Comprehensive Physiology Wiley Online Library

Nephron Heterogeneity

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Heterogeneity of Nephrons According to Location of Glomerulus and Length of Loop of Henle
2 Heterogeneity of Nephron Regions
3 Proximal Tubule
3.1 Structural/Morphological Heterogeneity
3.2 Functional Heterogeneity
4 The Intermediate Tubule (Thin Limbs of Henle's Loop)
4.1 Structural/Morphological Heterogeneity
4.2 Functional Heterogeneity
5 Distal Tubule
5.1 Thick Ascending Limbs of Henle's Loop (TAL)
5.2 Distal Convoluted Tubule (DCT)
6 Collecting Duct
6.1 Structural/Morphological Heterogeneity
6.2 Functional Heterogeneity
Figure 1. Figure 1.

Depiction of short‐looped and long‐looped nephron. Dashed line in cortex defines boundary of medullary ray. Medullary rays are striated regions extending from the base of the renal pyramid; although they extend deeply into the cortex, they resemble the medulla in structure. 1. Renal corpuscle, including Bowman's capsule and glomerulus. 2. Proximal convoluted tubule (PCT). 3. Proximal straight tubule (PST). 4. Descending thin limb (DTL). 5. Ascending thin limb (ATL). 6. Thick ascending limb (TAL). 7. Macula densa. 8. Distal convoluted tubule (DCT). 9. Connecting tubule (CNT). 10. Cortical collecting duct (CCD). 11. Outer medullary collecting duct (OMCD). 12. Inner medullary collecting duct (IMCD).

Adapted from 313 with permission
Figure 2. Figure 2.

Diagramatic depiction of various cell types in nephron of short‐looped and long‐looped nephron. Proximal, Pars Convoluta (S1) = S1 segment of the proximal convoluted tubule. Proximal, Pars Convoluta (S2) = S2 segment of proximal convoluted tubule. Proximal, Pars Recta (S3) = S3 segment of proximal tubule or proximal straight tubule. Thin Limb, Desc., S.L. = descending thin limb (DTL) from a short‐loop nephron, type 1 cell. Thin Limb, Lower L.L. = upper portion of the descending thin limb (DTL) from logloop nephron, type 2 cell. Thin Limb, Upper L.L. = lower portion of the descending limb (DTL) from long‐loop nephron, type 3 cell. Thin Limb, ASC., L.L. = ascending thin limb (ATL). Distal, Pars Recta = medullary (MTAL) and cortical (CTAL) portions of the thick ascending limb of Henle. Distal, Pars Convoluta = distal convoluted tubule (DCT). Connecting Tubule = CNT. Cortical Collecting Duct = CCD. Medullary Collecting Duct = collecting duct system containing outer medullary collecting duct (OMCD) in outer medulla and inner medullary collecting duct (IMCD) in inner medulla.

Adapted from 460 with permission
Figure 3. Figure 3.

Profile of compositional changes in tubule fluid along proximal tubule.

Adapted from 404 with permission
Figure 4. Figure 4.

Mechanisms of Na+, Cl transport in proximal tubule.

Figure 5. Figure 5.

Mechanisms of acidification and organic solute transport in proximal tubule.

Figure 6. Figure 6.

Schematic depiction of heterogeneity of cell types and their location along intermediate tubule. DTL, descending thin limb; ATL, ascending thin limb; O.S., outer stripe of outer medulla; I.S., inner stripe of outer medulla; I.M., inner medulla. Type 1 cells are located in DTL of short‐looped nephrons. Type 2 and type 3 cells are located in regions depicted by the light and dark regions of DTL from long‐looped nephrons. Type 3 cells are located in ATL from long‐looped nephrons. Circles near each cell type represent enlarged areas of junctional complexes.

Figure 7. Figure 7.

Modes of NaCl absorption in thick ascending limb of Henle's loop (TAL). MTAL, medullary thick ascending limb; CTAL, cortical thick ascending limb. See text for discussion.

Figure 8. Figure 8.

Heterogeneity of hormone action along thick ascending limb of Henle's loop. ADH, antidiuretic hormone, vasopressin; PTH, parathyroid hormone; CAL, calcitonin; PGE2, prostaglandin E2; O.S., outer stripe of outer medulla; I.S., inner stripe of outer medulla; I.M., inner medulla; MTAL, medullary thick ascending limb; CTAL, cortical thick ascending limb.

Figure 9. Figure 9.

Heterogeneity of hormone action along distal tubule. See text for discussion. CAL, calcitonin; ADH, antidiuretic hormone, vasopressin; PTH, parathyroid hormone; ISO, isoproterenol; Doca, deoxycorticosterone acetate. G, glomerulus; CCT, cortical collecting tubule.

Figure 10. Figure 10.

Model of salt transport in distal convoluted tubule (DCT).

Figure 11. Figure 11.

Heterogeneity of sodium and potassium transport along collecting duct system. Sodium is represented by open bars and potassium by solid bars. Positive values represent absorption and negative values represent secretion.

Figure 12. Figure 12.

Different cell types in the CCD, OMCD, and IMCD. P‐cells represent principal cells. Ia cells are proton‐secreting intercalated cells. Ib cells are bicarbonate‐secreting (proton absorbing) intercalated cells.



Figure 1.

Depiction of short‐looped and long‐looped nephron. Dashed line in cortex defines boundary of medullary ray. Medullary rays are striated regions extending from the base of the renal pyramid; although they extend deeply into the cortex, they resemble the medulla in structure. 1. Renal corpuscle, including Bowman's capsule and glomerulus. 2. Proximal convoluted tubule (PCT). 3. Proximal straight tubule (PST). 4. Descending thin limb (DTL). 5. Ascending thin limb (ATL). 6. Thick ascending limb (TAL). 7. Macula densa. 8. Distal convoluted tubule (DCT). 9. Connecting tubule (CNT). 10. Cortical collecting duct (CCD). 11. Outer medullary collecting duct (OMCD). 12. Inner medullary collecting duct (IMCD).

Adapted from 313 with permission


Figure 2.

Diagramatic depiction of various cell types in nephron of short‐looped and long‐looped nephron. Proximal, Pars Convoluta (S1) = S1 segment of the proximal convoluted tubule. Proximal, Pars Convoluta (S2) = S2 segment of proximal convoluted tubule. Proximal, Pars Recta (S3) = S3 segment of proximal tubule or proximal straight tubule. Thin Limb, Desc., S.L. = descending thin limb (DTL) from a short‐loop nephron, type 1 cell. Thin Limb, Lower L.L. = upper portion of the descending thin limb (DTL) from logloop nephron, type 2 cell. Thin Limb, Upper L.L. = lower portion of the descending limb (DTL) from long‐loop nephron, type 3 cell. Thin Limb, ASC., L.L. = ascending thin limb (ATL). Distal, Pars Recta = medullary (MTAL) and cortical (CTAL) portions of the thick ascending limb of Henle. Distal, Pars Convoluta = distal convoluted tubule (DCT). Connecting Tubule = CNT. Cortical Collecting Duct = CCD. Medullary Collecting Duct = collecting duct system containing outer medullary collecting duct (OMCD) in outer medulla and inner medullary collecting duct (IMCD) in inner medulla.

Adapted from 460 with permission


Figure 3.

Profile of compositional changes in tubule fluid along proximal tubule.

Adapted from 404 with permission


Figure 4.

Mechanisms of Na+, Cl transport in proximal tubule.



Figure 5.

Mechanisms of acidification and organic solute transport in proximal tubule.



Figure 6.

Schematic depiction of heterogeneity of cell types and their location along intermediate tubule. DTL, descending thin limb; ATL, ascending thin limb; O.S., outer stripe of outer medulla; I.S., inner stripe of outer medulla; I.M., inner medulla. Type 1 cells are located in DTL of short‐looped nephrons. Type 2 and type 3 cells are located in regions depicted by the light and dark regions of DTL from long‐looped nephrons. Type 3 cells are located in ATL from long‐looped nephrons. Circles near each cell type represent enlarged areas of junctional complexes.



Figure 7.

Modes of NaCl absorption in thick ascending limb of Henle's loop (TAL). MTAL, medullary thick ascending limb; CTAL, cortical thick ascending limb. See text for discussion.



Figure 8.

Heterogeneity of hormone action along thick ascending limb of Henle's loop. ADH, antidiuretic hormone, vasopressin; PTH, parathyroid hormone; CAL, calcitonin; PGE2, prostaglandin E2; O.S., outer stripe of outer medulla; I.S., inner stripe of outer medulla; I.M., inner medulla; MTAL, medullary thick ascending limb; CTAL, cortical thick ascending limb.



Figure 9.

Heterogeneity of hormone action along distal tubule. See text for discussion. CAL, calcitonin; ADH, antidiuretic hormone, vasopressin; PTH, parathyroid hormone; ISO, isoproterenol; Doca, deoxycorticosterone acetate. G, glomerulus; CCT, cortical collecting tubule.



Figure 10.

Model of salt transport in distal convoluted tubule (DCT).



Figure 11.

Heterogeneity of sodium and potassium transport along collecting duct system. Sodium is represented by open bars and potassium by solid bars. Positive values represent absorption and negative values represent secretion.



Figure 12.

Different cell types in the CCD, OMCD, and IMCD. P‐cells represent principal cells. Ia cells are proton‐secreting intercalated cells. Ib cells are bicarbonate‐secreting (proton absorbing) intercalated cells.

