Comprehensive Physiology Wiley Online Library

Renal Plasma Membranes: Isolation, General Properties, and Biochemical Components

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Studies on Isolated Plasma Membranes: Conceptual Framework
2 Isolation of Plasma Membranes of the Proximal Tubule
2.1 Definition of Membranes
2.2 Membrane Marker
2.3 Starting Material
2.4 Isolation of Microvillous Membranes
2.5 Isolation of Basal‐lateral Membranes
2.6 Simultaneous Isolation of Microvillous and Basal‐lateral Membranes
2.7 Isolation of Endosomes and Reserve Vesicles
3 Purity and General Properties of Plasma Membranes Isolated from the Proximal Tubule
3.1 Microvillous Membranes
3.2 Basal‐lateral Membranes
3.3 Endosomes and Reserve Vesicles
4 Isolation of Plasma Membranes of the Thick Ascending limb of Henle's Loop
4.1 Definition of Membranes
4.2 Membrane Marker
4.3 Starting Material
4.4 Methods for Membrane Isolation
5 Purity and General Properties of Plasma Membranes Isolated from the Thick Ascending Limb
5.1 Purity of Membrane Fractions
5.2 General Properties
6 Isolation of Plasma Membranes of the Collecting Duct
6.1 Definition of Membranes
6.2 Membrane Marker
6.3 Starting Material
6.4 Methods for Membrane Isolation
7 Purity and General Properties of Membranes Isolated from the Collecting Duct
8 Biochemical Components of Isolated Renal Plasma Membranes
8.1 Membrane Lipids
8.2 Lipid Composition of Isolated Membranes of the Proximal Tubule
8.3 Lipid Composition of Plasma Membranes Isolated from Kidney Medulla
8.4 Identification of Membrane Proteins
8.5 Enzymes in Renal Membranes
8.6 Antigens in Renal Membranes
8.7 Transport Proteins in Renal Membranes
8.8 Protein Fingerprints of Renal Membranes
9 Concluding Remarks
Figure 1. Figure 1.

Plasma membranes of proximal tubular cell of segment 1 of rabbit kidney cortex.

Redrawn from Kaissling and Kriz 143
Figure 2. Figure 2.

Morphology of brush border membrane fragments isolated by different techniques. A, density gradient centrifugation; B, free flow electrophoresis; C, differential precipitation with calcium. Upper panels, negative staining. Lower panels, thin section of membrane pellet.

A from Kinne and Kinne‐Saffran 172; B from Heidrich et al. 119; C from Evers et al. 79
Figure 3. Figure 3.

Vesiculation and orientation of isolated microvillous membranes. Left, freeze‐fracture picture of proximal tubule cell in brush border region. Half‐membranes contacting cytoplasm face show high particle density, whereas half‐membranes representing outer membrane leaflet are characterized by low particle density. Right, freeze‐fracture picture of isolated brush border membrane vesicles of rat kidney cortex. Convex fracture faces (CV) mostly show high particle density; concave ones (CC) show lower particle density, indicating right‐side‐out orientation of vesicles.

Reprinted by permission from Haase et al. 109: Biochem. J., 172: 57–62, copyright (©) 1978, The Biochemical Society, London
Figure 4. Figure 4.

Morphology of basal‐lateral membranes isolated from kidney cortex by free flow electrophoresis. Top, negative staining. Bottom, thin section of membrane pellet. Inset shows junctional complex.

From Heidrich et al. 119
Figure 5. Figure 5.

Vesiculation and orientation of basal‐lateral membranes isolated from kidney cortex. Freeze‐fracture picture of basal‐lateral plasma membranes isolated from rat kidney cortex by Percoll density gradient centrifugation. Bar, 0.5 μm.

Courtesy Dr. W. Haase, Max Planck Institute for Biophysics, Frankfurt, F.R.G.
Figure 6. Figure 6.

Schematic representation of assay to determine orientation of basal‐lateral membranes using accessibility of Na+,K+‐ATPase to ATP and ouabain as indicator. The former cytosolic face has smooth surface; the former cell surface is characterized by fuzzy coat of carbohydrate chains of glycoproteins.

Figure 7. Figure 7.

Morphology of endosomes isolated from rat kidney cortex by free flow electrophoresis. Top, negative staining. Bottom, peroxidase reaction of vesicles. Peroxidase used as exogenous marker.

From Bode et al. 24
Figure 8. Figure 8.

Morphology of luminal plasma membrane fraction enriched from isolated cells of medullary thick ascending limb of Henle's loop. Thin section through membrane pellet.

From Eveloff and Kinne 78
Figure 9. Figure 9.

Polypeptides of microvillous membranes and of luminal plasma membranes isolated from rabbit kidney outer medulla as resolved by polyacrylamide gradient gel electrophoresis in presence of sodium dodecyl sulfate. The first left lane and the last right lane contain molecular weight markers.



Figure 1.

Plasma membranes of proximal tubular cell of segment 1 of rabbit kidney cortex.

Redrawn from Kaissling and Kriz 143


Figure 2.

Morphology of brush border membrane fragments isolated by different techniques. A, density gradient centrifugation; B, free flow electrophoresis; C, differential precipitation with calcium. Upper panels, negative staining. Lower panels, thin section of membrane pellet.

A from Kinne and Kinne‐Saffran 172; B from Heidrich et al. 119; C from Evers et al. 79


Figure 3.

Vesiculation and orientation of isolated microvillous membranes. Left, freeze‐fracture picture of proximal tubule cell in brush border region. Half‐membranes contacting cytoplasm face show high particle density, whereas half‐membranes representing outer membrane leaflet are characterized by low particle density. Right, freeze‐fracture picture of isolated brush border membrane vesicles of rat kidney cortex. Convex fracture faces (CV) mostly show high particle density; concave ones (CC) show lower particle density, indicating right‐side‐out orientation of vesicles.

Reprinted by permission from Haase et al. 109: Biochem. J., 172: 57–62, copyright (©) 1978, The Biochemical Society, London


Figure 4.

Morphology of basal‐lateral membranes isolated from kidney cortex by free flow electrophoresis. Top, negative staining. Bottom, thin section of membrane pellet. Inset shows junctional complex.

From Heidrich et al. 119


Figure 5.

Vesiculation and orientation of basal‐lateral membranes isolated from kidney cortex. Freeze‐fracture picture of basal‐lateral plasma membranes isolated from rat kidney cortex by Percoll density gradient centrifugation. Bar, 0.5 μm.

Courtesy Dr. W. Haase, Max Planck Institute for Biophysics, Frankfurt, F.R.G.


Figure 6.

Schematic representation of assay to determine orientation of basal‐lateral membranes using accessibility of Na+,K+‐ATPase to ATP and ouabain as indicator. The former cytosolic face has smooth surface; the former cell surface is characterized by fuzzy coat of carbohydrate chains of glycoproteins.



Figure 7.

Morphology of endosomes isolated from rat kidney cortex by free flow electrophoresis. Top, negative staining. Bottom, peroxidase reaction of vesicles. Peroxidase used as exogenous marker.

From Bode et al. 24


Figure 8.

Morphology of luminal plasma membrane fraction enriched from isolated cells of medullary thick ascending limb of Henle's loop. Thin section through membrane pellet.

From Eveloff and Kinne 78


Figure 9.

Polypeptides of microvillous membranes and of luminal plasma membranes isolated from rabbit kidney outer medulla as resolved by polyacrylamide gradient gel electrophoresis in presence of sodium dodecyl sulfate. The first left lane and the last right lane contain molecular weight markers.

