Comprehensive Physiology Wiley Online Library

Principles of Electrolyte Transport Across Plasma Membranes of Renal Tubular Cells

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Principles of Sodium Reabsorption
1.1 Coupling of Sodium Transport to Bicarbonate Absorption
1.2 Coupling of Sodium Reabsorption to Chloride
1.3 Rheogenic Sodium Reabsorption
1.4 Comparative Energetic Aspects
2 Principles of Proton Secretion
2.1 Sodium‐Dependent Proton Secretion
2.2 Sodium‐Independent Proton Secretion
2.3 Comparative Energetic Aspects
3 Principles of Sodium‐Coupled Solute Absorption
3.1 Specificity
3.2 Source of Energy
3.3 Homocellular Regulation Mechanisms
4 Principles of Solute Uptake Across the Basolateral Membrane
4.1 Anion Transport Systems in the Basolateral Membrane
4.2 PAH Secretion: A Tertiary Active Process
5 Conclusion
Figure 1. Figure 1.

Mechanisms of Na+ reabsorption in the nephron. A: Proximal convoluted tubule; B: thick ascending limb of the loop of Henle; C: principal cell of collecting tubule. Closed circles with arrows indicate the pump; open circles with arrows, the carrier; and single arrows, conductive pathways.

Figure 2. Figure 2.

Mechanism of proton secretion in an intercalated cell of the collecting tubule. Closed circles with arrows indicate the pump; open circles with arrows, the carrier; and single arrows, conductive pathways.

Figure 3. Figure 3.

Mechanism of sodium‐coupled reabsorption in the proximal tubule. Closed circles with arrows indicate the pump; open circles with arrows, the carrier; and single arrows, conductive pathways.

Figure 4. Figure 4.

Mechanism of basolateral anion uptake in the proximal tubule. Closed circles with arrows indicate the pump; open circles with arrows, the carrier; and single arrows, conductive pathways.



Figure 1.

Mechanisms of Na+ reabsorption in the nephron. A: Proximal convoluted tubule; B: thick ascending limb of the loop of Henle; C: principal cell of collecting tubule. Closed circles with arrows indicate the pump; open circles with arrows, the carrier; and single arrows, conductive pathways.



Figure 2.

Mechanism of proton secretion in an intercalated cell of the collecting tubule. Closed circles with arrows indicate the pump; open circles with arrows, the carrier; and single arrows, conductive pathways.



Figure 3.

Mechanism of sodium‐coupled reabsorption in the proximal tubule. Closed circles with arrows indicate the pump; open circles with arrows, the carrier; and single arrows, conductive pathways.



Figure 4.

Mechanism of basolateral anion uptake in the proximal tubule. Closed circles with arrows indicate the pump; open circles with arrows, the carrier; and single arrows, conductive pathways.