References
 1. Abramow, M., and L. Orci. On the “tightness” of the rabbit descending limb of Henle—physiological and morphological evidence. Int. J. Biochem. 12: 23–27, 1980.
 2. Akiba, T., R. J. Alpern, J. L. Eveloff, J. Calamina, and D. G. Warnock. Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles. J. Clin. Invest. 78: 1472–1478, 1986.
 3. Alcorn, D., K. R. Emslie, B. D. Ross, G. B. Ryan, and J. D. Tange. Selective distal nephron damage during isolated kidney perfusion. Kidney Int. 19: 638–647, 1981.
 4. Allen, F., and C. C. Tisher. Morphology of the ascending thick limb of Henle. Kidney Int. 9: 8–22, 1976.
 5. Allen, G. G., and L. J. Barratt. Electrophysiology of the early distal tubule: further observations on electrode techniques. Kidney Int. 19: 24–35, 1981.
 6. Almeida, A. J., and M. B. Burg. Sodium transport in the rabbit connecting tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F330–F334, 1982.
 7. Alpern, R. J., and M. Chambers. Cell pH in the rat proximal convoluted tubule. Regulation by luminal and peritubular pH and sodium concentration. J. Clin. Invest. 78: 502–510, 1986.
 8. Alpern, R. J., K. J. Howlin, and P. A. Preisig. Active and passive components of chloride transport in the rat proximal convoluted tubule. J. Clin. Invest. 76: 1360–1366, 1985.
 9. Alpern, R. J., and F. C. Rector. A model of proximal tubular bicarbonate absorption. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F272–F281, 1985.
 10. Amstutz, M., M. Mohrmann, P. Gmaj, and H. Murer. Effect of pH on phosphate transport in rat renal brush border membrane vesicles. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F705–F710, 1985.
 11. Andreoli, T. E., R. W. Berliner, J. P. Kokko, and D. J. Marsh. Questions and replies: renal mechanisms for urinary concentrating and diluting processes. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F1–F11, 1978.
 12. Andreoli, T. E., and J. A. Schafer. Volume absorption in the pars recta. III. Luminal hypotonicity as a driving force for isotonic volume absorption. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F349–F355, 1978.
 13. Andreoli, T. E., and J. A. Schafer. External solution driving forces for isotonic fluid absorption in proximal tubules. Federation Proc. 38: 154–160, 1979.
 14. Andreoli, T. E., and J. A. Schafer. Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F89–F96, 1979.
 15. Andreoli, T. E., J. A. Schafer, and S. L. Troutman. Perfusion rate dependence of transepithelial osmosis in isolated proximal convoluted tubules: estimation of the hydraulic conductance. Kidney Int. 14: 263–269, 1978.
 16. Andreoli, T. E., J. A. Schafer, S. L. Troutman, and M. L. Watkins. Solvent drag component of Cl− flux in superficial proximal straight tubules: evidence for a paracellular component of isotonic fluid absorption. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F455–F462, 1979.
 17. Aronson, P. S. Identifying secondary active solute transport in epithelia. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F1–F11, 1981.
 18. Aronson, P. S. Mechanisms of active H+ secretion in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F647–F659, 1983.
 19. Aronson, P. S., and B. Sacktor. The Na+ gradientdependent transport of D‐glucose in renal brush broder membranes. J. Biol. Chem. 250: 6032–6039, 1975.
 20. Atkins, J. L., and M. B. Burg. Bicarbonate transport by isolated perfused rat collecting ducts. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F485–F489, 1985.
 21. Bachman, S., and W. Kriz. Histotopography and ultrastructure of the thin limbs of the loop of Henle in the hamster. Cell Tissue Res. 225: 111–127, 1982.
 22. Bailly, C., M. Imbert‐Teboul, D. Chabardes, A. Hus‐Citharel, M. Montegut, A. Clique, and F. Morel. The distal nephron of rat kidney: a target site for glucagon. Proc. Natl. Acad. Sci. USA 77: 3422–3424, 1980.
 23. Bailly, C., N. Roinel, and C. Amiel. PTH‐like glucagon stimulation of Ca and Mg reabsorption in Henle's loop of the rat. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F205–F212, 1984.
 24. Baines, A. D., and C. de Rouffignac. Functional heterogeneity of nephrons. II. Filtration rates, intraluminal flow velocities and fractional water reabsorption. Pflugers Arch. 308: 260–276, 1969.
 25. Bankir, L., and C. de Rouffignac. Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F643–F666, 1985.
 26. Barajas, L. Innervation of the renal cortex. Federation Proc. 37: 1192–1201, 1978.
 27. Barajas, L., K. Powers, and P. Wang. Innervation of the renal cortical tubules: a quantitative study. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F50–F60, 1984.
 28. Barajas, L., P. Wang, K. Powers, and S. Nishio. Identification of renal neuroeffector junctions by electron microscopy of reembedded light microscopic audiograms of semithin sections. J. Ultrastruct. Res. 77: 379–385, 1981.
 29. Barfuss, D. W., and J. A. Schafer. Flow dependence of nonelectrolyte absorption in the nephron. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F163–F174, 1979.
 30. Barfuss, D. W., and J. A. Schafer. Active amino acid absorption by proximal convoluted and proximal straight tubules. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F149–F162, 1979.
 31. Barfuss, D. W., and J. A. Schafer. Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F324–F333, 1980.
 32. Barfuss, D. W., and J. A. Schafer. Collection and analysis of absorbate from proximal straight tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F597–F604, 1981.
 33. Barfuss, D. W., and J. A. Schafer. Differences in active and passive glucose transport along the proximal nephron. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 10): F322–F332, 1981.
 34. Barfuss, D. W., and J. A. Schafer. Hyperosmolality of absorbate from isolated rabbit proximal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F130–F139, 1984.
 35. Barfuss, D. W., and J. A. Schafer. Rate of formation and composition of absorbate from proximal nephron segments. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F117–F129, 1984.
 36. Barratt, L. J. The effect of amiloride on the transepithelial potential difference of the distal tubule of the rat kidney. Pflugers Arch. 361: 251–254, 1976.
 37. Barratt, L. J., F. C. Rector, J. P. Kokko, and D. W. Seldin. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J. Clin. Invest. 53: 454–464, 1974.
 38. Barratt, L. J., F. C. Rector, J. P. Kokko, C. C. Tisher, and D. W. Seldin. Transepithelial potential difference profile of the distal tubule of the rat kidney. Kidney Int. 8: 368–375, 1975.
 39. Barrett, J. M., W. Kriz, B. Kaissling, and C. de Rouffignac. The ultrastructure of the nephrons of the desert rodent (Psammomys obesus) kidney, I. Thin limbs of Henle of long‐looped nephrons. Am. J. Anat. 151: 487–498, 1978.
 40. Barrett, J. M., W. Kriz, B. Kaissling, and C. de Rouffignac. The ultrastructure of the nephrons of the desert rodent (Psammomys obesus) kidney. II. Thin limbs of Henle of long‐looped nephrons. Am. J. Anat. 151: 499–514, 1978.
 41. Baum, M. Evidence that parallel Na+‐H+ and Cl−‐HCO3−(OH−) antiporters transport NaCl in the proximal tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F338–F345, 1987.
 42. Baum, M., and C. A. Berry. Peritubular protein modulates neutral active NaCl absorption in rabbit proximal convoluted tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F338–F345, 1987.
 43. Bauman, K., H. Holzgreve, F. Kolb, R. Peters, G. Rumrich, and K. J. Ullrich. Unidirektionale Flusse fur 24Na, 42K, 45Ca, 38Cl, 82Br, and 131I im proximalen Konvolut der Rattenniere. Pflugers Arch. 289: R77, 1966.
 44. Beck, J. C., and B. Sacktor. The sodium electrochemical potential‐mediated uphill transport of d‐glucose in renal brush border membrane vesicles. J. Biol. Chem. 253: 5531–5535, 1978.
 45. Bello‐Reuss, E. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J. Physiol. (Lond.) 326: 49–63, 1982.
 46. Bengele, H. H., J. H. Schwartz, E. R. McNamara, and E. A. Alexander. Chronic metabolic acidosis augments acidification along the inner medullary collecting duct. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F690–F694, 1986.
 47. Bengele, H. H., J. H. Schwartz, E. R. McNamara, and E. A. Alexander. Effect of buffer infusion during acute respiratory acidosis. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F115–F119, 1986.
 48. Bernstein, H., L. J. Atherton, and W. M. Deen. Axial heterogeneity and filtered‐load dependence of proximal bicarbonate reabsorption. Biophys. J. 50: 239–252, 1986.
 49. Berry, C. A. Hetreogeneity of tubular transport processes in the nephron. In: Annu. Rev. Physiol, Palo Alto, CA: Annual Reviews, Inc., 1982, pp. 181–201.
 50. Berry, C. A. Characteristics of water diffusion in the proximal convoluted tubule. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F729–F738, 1985.
 51. Berry, C. A., and M. G. Cogan. Influence of peritubular protein on solute absorption in the rabbit proximal tubule. A specific effect on NaCl transport. J. Clin. Invest. 68: 506–516, 1981.
 52. Berry, C. A., D. G. Warnock, and F. C. Rector. Ion selectivity and proximal salt reabsorption. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F234–F245, 1978.
 53. Besseghir, K., M. E. Trimble, and L. C. Stoner. Action of ADH on isolated medullary thick ascending limb of the Brattleboro rat. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F271–F277, 1986.
 54. Biagi, B. A., and M. Sohtell. Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F267–F272, 1986.
 55. Biagi, B. A., and M. Sohtell. pH sensitivity of the basolateral membrane of the rabbit proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F261–F266, 1986.
 56. Biagi, B. A., M. Sohtell, and G. Giebisch. Intracellular potassium activity in the rabbit proximal straight tubule. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F677–F686, 1981.
 57. Blantz, R. C., and J. C. Pelayo. A functional role for the tubuloglomerular feedback mechanism. Kidney Int. 25: 739–746, 1984.
 58. Bleich, M., E. Schlatter, and R. Greger. The luminal K+ channel of the thick ascending limb of Henle's loop. Pflugers Arch. 415: 449–460, 1990.
 59. Blumenthal, S. S., R. A. Ware, and J. G. Kleinman. Proximal tubule hydrogen ion transport processes in diureticinduced metabolic alkalosis. J. Lab. Clin. Med. 106: 17–22, 1985.
 60. Bomsztyk, K., J. P. George, and F. S. Wright. Effects of luminal fluid anions on calcium transport by proximal tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F600–F608, 1984.
 61. Bomsztyk, K., E. R. Swenson, and M. B. Calalb. HCO3 accumulation in proximal tubule: roles of carbonic anhydrase, luminal buffers, and pH. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F501–F508, 1987.
 62. Bourdeau, J. E. Calcium transport across the pars recta of cortical segment 2 proximal tubules. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F718–F724, 1986.
 63. Bourdeau, J. E., and M. B. Burg. Voltage dependence of calcium transport in the thick ascending limb of Henle's loop. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F357–F364, 1979.
 64. Bourdeau, J. E., and M. B. Burg. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle's loop. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F121–F126, 1980.
 65. Bowman, W. On the structure and use of the Malphigian bodies of the kidney, with observations on the circulation through that gland. Phil. Trans. R. Soc. Lond. 132: 57–80, 1842.
 66. Brazy, P. C., and V. W. Dennis. Characteristics of glucosephlorizin interactions in isolated proximal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F279–F286, 1978.
 67. Brazy, P. C., and V. W. Dennis. Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F300–F307, 1981.
 68. Brezis, M., S. Rosen, P. Silva, and F. H. Epstein. Transport activity modifies thick ascending limb damage in the isolated perfusd kidney. Kidney Int. 25: 65–72, 1984.
 69. Brown, D. Membrane recycling and epithelial cell function. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1–F12, 1989.
 70. Brown, D., S. Hirsch, and S. Gluck. An H+‐ATPase is present in opposite plasma membrane domains in subpopulations of kidney epithelial cells. Nature 331: 622–624, 1988.
 71. Brown, D., S. Hirsch, and S. Gluck. Localization of a proton‐pumping ATPase in rat kidney. J. Clin. Invest. 82: 2114–2126, 1988.
 72. Brown, D., T. Kumpulainen, J. Roth, and L. Orci. Immunohistochemical localization of carbonic anhydrase in postnatal and adult rat kidneys. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F110–F118, 1983.
 73. Brown, D., J. Roth, and L. Orci. Lectin‐gold cytochemistry reveals intercalated cell heterogeneity along rat kidney collecting ducts. Am. J. Physiol. 248 (Cell Physiol. 17): C348–C356, 1985.
 74. Buerkert, J., D. Martin, and D. Trigg. Ammonium handling by superficial and juxtamedullary nephrons in the rat. Evidence for an ammonia shunt between the loop of Henle and the collecting duct. J. Clin. Invest. 70: 1–12, 1982.
 75. Bulger, R. E., and D. C. Dobyan. Recent structural‐functional relationships in normal and injured kidneys. Anat. Rec. 205: 1–11, 1983.
 76. Bulger, R. E., and S. C. Hebert. Structural‐functional relationships in the kidney. In: Diseases of the Kidney (4th ed.), edited by R. W. Schrier and C. W. Gottschalk. Boston: Little Brown, 1988, pp. 3–63.
 77. Burg, M. B. Secretion and reabsorption of bicarbonate in single renal tubules of the rabbit. Ann. N. Y. Acad. Sci. 341: 225–232, 1980.
 78. Burg, M. B. The significance of heterogeneity. Jpn. J. Nephrol. 23: 957–964, 1981.
 79. Burg, M. B. Thick ascending limb of Henle's loop. Kidney Int. 22: 454–464, 1982.
 80. Burg, M. B., and D. W. Good. Sodium chloride coupled transport in mammalian nephrons. In: Annu. Rev. Physiol, edited by R. M. Berne and J. F. Hoffman. Palo Alto, CA: Annual Reviews, Inc., 1983, pp. 533–547.
 81. Burg, M. B., J. J. Grantham, M. Abramow, and J. Orloff. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210: 1293–1298, 1966.
 82. Burg, M. B., and N. Green. Effect of ethacrynic acid on the thick ascending limb of Henle's loop. Kidney Int. 4: 301–308, 1973.
