histochem. Cytochem. 29: 994–1002, 1981.
 401. Spicer, S. S., M. A. Sens, and R. E. Tashian. Immunocytochemical demonstration of carbonic anhydrase in human epithelial cells. J. Histochem. Cytochem. 30: 864–873, 1982.
 402. Spielman, W. S., W. K. Sonneburg, M. L. Allen, et al. Immunodissection and culture of rabbit cortical collecting tubule cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F348–378, 1986.
 403. Stanton, B. A. Role of adrenal hormones in regulating distal nephron structure and ion transport. Federation Proc. 44: 2717–2722, 1985.
 404. Stanton, B. A. Renal potassium transport: morphological and functional adaptations. Am. J. Physiol. 257: (Regulatory Integrative Comp. Physiol. 26): R987–R989, 1989.
 405. Stanton, B., D. Biemesderfer, J. B. Wade, and G. Giebisch. Structural and functional study of the rat distal nephron: effects of potassium adaptation and depletion. Kidney Int. 19: 36–48, 1981.
 406. Stanton, B., G. Giebisch, G. Klein‐Robbenhaar, J. Wade, R. A. De Fronzo. Effects of adrenalectomy and chronic adrenal corticosteroid replacement on potassium transport in rat kidney. J. Clin. Invest. 75: 1317–1326, 1985.
 407. Stanton, B., A. Janzen, G. Klein‐Robbenhaar, R. De Fronzo, G. Giebisch, and J. Wade. Ultrastructure of rat initial collecting tubule: effect of adrenal corticosteroid treatment. J. Clin. Invest. 75: 1327–1334, 1985.
 408. Stanton, B., and B. Kaissling. Adaptation of distal tubule and collecting duct to increased sodium delivery. II. Na+ and K+ transport. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1269–F1275, 1988.
 409. Stanton, B. A., and B. Kaissling. Regulation of renal ion transport and cell growth by sodium. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F1–F10, 1989.
 410. Stanton, B., L. Pan, H. Deetjen, V. Guckian, and G. Giebisch. Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J. Clin. Invest. 79: 198–206, 1987.
 411. Star, R., M. Knepper, and M. Burg. Bicarbonate secretion by rabbit cortical collecting duct: role of chloride/bicarbonate exchange. Kidney Int. 29: 191A, 1986.
 412. Steinhausen, M. In vivo‐Beobachtungen an der Nierenpapille von Goldhamstern nach intravenöser Lissamingrün‐Injektion. Pflugers Arch. 279: 195–213, 1964.
 413. Steinmetz, P. R. Cellular organization of urinary acidification. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 19): F173–F187, 1986.
 414. Stern, P., M. C. Harmanci, and B. R. Edwards. Vasopressin and inramembranous particle clusters in collecting duct cells of Brattleboro and Long‐Evans rats. Ann. N.Y. Acad. Sci. 394: 518–523, 1982.
 415. Stetson, D. L., and P. R. Steinmetz. α and β types of carbonic anhydrase‐rich cells in turtle bladder. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F553–F565, 1985.
 416. Stetson, D. L., J. B. Wade, and G. Giebisch. Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int. 17: 45–56, 1980.
 417. Stewart, J., D. Lacey, R. Irons, and H. Valtin. On the length and prevalence of short loops of Henle in human kidneys, abstracted in: Proc. Int. Congr. Nephrol., Mexico City, 1972, Mexico City, p. 78.
 418. Störkel, S., D. Pannen, W. Thoenes, P. V. Steart, S. Wagner, and D. Drenckhahn. Intercalated cells as a probable source for the development of renal oncocytoma. Virchows Arch. [B.] 56: 185–189, 1988.
 419. Störkel, S., P. V. Steart, D. Drenckhahn, and W. Thoenes. The human chromophobe cell renal carcinoma: its probable relation to intercalated cells of the collecting duct. Virchows Arch. [B] 56: 237–245, 1989.
 420. Stokes, J. B. Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration and transepithelial voltage. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F395–F402, 1981.
 421. Stokes, J. B., C. C. Tisher, and J. P. Kokko. Structural‐functional heterogeneity along rabbit collecting tubule. Kidney Int. 14: 585–593, 1978.
 422. Stoward, P. S., S. S. Spicer, and R. L. Miller. Histochemical reactivity of peanut lectin‐horseradish peroxidase conjugate. J. Histochem. Cytochem. 28: 979–990, 1980.
 423. Strange, K., and K. R. Spring. Methods for imaging renal tubule cells. Kidney Int. 30: 192–200, 1986.
 424. Strange, K., and K. R. Spring. Absence of significant cellular dilution during ADH‐stimulated water reabsorption. Science 235: 1068–1070, 1987.