References
 1. Akiba, T., R. J. Alpern, J. Eveloff, J. Calamina, and D. G. Warnock. Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles. J. Clin. Invest. 78: 1472–1478, 1986.
 2. Alpern, R. J. Mechanism of basolateral membrane H+/OH−/HCO3− transport in the rat proximal convoluted tubule. A sodium‐coupled electrogenic process. J. Gen. Physiol. 86: 613–636, 1985.
 3. Alpern, R. J. Cell mechanisms of proximal tubule acidification. Physiol. Rev. 70: 79–114, 1990.
 4. Anner, B. M., L. K. Lane, A. Schwartz, and B. R. J. Pitts. A reconstituted pump in liposomes containing purified Na+,K+‐ATPase from kidney medulla. Biochim. Biophys. Acta 467: 340–345, 1977.
 5. Aronson, P. S. Mechanisms of active H+ secretion in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F647–F659, 1983.
 6. Aronson, P. S., J. Nee, and M. A. Suhm. Modifier role of internal H+ in activating the Na+‐H+ exchanger in renal microvillus membrane vesicles. Nature 299: 161–163, 1982.
 7. Baeyer, H. von, and P. Deetjen. Renal glucose transport. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 1663–1675.
 8. Barbry, P., O. Chassande, P. Vigne, C. Frelin, C. Ellory, E. J. Cragoe, Jr., and M. Lazdunski. Purification and subunit structure of the [3H]phenamil receptor associated with the renal apical Na+ channel. Proc. Natl. Acad. Sci. USA 84: 4836–4840, 1987.
 9. Bästlein, C., and G. Burckhardt. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 20): F226–F234, 1986.
 10. Beck, F., R. Bauer, U. Bauer, J. Mason, A. Dörge, R. Rick, and K. Thurau. Electron microprobe analysis of intracellular elements in the rat kidney. Kidney Int. 17: 756–763, 1980.
 11. Beck, J. C., and B. Sacktor. The sodium electrochemical potential‐mediated uphill transport of D‐glucose in renal brush border membrane vesicles. J. Biol. Chem. 253: 5531–5535, 1978.
 12. Béliveau, R., M. Demeule, H. Ibnoul‐Khatib, M. Bergeron, G. Beauregard, and M. Potier. Radiation‐inactivation studies on brush‐border membrane vesicles. Biochem. J. 252: 807–813, 1988.
 13. Béliveau, R., M. Demeule, M. Jetté, and M. Potier. Molecular sizes of amino acid transporters in the luminal membrane from kidney cortex, estimated by the radiation‐inactivation method. Biochem. J. 268: 195–200, 1990.
 14. Benos, D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am. J. Physiol. 242 (Cell Physiol. 11): C131–C145, 1982.
 15. Benos, D. J., G. Saccomani, B. M. Brenner, and S. Sariban‐Sohraby. Purification and characterization of the amiloride‐sensitive sodium channel from A6 cultured cells and bovine renal papilla. Proc. Natl. Acad. Sci. USA 83: 8525–8529, 1986.
 16. Benos, D. J., G. Saccomani, and S. Sariban‐Sohraby. The epithelial sodium channel. Subunit number and location of the amiloride binding site. J. Biol. Chem. 262: 10613–10618, 1987.
 17. Biagi, B. A. Effects of the anion transport inhibitor, SITS, on the proximal straight tubule of the rabbit perfused in vitro. J. Membr. Biol. 88: 25–31, 1985.
 18. Bleich, M., E. Schlatter, and R. Greger. The luminal K+ channel of the thick ascending limb of Henle's loop. Pflugers Arch. 415: 449–460, 1990.
 19. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3− transport. J. Gen. Physiol. 81: 53–94, 1983.
 20. Brisolla‐Diuana, A., C. Amorena, and G. Malnic. Transfer of base across the basolateral membrane of cortical tubules of rat kidney. Pflugers Arch. 405: 209–215, 1985.
 21. Brosius, F. C. III, S. L. Alper, A. M. Garcia, and H. F. Lodish. The major kidney band 3 gene transcript predicts an amino‐terminal truncated band 3 polypeptide. J. Biol. Chem. 264: 7784–7787, 1989.
 22. Brown, D., S. Hirsch, and S. Gluck. Localization of a proton‐pumping ATPase in rat kidney. J. Clin. Invest. 82: 2114–2126, 1988.
 23. Brown, D., E. J. Sorscher, D. A. Ausiello, and D. J. Benos. Immunocytochemical localization of Na+ channels in rat kidney medulla. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F366–F369, 1989.
 24. Burckhardt, G. Sodium‐dependent dicarboxylate transport in rat renal basolateral membrane vesicles. Pflugers Arch. 401: 254–261, 1984.
 25. Burckhardt, G., R. Kinne, G. Stance, and H. Murer. The effects of potassium and membrane potential on sodium‐dependent glutamic acid uptake. Biochim. Biophys. Acta 599: 191–201, 1980.
 26. Burckhardt, G., W. Kramer, G. Kurz, and F. A. Wilson. Photoaffinity labeling studies of the rat renal sodium/bile salt cotransport system. Biochem. Biophys. Res. Commun. 143: 1018–1023, 1987.
 27. Burckhardt, G., H. Stern, and H. Murer. The influence of pH on phosphate transport into rat renal brush border membrane vesicles. Pflugers Arch. 390: 191–197, 1981.
 28. Burckhardt, G., and K. J. Ullrich. Organic anion transport across the contraluminal membrane—dependence on sodium. Kidney Int. 36: 370–377, 1989.
 29. Burnham, C., S. J. D. Karlish, and P. L. Jørgensen. Identification and reconstitution of a Na+/K+/Cl− cotransporter and K+ channel from luminal membranes of renal red outer medulla. Biochim. Biophys. Acta 821: 461–469, 1985.
 30. Catterall, W. A. Structure and function of voltage‐sensitive ion channels. Science 242: 50–61, 1988.
 31. Cereijido, M., R. G. Contreras, and L. Gonzales‐Mariscal. Development and alteration of polarity. Annu. Rev. Physiol. 51: 785–795, 1989.
 32. Chen, P.‐Y., and A. S. Verkman. Renal basolateral membrane anion transporter characterized by a fluorescent disulfonic stilbene. J. Membr. Biol. 100: 1–12, 1987.
 33. Clapp, J. R., J. F. Watson, and R. W. Berliner. Osmolality, bicarbonate concentration and water reabsorption in proximal tubule of the dog nephron. Am. J. Physiol. 205: 273–280, 1963.
 34. Crane, R. K. The gradient hypothesis and other models of carrier‐mediated active transport. Rev. Physiol. Biochem. Pharmacol. 78: 101–159, 1977.
 35. Crane, R. K., P. Malathi, and H. Preiser. Reconstitution of specific Na+‐dependent D‐glucose transport in liposomes by Triton X‐100 extracted proteins from purified brush border membranes of rabbit kidney cortex. FEBS Lett. 67: 214–216, 1976.
 36. Debiec, H., and R. Lorenc. Identification of a Na+,P i‐binding protein in kidney and intestinal brush‐border membranes. Biochem. J. 255: 185–191, 1988.
 37. Deetjen, P., and R. Kramer. Die Abhängigkeit des O2‐Verbrauchs der Niere von der Na‐Rückresorption. Pflugers Arch. 273: 636–650, 1961.
 38. Di Stefano, A., P. Wangemann, T. Friedrich, G. Burckhardt, R. Ökonomopoulos, H. C. Englert, H. J. Lang, and R. Greger. Photoaffinity labelling of the Na+2Cl−K+ carrier. Pflugers Arch. 406: R59, 1986.