 83. Burg, M. B., and N. Green. Function of the thick ascending limb of Henle's loop. Am. J. Physiol. 224: 659–668, 1973.
 84. Burg, M. B., and N. Green. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F307–F314, 1977.
 85. Burg, M. B., and J. Orloff. Electrical potential difference across proximal convoluted tubules. Am. J. Physiol. 219: 1714–1716, 1970.
 86. Burg, M. B., and J. L. Stephenson. Transport characteristics of the loop of Henle. In: Physiology of Membrane Disorders, edited by T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil. New York: Plenum, 1978, pp. 661–679.
 87. Burg, M. B., and L. C. Stoner. Sodium transport in the distal nephron. Federation Proc. 33: 31–36, 1974.
 88. Burg, M. B., L. C. Stoner, J. Cardinal, and N. Green. Furosemide effect on isolated perfused tubules. Am. J. Physiol. 225: 119–124, 1973.
 89. Carpi‐Medina, P., E. Gonzalez, and G. Whittembury. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F554–F563, 1983.
 90. Cassola, A. C., G. Giebisch, and G. Malnic. Mechanisms and components of renal tubular acidification. J. Physiol. (Lond.) 267: 601–624, 1977.
 91. Cemerikic, D., C. S. Wilcox, and G. Giebisch. Intracellular potential and K+ activity in rat kidney proximal tubular cells in acidosis and K+ depletion. J. Membr, Biol. 69: 159–165, 1982.
 92. Chabardes, D., M. Imbert, A. Clique, M. Montegut, and F. Morel. PTH sensitive adenylate cyclase activity in different segments of the rabbit nephron. Pflugers Arch. 324: 229–239, 1975.
 93. Chabardes, D., M. Imbert‐Teboul, M. Gagnon‐Brunette, and F. Morel. Different hormonal target sites along the mouse and rabbit nephrons. Curr. Probl. Clin. Biochem. 8: 447–454, 1977.
 94. Chabardes, D., M. Imbert‐Teboul, M. Montegut, A. Clique, and F. Morel. Distribution of calcitonin‐sensitive adenylate cyclase activity along the rabbit kidney tubule. Proc. Natl. Acad. Sci. USA 73: 3608–3612, 1976.
 95. Chan, Y. L., G. Malnic, and G. Giebisch. Passive driving forces of proximal tubular fluid and bicarbonate transport: gradient dependence of H+ secretion. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F622–F633, 1983.
 96. Chandhoke, P. S., G. M. Saidel, and M. A. Knepper. Role of inner medullary collecting duct NaCl transport in urinary concentration. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F688–F697, 1985.
 97. Cheng, L., and B. Sacktor. Sodium gradient‐dependent phosphate transport in renal brush‐border membrane vesicles. J. Biol. Chem. 256: 1556–1564, 1981.
 98. Cogan, M. G. Volume expansion predominantly inhibits proximal reabsorption of NaCl rather than NaHCO3. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F272–F275, 1983.
 99. Cogan, M. G., and R. J. Alpern. Regulation of proximal bicarbonate reabsorption. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F387–F395, 1984.
 100. Cohn, D. E., S. Klahr, and M. R. Hammerman. Metabolic acidosis and parathyroidectomy increase Na+‐H+ exchange in brush border vesicles. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F217–F222, 1983.
 101. Costanzo, L. S. Comparison of calcium and sodium transport in early and late distal tubules: effect of amiloride. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F937–F945, 1984.
 102. Costanzo, L. S. Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F527–F535, 1985.
 103. Costanzo, L. S., and E. E. Windhager. Calcium and sodium transport by the distal convoluted ubule of the rat. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F492–F506, 1978.
 104. Costanzo, L. S., and E. E. Windhager. Effects of PTH, ADH, and cyclic AMP on distal tubular Ca and Na reabsorption. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F478–F485, 1980.
 105. Crayen, M., and W. Thoenes. Architekus und cytologische Charakterisiering des distalen Tubulus der Rattenniere. Fortschr. Zool. 23: 270–288, 1975.
 106. Crayen, M. L., and W. Thoenes. Architecture and cell structures in the distal nephron of the rat kidney. Eur. J. Cell. Biol. 17: 197–211, 1978.
 107. Culpepper, R. M., and T. E. Andreoli. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating Cl− absorption in single mouse medullary thick ascending limbs of Henle. J. Clin. Invest. 71: 1588–1601, 1983.
 108. de Mello, G. B., A. G. Lopes, and G. Malnic. Conductances, diffusion and streaming potentials in the rat proximal tubule. J. Physiol. (Lond.) 260: 553–569, 1976.
 109. de Rouffignac, C. Physiological role of the loop of Henle in urinary concentration. Kidney Int. 2: 297–303, 1972.
 110. de Rouffignac, C., B. Corman, and N. Roinel. Stimulation by antidiuretic hormone of electrolyte tubular reabsorption in rad kidney. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F156–F164, 1983.
 111. de Rouffignac, C., and J. M. Elalouf. Effects of calcitonin on the renal concentrating mechanism. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F506–F511, 1983.
 112. de Rouffignac, C., and F. Morel. Micropuncture study of water, electrolytes, and urea movements along the loops of Henle in Psammomys. J. Clin. Invest. 48: 474–486, 1969.
 113. Dennis, V. W. Influence of bicarbonate on parathyroid hormone‐induced changes in fluid absorption by the proximal tubule. Kidney Int. 10: 373–380, 1976.
 114. Dennis, V. W., E. Bello‐Reuss, and R. R. Robinson. Response of phosphate transport to parathyroid hormone in segments of rabbit nephron. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F29–F38, 1977.
 115. Dennis, V. W., and P. C. Brazy. Divalent anion transport in isolated renal tubule. Kidney Int. 22: 498–506, 1982.
 116. Dennis, V. W., W. W. Stead, and J. L. Myers. Renal ahandling of phosphate and calcium. Annu. Rev. Physiol. 41: 257–271, 1979.
 117. Dennis, V. W., P. B. Woodhall, and R. R. Robinson. Characteristics of phosphate transport in isolated proximal tubule. Am. J. Physiol. 231: 979–985, 1976.
 118. Dibona, D. R., K. L. Kirk, and R. D. Johnson. Microscopic investigation of structure and function in living epithelial tissues. Federation Proc. 44: 2693–2703, 1985.
 119. Dibona, G. F., and L. L. Sawin. Effect of renal nerve stimulation on NaCl and H2O transport in Henle's loop of the rat. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F576–F580, 1982.
 120. Dietrich, H. J., W. Kriz, and J. M. Barrett. The ultrastructure of the thin limbs in the mouse kidney. Anat. Embryol. 147: 1–18, 1975.
 121. Diezi, J., P. Michoud, J. Aceves, and G. Giebisch. Micropuncture study of electrolyte transport across papillary collecting duct of the rat. Am. J. Physiol. 224: 623–634, 1973.
 122. Dobyan, D. C., and R. E. Bulger. Renal carbonic anhydrase. Am. J. Physiol. 243 (Renal Fluid Electrolytc Physiol. 12): F311–F324, 1982.
 123. Dobyan, D. C., L. S. Magill, P. A. Friedman, S. C. Hebert, and R. E. Bulger. Carbonic anhydrase histochemistry in rabbit and mouse kidneys. Anat. Rec. 204: 185–197, 1982.
 124. Dominguez, J. H., K. W. Snowdowne, C. C. Freudenrich, T. Brown, and A. B. Borle. Intracellular messenger for action of angiotensin II on fluid transport in rabbit proximal tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F423–F428, 1987.
 125. Doucet, A., A. Hus‐Citharel, and F. Morel. In vitro stimulation of Na‐K‐ATPase in rat thick ascending limb by dexamethasone. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F851–F857, 1986.
 126. Doucet, A., and A. I. Katz. Renal potassium adaptation: Na‐K‐ATPase activity along the nephron after chronic potassium loading. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F380–F386, 1980.
 127. Doucet, A., and A. I. Katz. Mineralocorticoid receptors along the nephron: [3H]aldosterone binding in rabbit tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F605–F611, 1981.
 128. Dubose, T. D., Jr., M. S. Lucci, R. J. Hogg, L. R. Pucacco, J. P. Kokko, and N. W. Carter. Comparison of acidification parameters in superficial and deep nephrons of the rat. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F497–F503, 1983.
 129. Edwards, R. M., B. A. Jackson, and T. P. Dousa. Protein kinase activity in isolated tubules of rat renal medulla. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F269–F278, 1980.
 130. Edwards, R. M., B. A. Jackson, and T. P. Dousa. ADH‐sensitive cAMP system in papillary collecting duct: effect of osmolality and PGE2. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F311–F318, 1981.
 131. El Mernissi, G., D. Chabardes, A. Doucet, A. Hus‐Citharel, M. Imbert‐Teboul, L. E. Bouffant, M. Montegut, and S. Siaume. Changes in tubular basolateral membrane markers after chronic DOCA treatment. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F100–F109, 1983.
 132. El Mernissi, G., and A. Doucet. Stimulation of Na‐K‐ATPase in the rat collecting tubule by two diuretics: furosemide and amiloride. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F485–F490, 1984.
 133. Elalouf, J. M., N. Roinel, and C. de Rouffignac. ADH‐like effects of calcitonin on electrolyte transport by Henle's loop of rat kidney. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F213–F220, 1984.
 134. Ericson, A.‐C., M. Sjoquist, and H. R. Ulfendahl. Heterogeneity in regulation of glomerular function. Acta Physiol. Scand. 114: 203–209, 1982.
 135. Ernst, S. A., and J. H. Schreiber. Ultrastructural localization of Na,K‐ATPase in rat and rabbit kidney medulla. J. Cell Biol. 91: 803–813, 1981.
 136. Evers, J., H. Murer, and R. Kinne. Phenylalanine uptake in isolated renal brush border membrane vesicles. Biochim. Biophys. Acta 426: 598–615, 1976.
 137. Farman, N., and J. P. Bonvalet. Aldosterone binding in isolated tubules. III. Autoradiography along the rat nephron. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F606–F614, 1983.
 138. Farman, N., A. Vandewalle, and J. P. Bonvalet. Aldosterone binding in isolated tubules. II. An autoradiographic study of concentration dependency in the rabbit nephron. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F69–F77, 1982.
 139. Fass, S. J., M. R. Hammerman, and B. Sacktor. Transport of amino acids in renal brush border membrane vesicles. J. Biol. Chem. 252: 583–590, 1977.
 140. Field, M., and G. Giebisch. Hormonal control of renal potassium excretion. Kidney Int. 27: 379–387, 1985.
 141. Fine, L. G., and W. Trizna. Influence of prostaglandins on sodium transport of isolated medullary nephron segments. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F383–F390, 1977.
 142. Fine, L. G., W. Trizna, and J. J. Bourgoignie. Functional profile of the isolated uremic nephron. Role of compensatory hypertrophy in the control of fluid reabsorption by the proximal straight tubule. J. Clin. Invest. 60: 1508–1518, 1978.
 143. Friedman, P. A. Bumetanide inhibition of [Co2 + HCO3]‐4dependent and ‐independent equivalent electrical flux in renal cortical thick ascending limbs. J. Pharmacol. Exp. Ther. 238: 407–414, 1986.
 144. Friedman, P. A. Basal and hormone‐activated calcium absorption in mouse renal thick ascending limbs. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F62–F70, 1988.
 145. Friedman, P. A., and T. E. Andreoli. Co2‐stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na+/H+ and Cl−/HCO3− exchange in apical plasma membranes. J. Gen. Physiol. 80: 683–711, 1982.
 146. Friedman, P. A., J. F. Figuerrodo, J. F. Maack, and E. E. Windhager. Sodium‐calcium interactions in the renal proximal convoluted tubule of the rabbit. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F558–F568, 1981.
 147. Frohnert, P. P., B. Hohmann, R. Zweibel, and K. Baumann. Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch. 315: 66–85, 1970.
 148. Fromter, E., and K. Gessner. Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflugers Arch. 351: 85–98, 1974.
 149. Fromter, E., and K. Gessner. Free‐flow potential profile along rat kidney proximal tubule. Pflugers Arch. 351: 69–83, 1974.
 150. Galla, J. H., and R. G. Luke. Volume expansion‐induced alterations in proximal tubule chloride gradient in the rat. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F473–F478, 1979.
 151. Garcia‐Austt, J., D. W. Good, M. B. Burg, and M. A. Knepper. Deoxycorticosterone‐stimulated bicarbonate secretion in rabbit cortical collecting ducts: effects of luminal chloride removal and in vivo loading. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F205–F212, 1985.
 152. Garg, L. C., M. A. Knepper, and M. B. Burg. Mineralocorticoid effects on Na‐K‐ATPase in individual nephron segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F536–F544, 1981.
 153. Garg, L. C., S. Mackie, and C. C. Tisher. Effect of low potassium diet on Na‐K‐ATPase in rat nephron segments. Pflugers Arch. 394: 113–117, 1982.
 154. Garg, L. C., and N. Narang. Renal adaptation to potassium in the adrenalectomized rabbit. Role of distal tubular sodiumpotassium adenosine triphosphatase. J. Clin. Invest. 76: 1065–1070, 1985.
 155. Garg, L. C., N. Narang, and C. S. Wingo. Glucocorticoid effects on Na‐K‐ATPase in rabbit nephron segments. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F487–F491, 1985.
 156. Garvin, J. L., M. B. Burg, and M. A. Knepper. NH3 and NH4+ transport by rabbit renal proximal straight tubules. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F232–F239, 1987.
 157. Giebisch, G., and R. Green. Anion‐driven fluid movements across proximal tubular epithelium. In: Water Transport Across Epithelia, 15th ed., edited by H. H. Ussing, N. Bindslev, N. A. Lassen, and O. Sten‐Knudsen. Copenhagen: Munksgaard, (Alfred Benzon Symposium), 1981, pp. 376–392.
 158. Giebisch, G., and B. M. Koeppen. Transport of sodium and potassium across the epithelium of the distal nephron. In Diuretics II: Chemistry, Pharmacology, and Clinical Applications, edited by J. B. Puschett and A. Greenberg. New York: Elsevier, 1987, pp. 121–130.
 159. Giggino, W. B. Functional heterogeneity in the early distal tubule of the Amphiuma kidney: evidence for two modes of Cl− and K+ transport across the basolateral cell membrane. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F430–F440, 1986.
