Comprehensive Physiology Wiley Online Library

Vertebrate Gastrointestinal System

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Matching Food Intake, Throughput, Breakdown, and Absorption: Integrative Models
1.1 Utility of the Modeling Approach
1.2 General Features of Reactor‐Based Models
1.3 Reactor Models Applied to Animal Guts
2 Optimizing Retention Time to Rate and Efficiency of Nutrient Extraction
2.1 Matching Overall Digesta Retention Time to Metabolic Needs
2.2 Matching Pulsatile Patterns of Food Intake to Continuous‐Flow Digestive Systems
3 Chemical Breakdown
3.1 Survey of Chemical Breakdown of Food Components across Vertebrate Species
3.2 Specific Modulation of Catalytic Enzymes within Species in Relation to Diet
3.3 Modulation of Catalytic Enzymes during Development
4 Microbial Fermentation
4.1 Microbial Habitats in the Gut
4.2 Rates of Fermentation
4.3 Models of Fermentation Systems
4.4 Modulation of Fermentation Capacity and Digesta Retention
4.5 Modulation of Retention Times of Digesta Components
5 Absorption
5.1 Pathways for Absorption of Organic Solutes
5.2 Mechanistic Bases for Differences in Absorption within and between Species
5.3 Nutrient Absorption and Dietary Composition
5.4 Developmental Adaptation to Diet
5.5 Nutrient Absorption and Level of Food Intake
5.6 Absorption in Relation to other Digestive and Metabolic Processes
6 Water and Electrolytes
6.1 Mechanisms of Wafer and Ion Movement across Membranes
6.2 Quantitative Aspects and Adaptive Significance
7 Conclusion
7.1 Toward an Ecological Physiology of Food Exploitation
7.2 Areas for Future Research
Figure 1. Figure 1.

General characteristics of the vertebrate GI tract. In fish the stomach is usually present and the tract shows no external characteristics indicative of a large intestine. A wide range of fish, but not all, have pyloric ceca which vary in size, shape, and number (from one to thousands). Urine in fish is usually excreted via a separate orifice. In the adult amphibian there is a distinct enlargement of the hindgut into a large intestine, which terminates in a cloaca, a feature shared with reptiles and birds. The GI tract of reptiles is similar to that of amphibians, except that the most proximal segment of the large intestine may be dilated, especially in herbivores. Special characteristics of the avian digestive tract include division of the stomach's secretory and triturative functions into two distinct compartments (glandular stomach or proventriculus and ventriculus or gizzard) and the development of paired ceca, though some species have only a single cecum and others none.

adapted from ref. 504
Figure 2. Figure 2.

Simple model of digestion. The value on the ordinate is the net amount of energy or nutrient obtained, which is defined as the amount extracted minus the amount invested in extraction. The value on the abscissa is the retention time of food in the gut. The net amount obtained may initially decline with time between when food is ingested and when breakdown products are actually absorbed (signified by the letter A). Subsequently, material is rapidly absorbed (B), but eventually the rate of absorption declines when no more food can be digested (C). f(T) has the same shape as extraction efficiency plotted as a function of time. The net rate of extraction, f(T)/T, is maximized at retention time T″, whereas the efficiency of extraction is maximized at T″.

adapted from ref. 477
Figure 3. Figure 3.

Effect of time of day on luminal glucose concentration and osmolality in four regions of the GI tract of rats fed a 65% glucose ration. Each point represents means ±SE of four rats 160.

Figure 4. Figure 4.

Principal food components and endogenous digestive enzymes of vertebrates 506.

Figure 5. Figure 5.

A: Differential curves for aminopeptidase N (upper panel), microvillous membrane (middle panel), and isomaltase development (lower panel) in jejunal enterocytes. Rats were fed isoenergetic diets containing 20% or 5% protein (broken and continuous lines, respectively). Vertical lines: calculated times for maximal rates of expression of development function. Rates of change are given in absorbance unit·h–1 for isomaltase and aminopeptidase N activities and as μh–1 for increases in microvillous length 486. B: Microvillous elongation in migrating enterocytes. H‐pigs had been adapted to twice the food intake of L‐pigs. H‐ and L‐rats had been fed isoenergetic diets containing 20% or 5% protein, respectively. Environmental temperatures at which pigs were kept, in °C, indicated by 35 and 10—for example, Pig 10 H. 486.

Figure 6. Figure 6.

Fermentation of alfalfa components in the rumen of a cow fed once daily 389.

Figure 7. Figure 7.

Chemical reactors.

adapted from 403
Figure 8. Figure 8.

Forestomach of the kangaroo and proximal colon of the horse, which are best modeled as modified plug‐flow reactors 244.

Figure 9. Figure 9.