References
 1. Albertsson, P.‐A., B. Andersson, C. Larsson, and J. Akerlund. Phase partition—a method for purification and analysis of cell organelles and membrane vesicles. Methods Biochem. Anal. 28: 115–150, 1983.
 2. Amsler, K., and R. Kinne. Photoinactivation of sodium‐potassium‐chloride cotransport in LLC‐PK1Cl4 cells by bumetanide. Am. J. Physiol. 250 (Cell Physiol. 19): C799–C806, 1986.
 3. Andress, D. L., M. R. Pandian, D. B. Endres, and J. B. Kopp. Plasma insulin‐like growth factors and bone formation in uremic hyperparathyroidism. Kidney Int. 36: 471–477, 1989.
 4. Ausiello, D. Cellular biology of the water channel. Kidney Int. 36: 497–506, 1989.
 5. Bachmann, S., I. Koeppen‐Hagemann, and W. Kriz. Ultrastructural localization of Tamm‐Horsfall glycoprotein (THP) in rat kidney as revealed by protein A‐gold immunocytochemistry. Histochemistry 83: 531–538, 1985.
 6. Bailyes, E. M., A. C. Newby, K. Siddle, and J. P. Luzio. Solubilization and purification of rat liver 5'‐nucleotidase by use of a zwitterionic detergent and a monoclonal‐antibody immunoadsorbent. Biochem. J. 203: 245–251, 1982.
 7. Beck, J. C., and B. Sacktor. The sodium electrochemical potential—mediated uphill transport of d‐glucose in renal brush border membrane vesicles. J. Biol. Chem. 253: 5531–5535, 1978.
 8. Beliveau, R., M. Demeule, H. Ibnoul‐Khatib, M. Bergeron, G. Beauregard, and M. Potier. Radiation‐inactivation studies on brush‐border‐membrane vesicles. General considerations and application to the glucose and phosphate carriers. Biochem. J. 252: 807–813, 1988.
 9. Berger, S. J., and B. Sacktor. Isolation and biochemical characterization of brush borders from rabbit kidney. J. Cell Biol. 47: 637–645, 1970.
 10. Berner, W., and R. Kinne. Transport of p‐aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflugers Arch. 361: 269–277, 1976.
 11. Berry, C. A., and F. C. Rector, Jr. Electroneutral NaCl absorption in the proximal tubule: mechanisms of apical Nacoupled transport. Kidney Int. 36: 403–411, 1989.
 12. Biber, J., P. Gmaj, K. Malmstroem, and H. Murer. Role of c‐AMP and NAD in the regulation of Na+‐dependent phosphate transport across rat renal brush border membranes. Adv. Exp. Med. Biol. 178: 49–57, 1984.
 13. Biber, J., K. Malmström, and H. Murer. Role of c‐AMP in the regulation of Na+‐dependent phosphate transport across renal brush border membranes. Experientia 39: 629, 1983.
 14. Biber, J., K. Malmström, V. Scalera, and H. Murer. Phosphorylation of rat kidney proximal tubular brush border membranes: role of c‐AMP dependent protein phosphorylation in the regulation of phosphate transport. Pflugers Arch. 398: 221–226, 1983.
 15. Biber, J., B. Stieger, W. Haase, and H. Murer. A high yield preparation for rat kidney brush border membrane. Different behaviour of lysosomal markers. Biochim. Biophys. Acta 647: 169–176, 1981.
 16. Biber, J. Cellular aspects of proximal tubular phosphate reabsorption. Kidney Int. 36: 360–369, 1989.
 17. Bindels, R. J. M., J. A. M. Geertsen, and C. H. Van Os. ATP‐dependent Ca2+ transport and Na+/Ca2+ exchange system in renal basolateral plasma membranes of spontaneously hypertensive rats. Clin. Exp. Hypertens. [A] 7: 1719–1731, 1985‐86.
 18. Bindels, R. J. M., J. A. M. Geertsen, and C. H. Van Os. Increased transport of inorganic phosphate in renal brush borders of spontaneously hypertensive rats. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F470–F475, 1986.
 19. Bindslev, N., and E. M. Wright. Histidyl residues at the active site of the Na/succinate cotransporter in rabbit renal brush borders. J. Membr. Biol. 81: 159–170, 1984.
 20. Blank, M. E., F. Bode, E. Huland, D. F. Diedrich, and K. Baumann. Kinetic studies of d‐glucose transport in renal brush‐border membrane vesicles of streptozotocin‐induced diabetic rats. Biochim. Biophys. Acta 844: 314–319, 1985.
 21. Blockaert, J., C. Roy, R. Rajerison, and S. Jard. Specific binding of [3H]lysine‐vasopressin to pig kidney plasma membranes. J. Biol. Chem. 248: 5922–5931, 1973.
 22. Blumenfeld, J. D., E. B. Grossman, A. M. Sun, and S. C. Hebert. Sodium‐coupled ion cotransport and the volume regulatory increase response. Kidney Int. 366: 434–440, 1989.
 23. Bode, F., K. Baumann, and R. Kinne. Analysis of the pinocytic process in rat kidney. II. Biochemical composition of pinocytic vesicles compared to brush border microvilli, lysosomes and basolateral plasma membranes. Biochim. Biophys. Acta 433: 294–310, 1976.
 24. Bode, F., H. Pockrandt‐Hemstedt, K. Baumann, and R. Kinne. Analysis of the pinocytic process in rat kidney. I. Isolation of pinocytic vesicles from rat kidney cortex. J. Cell Biol. 63: 998–1008, 1974.
 25. Boer, R., P. Crause, and F. Fahrenholz. Solubilization of ligand‐stabilized vasopressin receptors from plasma membranes of bovine kidney and rat liver. Biochem. Biophys. Res. Commun. 116: 91–98, 1983.
 26. Booth, A. G., L. M. L. Hubbard, and A. J. Kenny. Proteins of the kidney microvillar membrane. Immunoelectrophoretic analysis of the membrane hydrolases: identification and resolution of the detergent‐ and proteinase‐solubilized forms. Biochem. J. 179: 397–405, 1979.
 27. Booth, A. G., and A. J. Kenny. A rapid method for the preparation of microvilli from rabbit kidney. Biochem. J. 142: 575–581, 1974.
 28. Booth, A. G., and A. J. Kenny. Proteins of the kidney microvillous membrane. Identification of subunits after sodium dodecyl sulphate/polyacrylamide gel electrophoresis. Biochem. J. 159: 395–407, 1976.
 29. Boron, W. F., and E. L. Boulpaep. The electrogenic Na/HCO3 cotransporter. Kidney Int. 36: 392–402, 1989.
 30. Boumendil‐Podevin, E. F., and R. A. Podevin. Isolation of basolateral and brush‐border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction. Biochim. Biophys. Acta 735: 86–94, 1983.
 31. Brown, C. D. A., M. Bodmer, J. Biber, and H. Murer. Sodium‐dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (LLC‐PK1). Biochim. Biophys. Acta 769: 471–478, 1984.
 32. Brown, D. Vesicle recycling and cell‐specific function in kidney epithelial cells. Annu. Rev. Physiol. 51: 771–784, 1989.
 33. Brunette, M. G., M. Chan, U. Maag, and R. Beliveau. Phosphate uptake by superficial and deep nephron brush border membranes: effect of the dietary phosphate and parathyroid hormone. Pflugers Arch. 400: 356–362, 1984.
 34. Burckhardt, G., W. Kramer, and F. A. Wilson. Comparison of bile salt‐binding proteins in basolateral membranes from small intestine, kidney, and liver. In: Hepatic Transport in Organic Substances, edited by E. Petzinger, R. K. H. Kinne, and H. Sies. Heidelberg: Springer, 1988, p. 297‐298.
 35. Burckhardt, G., and K. J. Ullrich. Organic anion transport across the contraluminal membrane—dependence on sodium. Kidney Int. 36: 370–377, 1989.
 36. Burg, M. B. Isolated perfused tubule. Introduction: background and development of microperfusion technique. Kidney Int. 22: 417–424, 1982.
 37. Burg, M., N. Green, S. Sohraby, R. Steele, and J. Handler. Differentiated function in cultured epithelia derived from thick ascending limbs. Am. J. Physiol. 242 (Cell Physiol. 11): C229–C233, 1982.
 38. Burnham, C., S. J. D. Karlish, and P.L. Jørgensen. Identification and reconstitution of a Na+/K+/Cl− cotransporter and K+ channel from luminal membranes of renal red outer medulla. Biochim. Biophys. Acta 821: 461–469, 1985.
 39. Carrière, B., and C. Le Grimellec. Effects of benzyl alcohol on enzyme activities and d‐glucose transport in kidney brush‐border membranes. Biochim. Biophys. Acta 857: 131–138, 1986.
 40. Cathala, G., C. Brunel, D. Chappelet‐Tordo, and M. Lazdunski. Bovine kidney alkaline phosphatase. Purification, subunit structure, and metalloenzyme properties. J. Biol. Chem. 250: 6040–6045, 1975.
 41. Caverzasio, J., and J.‐P. Bonjour. Parathyroid hormone (PTH) status and phosphate (Pi) transport in proximal brush border membrane vesicles (BBMV) and whole kidney. Miner. Electrolyte Metab. 9: 163, 1983.
 42. Caverzasio, J., and J.‐P. Bonjour. Parathyroid hormone (PTH) status and phosphate (Pi) transport in proximal brush border membrane vesicles (BBMV) and whole kidney. Adv. Exp. Med. Biol. 178: 33–35, 1984.
 43. Caverzasio, J., and J.‐P. Bonjour. Mechanism of rapid phosphate (Pi) transport adaptation to a single low Pi meal in rat renal brush border membrane. Pflugers Arch. 404: 227–231, 1985.
 44. Caverzasio, J., J.‐P. Bonjour, H. Murer, and H. Fleisch. Renal Pi transport in young growing and adult rats: comparative studies in brush border membrane vesicles (BBMV) and in whole kidney. Adv. Exp. Med. Biol. 151: 77–79, 1982.