 160. Gill, J. R., and A. G. T. Casper. Renal effects of adenosine 3′,5′‐cyclic monophosphate. Evidence for a role for adenosine 3′,5′‐cyclic monophosphate in the regulation of proximal tubular sodium reabsorption. J. Clin. Invest. 50: 1231–1240, 1971.
 161. Gluck, S., and Q. Al‐Awqati. An electrogenic proton translocating ATPase from bovine kidney medulla. J. Clin. Invest. 73: 1704–1710, 1984.
 162. Gluck, S., C. Cannon, and Q. Al‐Awqati. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci. USA 79: 4327–4331, 1982.
 163. Gonzalez, E., P. Carpi‐Medina, and G. Whittembury. Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F321–F330, 1982.
 164. Good, D. W. Effects of potassium on ammonia transport by medullary thick ascending limb of the rat. J. Clin. Invest. 80: 1358–1365, 1987.
 165. Good, D. W., and M. A. Knepper. Ammonia transport in the mammalian kidney. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F459–F471, 1985.
 166. Good, D. W., M. A. Knepper, and M. B. Burg. Ammonia and bicarbonate transport by the thick ascending limb of the rat. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F35–F44, 1984.
 167. Gottschalk, C. W. Osmotic concentration and dilution of the urine. Am. J. Med. 36: 670–685, 1964.
 168. Gottschalk, C. W., W. E. Lassiter, M. Mylle, K. J. Ullrich, B. Schmidt‐Nielsen, R. O'Dell, and G. Pehling. Micropuncture study of composition of loop of Henle fluid in desert rodents. Am. J. Physiol. 204: 532–535, 1963.
 169. Graber, M. L., H. H. Bengele, E. Mroz, C. Lechene, and E. A. Alexander. Acute metabolic acidosis augments collecting duct acidification in the rat. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F669–F676, 1981.
 170. Graber, M. L., H. H. Bengele, J. H. Schwartz, and E. A. Alexander. pH and pCO2 profiles of the rat inner medullary collecting duct. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F659–F668, 1981.
 171. Grantham, J. J., and M. B. Burg. Effect of vasopressin and cyclic AMP on permeability of isolated rabbit renal collecting tubules. Am. J. Physiol. 211: 255–259, 1965.
 172. Grantham, J. J., M. B. Burg, and J. Orloff. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J. Clin. Invest. 49: 1815–1826, 1970.
 173. Grantham, J. J., and J. Orloff. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3,5‐monophosphate, and theophylline. J. Clin. Invest. 47: 1154–1161, 1968.
 174. Green, R., and G. Giebisch. Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F167–F174, 1984.
 175. Greger, R. Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 390: 30–37, 1981.
 176. Greger, R. Coupled transport of Na+ and Cl− in the thick ascending limb of Henle's loop of rabbit nephrons. Scand. Audiol. [Suppl] 14: 1–15, 1981.
 177. Greger, R. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pflugers Arch. 390: 38–43, 1981.
 178. Greger, R., and E. Schlatter. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 392: 92–94, 1981.
 179. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch. 396: 325–334, 1983.
 180. Greger, R., and E. Schlatter. Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle's loop. Klin. Wochenschr. 61: 1019–1027, 1983.
 181. Greger, R., and H. Velazquez. The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism. Kidney Int. 31: 590–596, 1987.
 182. Grinstein, S., and W. Furuya. Characterization of the amiloride‐sensitive Na+ ‐H+ antiport of human neutrophils. Am. J. Physiol. 250 (Cell Physiol. 19): C283–C291, 1986.
 183. Grinstein, S., J. D. Goetz, and A. Rothstein. ≪MDSU≫ 22≪MDNM≫Na+ fluxes in thymic lymphocytes. I. Na+/Na+ and Na+/H+ exchange through an amiloride‐insensitive pathway. J. Gen. Physiol. 84: 565–584, 1984.
 184. Gross, J. B., M. Imai, and J. P. Kokko. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J. Clin. Invest. 55: 1284–1294, 1975.
 185. Gross, J. B., and J. P. Kokko. Effects of aldosterone and potassium‐sparing diuretics on electrical potential differences across the distal nephron. J. Clin. Invest. 59: 82–89, 1977.
 186. Grossman, E. B., and S. C. Hebert. Modulation of Na‐K‐ATPase activity in the mouse medullary thick ascending limb of Henle. Effects of mineralocorticoids and sodium. J. Clin. Invest. 81: 885–892, 1988.
 187. Guder, W., and B. D. Ross. Enzyme distribution along the nephron. Kidney Int. 26: 101–111, 1984.
 188. Haas, J. A., T. Berndt, and F. G. Knox. Nephron heterogeneity of phosphate reabsorption. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F287–F290, 1978.
 189. Hall, D. A., L. D. Barnes, and T. P. Dousa. Cyclic AMP in action of antidiuretic hormone: effects of exogenous cyclic AMP and its new analogue. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F368–F375, 1977.
 190. Hall, D. A., and D. M. Varney. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle's loop. J. Clin. Invest. 66: 792–802, 1980.
 191. Hamburger, R. J., N. L. Lawson, and V. W. Dennis. Effects of cyclic adenosine nucleotides on fluid absorption by different segments of proximal tubule. Am. J. Physiol. 227: 396–401, 1974.
 192. Hamburger, R. J., N. L. Lawson, and J. H. Schwartz. Response to parathyroid hormone in defined segments of proximal tubule. Am. J. Physiol. 230: 286–290, 1976.
 193. Hamm, L. L., J. P. Kokko, and H. R. Jacobson. Effect of luminal pH and HCO3− on phosphate reabsorption in the rabbit proximal convoluted tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F25–F34, 1984.
 194. Hamm, L. L., L. R. Pucacco, J. P. Kokko, and H. R. Jacobson. Hydrogen ion permeability of the rabbit proximal convoluted tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F3–F11, 1984.
 195. Hanley, M. J., and J. P. Kokko. Study of chloride transport across the rabbit cortical collecting tubule. J. Clin. Invest. 62: 39–44, 1978.
 196. Hanley, M. J., J. P. Kokko, J. B. Gross, and H. R. Jacobson. Electrophysiologic study of the cortical collecting tubule of the rabbit. Kidney Int. 17: 74–81, 1980.
 197. Hansen, G. P., C. C. Tisher, and R. R. Robinson. Response of the collecting duct to disturbances of acid‐base and potassium balance. Kidney Int. 17: 326–337, 1980.
 198. Haramati, A. Tubular capacity for phosphate reabsorption in superficial and deep nephrons. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F729–F733, 1985.
 199. Haramati, A., J. A. Haas, and F. G. Knox. Adaptation of deep and superficial nephrons to changes in dietary phosphate intake. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F265–F269, 1983.
 200. Harris, R. C., J. L. Seifter, and B. M. Brenner. Adaptation of Na+/H+ exchange in renal microvillus membrane vesicles: role of dietary protein and uninephrectomy. J. Clin. Invest. 74: 1979–1987, 1984.
 201. Hays, S., J. P. Kokko, and H. R. Jacobson. Hormonal regulation proton secretion in rabbit medullary collecting duct. J. Clin. Invest. 78: 1279–1286, 1986.
 202. Hayslett, J. P., E. L. Boulpaep, and G. Giebisch. Factors influencing transepithelial potential difference in mammalian distal tubule. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F182–F191, 1978.
 203. Hayslett, J. P., E. L. Boulpaep, M. Kashgarian, and G. Giebisch. Electrical characteristics of the mammalian distal tubule: comparison of Ling‐Gerard and macroelectrodes. Kidney Int. 12: 324–331, 1977.
 204. Hebert, S. C. Hypertonic cell volume regulation in mouse thick limbs. II. Na+ ‐H+ and Cl− ‐HCO3‐ exchange in basolateral membranes. Am. J. Physiol. 250: 1986.
 205. Hebert, S. C. Hypertonic cell volume regulation in mouse thick limbs. I. ADH dependency and nephron heterogeneity. Am. J. Physiol. 250: 1986.
 206. Hebert, S. C., and T. E. Andreoli. Water movement across the mammalian cortical collecting duct. Kidney Int. 22: 526–535, 1982.
 207. Hebert, S. C., and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. Determinants of the ADH‐mediated increases in transepithelial voltage and in net Cl absorption. J. Membr. Biol. 80: 221–233, 1984.
 208. Hebert, S. C., and T. E. Andreoli. Control of NaCl transport in the thick ascending limb. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F745–F756, 1984.
 209. Hebert, S. C., and T. E. Andreoli. Ionic conductance pathways in the mouse medullary thick ascending limb of Henle. The paracellular pathway and electrogenic Cl− absorption. J. Gen. Physiol. 87: 567–590, 1986.
 210. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs II. ADH enhancement of transcellular NaCl cotransport; origin of the transepithelial voltage. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F432–F442, 1981.
 211. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. I Functional nephron heterogeneity and ADH‐stimulated NaCl co‐transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F412–F431, 1981.
 212. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. III Modulation of the ADH effect by peritubular osmolality. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F443–F451, 1981.
 213. Hebert, S. C., P. A. Friedman, and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: I. ADH ADH increases transcellular conductive pathways. J. Membr. Biol. 80: 201–219, 1984.
 214. Hebert, S. C., W. B. Reeves, D. A. Molony, and T. E. Andreoli. The medullary thick limb: function and modulation of the single‐effect multiplier. Kidney Int. 31: 580–588, 1987.
 215. Hebert, S. C., J. A. Schafer, and T. E. Andreoli. The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron. J. Membr. Biol. 58: 1–19, 1981.
 216. Henderson, R. M., P. B. Bell, R. D. Cohen, C. Browning, and R. A. Iles. Measurement of intracellular pH with micro‐electrodes in rat kidney in vivo. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F203–F209, 1986.
 217. Higashihara, E., N. W. Carter, L. R. Pucacco, and J. P. Kokko. Aldosterone effects on papillary collecting duct pH profile of the rat. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F725–F731, 1984.
 218. Hoffmann, N., M. Thees, and R. Kinne. Phosphate transport by isolated renal brush border vesicles. Pflugers Arch. 362: 147–156, 1976.
 219. Hogg, R. J., and J. P. Kokko. Renal countercurrent multiplication system. Rev. Physiol. Biochem. Pharmacol. 86: 95–135, 1979.
 220. Holmberg, C., J. P. Kokko, and H. R. Jacobson. Determination of chloride and bicarbonate permeabilities in proximal convoluted tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F386–F394, 1981.
 221. Holt, W. F., and C. Lechene. ADH‐PGE2 interactions in cortical collecting tubule. I. Depression of sodium transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F452–F460, 1981.
 222. Horster, M. F. Loop of Henle functional differentiation in vitro perfusion of the isolated thick ascending segment. Pflugers Arch. 378: 15–24, 1978.
 223. Horster, M. F., and H. Zink. Functional differentiation of the medullary collecting tubule: influence of vasopressin. Kidney Int. 22: 360–365, 1982.
 224. Howlin, K. J., R. J. Alpern, C. A. Berry, and F. C. Rector. Evidence for electroneutral sodium chloride transport in rat proximal convoluted tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F644–F648, 1986.
 225. Humbert, F., C. Pricam, A. Perrelet, and L. Orci. Specific plasma membrane differentiations in the cells of the kidney collecting tubule. J. Ultrastruct. Res. 52: 13–20, 1975.
 226. Humbert, F., C. Pricam, A. Perrelet, and L. Orci. Freeze‐fracture differences between plasma membranes of descending and ascending branches of the rat Henle's thin loop. Lab. Invest. 33: 407–411, 1975.
 227. Hunter, M., A. G. Lopes, E. L. Boulpaep, and G. Giebisch. Single channel recordings of calcium‐activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc. Natl. Acad. Sci. USA 81: 4237–4239, 1984.
 228. Hunter, M., A. G. Lopes, E. L. Boulpaep, and G. Giebisch. Regulation of single potassium ion channels from apical membrane of rabbit collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F725–F733, 1986.
 229. Husted, R. F., A. L. Mueller, R. G. Kessel, and P. R. Steinmetz. Surface characteristics of carbonic‐anhydraserich cells in turtle urinary bladder. Kidney Int. 19: 491–502, 1981.
 230. Iino, Y., and M. B. Burg. Effect of parathyroid hormone on bicarbonate absorption by proximal tubules in vitro. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F387–F391, 1979.
 231. Iino, Y., J. L. Troy, and B. M. Brenner. Effects of catecholamines on electrolyte transport in cortical collecting tubule. J. Membr. Biol. 61: 67–73, 1981.
 232. Imai, M. Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F201–F209, 1977.
 233. Imai, M. Effect of bumetanide and furosemide on the thick ascending limb of Henle's loop of rabbits and rats perfused in vitro. Eur. J. Pharmacol. 41: 409–416, 1977.
 234. Imai, M. Calcium transport across the rabbit thick ascending limb of Henle's loop perfused in vitro. Pflugers Arch. 374: 255–263, 1978.
 235. Imai, M. The connecting tubule: a functional subdivision of the rabbit distal nephron segments. Kidney Int. 15: 346–356, 1979.
 236. Imai, M. Effects of parathyroid hormone and N6,O2‐dibutyryl cyclic AMP on calcium transport across the rabbit distal nephron segments perfused in vitro. Plfugers Arch. 390: 145–151, 1981.
 237. Imai, M. Functional heterogeneity of the descending limbs of Henle's loop. II. Interspecies difference among rabbits, rats, and hamsters. Pflugers Arch. 42: 313–401, 1984.
 238. Imai, M., M. Hayashi, and M. Arkai. Functional heterogeneity of the descending limbs of Henle's loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch. 402: 385–392, 1984.
 239. Imai, M., and J. P. Kokko. Transtubular oncotic pressure gradients and net fluid transport in isolated proximal tubules. Kidney Int. 6: 138–145, 1974.
 240. Imai, M., and J. P. Kokko. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J. Clin. Invest. 53: 393–402, 1974.
 241. Imai, M., and J. P. Kokko. Mechanism of sodium and chloride transport in the thin ascending limb of Henle. J. Clin. Invest. 58: 1054–1060, 1976.
 242. Imai, M., and E. Kusano. Effects of vasopressin on the thin ascending limb of Henle's loop of hamsters. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F167–F172, 1982.