Predictions of optimal gut structure of herbivores eating three different quality diets at two different relative rates. Contours represent relative rates of energy gain. • Global maxima, ○ local maximum; NDF, neutral‐detergent fiber; PFR, plug‐flow reactor; CSTR, continuous‐flow, stirred‐tank reactor; FG, foregut; HG, hind‐gut (from ref. 9).

Figure 10. Figure 10.

Comparison between four mammalian species of rates of uptake of a homologous series of saturated fatty acid into discs of intact jejunum under conditions selected to vary the effective resistance of the unstirred water layer. Each point represents the means of values from nine to 12 mammals; S.E.M. was smaller than symbol size. Bulk phase was stirred at 600 rev/min (stirred) or unstirred (from ref. 529).

Figure 11. Figure 11.

Hypothetical models for short‐chain‐fatty‐acid (SCFA) transport. A: Proposed for mammalian rumen and colon, SCFA associates with H+ resulting from the luminal hydration of CO2 and diffuses nonionically into the cell. It exits the cell across the basolateral membrane by ionic or nonionic diffusion down a chemical gradient or becomes metabolized. Intracellular carbonic anhydrase (CA)–catalyzed hydration of CO2 results in the generation of bicarbonate and H+, which enter the lumen in exchange with Cl and Na, respectively, and subsequently aid in the continued diffusion of SCFA. Ac, acetate (from ref. 505). B: Proposed for tilapia small intestine, luminal SCFA enters across the brush border membrane in exchange for intracellular bicarbonate. At the basolateral membrane SCFA exits the cell by way of a low‐affinity SCFA–high‐affinity bicarbonate exchanger, whereby bicarbonate is transported against a gradient into the cell. Bicarbonate from blood, or formed by intracellular carbonic anhydrase, provides a substrate for the brush‐border SCFA–bicarbonate antiport mechanism. The resultant proton from the hydration reaction enters the lumen in exchange for luminal Na (not depicted) (from ref. 535).

Figure 12. Figure 12.

Relationships between intestinal surface area and body mass. Surface areas are nominal unless indicated otherwise and for fish and birds include ceca when present (see text). For the seven data sets, indicated as 1–7, there was no significant difference in slope, so the seven lines fit the data of each set to the common slope of 0.71. Calculated proportionality coefficients (intercept at unity) are fish, 1.06; amphibians, 0.63; reptiles, 1.08; birds, 1.43; mammals, 2.47; villous area of mammals, 16.44; microvillus area of mammals, 867. Sources of data: on mammals—269; on birds—143,254,277,281,284,286,386, (Afik and Karasov, unpublished data); on reptiles—290 (Karasov, unpublished data); on amphibians—56,538 (Buddington, personal communication); on fish—55,57.

Figure 13. Figure 13.

Observed modulation patterns for activities of intestinal nutrient transporters (ordinate) as a function of dietary levels or body stores of their substrates (abscissa). A: Glucose and fructose transporters of mouse intestine. B: Transporters for biotin, choline, thiamine, ascorbic acid, and pantothenic acid in intestine of rat, rat, rat, guinea pig, and mouse, respectively. C: Aspartate, proline, and peptide (carnosine) transporters of mouse intestine. AAs, amino acids. D: Iron, zinc, calcium, phosphate, and copper transporters of rat intestine. E: Transport of the amino acids lysine and histidine by mouse intestine 156.

Figure 14. Figure 14.

The intestine's summed uptake capacity for glucose divided by that for proline (ordinate) as a function of the percentage of protein or carbohydrate in the natural diet (abscissa). A: For eight species of fish: carnivores, closed circles; omnivores, open squares; herbivores, closed triangles; a species (monkeyface prickleback) that is carnivorous while small (open circle) but herbivorous when large (open triangle). Note that the ratio of glucose to proline uptake decreases with the proportion of protein in the natural diet, even though all eight species were studied while eating the same artificial diet 55. B: For eight species of bird. Note that the ratio of glucose to proline uptake increases with the proportion of carbohydrate in the natural diet, both in species from different orders maintained in captivity on different foods (open and closed symbols) and in species from the same order that eat the same ration (closed symbols) 284.

Figure 15. Figure 15.

Total L‐proline uptake (top) and carrier‐mediated D‐glucose uptake (bottom) by intact intestinal tissue in vertebrates. Uptake rates were measured by the everted sleeve method at saturating concentrations (25–50 mM). Incubation temperatures were 20°C for fish and 37°–40°C for all others. Tissues were taken from the region where transport activity was greatest (proximal or mid‐intestine). Open bars are carnivores and cross‐hatched bars are herbivore/omnivores (also includes frugivores and nectarivores in the case of birds). Standard errors are designated by vertical lines. Data for fish and reptiles were extracted from the literature by Karasov 268 and for birds were taken from references 143,277,284,286, and 385. Note that tissue‐specific uptake is similar among the taxonomic groups (lower in fish due to lower assay temperature) but that glucose uptake is lower in the carnivores.