 39. Di Stefano, A., M. Wittner, E. Schlatter, H. J. Lang, H. Englert, and R. Greger. Diphenylamine‐2‐carboxylate, a blocker of the Cl−‐conductive pathway in Cl−‐transporting epithelia. Pflugers Arch. 405: S95–S100, 1985.
 40. Dohlman, H. G., M. G. Caron, and R. J. Lefkowitz. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26: 2657–2664, 1987.
 41. Doucet, A., and S. Marsy. Characterization of K‐ATPase activity in distal nephron: stimulation by potassium depletion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F418–F423, 1987.
 42. Drenckhahn, D., M. Oelmann, P. Schaaf, M. Wagner, and S. Wagner. Band 3 is the basolateral anion exchanger of dark epithelial cells of turtle urinary bladder. Am. J. Physiol. 252 (Cell Physiol. 21): C570–C574, 1987.
 43. Drenckhahn, D., K. Schlüter, D. P. Allen, and V. Bennett. Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230: 1287–1289, 1985.
 44. Ducis, I., and H. Koepsell. A simple liposomal system to reconstitute and assay highly efficient Na+/D‐glucose cotransport from kidney brush‐border membranes. Biochim. Biophys. Acta 730: 119–129, 1983.
 45. Edelman, A., S. Curci, I. Samarzija, and E. Frömter. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflugers Arch. 378: 37–45, 1978.
 46. Ehrenspeck, G., and W. A. Brodsky. Effects of 4‐acetamido‐4′‐isothiocyano‐2,2′disulfonic stilbene on ion transport in turtle bladders. Biochim. Biophys. Acta 419: 555–558, 1976.
 47. Ernst, S. A. Transport ATPase cytochemistry: ultrastructural localization of potassium‐dependent and potassium‐independent phosphatase activities in rat kidney cortex. J. Cell Biol. 66: 586–608, 1975.
 48. Ernst, S. A., and J. H. Schreiber. Ultrastructural localization of Na+,K+‐ATPase in rat and rabbit kidney medulla. J. Cell Biol. 91: 803–813, 1981.
 49. Eveloff, J. L., and D. G. Warnock. Activation of ion transport systems during cell volume regulation. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1–F10, 1987.
 50. Friedman P. A., and T. E. Andreoli. CO2‐stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na+/H+ and Cl−/HCO3− exchange in apical plasma membranes. J. Gen. Physiol. 80: 683–711, 1982.
 51. Friedrich, T., J. Sablotni, and G. Burckhardt. Identification of the renal Na+/H+ exchanger with N,N'‐dicyclohexylcarbodiimide (DCCD) and amiloride analogues. J. Membr. Biol. 94: 253–266, 1986.
 52. Frindt, G., and L. G. Palmer. Low‐conductance K+ channels in apical membrane of rat cortical collecting tubule. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F143–F151, 1989.
 53. Frohnert, P. P., B. Höhmann, R. Zwiebel, and K. Baumann. Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch. 315: 66–85, 1970.
 54. Frömter, E. Solute transport across epithelia: what can we learn from micropuncture studies on kidney tubules? J. Physiol. 288: 1–31, 1979.
 55. Frömter, E. Electrophysiological analysis of rat renal sugar and amino acid transport. 1. Basic phenomena. Pflugers Arch. 393: 179–189, 1982.
 56. Frömter, E. Viewing the kidney through microelectrodes. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F695–F705, 1984.
 57. Frömter, E., G. Rumrich, and K. J. Ullrich. Phenomenologic description of Na+,Cl− and HCO3− absorption from proximal tubules of the rat kidney. Pflugers Arch. 343: 189–220, 1973.
 58. Fukuhara, Y., and R. J. Turner. Cation dependence of renal outer cortical brush border membrane L‐glutamate transport. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F869–F875, 1985.
 59. Garg, L. C., and N. Narang. Ouabain‐insensitive K‐adenosine triphosphatase in distal nephron segments of the rabbit. J. Clin. Invest. 81: 1204–1208, 1988.
 60. Garty, H., and D. J. Benos. Characteristics and regulatory mechanisms of the amiloride‐blockable Na+ channel. Physiol. Rev. 68: 309–373, 1988.
 61. George, A. L., Jr. O. Staub, K. Geering, B. C. Rossier, T. R. Kleyman, and J.‐P. Kraehenbuhl. Functional expression of the amiloride‐sensitive sodium channel in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 86: 7295–7298, 1989.
 62. Gilman, A. G. G proteins: transducers of receptor‐generated signals. Annu. Rev. Biochem. 56: 615–649, 1987.
 63. Gitter, A. H., K. W. Beyenbach, C. W. Christine, P. Gross, I. W. Minuth, and E. Frömter. High‐conductance K+ channel in apical membranes of principal cells cultured from rabbit renal cortical duct anlagen. Pflugers Arch. 408: 282–290, 1987.
 64. Gluck, S. Regulation of H‐ATPase. Proc. XIth Int. Congress Nephrology, Tokyo (in press).
 65. Gluck, S., and Q. Al‐Awqati. An electrogenic proton translocating adenosine triphosphatase from bovine kidney medulla. J. Clin Invest. 73: 1704–1710, 1984.
 66. Gluck, S., and J. Caldwell. Immunoaffinity purification and characterization of vacuolar H+ ATPase from bovine kidney. J. Biol. Chem. 262: 15780–15789, 1987.
 67. Gluck, S., and J. Caldwell. Proton‐translocating ATPase from bovine kidney medulla: partial purification and reconstitution. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F71–F79, 1988.
 68. Gluck, S., C. Cannon, and Q. Al‐Awqati. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci. USA 79: 4327–4331, 1982.
 69. Gögelein, H. Chloride channels in epithelia. Biochim. Biophys. Acta 947: 521–547, 1988.
 70. Gögelein, H., and R. Greger. Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pflugers Arch. 406: 198–203, 1986.
 71. Gögelein, H., and R. Greger. Properties of single K+ channels in the basolateral membrane of rabbit proximal straight tubules. Pflugers Arch. 410: 288–295, 1987.
 72. Gögelein, H., and R. Greger. Patch clamp analysis of ionic channels in renal proximal tubules. In: Nephrology, vol. I, edited by A. M. Davison. London: Bailliere Tindall, 1988, p. 159–178.
 73. Goldin, S. M. Active transport of sodium and potassium ions by the sodium and potassium ion‐activated adenosine triphosphatase from renal medulla. J. Biol. Chem. 252: 5630–5642, 1977.
 74. Goldinger, J. M., B. D. S. Khalsa, and S. K. Hong. Photoaffinity labeling of organic anion transport system in proximal tubule. Am. J. Physiol. 247 (Cell Physiol. 16): C217–C227, 1984.
 75. Goldman, D. E. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27: 37–60, 1944.
 76. Grassl, S. M., P. D. Holohan, and C. R. Ross. HCO3− transport in basolateral membrane vesicles isolated from rat renal cortex. J. Biol. Chem. 262: 2682–2687, 1987.
 77. Greger, R. Ion transport mechanisms in the thick ascending limb of Henle's loop of the mammalian nephron. Physiol. Rev. 65: 760–797, 1985.
 78. Greger, R. Pathophysiologie der renalen Ischämie. Z. Kardiol. 76, Suppl. 4: 81–86, 1987.
 79. Greger, R. Chloride transport in thick ascending limb, distal convolution, and collecting duct. Annu. Rev. Physiol. 50: 111–122, 1988.