 243. Imai, M., and R. Nakamura. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int. 22: 465–472, 1982.
 244. Imai, M., J. Taniguchi, and K. Tabei. Function of thin loops of Henle. Kidney Int. 31: 565–579, 1987.
 245. Imbert, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule. Pflugers Arch. 357: 173–186, 1975.
 246. Imbert, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflugers Arch. 354: 213–228, 1975.
 247. Imbert‐Teboul, M., D. Chabardes, A. Clique, M. Montegut, and F. Morel. Ontogenesis of hormone‐dependent adenylate cyclase in isolated rat nephron segments. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F316–F325, 1984.
 248. Imbert‐Teboul, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. Vasopressin‐dependent adenylate cyclase activities in the rat kidney medulla: evidence for two separate sites of action. Endocrinology 102: 1254–1261, 1978.
 249. Irish, J. M. III Secretion of prostaglandin E2 by rabbit proximal tubules. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F268–F273, 1979.
 250. Jacobsen, N. O., and F. Jorgensen. Further enzyme histochemical observations on the segmentation of the proximal tubules in the kidney of the male rat. Histochemie 34: 11, 1973.
 251. Jacobsen, N. O., and F. Jorgensen. Ultrastructural observations on the pars descendens of the proximal tubule in the kidney of the male rat. Z. Zellforsch. 136: 479, 1973.
 252. Jacobson, H. R. Characteristics of volume reabsorption in rabbit superficial and juxtamedullary proximal convoluted tubules. J. Clin. Invest. 63: 410–418, 1979.
 253. Jacobson, H. R. Functional segmentation of the mammalian nephron. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F203–F218, 1981.
 254. Jacobson, H. R. Effects of CO2 and acetazolamide on bicarbonate and fluid transport in rabbit proximal tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F54–F62, 1981.
 255. Jacobson, H. R. Transport characteristics of in vitro perfused proximal convoluted tubules. Kidney Int. 22: 425–433, 1982.
 256. Jacobson, H. R., and J. P. Kokko. Intrinsic differences in various segments of the proximal tubule. J. Clin. Invest. 57: 818–825, 1976.
 257. Jacobson, H. R., and J. P. Kokko. Intrarenal heterogeneity. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, pp. 531–580.
 258. Jamison, R. L. Micropuncture study of segments of thin loop of Henle in the rat. Am. J. Physiol. 215: 236–242, 1968.
 259. Jamison, R. L. Micropuncture study of superficial and juxtamedullary nephrons in the rat. Am. J. Physiol. 218: 46–55, 1970.
 260. Jamison, R. L. Intrarenal heterogeneity. The case for two functionally dissimilar populations of nephrons in the mammalian kidney. Am. J. Med. 54: 281–289, 1973.
 261. Jamison, R. L., J. Buerkert, and F. B. Lacy. A micropuncture study of Henle's thin loop in Brattleboro rats. Am. J. Physiol. 224: 180–185, 1973.
 262. Jamison, R. L., and D. A. Hall. Collecting duct function and sodium balance. Annu. Rev. Med. 33: 241–254, 1982.
 263. Jamison, R. L., and W. Kriz (Eds). Urinary Concentrating Mechanism: Structure and Function, New York: Oxford University Press, 1982.
 264. Jamison, R. L., and R. H. Maffly. The urinary concentrating mechanism. N. Engl. J. Med. 295: 1059–1067, 1988.
 265. Jamison, R. L., and C. R. Robertson. Recent formulations of the urinary concentrating mechanism: A status report. Kidney Int. 16: 537–545, 1979.
 266. Jamison, R. L., N. Roinel, and C. de Rouffignac. Urinary concentrating mechanism in the desert rodent Psammomys obesus. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F448–F453, 1979.
 267. Jamison, R. L., J. Work, and J. A. Schafer. New pathways for potassium transport in the kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F297–F312, 1982.
 268. Johnston, J. R., B. M. Brenner, and S. C. Hebert. Uninephrectomy and dietary protein affect fluid absorption in rabbit proximal straight tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F222–F233, 1987.
 269. Jones, S. M., and J. P. Hayslett. Demonstration of active potassium secretion in the late distal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F83–F88, 1983.
 270. Kahn, A. M., G. M. Dolson, M. K. Hise, S. C. Bennett, and E. J. Weinman. Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F212–F218, 1985.
 271. Kaissling, B. Structural aspects of adaptive changes in renal electrolyte excretion. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F211–F226, 1982.
 272. Kaissling, B. Structural adaptation to altered electrolyte metabolism by cortical distal segments. Federation Proc. 44: 2710–2716, 1985.
 273. Kaissling, B., S. Bachmann, and W. Kriz. Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F374–F381, 1985.
 274. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 275. Kaissling, B., and M. Lehir. Distal tubular segments of the rabbit kidney after adaptation to altered Na− and K‐intake. I. Structural changes. Cell Tissue Res. 224: 469–492, 1982.
 276. Kaissling, B., S. Peter, and W. Kriz. The transition of the thick ascending limb of Henle's loop into the distal convoluted tubule in the nephron of the rat kidney. Cell Tissue Res. 182: 111–118, 1977.
 277. Katz, A. I., A. Doucet, and F. Morel. Na‐K‐ATPase activity along the rabbit, rat, and mouse nephron. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F114–F120, 1979.
 278. Kaufman, J. S., and R. J. Hamburger. Passive potassium transport in the proximal convoluted tubule. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F228–F232, 1985.
 279. Kawamura, S., M. Imai, D. W. Seldin, and J. P. Kokko. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules. J. Clin. Invest. 55: 1269–1277, 1975.
 280. Kawamura, S., and J. P. Kokko. Urea secretion by the straight segment of the proximal tubule. J. Clin. Invest. 58: 604–612, 1976.
 281. Khuri, R. N., S. K. Agulian, and K. Kalloghlian. Intracellular potassium in cells of the distal tubule. Pflugers Arch. 335: 297–308, 1972.
 282. Kim, J. K., S. N. Summer, A. E. Erickson, and R. W. Schrier. Role of arginine vasopressin in medullary thick ascending limb on maximal urinary concentrating ability. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F266–F270, 1986.
 283. Kimmel, P. L., and S. Goldfarb. Effects of isoproterenol on potassium secretion by the cortical collecting tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F804–F810, 1984.
 284. Kinne, R., H. Murer, E. Kinne‐Saffran, M. Thees, and G. Sachs. Sugar transport by renal plasma membrane vesicles. J. Membr. Biol. 21: 375–395, 1975.
 285. Kinsella, J. L., T. Cudjik, and B. Sacktor. Na+/H+ exchange in isolated renal brush border membrane vesicles in response to metabolic acidosis: kinetic effects. J. Biol. Chem. 259: 13224–13227, 1984.
 286. Kinsella, J. L., J. M. Freiberg, and B. Sacktor. Glucocorticoid activation of Na+/H+ exchange in renal brush border vesicles: kinetic effects. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F233–F239, 1985.
 287. Kirk, K. L., P. D. Bell, D. W. Barfuss, and M. Ribadeneira. Direct visualization of the isolated and perfused macula densa. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F890–F894, 1985.
 288. Knepper, M. A. Urea transport in isolated thick ascending limbs and collecting ducts from rats. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F634–F639, 1983.
 289. Knepper, M. A. Urea transport in nephron segments from medullary rays of rabbits. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F622–F627, 1983.
 290. Knepper, M. A., and M. B. Burg. Organization of nephron function. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F579–F589, 1983.
 291. Knepper, M. A., R. A. Danielson, G. M. Saidel, and R. S. Post. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 12: 313–323, 1977.
 292. Knepper, M. A., D. W. Good, and M. B. Burg. Mechanism of ammonia secretion by cortical collecting ducts of rabbits. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F729–F738, 1984.
 293. Knepper, M. A., D. W. Good, and M. B. Burg. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F870–F877, 1985.
 294. Knepper, M. A., and F. Roch‐Ramel. Pathways of urea transport in the mammalian kidney. Kidney Int. 31: 629–633, 1987.
 295. Knepper, M. A., and J. M. Sands. Urea permeability of inner medullary collecting duct and papillary surface epithelium. Kidney Int. 29: 418, 1986.
 296. Knepper, M. A., and F. Roch‐Ramel. Pathways of urea transport in the mammalian kidney. Kidney Int. 31: 629–633, 1987.
 297. Knepper, M. A., and J. L. Stephenson. Urinary concentrating and diluting processes. In: Physiology of Membrane Disorders (2nd ed.), edited by T. E. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schultz. New York: Plenum, 1986, pp. 713–726.
 298. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: inner stripe. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F500–F506, 1985.
 299. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: outer stripe. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F70–F76, 1986.
 300. Koeppen, B. M., B. A. Biagi, and G. Giebisch. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F35–F47, 1983.
 301. Koeppen, B. M., and G. Giebisch. Electrophysiology of memmalian renal tubules: inferences from intracellular microelectrode studies. In: Annu. Rev. Physiol, edited by R. M. Berne and J. F. Hoffman. Palo Alto, CA: Annual Reviews, Inc., 1983, pp. 497–517.
 302. Koeppen, B. M., and S. I. Helman. Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F521–F531, 1982.
 303. Kokko, J. P. Sodium chloride and water transport in the descending limb of Henle. J. Clin. Invest. 49: 1838–1846, 1970.
 304. Kokko, J. P. Urea transport in the proximal tubule and the descending limb of Henle. J. Clin. Invest. 51: 1999–2008, 1972.
 305. Kokko, J. P. Transport characteristics of the thin limbs of Henle. Kidney Int. 22: 449–453, 1982.
 306. Kokko, J. P., and F. C. Rector. Flow dependence of transtubular potential difference in isolated perfused segments of rabbit proximal convoluted tubule. J. Clin. Invest. 50: 2745–2750, 1971.
 307. Kokko, J. P., and F. C. Rector. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 2: 214–223, 1972.
 308. Koseki, C., Y. Hayashi, S. Torikai, M. Furuya, N. Ohnuma, and M. Imai. Localization of binding sites for α‐rat atrial natriuretic polypeptide in rat kidney. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F210–F216, 1986.
 309. Kriz, W. Organization of structures within the renal medulla. In: Urea and the Kidney, 1968, p. 342–357.
 310. Kriz, W. Recent progress in the understanding of renal medullary organization. Colloque Européen de Physiologie Rénale 30: 61–68, 1974.
 311. Kriz, W. Differences in the cytological organization of the epithelia of the loops of Henle. Curr. Prob. Clin. Biol. 6: 320–327, 1976.
 312. Kriz, W. Structural organization of the renal medulla. Comparative and functional aspects. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 9): R3–R16, 1981.
 313. Kriz, W., and L. Bankir. A standard nomenclature for the structures of the kidney. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F1–F8, 1988.
 314. Kriz, W., and B. Kaissling. Morphological characterization of the cells in Henle's loop and the distal tubule. In: New Aspects of Renal Function, edited by H. G. Vogel and K. J. Ullrich. Amsterdam: Excerpta Medica, 1978, pp. 67–79.
 315. Kriz, W., B. Kaissling, and M. Pazalla. Morphological characterization of the cells in Henle's loop and the distal tubule. In: New Aspects of Renal Function, edited by H. G. Vogel and K. J. Ullrich. Amsterdam: Excerpta Medica, 1978, pp. 67–78.
 316. Kriz, W., B. Kaissling, and M. Psczolla. Morphological characterization of the cells in Henle's loop and distal tubule. In: New Aspects of Renal Function, edited by H. G. Vogel and K. Ullrich. Amsterdam: Excerpta Medica, 1978, pp. 67–78.
 317. Kriz, W., and A. F. Lever. Renal countercurrent mechanisms: structure and function. Am. Heart J. 78: 101–118, 1969.
 318. Kriz, W., A. Schiller, B. Kaissling, and R. Taugner. Comparative and functional aspects of thin loop limb ultra‐structure. In: Functional Ultrastructure of the Kidney, edited by A. B. Maunsbach, T. S. Olsen, and E. I. Christensen. London: Academic Press, 1980, pp. 241–25.
 319. Kriz, W., J. Schnermann, and H. Koepsell. The position of short and long loops of Henle in the rat kidney. Z. Anat. Entwicklungsgesch. 138: 301–319, 1972.
 320. Kusano, E., N. Murayama, J. L. Werness, S. Christensen, S. Homma, A. N. K. Yusufi, and T. P. Dousa. Effects of calcium on the vasopressin‐sensitive cAMP metabolism in medullary tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F956–F966, 1985.
 321. Lameire, N. H., M. D. Lifschitz, and J. H. Stein. Heterogeneity of nephron function. In: Annu. Rev. Physiol. Palo Alto: Annual Reviews, Inc., 1977, p. 159–184.
 322. Lapointe, J.‐Y., R. Laprade, and J. Cardinal. Transepithelial and cell membrane electrical resistances of the rabbit proximal convoluted tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F637–F649, 1984.
 323. Larsson, L., W. L. Clapp, III, H. Park, J. K. Cannon, and C. C. Tisher. Ultrastructural localization of acidic compartments in cells of isolated rabbit PCT. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F95–F103, 1987.
 324. Laski, M. E. Total CO2 flux in isolated collecting tubules during carbonic anhydrase inhibition. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F322–F330, 1987.
 325. Laski, M. E., and N. A. Kurtzman. Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J. Clin. Invest. 72: 2050–2059, 1983.
 326. Lefurgey, A., and C. C. Tisher. Morphology of rabbit collecting duct. Am. J. Anat. 155: 111–124, 1979.
 327. Lehir, M., B. Kaissling, and U. C. Dubach. Distal tubular segments of the rabbit kidney after adaptation to altered Na‐and K‐intake. II. Changes in Na‐K‐ATPase activity. Cell Tissue Res. 224: 493–504, 1982.
 328. Lehir, M., B. Kaissling, B. M. Koeppen, and J. B. Wade. Binding of peanut lectin to specific epithelial cell types in kidney. Am. J. Physiol. 242 (Cell Physiol. 11): C117–C120, 1982.