Figure 16. Figure 16.

A: Model proposed for secretion of HCl by gastric parietal cells. Apical membrane contains an Na–H exchange pump and conductive pathways for passive transport of K and Cl. Basolateral membrane contains an Na–K pump, a K conductance, and separate Na–H and Cl–HCO3 exchange mechanisms.

adapted from ref. 424. B, C: Ileal transport pathways demonstrated in membrane vesicle studies (adapted from ref. 514). D: Model for coupled NaCl absorption in the proximal colon (adapted from ref. 202). E: Model for electrogenic Na absorption in distal colon. Schematic shows epithelium separating mucosal solution from serosal solution adapted from ref. 202
Figure 17. Figure 17.

Rates of hydrolysis and glucose transport as a function of assay temperature. A: Specific activity of trypsin from pyloric ceca of giant bluefin tuna. Specific activity of chymotrypsin as a function of temperature showed a similar pattern 508. B: Relative carrier‐mediated D‐glucose uptake at 50 mM, calculated as uptake at given temperature divided by uptake at 37°C measured in an adjacent intestinal sleeve from same animal (from ref. 290).



Figure 1.

General characteristics of the vertebrate GI tract. In fish the stomach is usually present and the tract shows no external characteristics indicative of a large intestine. A wide range of fish, but not all, have pyloric ceca which vary in size, shape, and number (from one to thousands). Urine in fish is usually excreted via a separate orifice. In the adult amphibian there is a distinct enlargement of the hindgut into a large intestine, which terminates in a cloaca, a feature shared with reptiles and birds. The GI tract of reptiles is similar to that of amphibians, except that the most proximal segment of the large intestine may be dilated, especially in herbivores. Special characteristics of the avian digestive tract include division of the stomach's secretory and triturative functions into two distinct compartments (glandular stomach or proventriculus and ventriculus or gizzard) and the development of paired ceca, though some species have only a single cecum and others none.

adapted from ref. 504


Figure 2.

Simple model of digestion. The value on the ordinate is the net amount of energy or nutrient obtained, which is defined as the amount extracted minus the amount invested in extraction. The value on the abscissa is the retention time of food in the gut. The net amount obtained may initially decline with time between when food is ingested and when breakdown products are actually absorbed (signified by the letter A). Subsequently, material is rapidly absorbed (B), but eventually the rate of absorption declines when no more food can be digested (C). f(T) has the same shape as extraction efficiency plotted as a function of time. The net rate of extraction, f(T)/T, is maximized at retention time T″, whereas the efficiency of extraction is maximized at T″.

adapted from ref. 477


Figure 3.

Effect of time of day on luminal glucose concentration and osmolality in four regions of the GI tract of rats fed a 65% glucose ration. Each point represents means ±SE of four rats 160.



Figure 4.

Principal food components and endogenous digestive enzymes of vertebrates 506.



Figure 5.

A: Differential curves for aminopeptidase N (upper panel), microvillous membrane (middle panel), and isomaltase development (lower panel) in jejunal enterocytes. Rats were fed isoenergetic diets containing 20% or 5% protein (broken and continuous lines, respectively). Vertical lines: calculated times for maximal rates of expression of development function. Rates of change are given in absorbance unit·h–1 for isomaltase and aminopeptidase N activities and as μh–1 for increases in microvillous length 486. B: Microvillous elongation in migrating enterocytes. H‐pigs had been adapted to twice the food intake of L‐pigs. H‐ and L‐rats had been fed isoenergetic diets containing 20% or 5% protein, respectively. Environmental temperatures at which pigs were kept, in °C, indicated by 35 and 10—for example, Pig 10 H. 486.



Figure 6.

Fermentation of alfalfa components in the rumen of a cow fed once daily 389.



Figure 7.

Chemical reactors.

adapted from 403


Figure 8.

Forestomach of the kangaroo and proximal colon of the horse, which are best modeled as modified plug‐flow reactors 244.



Figure 9.

Predictions of optimal gut structure of herbivores eating three different quality diets at two different relative rates. Contours represent relative rates of energy gain. • Global maxima, ○ local maximum; NDF, neutral‐detergent fiber; PFR, plug‐flow reactor; CSTR, continuous‐flow, stirred‐tank reactor; FG, foregut; HG, hind‐gut (from ref. 9).



Figure 10.