 80. Greger, R., M. Bleich, and E. Schlatter. The luminal potassium channel in the thick ascending limb of Henle's loop of rat kidney. In: Diuretics III. Chemistry, Pharmacology, and Clinical Aspects, edited by J. Puschett. New York: Elsevier, 1990, p. 776–779.
 81. Greger, R., M. Bleich, and E. Schlatter. Ion channels in the thick ascending limb of Henle's loop. Renal Physiol. Biochem. 13: 37–50, 1990.
 82. Greger, R., and H. Gögelein. Role of K+ conductive pathways in the nephron. Kidney Int. 31: 1055–1064, 1987.
 83. Greger, R., and K. Kunzelmann. Epithelial chloride channels. In: Epithelial Secretion of Water and Electrolytes, edited by J. A. Young and P. Y. D. Wong. New York: Springer, 1990, p. 3–13.
 84. Greger, R., H. J. Lang, H. C. Englert, and P. Wangemann. Blockers of the Na+2Cl−K+ carrier and of chloride channels in the thick ascending limb of the loop of Henle. In: Diuretics, edited by J. Puschett. New York: Elsevier, 1987, p. 131–137.
 85. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney—A model for secondary active chloride transport. Pflugers Arch. 396: 325–334, 1983.
 86. Grenningloh, G., A. Rienitz, B. Schmitt, C. Methfessel, M. Zensen, K. Beyreuther, E. D. Gundelfinger, and H. Betz. The strychnine‐binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328: 215–220, 1987.
 87. Grynkiewicz, G., M. Poenie, and R. Y. Tsien. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450, 1985.
 88. Guggino, S. E., B. A. Suarez‐Isla, W. B. Guggino, and B. Sacktor. Forskolin and antidiuretic hormone stimulate a Ca2+‐activated K+ channel in cultured kidney cells. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F448–F455, 1985.
 89. Haas, M., and B. Forbush III. Photolabeling of a 150 kDa (Na+K+Cl) cotransport protein from dog kidney with a bumetanide analogue. Am. J. Physiol. 253 (Cell Physiol. 22): C243–C250, 1987.
 90. Haas, M., and B. Forbush III. Na,K,Cl‐cotransport system: characterization by bumetanide binding and photolabeling. Kidney Int. 32: S134–S140, 1987.
 91. Häberle, D. A. Characteristics of p‐aminohippurate transport in the mammalian kidney. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. New York: Springer‐Verlag, 1981, p. 189–209.
 92. Hagenbuch, B., G. Stance, and H. Murer. Transport of sulphate in rat jejunal and rat proximal tubular basolateral mambrane vesicles. Pflugers Arch. 405: 202–208, 1985.
 93. Hebert, S. C. Hypertonic cell volume regulation in mouse thick limbs II. Na+‐H+ and Cl−‐HCO3− exchange in basolateral membranes. Am. J. Physiol. 250 (Cell Physiol. 19): C920–C931, 1986.
 94. Hebert, S. C., and T. E. Andreoli. Control of NaCl transport in the thick ascending limb. Am. J. Physiol. 246: F745–F756, 1984.
 95. Hebert, S. C., and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. Determinants of the ADH‐mediated increases in transepithelial voltage and in net Cl− absorption. J. Membr. Biol. 80: 221–223, 1984.
 96. Hediger, M. A. Na‐coupled cotransporter family. Proc. XIth Int. Congress Nephrology, Tokyo (in press).
 97. Hediger, M. A., M. J. Coady, T. S. Ikeda, and E. M. Wright. Expression cloning and cDNA sequencing of the Na+/glucose cotransporter. Nature 330: 379–381, 1987.
 98. Hildebrandt, F., R. F. Reilly, C. Sardet, J. Pouysségur, C. W. Slayman, P. S. Aronson, and P. Igarashi. Cloning of a cDNA encoding a rabbit renal Na+/H+ exchanger. Kidney Int. 37: 539, 1990.
 99. Hinton, C. F., and D. C. Eaton. Expression of amiloride‐blockable sodium channels in Xenopus oocytes. Am. J. Physiol. 257 (Cell Physiol. 26): C825–C829, 1989.
 100. Hirsch, S., A. Strauss, K. Masood, S. Lee, V. Sukhatme, and S. Gluck. Isolation and sequence of a cDNA clone encoding the 31 kDa subunit of bovine kidney vacuolar H+‐ATPase. Proc. Natl. Acad. Sci. USA 85: 3004–3008, 1988.
 101. Hodgkin, A. L., and B. Katz. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108: 37–77, 1949.
 102. Hopfer, U., and R. Groseclose. The mechanism of Na+‐dependent D‐glucose transport. J. Biol. Chem. 255: 4453–4462, 1980.
 103. Hunter, M., A. G. Lopes, E. L. Boulpaep, and G. H. Giebisch. Single channel recordings of calcium‐activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc. Natl. Acad. Sci. USA 81: 4237–4239, 1984.
 104. Hunter, M., A. G. Lopes, E. Boulpaep, and G. Giebisch. Regulation of single potassium ion channels from apical membrane of rabbit collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F725–F733, 1986.
 105. Hunter, M., H. Oberleithner, R. M. Henderson, and G. Giebisch. Whole‐cell potassium currents in single early distal tubule cells. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F699–F703, 1988.
 106. Huot, S. J., D. Cassel, P. Igarashi, E. J. Cragoe, Jr., C. W. Slayman, and P. S. Aronson. Identification and purification of a renal amiloride‐binding protein with properties of the Na+‐H+ exchanger. J. Biol. Chem. 264: 683–686, 1989.
 107. Igarashi, P., and P. S. Aronson. Covalent modification of the renal Na+/H+ exchanger by N, N'‐dicyclohexylcarbodiimide. J. Biol. Chem. 262: 860–868, 1987.
 108. Ives, H. E., P.‐Y. Chen, and A. S. Verkman. Mechanism of coupling between Cl− and OH− transport in renal brush‐border membranes. Biochim. Biophys. Acta 863: 91–100, 1986.
 109. Ives, H. E., V. J. Yee, and D. G. Warnock. Asymmetric distribution of the Na+/H+ antiporter in the renal proximal tubule epithelial cell. J. Biol. Chem. 258: 13513–13516. 1983.
 110. Jacobsen, C., H. Røigaard‐Petersen, and M. I. Sheikh. Demonstration of Na+‐selective channels in the luminalmembrane vesicles isolated from pars recta of rabbit proximal tubule. FEBS Lett. 236: 95–99, 1988.
 111. Janoshazi, A., D. M. Ojcius, B. Kone, J. L. Seifter, and A. K. Solomon. Relation between the anion exchange protein in kidney medullary collecting duct cells and red cell band 3. J. Membr. Biol. 103: 181–189, 1988.
 112. Jørgensen, P. L. Purification and characterization of (Na++K+)‐ATPase. III. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecysulphate. Biochim. Biophys. Acta 356: 36–52, 1974.
 113. Jørgensen, P. L. Purification and characterization of (Na++K+)ATPase. IV. Estimation of purity and of the molecular weight and polypeptide content per enzyme unit in preparations from the outer medulla of rabbit kidney. Biochim. Biophys. Acta 356: 53–67, 1974.
 114. Jørgensen, P. L. Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60: 864–917, 1980.
 115. Jørgensen, P. L., J. Peterson, and W. D. Rees. Identification of a Na+,K+,Cl−‐cotransport protein of Mr 34,000 from kidney by photolabeling with [3H]bumetanide. The protein is associated with cytoskeleton components. Biochim. Biophys. Acta 775: 105–110, 1984.