 329. Lemley, K. V., and W. Kriz. Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int. 31: 538–548, 1987.
 330. Levine, D. Z. An in vivo microperfusion study of distal tubule bicarbonate reabsorption in normal and ammonium chloride rats. J. Clin. Invest. 75: 588–595, 1985.
 331. Linshaw, M. A., C. A. Bauman, and L. W. Welling. Use of trypan blue for identifying early proximal convoluted tubules. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F214–F219, 1986.
 332. Linshaw, M. A., and L. W. Welling. Basolateral membrane properties in proximal convoluted tubules of newborn rabbit. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F172–F177, 1983.
 333. Linshaw, M. A., L. W. Welling, and C. A. Bauman. Basolateral membrane properties of juxtamedullary proximal tubule in newborn rabbit. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F208–F213, 1986.
 334. Liu, F.‐Y., and M. G. Cogan. Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F816–F821, 1984.
 335. Liu, F.‐Y., and M. G. Cogan. Axial heterogeneity of bicarbonate, chloride and water transport in the rat proximal convoluted tubule. Effects of change in luminal flow rate and of alkalemia. J. Clin. Invest. 78: 1547–1557, 1986.
 336. Liu, F.‐Y., and M. G. Cogan. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J. Clin. Invest. 80: 272–275, 1987.
 337. Liu, F.‐Y., M. G. Cogan, and F. C. Rector. Axial heterogeneity in the rat proximal convoluted tubule. II. Osmolality and osmotic water permeability. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F822–F826, 1984.
 338. Lombard, W. E., J. P. Kokko, and H. R. Jacobson. Examination of ion transport in the in vitro perfused rabbit distal convoluted tubule (DCT). Proc. 8th Int. Cong. Nephrol., Athens, 35A, 1981.
 339. Lombard, W. E., J. P. Kokko, and H. R. Jacobson. Bicarbonate transport in cortical and outer medullary collecting tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F289–F296, 1983.
 340. Lonnerholm, G., and Y. Ridderstrale. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 17: 162–174, 1980.
 341. Lonnerholm, G., and P. J. Wistrand. Carbonic anhydrase in the human kidney: a histochemical and immunocytochemical study. Kidney Int. 25: 886–898, 1984.
 342. Lutz, M. D., J. Cardinal, and M. B. Burg. Electrical resistance of renal proximal tubule perfused in vitro. Am. J. Physiol. 225: 729–734, 1973.
 343. Macknight, A. D. C., J. P. Pilgrim, and B. A. Robinson. The regulation of cellular volume in liver slices. J. Physiol. 238: 279–294, 1974.
 344. Maddox, D. A., and F. J. Gennari. Load dependence of proximal tubular bicarbonate reabsorption in chronic metabolic alkalosis in the rat. J. Clin. Invest. 77: 709–716, 1986.
 345. Maddox, D. A., and J. F. Gennari. The early proximal tubule: a high‐capacity delivery‐responsive reabsorptive site. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F573–F584, 1987.
 346. Maddox, D. A., J. F. Horn, F. C. Famiano, and F. J. Gennari. Load dependence of proximal tubular fluid and bicarbonate reabsorption in the kindey of the Munich‐Wistar rat. J. Clin. Invest. 77: 1639–1649, 1986.
 347. Madsen, K. M., W. L. Clapp, and C. C. Tisher. Intercalated cells are present in rat inner medullary collecting duct. Clin. Res. 33: 492A, 1985.
 348. Madsen, K. M., and C. C. Tisher. Cellular response to acute respiratory acidosis in rat medullary collecting duct. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F670–F679, 1983.
 349. Madsen, K. M., and C. C. Tisher. Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab. Invest. 51: 268–276, 1984.
 350. Madsen, K. M., and C. C. Tisher. Structure‐function relationships in H+‐secreting epithelia. Federation Proc. 44: 2704–2709, 1985.
 351. Madsen, K. M., and C. C. Tisher. Structure‐functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1–F15, 1986.
 352. Malnic, G., R. M. Klose, and G. Giebisch. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am. J. Physiol. 211: 548–559, 1966.
 353. Marsh, D. J. Solute and water flows in thin limbs of Henle's loop in the hamster kidney. Am. J. Physiol. 218: 824–831, 1970.
 354. Marsh, D. J., and S. P. Azen. Mechanism of NaCl reabsorption by hamster thin ascending limbs of Henle's loop. Am. J. Physiol. 228: 71–79, 1975.
 355. Marsh, D. J., and C. M. Martin. Origin of electrical PD's in hamster thin ascending limbs of Henle's loop. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F348–F357, 1977.
 356. Marsh, D. J., and S. Solomon. Analysis of electrolyte movement in thin Henle's loops of hamster papilla. Am. J. Physiol. 208: 1119–1128, 1965.
 357. Marver, D. Evidence for corticosteroid action along the nephron. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F111–F123, 1984.
 358. Maunsbach, A. B. Observations on the segmentation of the proximal tubule in the rat kidney: comparison of results from phase contrast, fluorescence and electron microscopy. J. Vl‐trastruct. Res. 16: 239–258, 1966.
 359. McKeown, J. W., P. C. Brazy, and V. W. Dennis. Intrarenal heterogeneity for fluid, phosphate, and glucose absorption in the rabbit. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F312–F318, 1979.
 360. McKinney, T. D. Heterogeneity of organic base secretion by proximal tubules. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F404–F407, 1982.
 361. McKinney, T. D., and M. B. Burg. Bicarbonate and fluid absorption by renal proximal straight tubules. Kidney Int. 12: 1–8, 1977.
 362. McKinney, T. D., and M. B. Burg. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J. Clin. Invest. 60: 766–768, 1977.
 363. McKinney, T. D., and M. B. Burg. Bicarbonate absorption by rabbit cortical collecting tubules in vitro. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F141–F145, 1978.
 364. McKinney, T. D., and M. B. Burg. Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J. Clin. Invest. 61: 1421–1427, 1978.
 365. McKinney, T. D., P. Myers, and K. V., Jr. Speeg. Cimetidine secretion by rabbit renal tubules in vitro. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F69–F76, 1981.
 366. McKinney, T. D., and P. Myers. Bicarbonate transport by proximal tubules: effect of parathyroid hormone and dibutyryl cyclic AMP. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F166–F174, 1980.
 367. McKinney, T. D., and K. V., Jr. Speeg. Cimetidine and procainamide secretion by proximal tubules in vitro. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F672–F680, 1982.
 368. Myers, C. H., R. E. Bulger, C. C. Tisher, and B. F. Trump. Human renal ultrastructure. IV. Collecting duct of healthy individuals. Lab. Invest. 15: 1921–1950, 1966.
 369. Miwa, T., and M. Imai. Flow‐dependent water permeability of the rabbit descending limb of Henle's loop. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F743–F754, 1983.
 370. Molony, D. A., W. B. Reeves, S. C. Hebert, and T. E. Andreoli. ADH increases apical Na,K,2Cl entry in mouse medullary thick ascending limbs of Henle. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F177–F187, 1987.
 371. Moore, L. C., and D. J. Marsh. How descending limb of Henle's loop permeability affects hypertonic urine formation. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F57–F71, 1980.
 372. Morel, F. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 9): F159–F164, 1981.
 373. Morel, F., D. Chabardes, and M. Imbert. Functional segmentation of the rabbit distal tubule by microdetermination of hormone‐dependent adenylate cyclase activity. Kidney Int. 9: 264–277, 1976.
 374. Morel, F., D. Chabardes, and M. Imbert‐Teboul. Distribution of adenylate cyclase activity in the nephron. In: Current Topics in Membranes and Transport, edited by F. Bronner and A. Kleinzeller. New York: Academic, 1980, pp. 297–323.
 375. Morgan, T. Permeability of the thin limbs of Henle. In: Proc. 5th International Congress of Nephrology, Mexico, 1972, 2nd ed., edited by H. Villarareal and S. Kager. Basel: Karger, 1974, p. 105–111.
 376. Morgan, T., B. Rayson, and D. Haberle. The effects of sodium chloride, urea and mannitol on the permeability in vitro of rat papillary collecting ducts to THO, 14C‐urea and 22Na. Clin. Exp. Pharm. Physiol. 4: 565–574, 1977.
 377. Morgan, T., F. Sakai, and R. W. Berliner. In vitro permeability of medullary collecting ducts to water and urea. Am. J. Physiol. 214: 574–581, 1968.
 378. Mujais, S. K., M. A. Chekal, W. J. Jones, J. P. Hayslett, and A. I. Katz. Modulation of renal sodium‐potassium‐adenosine triphosphatase by aldosterone. J. Clin. Invest. 76: 170–176, 1986.
 379. Muto, S., G. Giebisch, and S. Sansom. Effects of adrenalectomy on CCD: evidence for differential response of two cell types. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F742–F752, 1987.
 380. Muto, S., K. Yasoshima, K. Yoshitomi, M. Imai, and Y. Asano. Electrophysiological identification of α‐ and β‐intercalated cells and their distribution along the rabbit distal nephron segments. J. Clin. Invest. 86: 1829–1839, 1990.
 381. Nadler, S. P., S. C. Hebert, and B. M. Brenner. PGE2, forskolin and cholera toxin interactions in rabbit cortical collecting tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F127–F135, 1986.
 382. Nagle, R. B., E. M. Altschuler, D. C. Dobyan, S. Dong, and R. E. Bulger. The ultrastructure of the thin limbs of Henle in kidneys of the heteromyid (Perognathus penicillatus). Am. J. Anat. 151: 34–47, 1981.
 383. Ng, R. C. K., R. A. Peraino, and W. N. Suki. Divalent cation transport in isolated tubules. Kidney Int. 22: 492–497, 1982.
 384. Ng, R. C. K., D. Rouse, and W. N. Suki. Calcium transport in the rabbit superficial proximal convoluted tubule. J. Clin. Invest. 74: 834–842, 1984.
 385. Nonoguchi, H., M. A. Knepper, and V. C. Manganiello. Effects of atrial natriuretic factor on cyclic guanosine monophosphate and cyclic adenosine monophosphate accumulation in microdissected nephron segments from rats. J. Clin. Invest. 79: 500–507, 1987.
 386. O'Neil, R. G. Voltage‐dependent interaction of barium and cesium with the potassium conductances of the cortical collecting duct apical cell membrane. J. Membr. Biol. 74: 165–173, 1983.
 387. O'Neil, R. G., and W. P. Dubinsky. Micromethodology for measuring ATPase activity in renal tubules: mineralocorticoid influence. Am. J. Physiol. 247 (Cell Physiol. 16): C314–C320, 1984.
 388. O'Neil, R. G., and R. A. Hayhurst. Functional differentiation of cell types of cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F449–F453, 1985.
 389. O'Neil, R. G., and R. A. Hayhurst. Sodium‐dependent modulation of the renal Na‐K‐ATPase: influence of mineralocorticoids on the cortical collecting duct. J. Membr. Biol. 85: 169–179, 1985.
 390. O'Neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F544–F558, 1977.
 391. O'Neil, R. G., and S. Sansom. Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrodes. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F14–F24, 1984.
 392. O'Neil, R. G., and S. Sansom. Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J. Membr. Biol. 82: 281–295, 1984.
 393. Oliver, R. E., and D. R. Roy, and R. L. Jamison. Urinary concentration in the papillary collecting duct of the rat. Role of the ureter. J. Clin. Invest. 69: 157–164, 1982.
 394. Omata, K., O. A. Carretero, A. G. Scicli, and B. A. Jackson. Localization of active and inactive kallikrein (kinin‐ogenase activity) in the microdissected rabbit nephron. Kidney Int. 22: 602–607, 1982.
 395. Palmer, L. G., and G. Frindt. Amiloride‐sensitive Na channels from the apical membrane of the rat cortical collecting duct. Proc. Natl. Acad. Sci. USA 83: 2767–2770, 1986.
 396. Pennell, J. P., F. B. Lacy, and R. L. Jamison. An in vivo study of the concentrating process in the descending limb of Henle's loop. Kidney Int. 5: 337–347, 1974.
 397. Peter, K. Untersuchungen uber Bau und Entwickelung der Niere. Jena: Gustav Fisher 1–358, 1909.
 398. Potter, D. M., and J. A. L. Arruda. Specialized function of turtle bladder cells: selective inhibition of H+ secretion by lectins. Kidney Int. 25: 281, 1984.
 399. Preisig, P. A., and C. A. Berry. Evidence for transcellular osmotic water flow in rat proximal tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F124–F131, 1985.
 400. Proud, D., M. A. Knepper, and J. J. Pisano. Distribution of immunoreactive kallikrein along the rat nephron. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F510–F515, 1983.
 401. Quamme, G. A., and C. M. Smith. Magnesium transport in the proximal straight tubule of the rabbit. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F544–F550, 1984.
 402. Rastegar, A., D. Biemesderfer, M. Kashgarian, and J. P. Hayslett. Changes in membrane surfaces of collecting duct cells in potassium adaptation. Kidney Int. 18: 293–301, 1980.
 403. Raymond, K. H., and T. D. McKinney. Effect of potassium depletion (KD) on water transport in outer medullary (OOMCT) and inner (IOMCT) outer medullary collecting tubules. Clin. Res. 34: 606A, 1986.
 404. Rector, F. C. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F461–F471, 1983.
 405. Reif, M. C., S. L. Troutman, and J. A. Schafer. Sustained response to vasopressin in isolated rat cortical collecting tubule. Kidney Int. 26: 725–732, 1984.
 406. Reif, M. C., S. L. Troutman, and J. A. Schafer. Sodium transport by rat cortical collecting tubule. Effects of vasopressin and desoxycorticosterone. J. Clin. Invest. 77: 1291–1298, 1986.
 407. Richardson, R. M. A., and R. T. Kunau. Bicarbonate reabsorption in the papillary collecting duct: effect of acetazolamide. Am. J. Physiol. 243: (Renal Fluid Electrolyte Physiol. 12): F74–F80, 1982.
 408. Rocha, A. S., and J. P. Kokko. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J. Clin. Invest. 52: 612–623, 1973.
 409. Rocha, A. S., and J. P. Kokko. Membrane characteristics regulating potassium transport out of the isolated perfused descending limb of Henle. Kidney Int. 4: 326–330, 1973.
 410. Rocha, A. S., and J. P. Kokko. Permeability of medullary nephron segments to urea and water: effect of vasopressin. Kidney Int. 6: 379–387, 1974.