 45. Caverzasio, J., H. Murer, H. Fleisch, and J.‐P. Bonjour. Phosphate transport in brush border membrane vesicles isolated from renal cortex of young growing and adult rats. Comparison with whole kidney data. Pflugers Arch. 394: 217–221, 1982.
 46. Cereijido, M., R. G. Contreras, and L. Gonzales‐Mariscal. Development and alteration of polarity. Annu. Rev. Physiol. 51: 785–795, 1989.
 47. Chabardès, D., M. Imbert‐Teboul, M. Montégut, A. Clique, and F. Morel. Distribution of calcitonin‐sensitive adenylate cyclase activity along the rabbit kidney tubule. Proc. Natl. Acad. Sci. USA 73: 3608–3612, 1976.
 48. Chamberlin, M. E., A. Lefurgey, and L. J. Mandel. Suspension of medullary thick ascending limb tubules from the rabbit kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F955–F964, 1984.
 49. Chauhan, V. P. S., and V. K. Kalra. Effect of phospholipid methylation on calcium transport and (Ca2+ + Mg2+)‐ATPase activity in kidney cortex basolateral membranes. Biochim. Biophys. Acta 727: 185–195, 1983.
 50. Chauhan, V. P. S., S. C. Sikka, and V. K. Kalra. Phospholipid methylation of kidney cortex brush border membranes. Effect on fluidity and transport. Biochim. Biophys. Acta 688: 357–368, 1982.
 51. Cheng, L., C. Dersch, E. Kraus, D. Spector, and B. Sacktor. Renal adaptation to phosphate load in the acutely thyroparathyroidectomized rat: rapid alteration in brush border membrane phosphate transport. Am. J. Physiol 246 (Renal Fluid Electrolyte Physiol. 15): F488–F494, 1984.
 52. Cheng, L., C. T. Liang, and B. Sacktor. In vitro effects of parathyroid hormone on kidney cortical slices: cAMP responses and concomitant inhibition of the Na+ gradient‐dependent uptake of phosphate by brush border membrane vesicles isolated from the renal slices. Endocrinol. Res. Commun. 8: 97–110, 1981.
 53. Coudrier, E., H. Reggio, and D. Louvard. Characterization of membrane glycoproteins involved in attachment of microfilaments to the microvillar membrane. In: Brush Border Membranes, edited by R. Porter and G. M. Collins. London: Pitman, 1983, p. 216–232.
 54. Crane, R. K. Comments and experiments on the kinetics of Na+ gradient‐coupled glucose transport as found in rabbit jejunal brush border membrane vesicle Ann. N.Y. Acad. Sci. 456: 36–46, 1985.
 55. Crane, R. K., P. Malathi, and H. Preiser. Reconstitution of specific Na+‐dependent d‐glucose transport in liposomes by Triton X‐100 extracted proteins from purified brush border membranes of hamster small intestine. Biochem. Biophys. Res. Commun. 71: 1010–1016, 1976.
 56. Crane, R. K., P. Malathi, and H. Preiser. Reconstitution of specific Na+‐dependent d‐glucose transport in liposomes by Triton X‐100‐extracted proteins from purified brush border membranes of rabbit kidney cortex. FEBS Lett. 67: 214–216, 1976.
 57. Crause, P., R. Boer, and F. Fahrenholz. Determination of the functional molecular size of vasopressin isoreceptors. FEBS Lett. 175: 383–386, 1984.
 58. Da Cruz, M. E. M. Untersuchungen des Natrium d‐Glukose‐kotransportsystems nach Rekonstitution in Liposomen. Frankfurt: Johann Wolfgang Goethe University, 1982‐83. Dissertation.
 59. Da Cruz, M. E. M., R. Kinne, and J. T. Lin. Temperature dependence of d‐glucose transport in reconstituted liposomes. Biochim. Biophys. Acta 732: 691–698, 1983.
 60. Danielsen, E. M., O. Norén, H. Sjöström, J. Ingram, and A. J. Kenny. Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent‐ and proteinase‐solubilized forms. Biochem. J. 189: 591–603, 1980.
 61. Danielsen, E. M., J. P. Vyas, and A. J. Kenny. A neutral endopeptidase in the microvillar membrane of pig intestine. Biochem. J. 191: 645–648, 1980.
 62. Delmez, J. A., C. A. Weerts, P. D. Hasamear, and D. W. Windus. Severe dialyzer dysfunction undetectable by standard reprocessing validation tests. Kidney Int. 36: 478–484, 1989.
 63. de Pont, J. J. H. H. M., A. Van Prooijen‐Van Eeden, and S. L. Bonting. Role of negatively charged phospholipids in highly purified (Na++K+)‐ATPase from rabbit kidney outer medulla. Studies on (Na++K+)‐activated ATPase, XXXIX. Biochim. Biophys. Acta 508: 464–477, 1978.
 64. de Smedt, H., and R. Kinne. Temperature dependence of solute transport and enzyme activities in hog renal brush border membrane vesicles. Biochim. Biophys. Acta 648: 247–253, 1981.
 65. de Smedt, H., J. B. Parys, R. Borghgraef, and F. Wuytack. Phosphorylated intermediates of (Ca2+ +Mg2+)‐ATPase and alkaline phosphatase in renal plasma membranes. Biochim. Biophys. Acta 728: 409–418, 1983.
 66. de Smedt, H., J. B. Parys, F. Wuytack, and R. Borghgraef. Calcium‐induced phosphorylations and [125I]calmodulin binding in renal membrane preparations. Biochim. Biophys. Acta 776: 122–132, 1984.
 67. Diamond, J. M. A reversible epithelium. Nature 318: 311, 1985.
 68. Doucet, A., and A. I. Katz. High‐affinity Ca‐Mg‐ATPase along the rabbit nephron. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F346–F352, 1982.
 69. Dousa, T. P., and S. A. Kempson. Regulation of renal brush border membrane transport of phosphate. Miner. Electrolyte Metab. 7: 113–121, 1982.
 70. Dousa, T. P., and S. T. Turner. Modulation of the renal brush border transport of phosphate by glucocorticoids and other factors. In: Biochemistry of Kidney Function, Inserm Symposium No. 21, edited by F. Morel. Amsterdam: Elsevier Biomed., 1982, p. 377–383.
 71. Dragsten, P. R., R. Blumenthal, and J. S. Handler. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature 294: 718–722, 1981.
 72. Drenckhahn, D., K. Schlueter, D. P. Allen, and V. Bennet. Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230: 1287–1289, 1985.
 73. Ducis, I., and H. Koepsell. A simple liposomal system to reconstitute and assay highly efficient Na+/d‐glucose cotransport from kidney brush‐border membranes. Biochim. Biophys. Acta 730: 119–129, 1983.
 74. Dzhandzhugazyan, K. N., and P. L. Jørgensen. Asymmetric orientation of amino groups in the α‐subunit and the β‐subunit of (Na+ + K+)ATPase in tight right‐side‐out vesicles of baso‐lateral membranes from outer medulla. Biochim. Biophys. Acta 817: 165–173, 1985.
 75. Egel, J., J. Pfanstiel, and J. B. Puschett. Diuretic effects on renal brush border membrane transport and metabolism. Life Sci. 37: 1675–1681, 1985.
 76. Espinosa, R. E., M. J. Keller, A. N. K. Yusufi, and T. P. Dousa. Effect of thyroxine administration on phosphate transport across renal cortical brush border membrane. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F133–F139, 1984.
 77. Eveloff, J., W. Haase, and R. Kinne. Separation of renal medullary cells: isolation of cells from the thick ascending limb of Henle's loop. J. Cell Biol. 87: 672–680, 1980.
 78. Eveloff, J., and R. Kinne. Sodium‐chloride transport in the medullary thick ascending limb of Henle's loop: evidence for a sodium‐chloride cotransport system in plasma membrane vesicles. J. Membr. Biol. 72: 173–181, 1983.
 79. Evers, C., W. Haase, H. Murer, and R. Kinne. Properties of brush border vesicles isolated from rat kidney cortex by calcium precipitation. Membr. Biochem. 1: 203–219, 1978.
 80. Fahrenholz, F., R. Boer, P. Crause, and M. V. Toth. Photoaffinity labelling of the renal V2 vasopressin receptor. Identification and enrichment of a vasopressin‐binding subunit. Eur. J. Biochem. 152: 589–595, 1985.
 81. Fedan, J. S. Pharmacological and biochemical applications of photoaffinity labels. Introduction. Federation Proc. 42: 2825, 1983.
 82. Fernandez, Y. J., R.‐A. M. Boigegrain, C. D. Cambon‐Gros, and S. E. Mitjavila. Sensitivity of Na+‐coupled d‐glucose uptake, Mg2+‐ATPase and sucrase to perturbations of the fluidity of brush‐border membrane vesicles induced by naliphatic alcohols. Biochim. Biophys. Acta 770: 171–177, 1984.
 83. Fine, L. G. Renal cells in culture. Miner. Electrolyte Metab. 12: 1–84, 1986.
 84. Fine, L. G., R. Lang, E. P. Nord, and N. Yanagawa. Comparison of the effect of nucleotides on phosphate transport in renal brush border membrane vesicles and intact proximal tubules. Adv. Exp. Med. Biol. 178: 69–72, 1984.
 85. Forbush, B. III. Characterization of right‐side‐out membrane vesicles rich in (Na,K)‐ATPase and isolated from dog kidney outer medulla. J. Biol. Chem. 257: 12678–12684, 1982.
 86. Forbush, B. III, and H. C. Palfrey. [3H]bumetanide binding to membranes isolated from dog kidney outer medulla. J. Biol. Chem. 258: 11787–11792, 1983.