 116. Jørgensen, P. L., J. C. Skou, and L. P. Solomonson. Purification and characterization of (Na++K+)‐ATPase. II. Preparation by zonal centrifugation of highly active (Na+ +K+)‐ATPase from the outer medulla of rabbit kidneys. Biochim. Biophys. Acta 233: 381–394, 1971.
 117. Kahn, A. M., and P. S. Aronson. Urate transport via anion exchange in dog renal microvillus membrane vesicles. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F56–F63, 1983.
 118. Kahn, A. M., S. Branham, and E. J. Weinman. Mechanism of urate and p‐aminohippurate transport in rat renal microvillus membrane vesicles. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F151–F158, 1983.
 119. Karniski, L. P., and P. S. Aronson. Chloride/formate exchange with formic acid recycling: A mechanism of active chloride transport across epithelial membranes. Proc. Natl. Acad. Sci. USA 82: 6362–6365, 1985.
 120. Katz, A. I. Renal Na‐K‐ATPase: its role in tubular sodium and potassium transport. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F207–F219, 1982.
 121. Katz, A. I. Distribution and function of classes of ATPases along the nephron. Kidney Int. 29: 21–31, 1986.
 122. Kessler, R. J., D. A. Vaughn, and D. D. Fanestil. Phosphate‐binding proteolipid from brush border. J. Biol. Chem. 257: 14311–14317, 1982.
 123. Kinne, R., and R. G. Faust. Incorporation of D‐glucose, l‐alanine and phosphate‐transport systems from rat renal brush‐border membranes into liposomes. Biochem. J. 168: 311–314, 1977.
 124. Kinne, R., J.‐E. Schmitz, and E. Kinne‐Saffran. The localization of the Na+‐K+‐ATPase in the cells of rat kidney cortex. Pflugers Arch. 329: 191–206, 1971.
 125. Kinne‐Saffran, E., R. Beauwens, and R. Kinne. An ATP‐driven proton pump in brush‐border membranes from rat renal cortex. J. Membr. Biol. 64: 67–76, 1982.
 126. Kinne‐Saffran, E., and R. Kinne. Proton pump activity and Mg‐ATPase activity in rat kidney cortex brushborder membranes: effect of “proton ATPase” inhibitors. Pflugers Arch. 407: S180–S185, 1986.
 127. Kitlar, T., A. I. Morrison, R. Kinne, and J. Deutscher. Purification of a putative Na+/D‐glucose cotransporter from pig kidney brush border membranes on a phlorizin affinity column. FEBS Lett. 234: 115–119, 1988.
 128. Klaerke, D. A., J. Petersen, and P. L. Jørgensen. Purification of Ca2+‐activated K+ channel protein on calmodulin affinity columns after detergent solubilization of luminal membranes from outer renal medulla. FEBS Lett. 216: 211–216, 1987.
 129. Klaerke, D. A., S. J. D. Karlish, and P. L. Jørgensen. Reconstitution in phospholipid vesicles of calcium‐activated potassium channel from outer renal medulla. J. Membr. Biol. 95: 105–112, 1987.
 130. Kleyman, T. R., and E. J. Cragoe, Jr. Amiloride and its analogs as tools in the study of ion transport. J. Membr. Biol. 105: 1–21, 1988.
 131. Kleyman, T. R., T. Yulo, C. Ashbaugh, D. Landry, E. J. Cragoe, Jr., A. Karlin, and Q. Al‐Awqati. Photoaffinity labeling of the epithelial sodium channel. J. Biol. Chem. 261: 2839–2843, 1986.
 132. Koefoed‐Johnsen, V., and H. H. Ussing. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.
 133. Koeppen, B. M., K. W. Beyenbach, and S. I. Helman. Single‐channel currents in renal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F380–F384, 1984.
 134. Koeppen, B. M., B. A. Biagi, and G. H. Giebisch. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F35–F47, 1983.
 135. Koepsell, H. Methodological aspects of purification and reconstitution of transport proteins from mammalian plasma membranes. Rev. Physiol. Biochem. Pharmacol. 104: 65–137, 1986.
 136. Koepsell, H., K. Korn, D. Ferguson, H. Menuhr, D. Ollig, and W. Haase. Reconstitution and partial purification of several Na+ cotransport systems from renal brush‐border membranes. J. Biol. Chem. 259: 6548–6558, 1984.
 137. Koepsell, H., K. Korn, A. Raszeja‐Specht, S. Bernotat‐Danielowski, and D. Ollig. Monoclonal antibodies against the renal Na +‐d‐glucose cotransporter. J. Biol. Chem. 263: 18419–18429, 1988.
 138. Koepsell, H., H. Menuhr, I. Ducis, and T. F. Wissmüller. Partial purification and reconstitution of the Na+‐D‐glucose cotransport protein from pig renal proximal tubules. J. Biol. Chem. 258: 1888–1894, 1983.
 139. Kramer, W., I. Leipe, E. Petzoldt, and F. Girbig. Characterization of the transport system for β‐lactam antibiotics and dipeptides in rat renal brush‐border membrane vesicles by photoaffinity labeling. Biochim. Biophys. Acta 939: 167–172, 1988.
 140. Kroll, B., W. Bautsch, S. Bremer, M. Wilke, B. Tümmler, and E. Frömter. Selective expression of an amiloride‐inhibitable Na+ conductance from mRNA of respiratory epithelium in Xenopus laevis oocytes. Am. J. Physiol. 257: L284–L288, 1989.
 141. Kudrycki, K., and G. E. Shull. Primary structure of the rat kidney band 3 anion exchange protein deduced from a cDNA. J. Biol. Chem. 264: 8185–8192, 1989.
 142. Kwon, O., H. M. Kwon, S. K. Nony, and J. M. Goldinger. Size‐selected mRNA induces expression of p‐aminohippurate transport in oocytes. J. Exp. Biol. Med. 192: 205–208, 1990.
 143. Kyte, J. Immunoferritin determination of the distribution of (Na++K+)ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J. Cell. Biol. 68: 304–318, 1976.
 144. Lang, F., G. Messner, and W. Rehwald. Electrophysiology of sodium‐coupled transport in proximal renal tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F953–F962, 1986.
 145. Lang, F., P. Quehenberger, R. Greger, S. Silbernagl, and P. Stockinger. Evidence for a bicarbonate leak in the proximal tubule of the rat kidney. Pflugers Arch. 386: 239–244, 1980.
 146. Läuger, P. Kinetic properties of ion carriers and channels. J. Membr. Biol. 57: 163–178, 1980.
 147. Light, D. B., F. V. McCann, T. M. Keller, and B. A. Stanton. Amiloride‐sensitive cation channel in apical membrane of inner medullary collecting duct. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F278–F286, 1988.
 148. Lin, J.‐T., K. Szwarc, R. Kinne, and C. Y. Jung. Structural state of the Na+/D‐glucose cotransporter in calf kidney brush‐border membranes. Target size analysis of Na+‐dependent phlorizin binding and Na+‐dependent D‐glucose transport. Biochim. Biophys. Acta 777: 201–208, 1984.
 149. Lin, J.‐T., K. Szwarc, and A. Stroh. Chromatofocussing and centrifugal reconstitution as tools for the separation and characterization of the Na+‐cotransport systems of the brush‐border membrane. Biochim. Biophys. Acta 774: 254–260, 1984.