 411. Rocha, A. S., and L. H. Kudo. Water, urea, sodium, chloride, and potassium transport in the in vitro perfused papillary collecting duct. Kidney Int. 22: 485–491, 1982.
 412. Rocha, A. S., J. B. Magaldi, and J. P. Kokko. Calcium and phosphate transport in isolated segments of rabbit Henle's loop. J. Clin. Invest. 59: 975–983, 1977.
 413. Roesinger, B., A. Schiller, and R. Taugner. A freeze‐fracture study of tight junctions in the pars convoluta and pars recta of the renal proximal tubule. Cell Tissue Res. 186: 121–133, 1978.
 414. Rosen, S. Localization of carbonic anhydrase activity in the vertebrate nephron. Histochem. J. 4: 35–48, 1972.
 415. Rouse, D., R. C. K. Ny, and W. N. Suki. Calcium transport in the pars recta and thin descending limb of Henle of rabbit perfused in vitro. J. Clin. Invest. 65: 37–42, 1980.
 416. Rennick, B. R. Renal tubule transport of organic cations. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F83–F89, 1981.
 417. Sakin, H., and L. G. Palmer. Basolateral potassium channels in renal proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F476–F487, 1987.
 418. Sands, J. M., and M. A. Knepper. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J. Clin. Invest. 79: 138–147, 1987.
 419. Sands, J. M., H. Nonoguchi, and M. A. Knepper. Effects of vasopressin and atrial natriuretic factor on osmotic water permeability and urea permeability of rat inner medullary collecting duct segments. Kidney Int. 31: 450, 1987 (Abstr.).
 420. Sands, J. M., H. Nonoguchi, and M. A. Knepper. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F823–F832, 1987.
 421. Sansom, S., S. Muto, and G. Giebisch. Na‐dependent effects of DOCA on cellular transport properties of CCDs from ADX rabbits. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F753–F759, 1987.
 422. Sansom, S., and R. G. O'Neil. Mineralocorticoid regulation of apical cell membrane Na and K transport of the cortical collecting duct. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F858–F868, 1985.
 423. Sasaki, S., and C. A. Berry. Mechanisms of bicarbonate exit across basolateral membrane of the rabbit proximal convoluted tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F889–F896, 1984.
 424. Sasaki, S., C. A. Berry, and F. C. Rector. Effect of potassium concentration on bicarbonate reabsorption in the rabbit proximal convoluted tubule. Am. J. Physiol. 224 (Renal Fluid Electrolyte Physiol. 13): F122–F128, 1983.
 425. Sasaki, S., and M. Imai. Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat, and rabbit kidneys. Pflugers Arch. 383: 215–221, 1980.
 426. Sasaki, S., T. Shiigai, N. Yoshiyama, and J. Takeuchi. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F11–F18, 1987.
 427. Sasaki, Y., T. Takahashi, and N. Suwa. Quantitative analysis of the inner medulla of rabbit kidney. Tohoku. J. Exp. Med. 98: 21–32, 1969.
 428. Sato, A., and S. S. Spicer. Cell specialization in collecting tubules of the Guinea pig kidney: carbonic anhydrase activity and glycosaminoglycan production in different cells. Anat. Rec. 202: 431–443, 1982.
 429. Schafer, J. A. Mechanisms coupling the absorption of solutes and water in the proximal nephron. Kidney Int. 25: 708–716, 1984.
 430. Schafer, J. A., and T. E. Andreoli. The effect of antidiuretic hormone on solute flows in mammalian collecting tubules. J. Clin. Invest. 51: 1279–1286, 1972.
 431. Schafer, J. A., and D. W. Barfuss. Membrane mechanisms for transepithelial amono acid absorption and secretion. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F335–F346, 1980.
 432. Schafer, J. A., and D. W. Barfuss. The study of pars recta function by the perfusion of isolated tubule segments. Kidney Int. 22: 434–448. 1982.
 433. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. A component of fluid absorption linked to passive ion flows in the superficial pars recta. J. Gen. Physiol. 66: 445–471, 1975.
 434. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. Fluid absorption and active and passive ion flows in the rabbit superficial pars recta. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F154–F167, 1977.
 435. Schafer, J. A., C. S. Patlak, S. L. Troutman, and T. E. Andreoli. Volume absorption in the pars recta. II. Hydraulic conductance coefficient. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F340–F348, 1978.
 436. Schafer, J. A., and S. L. Troutman. Potassium transport in cortical collecting tubules from mineralocorticoid‐treated rat. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F76–F88, 1987.
 437. Schafer, J. A., S. L. Troutman, and T. E. Andreoli. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J. Gen. Physiol. 64: 582–607, 1974.
 438. Schafer, J. A., S. L. Troutman, M. L. Watkins, and T. E. Andreoli. Volume absorption in the pars recta. I. “Simple” active transport. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F332–F339, 1978.
 439. Schali, C., L. Schild, J. Overney, and F. Roch‐Ramel. Secretion of tetraethylammonium by proximal tubules of rabbit kidneys. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F238–F246, 1983.
 440. Scherzer, P., H. Wald, and J. W. Czaczkes. Na‐K‐ATPase in isolated rabbit tubules after unilateral nephrectomy and Na+ loading. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F565–F573, 1985.
 441. Schild, L., G. Giebisch, L. P. Karniski, and P. S. Aronson. Effect of formate on volume reabsorption in the rabbit proximal tubule. J. Clin. Invest. 79: 32–38, 1987.
 442. Schiller, A., R. Taugner, and W. Kriz. The thin limbs of the loop of Henle in the rabbit. Cell Tissue Res. 207: 249–265, 1980.
 443. Schiller, A., R. Taugner, and B. Roesinger. Vergleichende Morphologie der Zonulae Occludentes am Nierentubulus. Verh. Anat. Ges. 72: 229, 1978.
 444. Schlatter, E., R. Greger, and C. Weidtke. Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Correlation of chemical structure and inhibitory potency. Pflugers Arch. 396: 210–217, 1983.
 445. Schmidt, U., and U. C. Dubach. Activity of (Na+ K+)‐stimulated adenosintriphosphatase in the rat nephron. Pflugers Arch. 306: 219–226, 1969.
 446. Schmidt, U., and M. F. Horster. Na‐K‐activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F55–F60, 1977.
 447. Schneider, E. G., J. C. Durham, and B. Sacktor. The sodium‐dependent transport of inorganic sulfate by rabbit renal brush‐border membranes. Federation Proc. 39: 1711, 1980. (Abstract)
 448. Schnermann, J., J. Briggs, and G. Schubert. In situ studies of the distal convoluted tubule in the rat. I. Evidence for NaCl secretion. 1982.
 449. Schuster, V. L., S. M. Bonsib, and M. L. Jennings. Two types of collecting duct mitochondria‐rich (intercalated) cells: lectin and band 3 cytochemistry. Am. J. Physiol. 251 (Cell Physiol. 20): C347–C355, 1986.
 450. Schuster, V. L., and J. B. Stokes. Chloride transport by the cortical and outer medullary collecting duct. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F203–F212, 1987.
 451. Schwartz, G. J. Na+‐dependent H+ efflux from proximal tubule: evidence for reversible Na +‐H+ exchange. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F380–F385, 1981.
 452. Schwartz, G. J. Absence of Cl−‐OH− or Cl−‐HCO3 exchange in the rabbit renal proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F462–F469, 1983.
 453. Schwartz, G. J., and Q. Al‐Awqati. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J. Clin. Invest. 75: 1638–1644, 1985.
 454. Schwartz, G. J., J. Barasch, and Q. Al‐Awqati. Plasticity of functional epithelial polarity. Nature 318: 368–371, 1985.
 455. Schwartz, G. J., and M. B. Burg. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F576–F585, 1978.
 456. Schwartz, G. J., and A. P. Evan. Development of solute transport in rabbit proximal tubule. HCO3− and glucose absoption. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F382–F390, 1983.
 457. Schwartz, G. J., and A. P. Evan. Development of solute transport in rabbit proximal tubule. III. Na‐K‐ATPase activity. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F845–F852, 1984.
 458. Schwartz, J. H., D. Bethencourt, and S. Rosen. Specialized function of carbonic anhydrase‐rich and granular cells of turtle bladder. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F627–F633, 1982.
 459. Schwartz, M. M., M. J. Karnovsky, and M. A. Venka‐Tachalam. Regional membrane specialization in the thin limbs of Henle's loops as seen by freeze‐fracture electron microscopy. Kidney Int. 16: 577–589, 1979.
 460. Schwartz, M. M., and M. A. Venkatachalam. Structural differences in thin limbs of Henle: physiological implications. Kidney Int. 6: 193–208, 1974.
 461. Seely, J. F. Variation in electrical resistance along length of rat proximal convoluted tubule. Am. J. Physiol. 225: 48–57, 1973.
 462. Seely, J. F., and E. Chirito. Studies of the electrical potential difference in rat proximal tubule. Am. J. Physiol. 229: 72–80, 1975.
 463. Seifter, J. L., R. Knickelbein, and P. S. Aronson. Absence of Cl‐OH exchange and NaCl cotransport in rabbit renal microvillus membrane vesicles. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F753–F759, 1984,
 464. Senekjian, H. O., and E. J. Weinman. Oxalate transport by proximal tubule of the rabbit kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F271–F275, 1982.
 465. Shareghi, G. R., and Z. S. Agus. Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. J. Clin. Invest. 69: 759–769, 1982.
 466. Shareghi, G. R., and L. C. Stoner. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F367–F375, 1978.
 467. Shimizu, T., K. Yoshitomi, M. Nakamura, and M. Imai. Site and mechanism of action of trichloromethiazide in rabbit distal nephron segments perfused in vitro. J. Clin. Invest. 82: 721–730, 1988.
 468. Shimomura, A., A. M. Chonko, and J. J. Grantham. Basis for heterogeneity of para‐aminohippurate secretion in rabbit proximal tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F430–F436, 1981.
 469. Shimomura, A., A. M. Chonko, R. Tanner, R. M. Edwards, and J. J. Grantham. Nature of urate transport in isolated rabbit proximal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F565–F578, 1981.
 470. Shiuan, D., and S. W. Weinstein. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F837–F847, 1984.
 471. Sohtell, M. Electrochemical forces for chloride transport in the proximal tubules of the rat kidney. Acta Physiol. Scand. 103: 363–369, 1978.
 472. Soleimani, M., S. M. Grassi, and P. S. Aronson. Stoichiometry of Na + ‐HCO3− cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J. Clin. Invest. 79: 1276–1280, 1987.
 473. Sonnenberg, H. Medullary collecting duct function in antidiuretic and salt‐ or water‐diuretic rats. Am. J. Physiol. 226: 501–506, 1974.
 474. Sonnenberg, H., U. Honrath, C. K. Chong, and D. R. Wilson. Atrial natriuretic factor inhibits sodium transport in medullary collecting duct. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F963–F966, 1986.
 475. Sperber, I. Studies on the mammalian kidney. Zool. Bidrag., Uppsala 22: 249–431, 1944.
 476. Stanton, B. A. Role of adrenal hormones in regulating distal nephron structure and ion transport. Federation Proc. 44: 2717–2722, 1985.
 477. Stanton, B. A. Regulation of Na+ and K+ transport by mineralocorticoids. Semin. Nephrol. 7: 82–90, 1987.
 478. Stanton, B. A., D. Biemesderfer, J. B. Wade, and G. Giebisch. Structural and functional study of the rat distal nephron: effects of potassium adaptation and depletion. Kidney Int. 19: 36–48, 1981.
 479. Star, R. A., M. B. Burg, and M. A. Knepper. Bicarbonate secretion and chloride absorption by cortical collecting ducts. Role of chloride/bicarbonate exchange. J. Clin. Invest. 76: 1123–1130, 1985.
 480. Stein, J. H., R. W. Osgood, and R. T. Kunau. Direct measurement of papillary collecting duct sodium transport in the rat. Evidence for heterogeneity of nephron function during Ringer loading. J. Clin. Invest. 58: 767–773, 1976.
 481. Stetson, D. L., R. Beauwens, J. Palmisano, P. P. Mitchell, and P. R. Steinmetz. A double membrane model for urinary bicarbonate secretion. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F546–F552, 1985.
 482. Stetson, D. L., and P. R. Steinmetz. Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am. J. Physiol. 245: C113–C120, 1983.
 483. Stetson, D. L., and P. R. Steinmetz. α and β types of carbonic anhydrase‐rich cells in turtle bladder. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F553–F565, 1985.
 484. Stokes, J. B. Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle. Selective inhibition of the medullary portion. J. Clin. Invest. 64: 495–502, 1979.
 485. Stokes, J. B. Ion transport by the cortical and outer medullary collecting tubule. Kidney Int. 22: 473–484, 1982.
 486. Stokes, J. B. Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: evidence for diffusion across the outer medullary portion. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F514–F520, 1982.
 487. Stokes, J. B. Consequences of potassium recycling in the renal medulla. J. Clin. Invest. 70: 219–229, 1982.
 488. Stokes, J. B., M. J. Ingram, A. D. Williams, and D. Ingram. Heterogeneity of the rabbit collecting tubule: localization of mineralocorticoid hormone action to the cortical portion. Kidney Int. 20: 340–347, 1981.
 489. Stokes, J. B., and J. P. Kokko. Inhibition of sodium transport by prostaglandin E2 across isolated, perfused rabbit collecting tubule. J. Clin. Invest. 59: 1099–1104, 1977.
 490. Stokes, J. B., C. C. Tisher, and J. P. Kokko. Structural‐functional heterogeneity along the rabbit collecting tubule. Kidney Int. 14: 585–594, 1978.
 491. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Anion dependence of rabbit medullary collecting duct acidification. J. Clin. Invest. 71: 1505–1508, 1983.
 492. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium‐dependent effect. J. Clin. Invest. 72: 77–83, 1983.
 493. Stoner, L. C., M. B. Burg, and J. Orloff. Ion transport in cortical collecting tubule: effect of amiloride. Am. J. Physiol. 227: 453–459, 1974.
 494. Stoner, L. C., and F. Roch‐Ramel. The effects of pressure on the water permeability of the descending limb of Henle's loops of rabbits. Pflugers Arch. 382: 7–15, 1979.