 87. Foreman, J. W., P. D. McNamara, M. A. Bowring, J. Lee, C. Rea, and S. Segal. Cystine—glutamate transport interactions in rat renal cortical tubules, brush border vesicles, and cultured renal tubule cells. Biosci. Rep. 6: 113–119, 1986.
 88. Freiberg, J. M., J. Kinsella, and B. Sacktor. Glucocorticoids increase the Na+‐H+ exchange and decrease the Na+ gradient‐dependent phosphate‐uptake systems in renal brush border membrane vesicles. Proc. Natl. Acad. Sci. USA 79: 4932–4936, 1982.
 89. Freytag, J. W., and J. A. Reynolds. Polypeptide molecular weights of the (Na+,K+)‐ATPase from porcine kidney medulla. Biochemistry 20: 7211–7214, 1981.
 90. Friedrich, T., J. Sablotni, and G. Burckhardt. Identification of the renal Na+/H+ exchanger with N,N'‐dicyclohexyl‐carbodiimide (DCCD) and amiloride analogues. J. Membr. Biol. 94: 253–266, 1986.
 91. Fulcher, I. S., J. Ingram, and A. J. Kenny. Radiation inactivation analysis of kidney microvillar peptidases. FEBS Lett. 205: 323–327, 1986.
 92. Fulcher, I. S., and A. J. Kenny. Proteins of the kidney microvillar membrane. The amphipathic forms of endopeptidase purified from pig kidneys. Biochem. J. 211: 743–753, 1983.
 93. Garcia‐Perez, A., and W. L. Smith. Use of monoclonal antibodies to isolate cortical collecting tubule cells: AVP induces PGE release. Am. J. Physiol. 244 (Cell Physiol. 13): C211–C220, 1983.
 94. Geck, P., and E. Heinz. Secondary active transport: introductory remarks. Kidney Int. 36: 334–341, 1989.
 95. Gee, N. S., and A. J. Kenny. Proteins of the kidney microvillar membrane. The 130 kDa protein in pig kidney, recognized by monoclonal antibody GK5C1, is an ectoenzyme with amino‐peptidase activity. Biochem. J. 230: 753–764, 1985.
 96. Gee, N. S., R. Matsas, and A. J. Kenny. A monoclonal antibody to kidney endopeptidase‐24.11. Its application in immunoadsorbent purification of the enzyme and immunofluorescence microscopy of kidney and intestine. Biochem. J. 214: 377–386, 1983.
 97. Glossmann, H., and H. Gips. The preparation of brush border membranes from rat kidney using an aqueous two‐phase polymer system. Naunyn Schmiedebergs Arch. Pharmacol. 282: 439–444, 1974.
 98. Gluck, S., and Q. Al‐Awqati. An electrogenic proton‐translocating adenosine triphosphatase from bovine kidney medulla. J. Clin. Invest. 73: 1704–1710, 1984.
 99. Gluck, S., and J. Caldwell. Isolation, characterization, and reconstitution of bovine medulla H+‐ATPase. Kidney Int. 29: 366, 1986.
 100. Gmaj, P., M. Zurini, H. Murer, and E. Carafoli. A high‐affinity, calmodulin‐dependent Ca2+ pump in the basal‐lateral plasma membranes of kidney cortex. Eur. J. Biochem. 136: 71–76, 1983.
 101. Goldinger, J. M., B. D. S. Khalsa, and S. K. Hong. Photoaffinity labeling of organic anion transport system in proximal tubule. Am. J. Physiol. 247 (Cell Physiol. 16): C217–C227, 1984.
 102. Gorvel, J.‐P., A. Liabeuf, D. Massey, D. Liot, C. Goridis, and S. Maroux. Recognition of sodium‐ and potassium‐dependent adenosine triphosphatase in organs of the mouse by means of a monoclonal antibody. Cell Tissue Res. 234: 619–632, 1983.
 103. Grasset, E., P. Gunter‐Smith, and S. G. Schultz. Effects of Na‐coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes of Necturus small intestine. J. Membr. Biol. 71: 89–94, 1983.
 104. Grenier, F. C., and W. L. Smith. Formation of 6‐keto‐PGF1 by collecting tubule cells isolated from rabbit renal papillae. Prostaglandins 16: 759–772, 1978.
 105. Grisham, C. M., and R. E. Barnett. The role of lipid‐phase transitions in the regulation of the (sodium + potassium) adenosine triphosphatase. Biochemistry 12: 2635–2637, 1973.
 106. Guggino, W. B., and S. E. Guggino. Renal anion transport. Kidney Int. 36: 385–391, 1989.
 107. Guillon, G., D. Butlen, B. Cantau, T. Barth, and S. Jard. Kinetic and pharmacological characterization of vasopressin membrane receptors from human kidney medulla: relation to adenylate cyclase activation. Eur. J. Pharmacol. 85: 291–304, 1982.
 108. Haas, M., and B. Forbush, III. Photolabelling of a 150‐kDa (Na + K + Cl) cotransport protein from dog kidney with a bumetanide analogue. Am. J. Physiol. 253 (Cell Physiol. 22): C243–C252, 1987.
 109. Haase, W., A. Schäfer, H. Murer, and R. Kinne. Studies on the orientation of brush‐border membrane vesicles. Biochem. J. 172: 57–62, 1978.
 110. Hagenbuch, B., and Murer, H. Phosphate transport across the basolateral membrane from rat kidney cortex: sodium dependence? Pflugers Arch. 407 (Suppl. 2): 149–155, 1986.
 111. Hammerman, M. R., D. E. Cohn, J. Tamayo, and K. J. Martin. Effect of parathyroid hormone on Na+‐dependent phosphate transport and cAMP‐dependent 32P phosphorylation in brush border vesicles from isolated perfused canine kidney. Arch. Biochem. Biophys. 227: 91–97, 1983.
 112. Hammerman, M. R., V. A. Hansen, and J. J. Morrissey. ADP ribosylation of canine renal brush border membrane vesicle proteins is associated with decreased phosphate transport. J. Biol. Chem. 257: 12380–12386, 1982.
 113. Hammerman, M. R., V. A. Hansen, and J. J. Morrissey. Cyclic AMP‐dependent protein phosphorylation and dephosphorylation alter phosphate transport in canine renal brush border vesicles. Biochim. Biophys. Acta 755: 10–16, 1983.
 114. Hammerman, M. R., S. Rogers, V. A. Hansen, and J. R. Gavin III. Insulin stimulates Pi transport in brush border vesicles from proximal tubular segments. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E616–E624, 1984.
 115. Handler, J. S. Use of cultured epithelia to study transport and its regulation. J. Exp. Biol. 106: 55–69, 1983.
 116. Handler, J. S., F. M. Perkins, and J. P. Johnson. Studies of renal cell function using cell culture techniques. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F1–F9, 1980.
 117. Hebert, S. C., and T. E. Andreoli. Control of NaCl transport in the thick ascending limb. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F745–F756, 1984.
 118. Hedeager‐Sørensen, S., and A. J. Kenny. Proteins of the kidney microvillar membrane. Purification and properties of carboxypeptidase P from pig kidneys. Biochem. J. 229: 251–257, 1985.
 119. Heidrich, H.‐G., R. Kinne, E. Kinne‐Saffran, and K. Hannig. The polarity of the proximal tubule cell in rat kidney: different surface charges for the brush‐border microvilli and plasma membranes from the basal infoldings. J. Cell. Biol. 54: 232–245, 1972.
 120. Herzlinger, D. A., T. E. Easton, and G. K. Ojakian. The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule. J. Cell. Biol. 93: 269–277, 1982.
 121. Herzlinger, D. A., and G. K. Ojakian. Studies on the development and maintenance of epithelial cell surface polarity with monoclonal antibodies. J. Cell. Biol. 98: 1777–1787, 1984.
 122. Hilden, S., and B. Sacktor. Potential‐dependent d‐glucose uptake by renal brush border membrane vesicles in the absence of sodium. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F340–F345, 1982.
 123. Hildmann, B., C. Storelli, G. Danisi, and H. Murer. Regulation of Na+‐Pi cotransport by 1,25‐dihydroxyvitamin D3 in rabbit duodenal brush‐border membrane. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G533–G539, 1982.
 124. Hise, M. K., W. W. Mantulin, and E. J. Weinman. Fluidity and composition of brush border and basolateral membranes from rat kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F434–F439, 1984.
 125. Hoffmann, N. Natrium‐Phosphat‐Cotransport in isolierte Bürstensaumvesikel der Rattenniere. Frankfurt: Johann Wolfgang Goethe University, 1984. Dissertation.
 126. Hong Que, N. T., P. Gmaj, and S. Angielski. Uncoupling of Na+‐dependent solute transport in renal brush border membranes of maleate‐treated rats. Acta Biochim. Pol. 29: 275–287, 1982.
 127. Horster, M. F., and M. Stopp. Transport and metabolic functions in cultured renal tubule cells. Kidney Int. 29: 46–53, 1986.
 128. Hruska, K., B. Kurnik, and M. Tsutsumi. The biochemical modifications of the brush border membrane induced by vitamin D and parathyroid hormone in their actions on phosphate transport. Adv. Exp. Med. Biol. 178: 3–19, 1984.
 129. Igarashi, P., and P. S. Aronson. Covalent modification of the renal Na+/H+ exchanger by N,N'‐dicyclohexylcarbodiimide. J. Biol. Chem. 262: 860–868, 1987.
 130. Imbert, M., D. Chabardès, M. Montégut, A. Clique, and F. Morel. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments. Pflugers Arch. 354: 213–228, 1975.
 131. Inoue, M., Interorgan metabolism and membrane transport of glutathione and related compounds. In: Renal Biochemistry. Cells, Membranes, Molecules, edited by R. K. H. Kinne. Amsterdam: Elsevier, 1985, p. 225–269.