 150. Liu, F.‐Y., and M. G. Cogan. Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule. J. Clin. Invest. 78: 1547–1557, 1986.
 151. Lochrie, M. A., and M. I. Simon. G protein multiplicity in eukaryotic signal transduction systems. Biochemistry 27: 4957–4965, 1988.
 152. Löw, I., T. Friedrich, and G. Burckhardt. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F334–F342, 1984.
 153. Lücke, H., G. Stance, and H. Murer. Sulphate‐ion/sodium‐ion cotransport by brush‐border membrane vesicles isolated from rat kidney cortex. Biochem. J. 182: 223–229, 1979.
 154. Madsen, K. M., and C. C. Tisher. Structure‐function relationships in H+‐secreting epithelia. Federation Proc. 44: 2704–2709, 1985.
 155. Martinez, F., M. Manganel, C. Montrose‐Rafizadeh, D. Werner, and F. Roch‐Ramel. Transport of urate and p‐aminohippurate in rabbit renal brush‐border membranes. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1145–F1153, 1990.
 156. MacLennan, D. H., C. J. Brandl, B. Korczak, and N. M. Green. Amino‐acid sequence of a Ca2++Mg2+‐dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316: 696–700, 1985.
 157. Mengual, R., G. Leblanc, and P. Sudaka. The mechanism of Na+‐L‐lactate cotransport by brush‐border membrane vesicles from horse kidney. J. Biol. Chem. 258: 15071–15078, 1983.
 158. Møller, J. V., and M. I. Sheikh. Renal organic anion transport system: pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 34: 315–358, 1983.
 159. Morel, F., and A. Doucet. Hormonal control of kidney functions at the cell level. Physiol. Rev. 66: 377–468, 1986.
 160. Murer, H. Regulation and isolation of the Na+‐Pi cotransporter of the proximal tubule. Proc. XIth Int. Congress of Nephrology, Tokyo (in press).
 161. Münich, G., P. Dietl, and H. Oberleithner. Chloride transport in the diluting segment of the K+ adapted frog kidney: effect of amiloride and acidosis. Pflugers Arch. 407: S60–S65, 1986.
 162. Murer, H., and R. Kinne. The use of isolated membrane vesicles to study epithelial transport processes. J. Membr. Biol. 55: 81–95, 1980.
 163. Neeb, M., U. Kunz, and H. Koepsell. Identification of D‐glucose‐binding polypeptides which are components of the renal Na+‐D‐glucose cotransporter. J. Biol. Chem. 262: 10718–10727, 1987.
 164. Neher, E., and B. Sakmann. Single channel currents recorded from membrane of denervated frog muscle fibres. Nature 260: 799–802, 1976.
 165. Ovchinnikov, Y. A., N. N. Modyanov, N. E. Broude, K. E. Petrukhin, A. V. Grishin, N. M. Arzamazova, N. A. Aldanova, G. S. Monastyrskaya, and E. D. Sverdlov. Pig kidney Na+,K+‐ATPase. Primary structure and spatial organization. FEBS Lett. 201: 237–245, 1986.
 166. O'Neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F544–F558, 1977.
 167. Palmer, L. G. Ion selectivity of epithelial Na channels. J. Membr. Biol. 96: 97–106, 1987.
 168. Palmer, L. G., and G. Frindt. Amiloride‐sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc. Natl. Acad. Sci. USA 83: 2767–2770, 1986.
 169. Palmer, L. G., and G. Frindt. Conductance and gating of epithelial Na channels from rat cortical collecting tubule. J. Gen. Physiol. 92: 121–138, 1988.
 170. Palmer, L. G., and G. Frindt. Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333–F339, 1987.
 171. Pearce, D., R. Krapf, F. C. Rector, Jr., and T. L. Reudelhuber. Cloning of a partial length rat kidney cDNA homologous to the human Na/H antiporter. Kidney Int. 37: 233, 1990.
 172. Peerce, B. E., and E. M. Wright. Distance between substrate sites on the Na‐glucose cotransporter by fluorescence energy transfer. Proc. Natl. Acad. Sci. USA 83: 8092–8096, 1986.
 173. Petersen, K.‐U., J. R. Wood, G. Schulze, and K. Heintze. Stimulation of gallbladder fluid and electrolyte absorption by butyrate. J. Membr. Biol. 62: 183–193, 1981.
 174. Preisig, P. A., H. E. Ives, E. J. Cragoe, Jr., R. J. Alpern, and F. C. Rector, Jr. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J. Clin. Invest. 80: 970–978, 1987.
 175. Pritchard, J. B. Coupled transport of p‐aminohippurate by rat kidney basolateral membrane vesicles. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F597–F604, 1988.
 176. Pritchard, J. B., and J. L. Renfro. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc. Natl. Acad. Sci. USA 80: 2603–2607, 1983.
 177. Rehwald, W., and F. Lang. On the nature of delayed repolarization during sustained sodium coupled transport in frog proximal tubules. Pflugers Arch. 410: 505–509, 1987.
 178. Reilly, R. F., F. Hildebrandt, C. Sardet, J. Pouysségur, E. Adelberg, C. Slayman, P. S. Aronson, and P. Igarashi. Cloning of a cDNA encoding a Na+/H+ exchanger in LLC‐PK, cells. Kidney Int. 37: 233, 1990.
 179. Rink, T. J., R. Y. Tsien, and T. Pozzan. Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell. Biol. 95: 189–196, 1982.
 180. Ross, W., W. Bertrand, and A. Morrison. A photoactivatable probe for the Na+/H+ exchanger cross‐links a 66‐kDa renal brush border membrane protein. J. Biol. Chem. 265: 5341–5344, 1990.
 181. Sabolić, I., and G. Burckhardt. Proton pathways in rat renal brush‐border and basolateral membranes. Biochim. Biophys. Acta 734: 210–220, 1983.
 182. Sachs, G., R. J. Jackson, and E. C. Rabon. Use of plasma membrane vesicles. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G151–G164, 1980.
 183. Sacktor, B., and E. G. Schneider. The singular effect of an internal K+ gradient (K+ iK+ o) on the Na+ gradient (Na+ oNa+ i)‐dependent transport of L‐glutamate in renal brush border membrane vesicles. Int. J. Biochem. 12: 229–234, 1980.
 184. Sariban‐Sohraby, S., and D. J. Benos. Detergent solubilization, functional reconstitution, and partial purification of epithelial amiloride‐binding protein. Biochemistry 25: 4639–4646, 1986.
 185. Sasaki, S., K. Ishibashi, N. Yoshiyama, and T. Shiigai. KCl cotransport across the basolateral membrane of rabbit renal proximal straight tubules. J. Clin. Invest. 81: 194–199, 1988.
 186. Sasaki, S., and F. Marumo. Mechanisms of transcellular Cl− transport in mammalian renal proximal tubules. News Physiol. Sci. 4: 18–22, 1989.
 187. Sasaki, S., T. Shiigai, and J. Takeuchi. Intracellular pH in the isolated perfused rabbit proximal straight tubule. Am. J. Physiol. 249: (Renal Fluid Electrolyte Physiol. 18) F417–F423, 1985.
 188. Sasaki, S., and N. Yoshiyama. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium‐coupled chloride/bicarbonate exchange. J. Clin. Invest. 81: 1004–1011, 1988.
 189. Sauer, F. Nonequilibrium thermodynamics of kidney tubule transport. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, p. 399–414.