 425. Strange, K., and K. R. Spring. Cell membrane water permeability of rabbit cortical collecting duct. J. Membr. Biol. 96: 27–43, 1987.
 426. Tago, K., V. L. Schuster, and J. B. Stokes. Stimulation of chloride transport by HCO3− ‐CO2 in rabbit cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F49–F56, 1986.
 427. Taugner, R., A. Schiller, B. Kaissling, and W. Kriz. Gap junctional coupling between JGA and the glomerular tuft. Cell Tissue Res. 86: 279–285, 1978.
 428. Taylor, A. N., J. E. McIntosh, and J. E. Bourdeau. Immunocytochemical localization of vitamin D‐dependent calcium‐binding protein in renal tubules of rabbit, rat, and chick. Kidney Int. 21: 765–773, 1982.
 429. Thorens, B., H. F. Lodish, and D. Brown. Differential localization of two glucose transporter isoforms in rat kidney. Am. J. Physiol. 259 (Cell Physiol. 28): C286–C294, 1990.
 430. Tisher, C. C., R. E. Bulger, and B. F. Trump. Human renal ultrastructure. I. Proximal tubule in healthy individuals. Lab. Invest. 15: 1357–1394, 1966.
 431. Tisher, C. C., R. E. Bulger and B. F. Trump. Human renal ultrastructure. III. The distal tubule in healthy individuals. Lab. Invest. 18: 655–668, 1968.
 432. Tisher, C. C., and B. Kaissling. Structural heterogeneity of the distal nephron. In: Proc. Int. Congr. Nephrol. 9th. Los Angeles, 1984. New York: Springer‐Verlag, 1984, vol. I, p. 243–250.
 433. Tisher, C. C., and K. M. Madsen. Anatomy of the kidney. In: The Kidney (3rd ed.), edited by B. M. Brenner and F. C. Rector. Philadelphia: W. B. Saunders, 1987, vol. 1, p. 3–60.
 434. Tisher, C. C., and W. E. Yarger. Lanthanum permeability of tight junctions along the collecting duct of the rat. Kidney Int. 7: 35–44, 1975.
 435. Toback, F. G., N. G. Ordonez, S. L. Bortz, and B. H. Spargo. Zonal changes in renal structure and phospholipid metabolism in potassium‐deficient rats. Lab. Invest. 34: 115–124, 1976.
 436. Tomita, K., A. Owada, Y. Iino, N. Yoshiyana, and T. Shiigai. Effect of vasopressin on Na+‐K+‐ATPase activity in rat cortical collecting duct. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F874–F879, 1987.
 437. Trinh‐Trang‐Tan, M. M., N. Bouby, W. Kriz, and L. Bankir. Functional adaptation of thick ascending limb and internephron heterogeneity to urine concentration. Kidney Int. 31: 549–555, 1987.
 438. Ullrich, K. J., and F. Papavassiliou. Sodium reabsorption in the papillary collecting duct of rats: effect of adrenalectomy, low Na+ diet, acetazolamide, HCO3−‐free solutions and of amiloride. Pflugers Arch. 379: 49–52, 1979.
 439. Ullrich, K. J., and F. Papavassiliou. Bicarbonate reabsorption in the papillary collecting duct of rats. Pflugers Arch. 389: 271–275, 1981.
 440. Valtin, H. Physiological effects of vasopressin on the kidney. In: Vasopressin, edited by D. M. Gash. and G. J. Boer. New York: Plenum, 1987, p. 369–387.
 441. Vandewalle, A., F. Cluzeaud, M. Chavance, and J. P. Bonvalet. Cellular heterogeneity of uridine incorporation in collecting tubules: effect of DOCA. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F552–F564, 1985.
 442. Verkman, A. S., W. I. Lencer, D. Brown, and D. A. Ausiello. Endosomes from kidney collecting tubule cells contain the vasopressin‐sensitive water channel. Nature 333: 268–269, 1988.
 443. Verlander, J. W., K. M. Madsen, and C. C. Tisher. Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1142–F1156, 1987.
 444. Vio, C. P., and C. D. Figueroa. Subcellular localization of renal kallikrein by ultrastructural immunocytochemistry. Kidney Int. 28: 36–42, 1985.
 445. Vio, C. P., and C. D. Figueroa. Evidence for a stimulatory effect of high potassium diet on renal kallikrein. Kidney Int. 31: 1327–1334, 1987.
 446. Wade, J. B., R. G. O'Neil, J. L. Pryor, and E. L. Boulpaep. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell Biol. 81: 439–445, 1979.
 447. Wade, J. B., B. A. Stanton, M. J. Field, M. Kashgarian, and G. Giebisch. Morphological and physiological responses to aldosterone: time course and sodium dependence. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F88–F94, 1990.