 132. Inui, K.‐I., T. Okano, M. Takano, S. Kitazawa, and R. Hori. A simple method for the isolation of basolateral plasma membrane vesicles from rat kidney cortex. Enzyme activities and some properties of glucose transport. Biochim. Biophys. Acta 647: 150–154, 1981.
 133. Iyengar, R., D. S. Mailman, and G. Sachs. Purification of distinct plasma membranes from canine renal medulla. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F247–F254, 1978.
 134. Jard, S., D. Butlen, B. Cantau, G. Guillon, J. Marie, and C. Roy. The mechanism of action of antidiuretic hormone. Adv. Nephrol. 13: 163–177, 1984.
 135. Jayes, R. L., Jr., and A. S. Levey. Donor specific transfusions or cyclosporine for related‐donor kidney transplantation? Kidney Int. 36: 485–496, 1989.
 136. Jean, T., P. Poujeol, and P. Ripoche. Taurine transport in brush border membrane vesicles isolated from hyper‐ and normotaurinuric mouse kidney. Renal Physiol. 7: 349–356, 1984.
 137. Jehmlich, K., J. Sablotni, W. Haase, and G. Burckhardt. Identification of H+‐ATPase subunits in rat renal brush‐border membranes by labeling and antibody binding. Pflugers Arch. 412: R45, 1988.
 138. Jenkins, A. D., T. P. Dousa, and L. H. Smith. Transport of citrate across renal brush border membrane: effects of dietary acid and alkali loading. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F590–F595, 1985.
 139. Jørgensen, P. L. Purification and characterization of (Na+ + K+)‐ATPase. III. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim. Biophys. Acta 356: 36–52, 1974.
 140. Jørgensen, P. L. Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60: 864–917, 1980.
 141. Jørgensen, P. L., J. Petersen, and W. D. Rees. Identification of a Na+,K+,Cl−‐cotransport protein of Mr 34,000 from kidney by photolabeling with [3H]bumetanide. The protein is associated with cytoskeleton components. Biochim. Biophys. Acta 775: 105–110, 1984.
 142. Kahn, A. M. Indirect coupling between sodium and urate transport in the proximal tubule. Kidney Int. 36: 378–384, 1989.
 143. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. In: Advances in Anatomy: Embryology and Cell Biology, edited by A. Brodal, W. Hild, J. van Limborgh, R. Ortmann, T. H. Schiebler, G. Töndury, E. Wolff. Berlin: Springer, 1979, vol. 56.
 144. Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush III. Monoclonal antibody to Na,K‐ATPase: immunocytochemical localization along nephron segments. Kidney Int. 28: 899–913, 1985.
 145. Katz, A. I., and M. Hayashi. The kidney in potassium depletion: evidence for a reabsorptive K pump in medullary collecting tubules. J. Clin. Chem. Clin. Biochem. 24: 682–683, 1986.
 146. Kaunitz, J. D., R. D. Gunther, and G. Sachs. Characterization of an electrogenic ATP and chloride‐dependent proton translocating pump from rat renal medulla. J. Biol. Chem. 260: 11567–11573, 1985.
 147. Kaysen, G. A., C. Rosenthal, and F. N. Hutchison. GFR increases before renal mass of ODC activity increases in rats fed high protein diets. Kidney Int. 36: 441–446, 1989.
 148. Kempson, S. A. Retention of phosphate transport function of rat renal brush border membranes isolated from frozen cortex. Biochem. Pharmacol. 31: 251–254, 1982.
 149. Kempson, S. A., and T. P. Dousa. Phosphate transport across renal cortical brush border membrane vesicles from rats stabilized on a normal, high or low phosphate diet. Life Sci. 24: 881–887, 1979.
 150. Kempson, S. A., and T. P. Dousa. Mechanisms of NAD action in regulation of renal brush border membrane transport of phosphate. Adv. Exp. Med. Biol. 208: 59–66, 1986.
 151. Kempson, S. A., J. C. Kowalski, and J. B. Puschett. Direct effect of metolazone on sodium‐dependent transport across the renal brush border membrane. J. Lab. Clin. Med. 101: 308–316, 1983.
 152. Kempson, S. A., J. C. Kowalski, and J. B. Puschett. Inhibition of renal brush border phosphate transport and stimulation of renal gluconeogenesis by cyclic AMP and parathyroid hormone. Biochem. Pharmacol. 32: 1533–1537, 1983.
 153. Kempson, S. A., S. T. Turner, A. N. K. Yusufi, and T. P. Dousa. Actions of NAD+ on renal brush border transport of phosphate in vivo and in vitro. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F948–F955, 1985.
 154. Kenny, A. J., and A. G. Booth. Microvilli: their ultrastructure, enzymology and molecular organization. Essays Biochem. 14: 1–44, 1978.
 155. Kenny, A. J., A. G. Booth, S. G. George, J. Ingram, D. Kershaw, E. J. Wood, and A. R. Young. Dipeptidyl peptidase IV, a kidney brush‐border serine peptidase. Biochem. J. 157: 169–182, 1976.
 156. Kenny, A. J., and I. S. Fulcher. Microvillar endopeptidase, an enzyme with special topological features and a wide distribution. Ciba Found. Symp. 95: 12–33, 1983.
 157. Kenny, A. J., and S. Maroux. Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev. 62: 91–128, 1982.
 158. Kerjaschki, D., L. Noronha‐Blob, B. Sacktor, and M. G. Farquhar. Microdomains of distinctive glycoprotein composition in the kidney proximal tubule brush border. J. Cell. Biol. 98: 1505–1513, 1984.
 159. Kerr, M. A., and A. J. Kenny. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem. J. 137: 477–488, 1974.
 160. Kessler, R. J., and D. A. Vaughn. Divalent metal is required for both phosphate transport and phosphate binding to phosphorin, a proteolipid isolated from brush‐border membrane vesicles. J. Biol. Chem. 259: 9059–9063, 1984.
 161. Kessler, R. J., D. A. Vaughn, and D. D. Fanestil. Phosphate‐binding proteolipid from brush border. J. Biol. Chem. 257: 14311–14317, 1982.
 162. Kiebzak, G. M., and T. P. Dousa. Thyroid hormones increase renal brush border membrane transport of phosphate in X‐linked hypophosphatemic (HYP) mice. Endocrinology 117: 613–619, 1985.
 163. Kinne, R. New approaches to study renal metabolism: isolated single cells. Miner. Electrolyte Metab. 9: 270–275, 1983.
 164. Kinne, R., Biochemical aspects of tubular transport. In: Renal Tubular Disorders. Pathophysiology, Diagnosis, and Management, edited by H. C. Gonick and V. M. Buckalew, Jr. New York: Marcel Dekker, 1985, p. 1–45.
 165. Kinne, R., Transport function of renal cell membranes: sodium cotransport systems. In: Renal Biochemistry. Cells, Membranes, Molecules, edited by R. H. K. Kinne. Amsterdam: Elsevier, 1985, p. 99–142.
 166. Kinne, R. K. H. The Na‐K‐Cl cotransporter in the kidney. Ann. N.Y. Acad. Sci. 574: 63–74, 1989.
 167. Kinne, R. K. H., Transport in isolated cells from defined nephron segments. In: Methods in Enzymology. Vol. 191 Biomembranes, edited by S. Fleischer and B. Fleischer. San Diego: Academic Press, 1990, p. 380–409.
 168. Kinne, R. K. H. Selectivity and direction: plasma membranes in renal transport. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F153–162, 1991.
 169. Kinne, R., M. E. M. Da Cruz, and J. T. Lin. Sodium‐d‐glucose cotransport system: biochemical analysis of active sites. Curr. Top. Membr. Transp. 20: 245–258, 1984.
 170. Kinne, R., and R. G. Faust. Incorporation of d‐glucose‐, l‐alanine‐, and phosphate‐transport systems from rat renal brush‐border membranes into liposomes. Biochem. J. 168: 311–314, 1977.
 171. Kinne, R., J. A. Hannafin, and B. König. Role of NaCl—KCl cotransport system in active chloride absorption and secretion. Ann. N.Y. Acad. Sci. 456: 198–206, 1985.
 172. Kinne, R., and E. Kinne‐Saffran. Isolierung und enzymatische Charakterisierung einer Bürstensaumfraktion der Rattenniere. Pflugers Arch. 308: 1–15, 1969.
 173. Kinne, R., and E. Kinne‐Saffran. Differentiation of cell faces in epithelia. In: Molecular Specialization and Symmetry in Membrane Function, edited by 2A. Solomon and M. Karnovsky. Cambridge, MA: Harvard University, 1978, p. 272–293.
 174. Kinne, R., E. Kinne‐Saffran, B. Schölermann, and H. Schütz. The anion specificity of the sodium‐potassium‐chloride cotransporter in rabbit kidney outer medulla: studies on medullary plasma membranes. Pflugers Arch. 407: S168–S173, 1986.
 175. Kinne, R., H. Murer, E. Kinne‐Saffran, M. Thees, and G. Sachs. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush‐border microvilli and basal‐lateral plasma membranes. J. Membr. Biol. 21: 375–395, 1975.
 176. Kinne, R., and G. Sachs. Isolation and characterization of biological membranes. In: Physiology of Membrane Disorders, edited by T. E. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schultz. New York: Plenum, 1986, p. 83–92.