Comparison between four mammalian species of rates of uptake of a homologous series of saturated fatty acid into discs of intact jejunum under conditions selected to vary the effective resistance of the unstirred water layer. Each point represents the means of values from nine to 12 mammals; S.E.M. was smaller than symbol size. Bulk phase was stirred at 600 rev/min (stirred) or unstirred (from ref. 529).



Figure 11.

Hypothetical models for short‐chain‐fatty‐acid (SCFA) transport. A: Proposed for mammalian rumen and colon, SCFA associates with H+ resulting from the luminal hydration of CO2 and diffuses nonionically into the cell. It exits the cell across the basolateral membrane by ionic or nonionic diffusion down a chemical gradient or becomes metabolized. Intracellular carbonic anhydrase (CA)–catalyzed hydration of CO2 results in the generation of bicarbonate and H+, which enter the lumen in exchange with Cl and Na, respectively, and subsequently aid in the continued diffusion of SCFA. Ac, acetate (from ref. 505). B: Proposed for tilapia small intestine, luminal SCFA enters across the brush border membrane in exchange for intracellular bicarbonate. At the basolateral membrane SCFA exits the cell by way of a low‐affinity SCFA–high‐affinity bicarbonate exchanger, whereby bicarbonate is transported against a gradient into the cell. Bicarbonate from blood, or formed by intracellular carbonic anhydrase, provides a substrate for the brush‐border SCFA–bicarbonate antiport mechanism. The resultant proton from the hydration reaction enters the lumen in exchange for luminal Na (not depicted) (from ref. 535).



Figure 12.

Relationships between intestinal surface area and body mass. Surface areas are nominal unless indicated otherwise and for fish and birds include ceca when present (see text). For the seven data sets, indicated as 1–7, there was no significant difference in slope, so the seven lines fit the data of each set to the common slope of 0.71. Calculated proportionality coefficients (intercept at unity) are fish, 1.06; amphibians, 0.63; reptiles, 1.08; birds, 1.43; mammals, 2.47; villous area of mammals, 16.44; microvillus area of mammals, 867. Sources of data: on mammals—269; on birds—143,254,277,281,284,286,386, (Afik and Karasov, unpublished data); on reptiles—290 (Karasov, unpublished data); on amphibians—56,538 (Buddington, personal communication); on fish—55,57.



Figure 13.

Observed modulation patterns for activities of intestinal nutrient transporters (ordinate) as a function of dietary levels or body stores of their substrates (abscissa). A: Glucose and fructose transporters of mouse intestine. B: Transporters for biotin, choline, thiamine, ascorbic acid, and pantothenic acid in intestine of rat, rat, rat, guinea pig, and mouse, respectively. C: Aspartate, proline, and peptide (carnosine) transporters of mouse intestine. AAs, amino acids. D: Iron, zinc, calcium, phosphate, and copper transporters of rat intestine. E: Transport of the amino acids lysine and histidine by mouse intestine 156.



Figure 14.

The intestine's summed uptake capacity for glucose divided by that for proline (ordinate) as a function of the percentage of protein or carbohydrate in the natural diet (abscissa). A: For eight species of fish: carnivores, closed circles; omnivores, open squares; herbivores, closed triangles; a species (monkeyface prickleback) that is carnivorous while small (open circle) but herbivorous when large (open triangle). Note that the ratio of glucose to proline uptake decreases with the proportion of protein in the natural diet, even though all eight species were studied while eating the same artificial diet 55. B: For eight species of bird. Note that the ratio of glucose to proline uptake increases with the proportion of carbohydrate in the natural diet, both in species from different orders maintained in captivity on different foods (open and closed symbols) and in species from the same order that eat the same ration (closed symbols) 284.



Figure 15.

Total L‐proline uptake (top) and carrier‐mediated D‐glucose uptake (bottom) by intact intestinal tissue in vertebrates. Uptake rates were measured by the everted sleeve method at saturating concentrations (25–50 mM). Incubation temperatures were 20°C for fish and 37°–40°C for all others. Tissues were taken from the region where transport activity was greatest (proximal or mid‐intestine). Open bars are carnivores and cross‐hatched bars are herbivore/omnivores (also includes frugivores and nectarivores in the case of birds). Standard errors are designated by vertical lines. Data for fish and reptiles were extracted from the literature by Karasov 268 and for birds were taken from references 143,277,284,286, and 385. Note that tissue‐specific uptake is similar among the taxonomic groups (lower in fish due to lower assay temperature) but that glucose uptake is lower in the carnivores.



Figure 16.