 190. Schäli, C., and D. D. Fanestil. Solubilization and reconstitution of the renal phosphate transporter. Biochim. Biophys. Acta 819: 66–74, 1985.
 191. Schäli, C., D. A. Vaughn, and D. D. Fanestil. Reconstitution of the partially purified renal phosphate (P i) transporter. Biochem. J. 235: 189–197, 1986.
 192. Schild, L., G. Giebisch, L. Karniski, and P. S. Aronson. Chloride transport in the mammalian proximal tubule. Pflugers Arch. 407: S156–S159, 1986.
 193. Schild, L., G. Giebisch, L. P. Karniski, and P. S. Aronson. Effect of formate on volume reabsorption in the rabbit proximal tubule. J. Clin. Invest. 79: 32–38, 1987.
 194. Schlatter, E. Antidiuretic hormone regulation of electrolyte transport in the distal nephron. Renal Physiol. Biochem. 12: 65–84, 1989.
 195. Schlatter, E., and R. Greger. cAMP increases the basolateral Cl−‐conductance in the isolated perfused medullary thick ascending limb of Henle's loop of the mouse. Pflugers Arch. 405: 367–376, 1985.
 196. Schlatter, E., R. Greger, and C. Weidtke. Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidney: correlations of chemical structure and inhibitory potency. Pflugers Arch. 396: 210–217, 1983.
 197. Schlatter, E., and J. A. Schafer. Electrophysiological studies in principal cells of rat cortical collecting tubules. Pflugers Arch. 409: 81–92, 1987.
 198. Schultz, S. G., and R. L. Hudson. How do sodium‐absorbing cells do their job and survive? News Physiol. Sci. 1: 185–189, 1986.
 199. Schuster, V. L., S. M. Bonsib, and M. L. Jennings. Two types of collecting duct mitochondria‐rich (intercalated) cells: lectin and band 3 cytochemistry. Am. J. Physiol. 251 (Cell Physiol. 20): C347–C355, 1986.
 200. Schuster, V. L., and J. B. Stokes. Chloride transport by the cortical and outer medullary collecting duct. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F203–F212, 1987.
 201. Schwartz, G. J., and Q. Al‐Awqati. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J. Clin. Invest. 75: 1638–1644, 1985.
 202. Seifter, J. L., and P. S. Aronson. Properties and physiologic roles of the plasma membrane sodium‐hydrogen exchanger. J. Clin. Invest. 78: 859–864, 1986.
 203. Seifter, J. L., R. Knickelbein, and P. S. Aronson. Absence of Cl‐OH exchange and NaCl cotransport in rabbit renal microvillus membrane vesicles. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F753–F759, 1984.
 204. Shaver, J. L. F., and C. Stirling. Ouabain binding to renal tubules of the rabbit. J. Cell Biol. 76: 278–292, 1978.
 205. Sheridan, E., G. Rumrich, and K. J. Ullrich. Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney. Pflugers Arch. 399: 18–28, 1983.
 206. Shimada, H., B. Moewes, and G. Burckhardt. Indirect coupling to Na+ of p‐aminohippuric acid uptake into rat renal basolateral membrane vesicles. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F795–F801, 1987.
 207. Shiuan, D., and S. W. Weinstein. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F837–F847, 1984.
 208. Shull, G. E., and Greeb, J. Molecular cloning of two isoforms of the plasma membrane Ca2+‐transporting ATPase from rat brain. J. Biol. Chem. 263: 8646–8657, 1988.
 209. Shull, G. E., L. K. Lane, and J. B. Lingrel. Amino acid sequence of the β‐subunit of the (Na++K+)ATPase deduced from a cDNA. Nature 321: 429–431, 1986.
 210. Shull, G. E., and J. B. Lingrel. Molecular cloning of the rat stomach (H++K+)‐ATPase. J. Biol. Chem. 261: 16788–16791, 1986.
 211. Shull, G. E., A. Schwartz, and J. B. Lingrel. Amino acid sequence of the catalytic subunit of the (Na++K+)ATPase deduced from a complementary DNA. Nature 316: 691–695, 1985.
 212. Silverman, M., and P. Speight. Isolation and partial purification of a Na+‐dependent phlorizin receptor from dog kidney proximal tubule. J. Biol. Chem. 261: 13820–13826, 1986.
 213. Simon, B. J., and G. Burckhardt. Characterization of inside‐out oriented H + ‐ATPases in cholate‐pretreated renal brush‐border membrane vesicles. J. Membr. Biol. 117; 141–151, 1990.
 214. Simons, K., and S. D. Fuller. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1: 243–288, 1985.
 215. Soleimani, M., S. M. Grassl, and P. S. Aronson. Stoichiometry of Na+‐hco3− cotransport in basolateral membrane vesicles from rabbit renal cortex. J. Clin. Invest. 79: 1276–1280, 1987.
 216. Sorscher, E. J., M. A. Accavitti, D. Keeton, E. Steadman, R. A. Frizzell, and D. J. Benos. Antibodies against purified epithelial sodium channel protein from bovine renal papilla. Am. J. Physiol. 255 (Cell Physiol. 24): C835–C843, 1988.
 217. Spring, K. R. The study of epithelial function by quantitative light microscopy. Pflugers Arch. 405: S23–S27, 1985.
 218. Steffens, T. G., P. D. Holohan, and C. R. Ross. Operational modes of the organic anion exchanger in canine renal brush‐border membrane vesicles. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F596–F609, 1989.
 219. Südhof, T. C., V. A. Fried, D. K. Stone, P. A. Johnston, and X.‐S. Xie. Human endomembrane H+ pump strongly resembles the ATP‐synthetase of Archaebacteria. Proc. Natl. Acad. Sci. USA 86: 6067–6071, 1989.
 220. Steffgen, J., W. Schwarz, and H. Koepsell. Expression of prebenecid‐inhibitablep‐aminohippurate transport in Xenopus oocytes. Pflugers Arch. 415: R28, 1990.
 221. Tago, K., D. H. Warden, V. L. Schuster, and J. B. Stokes. Effects of inhibitors of Cl conductance on Cl self‐exchange in rabbit cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F1009–F1017, 1986.
 222. Takahashi, M., P. Malathi, H. Preiser, and C. Y. Jung. Radiation inactivation studies on the rabbit kidney sodium‐dependent glucose transporter. J. Biol. Chem. 260: 10551–10556, 1985.
 223. Talor, Z., and J. A. L. Arruda. Partial purification and reconstitution of renal basolateral Na+‐Ca2+ exchanger into liposomes. J. Biol. Chem. 260: 15473–15476, 1985.
 224. Tsien, R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis and properties of prototype structures. Biochemistry 19: 2396–2404, 1980.
 225. Turnberg, L. A., F. A. Bieberdorf, S. G. Morawski, and J. S. Fordtran. Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J. Clin. Invest. 49: 557–567, 1970.
 226. Turner, R. J. Sodium‐dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F793–F798, 1984.
 227. Turner, R. J., and E. S. Kempner. Radiation inactivation studies of the renal brush‐border membrane phlorizin‐binding protein. J. Biol. Chem. 257: 10794–10797, 1982.
 228. Turner, R. J., and A. Moran. Further studies of proximal tubular brush border membrane D‐glucose transport heterogeneity. J. Membr. Biol. 70: 37–45, 1982.