 495. Suki, W. N., and D. Rouse. Hormonal regulation of calcium transport in thick ascending limb renal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F171–F174, 1981.
 496. Suki, W. N., D. Rouse, R. C. K. Ng, and J. P. Kokko. Calcium transport in the thick ascending limb of Henle. Heterogeneity of function in the medullary and cortical segments. J. Clin. Invest. 66: 1004–1009, 1980.
 497. Suzuk, T., and F. K. Mostofi. Intramitochondrial filamentous bodies in the thick limb of Henle of the rat kidney. J. Cell. Biol. 33: 605, 1967.
 498. Tabei, K., and M. Imai. K transport in upper portion of descending limbs of long‐loop nephron from hamster. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F387–F392, 1987.
 499. Tago, K., V. L. Schuster, and J. B. Stokes. Stimulation of chloride transport by HCO3‐CO2 in rabbit cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F49–F56, 1986.
 500. Tago, K., V. L. Schuster, and J. B. Stokes. Regulation of chloride self exchange by cAMP in cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F40–F48, 1986.
 501. Tago, K., D. H. Warden, V. L. Schuster, and J. B. Stokes. Effects of inhibitors of chloride conductance on Cl self‐exchange in rabbit cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F1009–F1017, 1986.
 502. Takaichi, K., S. Uchida, and K. Kurokawa. High Ca2+ inhibits AVP‐dependent cAMP production in thick ascending limbs of Henle. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F776, 1986.
 503. Takeda, K., S. Torikai, Y. Asano, and M. Imai. Modulation by verapamil of hormonal action on the Henle's loop of mice. Kidney Int. 29: 863–869, 1986.
 504. Taniguchi, J., K. Tabei, and M. Imai. Profiles of water and solute transport along long‐loop descending limb: analysis by mathematical model. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F393–F402, 1987.
 505. Tarloff, J. B., and P. H. Brand. Active tetraethylammonium uptake across the basolateral membrane of rabbit proximal tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F141–F149, 1986.
 506. Terada, Y., and M. A. Knepper. Na+ ‐K+ ‐ATPase activities in renal tubule segments of rat inner medulla. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F218–F223, 1989.
 507. Terreros, D. A., M. Tarr, and J. J. Grantham. Transmembrane electrical potential differences in cells of isolated renal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F61–F68, 1981.
 508. Tisher, C. C., R. E. Bulger, and B. F. Trump. Human renal ultrastructure: III. The distal tubule in healthy individuals. Lab. Invest. 18: 655, 1968.
 509. Tomita, K., H. Endou, and F. Sakai. Localization of kalli‐krein‐like activity along a single nephron in rabbits. Pflugers Arch. 389: 91–95, 1981.
 510. Tomita, K., and J. J. Pisano. Binding of 3[H]bradykinin in isolated nephron segments of the rabbit. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F732–F737, 1984.
 511. Tomita, K., J. J. Pisano, M. B. Burg, and M. A. Knepper. Effects of vasopressin and bradykinin on anion transport by rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J. Clin. Invest. 77: 136–141, 1986.
 512. Tomita, K., J. J. Pisano, and M. M. Knepper. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycor‐ticosterone. J. Clin. Invest. 76: 132–136, 1985.
 513. Torikai, S., and K. Kurokawa. Effect of PGE2 on the cell cyclic AMP content in the thin descending limb of Henle of the rat. Miner. Electrolyte Metab. 10: 21–25, 1984.
 514. Trinh‐Trang‐Tan, M.‐M., N. Bouby, M. Doute, and L. Bankir. Effect of long‐ and short‐term antidiuretic hormone availability on internephron heterogeneity in the adult rat. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F879–F888, 1984.
 515. Trinh‐Trang‐Tan, M.‐M., N. Bouby, W. Kriz, and L. Bankir. Functional adaptation of thick ascending limb and internephron heterogeneity to urine concentration. Kidney Int. 31: 549–555, 1987.
 516. Trinh‐Trang‐Tan, M.‐M., M. Diaz, J.‐P. Grunfeld, and L. Bankir. ADH‐dependent nephron heterogeneity in rats with hereditary hypothalamic diabetes insipidus. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F372–F380, 1981.
 517. Trinh‐Trang‐Tan, M.‐M., H. W. Sokol, L. Bankir, and H. Valtin. Homozygous brattleboro rats lack normal nephron heterogeneity as a consequence of their urine concentrating defect. Ann. N. Y. Acad. Sci. 394: 524–528, 1982.
 518. Tsai, C.‐J., H. E. Ives, R. J. Alpern, D. G. Warnock, and F. C. Rector. Increased Vmax for Na +/H+ antiporter activity in proximal tubule brush border vesicles from rabbits with metabolic acidosis. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F339–F343, 1984.
 519. Tune, B. M., and M. B. Burg. Glucose transport by proximal renal tubules. Am. J. Physiol. 221: 580–585, 1971.
 520. Turner, R. J. Sodium‐dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F793–F798, 1984.
 521. Turner, R. J., and A. Morgan. Heterogeneity of sodium‐dependent d‐glucose transport sites along the proximal tubule: evidence from vesicle studies. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F406–F414, 1982.
 522. Uchida, S., N. Green, H. Coon, T. Triche, S. Mims, and M. B. Burg. High NaCl induces stable changes in phenotype and karyotype of renal cells in culture. Am. J. Physiol. 253 (Cell Physiol. 22): C230–C242, 1987.
 523. Ullrich, K. J., and F. Papavassilou. Bicarbonate reabsorption in the papillary collecting ducts of rats. Pflugers Arch. 389: 271–275, 1981.
 524. Ullrich, K. J., G. Rumrich, and S. Kloss. Specificity and sodium dependence of active sugar transport in the proximal convolution of the rat kidney. Pflugers Arch. 351: 35–48, 1974.
 525. Ullrich, K. J., G. Rumrich, and S. Kloss. Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pflugers Arch. 351: 49–60, 1974.
 526. Ullrich, K. J., G. Rumrich, and S. Kloss. Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Pflugers Arch. 228: 223–228, 1976.
 527. Umemura, S., D. D. Smyth, and W. A. Pettinger. Regulation of renal cellular cAMP levels by prostaglandins and α2‐adrenoceptors: microdissection studies. Kidney Int. 29: 703–707, 1986.
 528. Vadivel, G., and F. H. Leibach. Carrier‐mediated reabsorption of small peptides in renal proximal tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F945–F953, 1986.
 529. Valtin, H. Structural and functional heterogeneity of mammalian nephrons. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 22): F491–F501, 1977.
 530. Vandewalle, A., G. Wirthensohn, H.‐G. Heidrich, and W. Guder. Distribution of hexokinase and phosphoenolpy‐ruvate carboxykinase along the rabbit nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F492–F500, 1981.
 531. Velazquez, H., and R. Greger. K & Cl permeabilities in cells of rabbit early distal convoluted tubule. Kidney Int. 27: 322A, 1985.
 532. Velazquez, H., and R. Greger. Influences on basolateral K conductance of cells of early distal convoluted tubule. Kidney Int. 29: 394A, 1986.
 533. Velazquez, H., and F. S. Wright. Annu. Rev. Pharmacol. Toxicol. 26: 293–309, 1986.
 534. Verkamn, A. S., J. A. Dix, and J. L. Seifter. Water and urea transport in renal microvillus membrane vesicles. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F650–F655, 1985.
 535. Verlander, J. W., K. M. Madsen, and C. C. Tisher. Two populations of intercalated cells exist in the cortical collecting duct of the rat. Clin. Res. 33: 501A, 1985.
 536. Vigne, P., T. Jean, P. Barbry, C. Frelin, L. G. Fine, and M. Lazdunski. [3H]Ethylpropylamiloride, a ligand to analyze the Na+/H+ exchange system in the membranes of normal and hypertrophied kidneys. J. Biol. Chem. 260: 14120–14125, 1985.
 537. Wade, J. B., R. G. O'Neil, J. L. Pryor, and E. L. Boulpaep. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell Biol. 81: 439–445, 1979.
 538. Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134: 580–595, 1941.
 539. Walker, J. J., T. S. Yan, and G. A. Quamme. Presence of multiple sodium‐dependent phosphate transport processes in proximal brush‐border membranes. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F226–F231, 1987.
 540. Walker, L. A., and H. Valtin. Biological importance of nephron heterogeneity. In: Annu. Rev. Physiol, Palo Alto, CA: Annual Reviews, Inc., 1982, pp. 203–219.
 541. Wang, M.‐S., and K. Kurokawa. Renal gluconeogenesis: axial and internephron heterogeneity and the effect of parathyroid hormone. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F59–F66, 1984.
 542. Wang, W., S. White, J. Geibel, and G. Giebish. A potassium channel in the apical membrane of rabbit thick ascending limb of Henle's loop. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F244–F253, 1990.
 543. Warnock, D. G., and M. B. Burg. Urinary acidification: CO2 transport by the rabbit proximal straight tubule. Am. J. Physiol. 232: 20–25, 1977.
 544. Warnock, D. G., and J. L. Eveloff. NaCl entry mechanisms in the luminal membrane of the renal tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F561–F574, 1982.
 545. Warnock, D. G., and V. J. Yee. Anion permeabilities of the isolated perfused rabbit proximal tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F395–F405, 1982.
 546. Wasserstein, A. G., and Z. S. Agus. Potassium secretion in the rabbit proximal straight tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F167–F174, 1983.
 547. Weber, J. L., J. P. Kokko, and H. R. Jacobson. Heterogeneity of uric acid transport in proximal tubules. Kidney Int. 19: 261A, 1981 (Abstr.).
 548. Weinman, E. J., S. Shenolikar, and A. M. Kahn. cAMP‐associated inhibition of Na+‐H+ exchanger in rabbit brush‐border membranes. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F19–F25, 1987.
 549. Weinstein, A. M. Osmotic diuresis in a mathematical model of the rat proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F874–F884, 1986.
 550. Weinstein, A. M. A mathematical model of the rat proximal tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F860–F873, 1986.
 551. Weinstein, A. M. Modeling the proximal tubule: complications of the paracellular pathway. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F297–F305, 1988.
 552. Welling, D. J., and L. W. Welling. Cell shape as an indicator of volume reabsorption in proximal nephron. Federation Proc. 38: 121–127, 1979.
 553. Welling, D. J., L. W. Welling, and J. J. Hill. Phenome‐nological model relating cell shape to water reabsorption in proximal nephron. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F308–F317, 1978.
 554. Welling, L. W., A. P. Evan, D. J. Welling, and V. H., III Gattone. Morphometric comparison of rabbit cortical connecting tubules and collecting ducts. Kidney Int. 23: 358–367, 1983.
 555. Welling, L. W., and D. J. Welling. Surface areas of brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int. 8: 343–348, 1975.
 556. Welling, L. W., and D. J. Welling. Shape of epithelial cells and intercellular channels in the rabbit proximal nephron. Kidney Int. 9: 385–394, 1976.
 557. Welling, L. W., D. J. Welling, and J. J. Hill. Shape of cells and intercellular channels in rabbit thick ascending limb of Henle. Kidney Int. 13: 144–151, 1978.
 558. Williams, J. C., and J. A. Schafer. A model of osmotic and hydrostatic pressure effects on volume absorption in the proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F563–F575, 1987.
 559. Wingo, C. S. Effect of ouabain on K secretion in cortical collecting tubules from adrenalectomized rabbits. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F588–F595, 1984.
 560. Wingo, C. S., J. P. Kokko, and H. R. Jacobson. Effects of in vitro aldosterone on the rabbit cortical collecting tubule. Kidney Int. 28: 51–57, 1985.
 561. Woodhall, P. B., and C. C. Tisher. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J. Clin. Invest. 52: 3095–3108, 1973.
 562. Woodhall, P. B., C. C. Tisher, and C. A. Simonton. Relationship between para‐aminohippurate secretion and cellular morphology in rabbit proximal tubules. J. Clin. Invest. 1320–1329, 1978.
 563. Work, J., J. H. Galla, B. B. Booker, J. A. Schafer, and R. G. Luke. Effect of ADH on chloride reabsorption in the loop of Henle of the Brattleboro rat. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F698–F703, 1985.
 564. Work, J., S. L. Troutman, and J. A. Schafer. Transport of potassium in the rabbit pars recta. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F226–F237, 1982.
 565. Wright, F. S. Increasing magnitude of electrical potential along the renal distal tubule. Am. J. Physiol. 220: 624–638, 1971.
 566. Wright, F. S., and J. Briggs. Feedback regulation of glomerular filtration rate. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F1–F7, 1977.
 567. Wright, F. S., and G. Giebisch. Renal potassium transport: contribution of individual nephron segments and populations. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F515–F527, 1978.
 568. Wright, F. S., N. Strieder, N. Fowler, and G. Giebisch. Potassium secretion by distal tubule after potassium adaptation. Am. J. Physiol. 221: 437–448, 1971.
 569. Yoshitomi, K., T. Shimizu, J. Taniguchi, and M. Imai. Electrophysiological characterization of rabbit distal convoluted tubule cell. Pflugers Arch. 414: 457–463, 1989.
 570. Zeidel, M. L., J. L. Seifter, S. Lear, B. M. Brenner, and P. Silva. Atrial peptides inhibit oxygen consumption in kidney medullary collecting duct cells. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20: F379–F383, 1986.
 571. Zeidel, M. L., P. Silva, B. M. Brenner, and J. L. Seifter. cGMP mediates effects of atrial peptides on medullary collecting duct cells. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F551–F559, 1987.
 572. Zeidel, M. L., P. Silva, and J. L. Seifter. Intracellular pH regulation in rabbit renal medullary collecting duct cells. Role of chloride‐bicarbonate exchange. J. Clin. Invest. 77: 1682–1688, 1986.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Steven C. Hebert. Nephron Heterogeneity. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 875-925. First published in print 1992. doi: 10.1002/cphy.cp080120