A: Model proposed for secretion of HCl by gastric parietal cells. Apical membrane contains an Na–H exchange pump and conductive pathways for passive transport of K and Cl. Basolateral membrane contains an Na–K pump, a K conductance, and separate Na–H and Cl–HCO3 exchange mechanisms.

adapted from ref. 424. B, C: Ileal transport pathways demonstrated in membrane vesicle studies (adapted from ref. 514). D: Model for coupled NaCl absorption in the proximal colon (adapted from ref. 202). E: Model for electrogenic Na absorption in distal colon. Schematic shows epithelium separating mucosal solution from serosal solution adapted from ref. 202


Figure 17.

Rates of hydrolysis and glucose transport as a function of assay temperature. A: Specific activity of trypsin from pyloric ceca of giant bluefin tuna. Specific activity of chymotrypsin as a function of temperature showed a similar pattern 508. B: Relative carrier‐mediated D‐glucose uptake at 50 mM, calculated as uptake at given temperature divided by uptake at 37°C measured in an adjacent intestinal sleeve from same animal (from ref. 290).

References
 1. Abrams, C. K., M. Hamosh, T. C. Lee, A. F. Ansher, M. J. Collen, J. H. Lewis, S. B. Benjamin, and P. Hamosh. Gastric lipase: localization in the human stomach. Gastroenterology 95: 1460–1464, 1988.
 2. Achinewhu, S. C., and D. Hewitt. Assessment of the nutritional equality of proteins: the use of “ileal” digestibilities of amino acids as measures of their availabilities. Br. J. Nutr. 41: 559–591, 1979.
 3. Adibi, S. A., and D. W. Mercer. Protein digestion in human intestine as reflected in luminal, mucosal and plasma amino acid concentrations after meals. J. Clin. Invest. 52: 1586–1594, 1973.
 4. Adolph, E. F. Quantitative relations in the physiological constitutions of mammals. Science 109: 579–585, 1949.
 5. Afik, D., E. Caviedes Vidal, C. Martinez Del Rio, and W. H. Karasov. Dietary modulation of intestinal hydrolytic enzymes in yellow‐rumped warblers. Am. J. Physiol. 269 (Regulatory Integrative Comp. Physiol. 38): R413–R420, 1995.
 6. Afik, D., and W. H. Karasov. The trade‐offs between digestion rate and efficiency in warblers and their ecological implications. Ecology 76: 2247–2257, 1995.
 7. Ahearn, G. A., R. D. Behnke, V. Zonno, and C. Storelli. Kinetic heterogeneity of sodium d‐glucose cotransport in teleost gastrointestinal tract. Am. J. Physiol. 263: (Regulatory Integrative Comp. Physiol. 34) R1018–R1023, 1992.
 8. Alcon, E., and A. Bdolah. Increase of proteolytic activity and synthetic capacity of the pancreas in snakes after feeding. Comp. Biochem. Physiol. A 50: 627–631, 1975.
 9. Alexander, R. M. Optimization of gut structure and diet for higher vertebrate herbivores. Phil. Trans. R. Soc. Lond. B 333: 249–255, 1991.
 10. Alexander, R. M. The energetics of coprophagy: a theoretical analysis. J. Zool. Lond. 230: 629–637, 1993.
 11. Al Hussaini, H. H. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits. Q. J. Microsc. Sci. 90: 323–354, 1949.
 12. Allen, M. E., and O. T. Oftedal. Nutritional consequences of insectivory. In: Abstracts of 5th International Theriological Congress. Rome: NAGE Snc 1989, vol. 1, p. 416–417.
 13. Alpers, D. H. Digestion and absorption of carbohydrates and proteins. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1987, p. 1469–1497.
 14. Altig, R., and W. McDearma. Percent assimilation and clearance time of five anuran tadpoles. Herpetologica 31: 67–69, 1975.
 15. Argenzio, R. A. Comparative physiology of colonic electrolyte transport. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by M. Field and R. A. Frizzell. Bethesda, MD: Am. Physiol. Soc., 1991, sect. 6, vol. IV, p. 275–285.
 16. Armand, M., P. Borel, P. H. Rolland, M. Senft, M. Andre, H. Lafont, and D. Lairon. Adaptation of gastric lipase in mini‐pigs fed a high‐fat diet. Nutr. Res. 12: 489–499, 1992.
 17. Austin, P. R., C. J. Brine, J. E. Castle, and J. P. Zikakis. Chitin: new facets of research. Science 212: 749–753, 1981.
 18. Badia, P., T. Gomez, M. Diaz, and A. Lorenzo. Mechanisms of transport of sodium and chloride in the lizard colon. Comp. Biochem. Physiol. [A] 87: 883–888, 1987.