 177. Kinne, R., J.‐E. Schmitz, and E. Kinne‐Saffran. The localization of the Na+‐K+‐ATPase in the cells of rat kidney cortex. A study on isolated plasma membranes. Pflugers Arch. 329: 191–206, 1971.
 178. Kinne‐Saffran, E., Transport function of renal cell membranes: ATP‐driven transport systems. In: Renal Biochemistry. Cells, Membranes, Molecules, edited by R. K. H. Kinne. Amsterdam: Elsevier, 1985, p. 143–174.
 179. Kinne‐Saffran, E., and R. Kinne. ATP driven proton transport systems in renal proximal tubule and collecting duct plasma membranes. In: Hydrogen Ion Transport, edited by J. G. Forte, D. G. Warnock, and F. C. Rector, Jr. New York: John Wiley & Sons, 1984, p. 247–252.
 180. Kinsella, J. L., P. D. Holohan, N. I. Pessah, and C. R. Ross. Isolation of luminal and antiluminal membranes from dog kidney cortex. Biochim. Biophys. Acta 552: 468–477, 1979.
 181. Kippen, I., B. Hirayama, J. R. Klinnenberg, and E. M. Wright. Transport of p‐aminohippuric acid, uric acid and glucose in highly purified rabbit renal brush border membranes. Biochim. Biophys. Acta 556: 161–174, 1979.
 182. Kitlar, T., A. I. Morrison, R. Kinne, and J. Deutscher. Purification of a putative Na+/d‐glucose cotransporter from pig kidney brush border membranes on a phlorizin affinity column. FEBS Lett. 234: 115–119, 1988.
 183. Koeppen‐Hagemann, I., S. Bachmann, W. W. Minuth, and W. Kriz. Immunohistochemical localization of a protein fraction derived from rabbit renal papilla. Histochemistry 81: 457–464, 1984.
 184. Koepsell, H., H. Menuhr, T. F. Wissmueller, I. Ducis, and W. Haase. Reconstitution of d‐glucose transport and high‐affinity phlorizin binding after solubilization of kidney brush border proteins. Ann. N.Y. Acad. Sci. 358: 267–281, 1980.
 185. Koob, R., M. Zimmermann, W. Schoner, and D. Drenckhahn. Colocalization and coprecipitation of ankyrin and Na+,K+‐ATPase in kidney epithelial cells. Eur. J. Cell. Biol. 45: 230–237, 1987.
 186. Kozak, E. M., and S. S. Tate. Glutathione‐degrading enzymes of microvillous membranes. J. Biol. Chem. 257: 6322–6327, 1982.
 187. Kreuter, D., D. C. Lafreniere, and H. Rasmussen. The role of fatty acids in the regulation of brush‐corder Ca2+ transport. Biochim. Biophys. Acta 777: 261–266, 1984.
 188. LaBelle, E. F. Reconstituted amiloride‐inhibited sodium transporter from rabbit kidney medulla is responsible for Na+‐H+ exchange. Biochim. Biophys. Acta 770: 79–92, 1984.
 189. LaBelle, E. F., and S. O. Lee. Inhibition by amiloride of sodium transport into rabbit kidney medulla microsomes. Biochim. Biophys. Acta 685: 367–378, 1982.
 190. Landmann, L., S. Ruetz, L. Bianchi, and P. J. Meier. A domain specific 100 kD glycoprotein is involved in apical transport of bile acids in liver, ileum and kidney epithelial cells. In: Proc. Workshop Falk Symp., No. 43., II, Modulation of Liver Cell Expression, Basel, 1986. Freiburg: Falk Foundation e.V., 1986, p. 69.
 191. Le Grimellec, C., S. Carrière, J. Cardinal, and M.‐C. Giocondi. Fluidity of brush border and basolateral membranes from human kidney cortex. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F227–F231, 1983.
 192. Le Grimellec, C., M.‐C. Giocindi, B. Carrière, S. Carrière, and J. Cardinal. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F246–F253, 1982.
 193. Lever, J., B. G. Kennedy, and R. Vasa. Amino acid transport in a kidney epithelial cell line (MDCK): characteristics of Na+/amino acid symport in membrane vesicles and basolateral localization in cell monolayers. Arch. Biochem. Biophys. 234: 330–340, 1984.
 194. Levine, B. S., K. Ho, J. A. Kraut, J. W. Coburn, K. Kurokawa. Effect of metabolic acidosis on phosphate transport by the renal brush‐border membrane. Biochim. Biophys. Acta 727: 7–12, 1983.
 195. Lewis, S. A., and N. K. Wills. Interaction between apical and basolateral membranes during sodium transport across tight epithelia. Soc. Gen. Physiol. Ser. 36: 93–107, 1981.
 196. Liang, C. T., and B. Sacktor. Preparation of renal cortex basal—lateral and brush border membranes. Localization of adenylate cyclase and guanylate cyclase activities. Biochim. Biophys. Acta 466: 474–487, 1977.
 197. Lin, J.‐T. Biochemical properties of the Na—d‐glucose cotransport system in renal brush border membranes. Ann. N.Y. Acad. Sci. 1985, 456: 97–100.
 198. Lin, J.‐T., M. E. M. Da Cruz, S. Riedel, and R. Kinne. Partial purification of hog kidney sodium—d‐glucose cotransport system by affinity chromatography on a phlorizin polymer. Biochim. Biophys. Acta 640: 43–54, 1981.
 199. Lin, J.‐T., A. Stroh, and R. Kinne. Renal sodium—d‐glucose cotransport system. Involvement of tyrosine residues in sodium transporter interaction. Biochim. Biophys. Acta 692: 210–217, 1982.
 200. Lin, J.‐T., K. Szwarc, R. Kinne, and C. Y. Jung. Structural state of the Na+/d‐glucose cotransporter in calf kidney brush‐border membranes. Target size analysis of Na+‐dependent phlorizin binding and Na+‐dependent d‐glucose transport. Biochim. Biophys. Acta 777: 201–208, 1984.
 201. Lin, J.‐T., K. Szwarc, and A. Stroh. Chromatofocussing and centrifugal reconstitution as tools for the separation and characterization of the Na+‐cotransport system of the brush‐border membrane. Biochim. Biophys. Acta 774: 254–260, 1984.
 202. Mamelok, R. D., D. F. Groth, and S. B. Prusiner. Separation of membrane‐bound γ‐glutamyl transpeptidase from brush border transport and enzyme activities. Biochemistry 19: 2367–2373, 1980.
 203. McIntyre, T. M., and N. P. Curthoys. The interorgan metabolism of glutathione. Int. J. Biochem. 12: 545–551, 1980.
 204. Medow, M. S., K. S. Roth, K. Ginkinger, and S. Segal. Renal brush‐border‐membrane vesicles prepared from new‐born rats by free‐flow electrophoresis and their proline uptake. Biochem. J. 214: 209–214, 1983.
 205. Mengual, R., and P. Sudaka. The mechanism of Na+—l‐lactate cotransport by brush border membrane vesicles from horse kidney: analysis of rapid equilibrium kinetics in absence of membrane potential. J. Membr. Biol. 71: 163–171, 1983.
 206. Minuth, W. W., G. Lauer, S. Bachmann, and W. Kriz. Immunocytochemical localization of a renal glycoprotein (gpCDI) synthesized by cultured collecting duct cells. Histochemistry 80: 171–182, 1984.
 207. Minuth, W. W. Neonatal rabbit kidney cortex in culture as tool for the study of collecting duct formation and nephron differentiation. Differentiation 36: 12–22, 1987.
 208. Mircheff, A. K., H. E. Ives, V. J. Yee, and D. G. Warnock. Na+/H+ antiporter in membrane populations resolved from a renal brush border vesicle preparation. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F853–F858, 1984.
 209. Mircheff, A. K., I. Kippen, B. Hirayama, and E. M. Wright. Delineation of sodium‐stimulated amino acid transport pathways in rabbit kidney brush border vesicles. J. Membr. Biol. 64: 113–122, 1982.
 210. Molitoris, B. A., A. C. Alfrey, R. A. Harris, and F. R. Simon. Renal apical membrane cholesterol and fluidity in regulation of phosphate transport. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F12–F19, 1985.
 211. Molitoris, B. A., and F. R. Simon. Renal cortical brush‐border and basolateral membranes: cholesterol and phospholipid composition and relative turnover. J. Membr. Biol. 83: 207–215, 1985.
 212. Molitoris, B. A., P. D. Wilson, R. W. Schrier, and F. R. Simon. Ischema induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores. J. Clin. Invest. 76: 2097–2105, 1985.
 213. Molony, D. A., W. B. Reeves, and T. E. Andreoli. Na+:K+:2Cl− cotransport and the thick ascending limb. Kidney Int. 36: 418–426, 1989.
 214. Morel, F. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F159–F164, 1981.
 215. Morel, F., D. Chabardes, and M. Imbert. Functional segmentation of the rabbit distal tubule by microdetermination of hormone‐dependent adenylate cyclase activity. Kidney Int. 9: 264–277, 1976.
 216. Morsing, P., A. Stenberg, and A. E. G. Persson. Effect of thromboxane inhibition on tubuloglomerular feedback in hydronephrotic kidneys. Kidney Int. 36: 447–452, 1989.
 217. Morrison, I. A., M. Panayotova‐Heiermann, G. Feigl, B. Schölermann, and R. K. H. Kinne. Sequence comparison of the sodium—d‐glucose cotransport system in rabbit renal and intestinal epithelia. Biochim. Biophys. Acta (in press).
 218. Müller, G. A., and C. Müller. Characterisation of renal antigens on distinct parts of the human nephron by monoclonal antibodies. Klin. Wochenschr. 61: 893–902, 1983.