 229. Turner, R. J., and A. Moran. Stoichiometric studies of the renal outer cortical brush border membrane D‐glucose transporter. J. Membr. Biol. 67: 73–80, 1982.
 230. Turrini, F., I. Sabolić, Z. Zimolo, B. Moewes, and G. Burckhardt. Relation of ATPases in rat renal brush‐border membranes to ATP‐driven H+ secretion. J. Membr. Biol. 107: 1–12, 1989.
 231. Ullrich, K. J. Permeability characteristics of the mammalian nephron. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, p. 377–398.
 232. Ullrich, K. J., H. Fasold, G. Rumrich, and S. Klöss. Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of rat kidney. Pflugers Arch. 400: 241–249, 1984.
 233. Ullrich, K. J., and G. Rumrich. Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F453–F462, 1988.
 234. Ullrich, K. J., G. Rumrich, G. Fritzsch, and S. Klöss. Contraluminal para‐aminohippurate (PAH) transport in the proximal tubule of the rat kidney. I. Kinetics, influence of cations, anions, and capillary preperfusion. Pflugers Arch. 409: 229–235, 1987.
 235. Ullrich, K. J., G. Rumrich, G. Fritzsch, and S. Klöss. Contraluminal para‐aminohippurate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: aliphatic dicarboxylic acids. Pflugers Arch. 408: 38–45, 1987.
 236. Ullrich, K. J., G. Rumrich, G. Fritzsch, and S. Klöss. Contraluminal para‐aminohippurate (PAH) transport in the proximal tubule of the rat kidney. III. Specificity: monocarboxylic acids. Pflugers Arch. 409: 547–554, 1987.
 237. Ullrich, K. J., G. Rumrich, and S. Klöss. Contraluminal sulfate transport in the proximal tubule of the rat kidney. 1. Kinetics, effects of K+, Na+, Ca2+, H+, and anions. Pflugers Arch. 402: 264–271, 1984.
 238. Ullrich, K. J., G. Rumrich, and S. Klöss. Contraluminal sulfate transport in the proximal tubule of the rat kidney. II. Specificity: sulfate‐ester, sulfonates and amino sulfonates. Pflugers Arch. 404: 293–299, 1985.
 239. Ullrich, K. J., G. Rumrich, and S. Klöss. Contraluminal sulfate transport in the proximal tubule of the rat kidney. III. Specificity: disulfonates, di‐ and tricarboxylates and sulfocarboxylates. Pflugers Arch. 404: 300–306, 1985.
 240. Ullrich, K. J., G. Rumrich, and S. Klöss. Contraluminal sulfate transport in the proximal tubule of the rat kidney. IV. Specificity: salicylate analogs. Pflugers Arch. 404: 307–310, 1985.
 241. Ullrich, K. J., G. Rumrich, and S. Klöss. Contraluminal sulfate transport in the proximal tubule of the rat kidney. V. Specificity: phenolphthaleins, sulfonphthaleins, and other sulfo dyes, sulfamoyl‐compounds and diphenylamine‐2‐carboxylates. Pflugers Arch. 404: 311–318, 1985.
 242. Ullrich, K. J., G. Rumrich, and S. Klöss. Contraluminal para‐aminohippurate (PAH) transport in the proximal tubule of the rat kidney. IV. Specificity: Mono‐ and polysubstituted benzene analogs. Pflugers Arch. 413: 134–146, 1988.
 243. Ullrich, K. J., G. Rumrich, and S. Klöss. Contraluminal organic anion and cation transport in the proximal renal tubule. V. Interaction with sulfamoyl‐ and phenoxy diuretics, and with β‐lactam antibiotics. Kidney Int. 36: 78–88, 1989.
 244. Ullrich, K. J., G. Rumrich, T. Wieland, and W. Dekant. Contraluminal para‐aminohippurate (PAH) transport in the proximal tubule of the rat kidney. VI. Specificity: amino acids, their N‐methyl, N‐acetyl and N‐benzoylderivatives; glutathione‐ and cysteine conjugates, di‐ and oligopeptides. Pflugers Arch. 415: 342–350, 1989.
 245. Wagner, S., R. Vocel, R. Lietzke, R. Koob, and D. Drenckhahn. Immunochemical characterization of a band 3‐like anion exchanger in collecting duct of human kidney. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F213–F221, 1987.
 246. Wang, W. and G. H. Giebisch. K+ channel in the apical membrane of cortical collecting tubule of rat kidney is sensitive to pH and ATP. Kidney Int. (in press).
 247. Wangemann P., M. Wittner, A. Di Stefano, H. C. Englert, H. J. Lang, E. Schlatter, and R. Greger. Cl−‐channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflugers Arch. 407: S128–S141, 1986.
 248. Weinman, E. J., S. Shenolikar, E. J. Cragoe, Jr., and W. P. Dubinsky. Solubilization and reconstitution of renal brush border Na+‐H+ exchanger. J. Membr. Biol. 101: 1–9, 1988.
 249. Werner, D., F. Martinez, and F. Roch‐Ramel. Urate and p‐aminohippurate transport in the brush border membrane of the pig kidney. J. Pharmacol. Exp. Ther. 252: 792–799, 1990.
 250. Wingo, C. S. Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct. J. Clin. Invest. 84: 361–365, 1989.
 251. Wittner, M., A. Di Stefano, P. Wangemann, R. Nitschke, R. Greger, C. Bailly, C. Amiel, N. Rojnel, and C. De Rouffignac. Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in the cortical and medullary thick ascending limbs of the mouse nephron. Pflugers Arch. 412: 516–523, 1988.
 252. Wright, S. H., I. Kippen, and E. M. Wright. Stoichiometry of Na+‐succinate cotransport in renal brush‐border membranes. J. Biol. Chem. 257: 1773–1778, 1982.
 253. Wright, S. H., I. Kippen, J. R. Klinenberg, and E. M. Wright. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders. J. Membr. Biol. 57: 73–82, 1980.
 254. Wright, S. H., and T. M. Wunz. Succinate and citrate transport in renal basolateral and brush‐border membranes. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F432–F439, 1987.
 255. Wu, J.‐S. R., and J. E. Lever. Monoclonal antibodies that bind the renal Na+/D‐glucose symport system. 1. Identification. Biochemistry 26: 5783–5790, 1987.
 256. Wu, J.‐S. R., and J. E. Lever. Purification and reconstitution of a 75 kilodalton protein identified as a component of the renal Na+/glucose symporter. Biochemistry 26: 5958–5962, 1987.
 257. Wu, J.‐S. R., and J. E. Lever. Photoaffinity labeling by [3H]‐ N N5‐isobutylamiloride of proteins which cofractionate with Na+/H+ antiport activity. Biochemistry 28: 2980–2984, 1989.
 258. Wuarin, F., K. Wu, H. Murer, and J. Biber. The Na+/P i‐cotransporter of OK cells: reaction and tentative identification with N‐acetylimidazol. Biochim. Biophys. Acta 981: 185–192, 1989.
 259. Yoshitomi, K., B.‐Ch. Burckhardt, and E. Frömter. Rheogenic sodium‐bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch. 405: 360–366, 1985.
 260. Yoshitomi, K., and E. Frömter. How big is the electrochemical potential difference of Na+ across rat renal proximal tubular cell membranes in vivo? Pflugers Arch. 405: S121–S126, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gerhard Burckhardt, Rainer Greger. Principles of Electrolyte Transport Across Plasma Membranes of Renal Tubular Cells. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 639-657. First published in print 1992. doi: 10.1002/cphy.cp080114