 19. Bai, J.P.F. Comparison of distribution of brush‐border exo‐and endopeptidases in rat and rabbit intestine. J. Pharm. Pharmacol. 46: 928–930, 1994.
 20. Baker, H. G., and I. Baker. Floral nectar constituents in relation to pollinator type. In: Handbook of Pollination Biology, edited by G. E. Jones and R. Little. New York: Scientific Academic Editions, 1983, p. 117–141.
 21. Baker, H. G. and I. Baker. Relations of the sugar of fruit juices to pollination by birds [Abstract]. In: IV International Congress of Ecology. Syracuse, NY: Ecological Society of America, 1986, p. 83.
 22. Barboza, P. S., and I. D. Hume. Digestive tract morphology and digestion in the wombats (Marsupialia: Vombatidae). J. Comp. Physiol. [B] 162: 552–560, 1992.
 23. Barboza, P. S., and I. D. Hume. Hindgut fermentation in the wombats: two marsupial grazers. J. Comp. Physiol. [B] 162: 561–566, 1992.
 24. Barry, P. H., and J. M. Diamond. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64: 763–872, 1984.
 25. Bauermeister, A., and J. R. Sargent. Wax esters: major metabolites in the marine environment. Trends Biochem. Sci. 4: 209–212, 1979.
 26. Behrman, H. R., and M. R. Kare. Adaptation of canine pancreatic enzymes to diet composition. J. Physiol. (Lond.) 205: 667–676, 1969.
 27. Bell, R. H. V. A grazing system in the Serengeti. Sci. Am. 225: 86–93, 1970.
 28. Benson, A. A., R. F. Lee, and J. C. Nevenzel. Wax esters: major marine metabolic energy sources. In: Current Trends in the Biochemistry of Lipids, edited by J. Ganguly and R.M.S. Smellie. New York: Academic, 1972, p. 175–187.
 29. Bentley, P. J. Comparative Vertebrate Endocrinology. Cambridge: Cambridge Univ. Press, 1982.
 30. Berge, G. E., E. Lied, and M. Espe. Absorption and incorporation of dietary free and protein bound (U‐14C)‐lysine in Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. [A]. 109: 681–688, 1994.
 31. Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70: 567–590, 1990.
 32. Berteloot, A., A. H. Khan, and K. Ramaswamy. Characteristics of dipeptide transport in normal and papain‐treated brush border membrane vesicles from mouse intestine. Biochim. Biophys. Acta 649: 179–188, 1981.
 33. Bhattacharya, S., and K. C. Ghose. Influence of food on the amylase system in birds. Comp. Biochem. Physiol. [B] 40: 317–320, 1971.
 34. Bierhoff, M. L., and G. M. Levine. Luminal and metabolic regulation of jejunal amino acid absorption in the rat. Gastroenterology 95: 63–68, 1988.
 35. Birney, E. C., R. Jenness, and K. M. Ayaz. Inability of bats to synthesize l‐ascorbic acid. Nature 260: 626–628, 1976.
 36. Biviano, A. B., C. M. Del Rio, and D. L. Phillips. Ontogenesis of intestine morphology and intestinal disaccharidases in chickens (Callus gallus) fed contrasting purified diets. J. Comp. Physiol. [B] 163: 508–518, 1993.
 37. Bjorndal, K. A. Cellulose digestion and volatile fatty acid production in the green turtle, Chelonia mydas. Comp. Biochem. Physiol. [A] 63: 127–133, 1979.
 38. Bjorndal, K. A., and A. B. Bolten. Digestive processing in a herbivorous freshwater turtle: consequences of small‐intestine fermentation. Physiol. Zool. 63: 1232–1247, 1990.
 39. Bjornhag, G. Comparative aspects of digestion in the hindgut of mammals. The colonic separation mechanism. DTW Dtsch. Tierarztl. Wochenschr. 94: 33–36, 1987.
 40. Bjornhag, G. Transport of water and food particles through the avian ceca and colon. J. Exp. Zool. Suppl. 3: 32–37, 1989.
 41. Bjornhag, G., and I. S. Sperber. Transport of various food components through the digestive tract of turkeys, geese and guineafowl. Swed. J. Agr. Sci. 7: 57–66, 1977.
 42. Blair‐West, J. R., J. P. Coghlan, D. A. Denton, and R. D. Wright. Factors in sodium and potassium metabolism. In: Physiology of Digestion in the Ruminant, edited by A. T. Phillipson. Newcastle‐upon‐Tyne: Oriel, 1970, p. 350–361.
 43. Bloom, S. R., and J. M. Polak. The hormonal pattern of intestinal adaptation: a major role for enteroglucagon. Scand. J. Gastroenterol. Suppl. 72: 93–103, 1982.