 219. Murer, H., G. Ahern, J. Biber, G. Cassano, P. Gmaj, and B. Stieger. Co‐ and counter‐transport mechanisms in brush border membranes and basal‐lateral membranes of intestine and kidney. J. Exp. Biol. 106: 163–180, 1983.
 220. Murer, H., C. Evers, R. Stoll, and R. Kinne. The effect of parathyroid hormone (PTH) and dietary phosphate on the sodium‐dependent phosphate transport system located in the rat renal brush border membrane. Curr. Probl. Clin. Biochem. 8: 455–462, 1977.
 221. Nash, B., and S. S. Tate. In vitro translation and processing of rat kidney γ‐glutamyl transpeptidase. J. Biol. Chem. 259: 678–685, 1984.
 222. Nassif, G., T. Jean, P. Poujeol, and P. Ripoche. Membrane potential changes during d‐glucose and l‐arginine transport across rat renal brush border membranes. Biophys. J. 41: 70a, 1983.
 223. Neeb, M., H. Fasold, and H. Koepsell. Identification of the d‐glucose binding polypeptide of the renal Na+—d‐glucose cotransporter with a covalently binding d‐glucose analog. FEBS Lett. 182: 139–144, 1985.
 224. Neeb, M., U. Kunz, and H. Koepsell. Identification of d‐glucose—binding polypeptides which are components of the renal Na+—d‐glucose cotransporter. J. Biol. Chem. 262: 10718–10727, 1987.
 225. Nord, E., S. H. Wright, I. Kippen, and E. M. Wright. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F456–F462, 1982.
 226. Ojakian, G. K., and D. A. Herzlinger. Studies of kidney epithelial cell surfaces using monoclonal antibodies. Anat. Rec. Suppl. 1: 85–102, 1983.
 227. Peerce, B. E., G. Sachs, and E. M. Wright. Conformational changes in the glucose/Na‐cotransporter of intestinal brush borders. Federation Proc. 43: 297, 1984.
 228. Peerce, B. E., and E. M. Wright. Conformational changes in the intestinal brush border sodium—glucose cotransporter labeled with fluorescein isothiocyanate. Proc. Natl. Acad. Sci. USA 81: 2223–2226, 1984.
 229. Peerce, B. E., and E. M. Wright. Sodium‐induced conformational changes in the glucose transporter of intestinal brush borders. J. Biol. Chem. 259: 14105–14112, 1984.
 230. Perna, A. F., M. Smogorzewski, and S. G. Massry. Effects of verapamil on the abnormalities in fatty acid oxidation of myocardium. Kidney Int. 36: 453–457, 1989.
 231. Pfaller, W., G. Gstraunthaler, and P. Kotanko. Compartments and surfaces in renal cells. In: Renal Biochemistry. Cells, Membranes, Molecules, edited by R. K. H. Kinne. Amsterdam: Elsevier, 1985, p. 1–62.
 232. Pfeuffer, E., R.‐M. Dreher, H. Metzger, and T. Pfeuffer. Catalytic unit of adenylate cyclase: purification and identification by affinity crosslinking. Proc. Natl. Acad. Sci. USA 82: 3086–3090, 1985.
 233. Prigent, A., M. Bichara, and M. Paillard. Hydrogen transport in papillary collecting duct of rabbit kidney. Am. J. Physiol. 248 (Cell Physiol. 17): C241–C246, 1985.
 234. Quackenbush, E. J., A. Gougos, R. Baumal, and M. Letarte. Differential localization within human kidney of five membrane proteins expressed on acute lymphoblastic leukemia cells. J. Immunol. 136: 118–124, 1986.
 235. Racker, E. Resolution and reconstitution of biological pathways from 1919 to 1984. Fed. Proc. 42: 2899–2909, 1983.
 236. Reeves, W. B., G. A. McDonald, P. Mehta, and T. E. Andreoli. Activation of K+ channels in renal medullary vesicles by cAMP‐dependent protein kinase. J. Membr. Biol. 109: 65–72, 1989.
 237. Reeves, W. B., M. A. Dudley, P. Mehta, and T. E. Andreoli. Diluting power of thick limbs of Henle. II. Bumetanide‐sensitive 22Na+ influx in medullary vesicles. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 24) 255: F1138–F1144, 1988.
 238. Reiss, U., and B. Sacktor. Kidney brush border membrane maltase: purification and properties. Arch. Biochem. Biophys. 209: 342–348, 1981.
 239. Reynolds, R. A., H. Wald, P. D. McNamara, and S. Segal. An improved method for isolation of basolateral membranes from rat kidney. Biochim. Biophys. Acta 601: 92–100, 1980.
 240. Rodman, J. S., D. Kerjaschki, E. Merisko, and M. G. Farquhar. Presence of an extensive clathrin coat on the apical plasmalemma of the rat kidney proximal tubule cell. J. Cell. Biol. 98: 1630–1636, 1984.
 241. Rodman, J. S., L. Seidman, and M. G. Farquhar. The membrane composition of coated pits, microvilli, endosomes, and lysosomes is distinctive in the rat kidney proximal tubule cell. J. Cell. Biol. 102: 77–87, 1986.
 242. Rodriguez‐Boulan, E., and P. J. I. Salas. External and internal signals for epithelial cell surface polarization. Annu. Rev. Physiol. 51: 741–754, 1989.
 243. Ronco, P., M. Geniteau, P. Poujeol, C. Melcion, P. Verroust, and A. Vandewalle. Characterization of monoclonal antibodies to rabbit renal cortical cells. Am. J. Physiol. 250 (Cell Physiol. 19): C506–C516, 1986.
 244. Ronco, P., C. Melcion, M. Geniteau, E. Ronco, L. Reininger, M. Galceran, and P. Verroust. Production and characterization of monoclonal antibodies against rat brush border antigens of the proximal convoluted tubule. Immunology 53: 87–95, 1984.
 245. Ronco, P., T. J. Neale, C. B. Wilson, M. Galceran, and P. Verroust. An immunopathologic study of a 330‐kD protein defined by monoclonal antibodies and reactive with anti‐RTEα5 antibodies and kidney eluates from active Heymann nephritis. J. Immunol. 136: 125–130, 1986.
 246. Sabolić, I., and G. Burckhardt. Effect of the preparation method on Na+‐H+ exchange and ion permeabilities in rat renal brush‐border membranes. Biochim. Biophys. Acta 772: 140–148, 1984.
 247. Sabolić, I., and G. Burckhardt. Characteristics of the proton pump in rat renal cortical endocytotic vesicles. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F817–F826, 1986.
 248. Sabolić, I., W. Haase, and G. Burckhardt. ATP‐dependent H+ pump in membrane vesicles from rat kidney cortex. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F835–F844, 1985.
 249. Sacktor, B. Electrogenic and electroneutral Na+ gradient‐dependent transport systems in the renal brush border membrane vesicle. Curr. Top. Membr. Transp. 13: 291–300, 1980.
 250. Sacktor, B., Na+ gradient—dependent transport systems in renal proximal tubule brushborder membrane vesicles. In: Membranes and Transport, edited by A. Martonosi. New York: Plenum, 1982, vol. 2, p. 197–206.
 251. Sacktor, B. Sodium‐coupled hexose transport. Kidney Int. 36: 342–350, 1989.
 252. Sakhrani, L. M., N. Tessitore, S. H. Wright, D. Varner, and S. G. Massry. Interactions between tricarboxylic acid cycle intermediates and phosphate uptake by proximal renal cells and renal brush border membranes. Miner. Electrolyte Metab. 11: 345–350, 1985.
 253. Scalery, V., Y.‐H. Huang, B. Hildman, and H. Murer. A simple isolation method for basal‐lateral plasma membranes from rat kidney cortex. Membr. Biochem. 4: 49–61, 1981.
 254. Schell, R. E., B. R. Stevens, and E. M. Wright. Kinetics of sodium‐dependent solute transport by rabbit renal and jejunal brush‐border vesicles using fluorescent dye. J. Physiol. [Lond.] 335: 307–318, 1983.
 255. Scherberich, J. E., F. W. Falkenberg, A. W. Mondorf, H. Müller, and G. Pfleiderer. Biochemical and immunological studies on isolated brush border membranes of human kidney cortex and their membrane surface proteins. Clin. Chim. Acta 55: 179–197, 1974.
 256. Schlondorff, D. Isolation and use of specific nephron segments and their cells in biochemical studies. Kidney Int. 30: 201–207, 1986.
 257. Schneider, E. G., and B. Sacktor. Sodium‐gradient dependent l‐glutamate transport in renal brush border membrane vesicles. Effect of an intravesicular—extravesicular potassium gradient. J. Biol. Chem. 255: 7645–7649, 1980.
 258. Schwab, S. J., S. Klahr, and M. R. Hammerman. Uptake of Pi in basolateral vesicles after release of unilateral ureteral obstruction. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F543–F547, 1984.
 259. Schwartz, G. J., J. Barasch, and Q. Al‐Awqati. Plasticity of functional epithelial polarity. Nature 318: 368–371, 1985.
 260. Schwartz, I. L., L. J. Shlatz, E. Kinne‐Saffran, and R. Kinne. Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone. Proc. Natl. Acad. Sci. USA 71: 2595–2599, 1974.
 261. Schwertz, D. W., J. I. Kreisberg, and M. A. Venkatachalam. Characterization of rat kidney proximal tubule brush border membrane‐associated phosphatidylinositol phosphodiesterase. Arch. Biochem. Biophys. 224: 555–567, 1983.
 262. Scott, D. M., C. MacDonald, H. Brzeski, and R. Kinne. Maintenance of expression of differentiated function of kidney cells following transformation by SV40 early region DNA. Exp. Cell. Res. 166: 391–398, 1986.