 448. Wade, J. B., D. L. Stetson, and S. A. Lewis. ADH action: evidence for a membrane shuttle mechanism. Ann. N. Y. Acad. Sci. 372: 106–117, 1981.
 449. Wagner, S., R. Vogel, R. Lietzke, R. Koob, and D. Drenckhahn. Immunocytochemical characterization of a band 3‐like anion exchanger in collecting duct of human kidney. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F213–F221, 1987.
 450. Welling, L. W., A. P. Evan, and D. J. Welling. Shape of cells and extracellular channels in rabbit cortical collecting ducts. Kidney Int. 20: 211–222, 1981.
 451. Welling, L. W., A. P. Evan, D. J. Welling, and V. H. Gattone. Morphometric comparison of rabbit cortical connecting tubules and collecting ducts. Kidney Int. 23: 358–367, 1983.
 452. Welling, L. W., D. J. Welling, and J. J. Hill. The shape of epithelial cells in rabbit thick ascending limb of Henle. Kidney Int. 10: 603, 1977.
 453. Welling, L. W., D. J. Welling, and J. J. Hill. Shape of cells and intercellular channels in rabbit thick ascending limb of Henle. Kidney Int. 13: 144–151, 1978.
 454. Westenfelder, C., G. J. Arevalo, R. L. Baronowski, N. A. Kurtzman, and A. I. Katz. Relationship between mineralo‐corticoids and renal Na+‐K+‐ATPase sodium reabsorption. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F593–F599, 1977.
 455. Weyer, P., D. Brown, and L. Orci. Lectin‐gold labeling of glycoconjugates in normal and Brattleboro rat papilla: effect of vasopressin. Am. J. Physiol. 254 (Cell Physiol. 21): C450–C458, 1987.
 456. Wingo, C. S. Cortical collecting tubule potassium secretion: effect of amiloride, ouabain, and luminal sodium concentration. Kidney Int. 27: 886–891, 1985.
 457. Wingo, C. S., J. P. Kokko, and H. R. Jacobson. Effects of in vitro aldosterone on the rabbit cortical collecting tubule. Kidney Int. 28: 51–57, 1985.
 458. Wingo, C. S., K. M. Madsen, A. Smolka, and C. C. Tisher. H‐K‐ATPase immunoreactivity in cortical and outer medullary collecting duct. Kidney Int. 38: 985–990, 1990.
 459. Wollbold, W. Der mikroskopisch‐anatomische Aufbau der Hundeniere. Münster, FRG: Univ. of Münster, 1971. Dissertation.
 460. Wong, T., T. O. Morgan, D. Alcorn, and G. B. Ryan. Effect of sodium intake and sodium delivery to the macula densa on renal renin content and juxtaglomerular apparatus morphology. Clin. Exp. Pharmacol. Physiol. 13: 267–270, 1986.
 461. Woodhall, P. B., and C. C. Tisher. Response of the distal tubule and cortical collecting duct to vasopressin in rat. J. Clin. Invest. 52: 3095–3108, 1973.
 462. Wright, F. S. Sites and mechanisms of potassium transport along the renal tubule. Kidney Int. 11: 415–432, 1977.
 463. Wright, F. S. Potassium transport by successive segments of the mammalian nephron. Federation Proc. 40: 2398–2402, 1981.
 464. Wright, F. S., and G. Giebisch. Renal potassium transport contributions of individual nephron segments and populations. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F515–F527, 1978.
 465. Yokota, S., H. Tsuji, and K. Kato. Immunocytochemical localization of cathepsin D in lysosomes of cortical collecting tubule cells of the rat kidney. J. Histochem. Cytochem. 33: 191–200, 1985.
 466. Yoshitomi, K., C. Koseki, J. Taniguchi, and M. Imai. Functional heterogeneity in the hamster medullary thick ascending limb of Henle's loop. Pflugers Arch. 408: 600–608, 1987.
 467. Zalups, G., B. A. Stanton, J. B. Wade, and G. Giebisch. Structural adaptation in initial collecting tubule following reduction in renal mass. Kidney Int. 27: 636–642, 1985.
 468. Zampighi, G., and M. Kreman. Intercellular fibrillar skeleton in the basal interdigitations of kidney tubular cells. J. Membr. Biol. 88: 33–43, 1985.
 469. Zimmermann, K. W. Zur Morphologie der Epithelzelle der Säugetierniere. Arch. Mikrosk. Anat. 78: 199–231, 1911.
 470. Zimmermann, K. W. Über den Bau des Glomerulus der Säugerniere. Z. Mikrosk. Anat. Forsch. 32: 176–278, 1933.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

B. Kaissling, W. Kriz. Morphology of the Loop of Henle, Distal Tubule, and Collecting Duct. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 109-167. First published in print 1992. doi: 10.1002/cphy.cp080103