 44. Bode, C., J. M. Eisenhardt, F. J. Haberich, and J. C. Bode. Influence of feeding fructose on fructose and glucose absorption in rat jejunum and ileum. Res. Exp. Med. 179: 163–168, 1981.
 45. Borel, P., M. Armand, M. Senft, M. Andre, H. Lafont, and D. Lairon. Gastric lipase: evidence of an adaptive response to dietary fat in the rabbit. Gastroenterology 100: 1582–1589, 1991.
 46. Borgstrom, B., and J. S. Patton. Luminal events in gastrointestinal lipid digestion. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by M. Field and R. A. Frizzell. Bethesda, MD: Am. Physiol. Soc., 1991, sect. 6, vol. IV, p. 475–504.
 47. Bozinovic, F., and S. J. Iturri. Seasonal changes in glucose and tyrosine uptake of Abrothrix andinus (Cricetidae) inhabiting the Andes range. Comp. Biochem. Physiol. [A] 99: 437–440, 1991.
 48. Brannon, P. M. Adaptation of the exocrine pancreas to diet. Annu. Rev. Nutr. 10: 85–105, 1990.
 49. Brody, S. Bioenergetics and Growth. New York: Hafner, 1968.
 50. Brown, N. J., R.D.E. Rumsey, and N. W. Read. Gastrointestinal adaptation to enhanced small intestinal lipid exposure. Gut 35: 1409–1412, 1994.
 51. Brugger, K. E. Repellency of sucrose to American robins (Turdus migratorius). J. Wildl. Manage. 56: 793–798, 1992.
 52. Buddington, R. K. Digestive secretion of lake sturgeon, Acipenser fulvescens, during early development. J. Fish Biol. 26: 715–723, 1985.
 53. Buddington, R. K. Does the natural diet influence the intestine's ability to regulate glucose absorption? J. Comp. Physiol. [B] 157: 715–723, 1987.
 54. Buddington, R. K. Intestinal nutrient transport during ontogeny of vertebrates. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 34): R503–R509, 1992.
 55. Buddington, R. K., J. W. Chen, and J. M. Diamond. Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. J. Physiol. (Lond.) 393: 261–281, 1987.
 56. Buddington, R. K., J. W. Chen, and J. M. Diamond. Dietary regulation of intestinal brush‐border sugar and amino acid transport in carnivores. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 32): R793–R801, 1991.
 57. Buddington, R. K., and J. M. Diamond. Pyloric ceca of fish: a “new” absorptive organ. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G65–G76, 1987.
 58. Buddington, R. K., and J. M. Diamond. Ontogenetic development of intestinal nutrient transporters. Annu. Rev. Physiol. 51: 602–619, 1989.
 59. Buddington, R. K., and J. M. Diamond. Ontogenetic development of monosaccharide and amino acid transporters in rabbit intestine. Am. J. Physiol. 259 (Gastrointest. Liver Physiol. 22): G544–G555, 1990.
 60. Buddington, R. K., and J. Diamond. Ontogenetic development of nutrient transporters in cat intestine. Am. J. Physiol. 263 (Gastrointest. Liver Physiol. 26): G605–G616, 1992.
 61. Buddington, R. K., and S. I. Doroshov. Development of digestive secretions in white sturgeon juveniles (Acipenser transmontanus). Comp. Biochem. Physiol. [A] 83: 233–238, 1986.
 62. Buddington, R. K., and J. W. Hilton. Intestinal adaptations of rainbow trout to changes in dietary carbohydrate. Am. J. Physiol. 253 (Gastrointest. Liver Physiol. 16): G489–G496, 1987.
 63. Calder, W. A. Size, Function, and Life History. Cambridge, MA: Harvard Univ. Press, 1984.
 64. Calonge, M. L., A. Ilundain, and J. Bolufer. Glycylsarcosine transport by epithelial cells isolated from chicken proximal cecum and rectum. Am. J. Physiol. 258 (Gastrointest. Liver Physiol. 21): G660–G664, 1990.
 65. Calow, P., and C. R. Townsend. Energetics, ecology and evolution. In: Physiological Ecology: An Evolutionary Approach to Resource Use, edited by C. R. Townsend and P. Calow. Sunderland, MA: Sinauer, 1981, p. 3–19.
 66. Campbell, R. M., and B. F. Fell. Gastrointestinal hypertrophy in the lactating rat and its relation to food intake. J. Physiol. (Lond.) 171: 90–98, 1964.
 67. Carberry, J. J. Chemical and Catalytic Reaction Engineering. New York: McGraw‐Hill, 1976.
 68. Carey, C., and W. H. Karasov. Effect of temperature on digestion of boreal toads, Bufo boreas boreas. Am. Zool. 30: 34A, 1990 [Abstract].
 69. Carey, H. V. Seasonal changes in mucosal structure and function in ground squirrel intestine. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 30): R385–R392, 1990.