 263. Scott, D. M., K. Zierold, and R. Kinne. Development of differentiated characteristics in cultured kidney (thick ascending loop of Henle) cells. Exp. Cell Res. 162: 521–529, 1986.
 264. Scott, D. M. Differentiation in vitro of primary cultures and transfected cell lines of epithelial cells derived from the thick ascending limb of Henle's loop. Differentiation 36: 35–46, 1987.
 265. Scott, D. M. Sodium cotransport systems: cellular, molecular and regulatory aspects. BioEssays 7: 71–78, 1987.
 266. Sepúlveda, F. V., and J. D. Pearson. Localisation of alanine uptake by cultured renal epithelial cells (LLC‐PK1), to the basolateral membrane. J. Cell. Physiol. 118: 211–217, 1984.
 267. Shlatz, L. J., I. L. Schwartz, E. Kinne‐Saffran, and R. Kinne. Distribution of parathyroid hormone‐stimulated adenylate cyclase in plasma membranes of cells of the kidney cortex. J. Membr. Biol. 24: 131–144, 1975.
 268. Siegel, G. J., C. Holm, J. H. Schreiber, T. Desmond, and S. A. Ernst. Purification of mouse brain (Na+ +K+)‐ATPase catalytic unit, characterization of antiserum, and immunocytochemical localization in cerebellum, choroid plexus, and kidney. J. Histochem. Cytochem. 32: 1309–1318, 1984.
 269. Smogorzewski, M., V. M. Campese, and S. G. Massry. Abnormal norepinephrine uptake and release in brain synaptosomes in chronic renal failure. Kidney Int. 36: 458–465, 1989.
 270. Sommermeyer, M. G., T. C. Knauss, J. M. Weinberg, and H. D. Humes. Characterization of Ca2+ transport in rat renal brush‐border membranes and its modulation by phosphatidic acid. Biochem. J. 214: 37–46, 1983.
 271. Spater, H. W., M. S. Poruchynski, N. Quintana, M. Inoue, and A. B. Novikoff. Immunocytochemical localization of γ‐glutamyl transferase in rat kidney with protein A—horseradish peroxidase. Proc. Natl. Acad. Sei. USA 79: 3547–3550, 1982.
 272. Spiegel, S., R. Blumenthal, P. H. Fishman, and J. S. Handler. Gangliosides do not move from apical to basolateral plasma membrane in cultured epithelial cells. Biochim. Biophys. Acta 821: 310–318, 1985.
 273. Stokes, J. B., C. Grupp, and R. K. H. Kinne. Purification of rat papillary collecting duct cells: functional and metabolic assessment. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F251–F262, 1987.
 274. Stokes, J. B. Electroneutral NaCl transport in the distal tubule. Kidney Int. 36: 427–433, 1989.
 275. Stoll, R., H. Murer, H. Fleisch, and J.‐P. Bonjour. Effect of diphosphonate treatment on phosphate transport by renal brush border vesicles. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F13–F16, 1980.
 276. Stoll, R., R. Kinne, and H. Murer. Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush‐border vesicles. Biochem. J. 180: 465–470, 1979.
 277. Stoll, R., R. Kinne, H. Murer, H. Fleisch, and J.‐P. Bonjour. Phosphate transport by rat renal brush border membrane vesicles: influence of dietary phosphate, thyropara‐thyroidectomy, and 1,25‐dihydroxyvitamin D3. Pflugers Arch. 380: 47–52, 1979.
 278. Takahashi, M., P. Malathi, H. Preiser, and C. Y. Jung. Radiation inactivation studies on the rabbit kidney sodium‐dependent glucose transporter. J. Biol. Chem. 260: 10551–10556, 1985.
 279. Tate, S. S., and T. Maack. Biochemical and functional aspects of renal cell surface phenomena. In: Renal Biochemistry. Cells, Membranes, Molecules, edited by R. K. H. Kinne. Amsterdam: Elsevier, 1985, p. 63–98.
 280. Tenenhouse, H. S., and C. R. Scriver. The defect in transcellular transport of phosphate in the nephron is located in brush‐border membranes in X‐lined hypophosphatemia (hyp mouse model). Can. J. Biochem. 56: 640–646, 1978.
 281. Thierry, J., P. Poujeol, and P. Ripoche. Interactions between Na+‐dependent uptake of d‐glucose, phosphate and l‐alanine in rat renal brush border membrane vesicles. Biochim. Biophys. Acta 647: 203–210, 1981.
 282. Thuneberg, L., and J. Rostgaard. Isolation of brush border fragments from homogenates of rat and rabbit kidney cortex. Exp. Cell Res. 51: 123–140, 1968.
 283. Tsuji, A., Y. Matsuda, and N. Katunuma. Studies on the structure of γ‐glutamyltranspeptidase. II. Location of the segment anchoring γ‐glutamyltranspeptidase to the membrane. J. Biochem. 87: 1567–1571, 1980.
 284. Turner, R. J. Evidence for an essential carboxyl group associated with the active site of the renal outer cortical brush border membrane Na/glucose cotransporter. Biophys. J. 47: 273a, 1985.
 285. Turner, R. J., and J. N. George. Characterization of an essential disulfide bond associated with the active site of the renal brush‐border membrane d‐glucose transporter. Biochim. Biophys. Acta 769: 23–32, 1984.
 286. Turner, R. J., and E. S. Kempner. Radiation inactivation studies of the renal bush‐border membrane phlorizin‐binding protein. J. Biol. Chem. 257: 10794–10797, 1982.
 287. Turner, R. J., and A. Moran. Further studies of proximal tubular brush border membrane d‐glucose transport heterogeneity. J. Membr. Biol. 70: 37–45, 1982.
 288. Turner, R. J., and A. Moran. Stoichiometric studies of the renal outer cortical brush border membrane d‐glucose transporter. J. Membr. Biol. 67: 73–80, 1982.
 289. Turner, R. J., and M. Silverman. Sugar uptake into brush border vesicles from dog kidney. I. Specificity. Biochim. Biophys. Acta 507: 305–321, 1978.
 290. Turner, R. J., and M. Silverman. Sugar uptake into brush border vesicles from dog kidney. II. Kinetics. Biochim. Biophys. Acta 511: 470–486, 1978.
 291. Turner, R. J., and M. Silverman. Interaction of phlorizin and sodium with the renal brush‐border membrane d‐glucose transporter: stoichiometry and order of binding. J. Membr. Biol. 58: 43–55, 1981.
 292. Turner, R. J., J. Thompson, S. Sariban‐Sohraby, and J. S. Handler. Monoclonal antibodies as probes of epithelial membrane polarization. J. Cell. Biol. 101: 2173–2180, 1985.
 293. Turner, S. T., and T. P. Dousa. Phosphate transport by brush‐border membranes from superficial and juxtamedullary cortex. Kidney Int. 27: 879–885, 1985.
 294. Ullrich, K. J., and F. Papavassiliou. Bicarbonate reabsorption in the papillary collecting duct of rats. Pflugers Arch. 389: 271–275, 1985.
 295. Vadiei, K., L. J. Brunner, and D. R. Luke. Effects of pentoxifylline in experimental acute renal failure. Kidney Int. 36: 466–470, 1989.
 296. Vandewalle, A., M. Tauc, F. Cluzeaud, P. Ronco, F. Chatelet, P. Verroust, and P. Poujeol. Indirect immunoselection of late distal cell populations from rabbit kidney cortex. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F386–F395, 1986.
 297. Verkman, A. S., W. I. Lencer, D. Brown, and D. A. Ausiello. Endosomes from kidney collecting tubule cells contain the vasopressin‐sensitive water channel. Nature 333: 268–269, 1988.
 298. Walter, H. Tightness and orientation of vesicles from guineapig kidney estimated from reactions of adenosine triphosphatase dependent on sodium and potassium ions. Eur. J. Biochem. 58: 595–601, 1975.
 299. Warnock, D. G., and J. Eveloff. K—Cl cotransport systems. Kidney Int. 36: 412–417, 1989.
 300. Weiss, E. R., K. Amsler, W. D. Dawson, and J. S. Cook. Development of Na+‐dependent hexose transport in cultured renal epithelial cells (LLC‐PK1). Ann. N.Y. Acad. Sci. 456: 420–435, 1985.
 301. Werner, A., J. Biber, and H. Murer. Cloning of the renal Na+/Pi cotransport system. J. Am. Soc. Nephrol. 1: 746, 1990.
 302. Wright, S. H., B. Hirayama, J. D. Kaunitz, I. Kippen, and E. M. Wright. Kinetics of sodium succinate cotransport across renal brush‐border membranes. J. Biol. Chem. 258: 5456–5462, 1983.
 303. Wright, S. H., I. Kippen, and E. M. Wright. Stoichiometry of Na+‐succinate cotransport in renal brush‐border membranes. J. Biol. Chem. 257: 1773–1778, 1982.
 304. Yanase, M., Y. Orita, N. Okada, T. Nakanishi, M. Horio, A. Ando and H. Abe. Decreased Na+‐gradient—dependent d‐glucose transport in brush‐border membrane vesicles from rabbits with experimental Fanconi syndrome. Biochim. Biophys. Acta 733: 95–101, 1983.
 305. Yusufi, A. N., N. Murayama, M. J. Keller, and T. P. Dousa. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex. Endocrinology 116: 2438–2449, 1985.
 306. Zelikovic, I., and R. W. Chesney. Sodium‐coupled amino acid transport in renal tubule. Kidney Int. 36: 351–359, 1989.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Rolf Kinne, E. Kinne‐Saffran. Renal Plasma Membranes: Isolation, General Properties, and Biochemical Components. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 2083-2117. First published in print 1992. doi: 10.1002/cphy.cp080245