 70. Carey, M. C., D. M. Small, and C. M. Bliss. Lipid digestion and absorption. Annu. Rev. Physiol. 45: 651–677, 1989.
 71. Carter‐Su, C., and G. A. Kimmich. Effect of membrane potential on Na+‐dependent sugar transport by ATP‐depleted intestinal cells. Am. J. Physiol. 238 (Cell Physiol. 9): C73–C80, 1980.
 72. Caspary, W., and R. Crane. Active transport of myoinositol and its relation to the sugar transport system in hamster small intestine. Biochim. Biophys. Acta 203: 308–316, 1970.
 73. Castle, E. J., and M. E. Castle. Further studies of the rate of passage of food through the alimentary tract of pigs. J. Agricult. Sci. 49: 106–112, 1957.
 74. Caviedes‐Vidal, E., D. Afik, C. Martinez del Rio, and W. H. Karasov. Omnivory and dietary plasticity are not necessarily correlated: dietary modulation of intestinal enzymes in four bird species. Physiologist 37: A81, 1994. [Abstract]
 75. Caviedes‐Vidal, E., and W. H. Karasov. Influences of diet composition on pancreatic enzyme activities in house sparrows. Am. Zool. 35: 78A, 1995. [Abstract]
 76. Caviedes‐Vidal, E., and W. H. Karasov. Glucose and amino acid absorption in house sparrow intestine and its dietary modulation. Am. J. Physiol. 271 (Regulatory Integrative Comp. Physiol. 40): R561–R568, 1996.
 77. Cezard, J. P., J. P. Broyart, P. Cuisinier–Gleizes, and H. Mathieu. Sucrase–isomaltase regulation by dietary sucrose in the rat. Gastroenterology 84: 18–25, 1983.
 78. Chandrasena, G., I. Sunitha, C. Lau, N. N. Nanthakumar, and S. J. Henning. Expression of sucrase–isomaltase mRNA along the villus–crypt axis in the rat small intestine. Cell. Mol. Biol. 38: 243–254, 1992.
 79. Chaplin, S. B. Effect of cecectomy on water and nutrient absorption of birds. J. Exp. Zool. Suppl. 3: 81–86, 1989.
 80. Chatterjee, I. B. Evolution and the biosynthesis of ascorbic acid. Science 182: 1271–1272, 1973.
 81. Chaudhuri, C. R., and I. B. Chatterjee. l‐Ascorbic acid synthesis in birds: phylogenetic trend. Science 164: 435–436, 1969.
 82. Cheeseman, C. I. Expression of amino acid and peptide transport systems in rat small intestine. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G636–G641, 1986.
 83. Cheeseman, C. I., and B. Harley. Adaptation of glucose transport across rat enterocyte basolateral membrane in response to altered dietary carbohydrate intake. J. Physiol. (Lond.). 437: 563–576, 1991.
 84. Chilcott, M. J., and I. D. Hume. Coprophagy and selective retention of fluid digesta: their role in nutrition of the common ringtail 'possum, Pseudocheirus pereginus. Aust. J. Zool. 33: 1–15, 1985.
 85. Chivers, D. J. Adaptations of digestive systems in non‐ruminant herbivores. Proc. Nutr. Soc. 48: 59–67, 1989.
 86. Chivers, D. J., and C. M. Hladik. Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J. Morphol. 166: 337–386, 1980.
 87. Christensen, H. N. On the strategy of kinetic discrimination of amino acid transport systems. J. Membr. Biol. 84: 97–103, 1985.
 88. Chung, Y. C., Y. S. Kim, A. Shadchehr, A. Garrido, I. L. MacGreggor, and M. H. Sleisenger. Protein digestion and absorption in human small intestine. Gastroenterology. 76: 1415–1421, 1979.
 89. Clarke, R.T.J., and T. Bauchop. Microbial Ecology of the Gut. London: Academic, 1977.
 90. Coady, M. J., A. M. Pajor, and E. M. Wright. Sequence homologies among intestinal and renal sodium ion‐glucose cotransporters. Am. J. Physiol. 259 (Cell Physiol. 30): C605–C610, 1990.
 91. Cochran, P. A. Optimal digestion in a batch‐reactor gut: the analogy to partial prey consumption. Oikos 50: 268–270, 1987.
 92. Collins, A. J., P. S. James, and M. W. Smith. Sugar‐dependent selective induction of mouse jejunal disaccharidase activities. J. Physiol. (Lond.) 419: 157–168, 1989.
 93. Congdon, J. D. Proximate and evolutionary constraints on energy relations of reptiles. Physiol. Zool. 62: 356–373, 1989.
 94. Cork, S. J. Digestive constraints on dietary scope in small mammals: how much do we really understand? In: The Digestive System in Mammals: Form, Function, and Evolution, edited by D. J. Chivers and P. Langer. Cambridge: Cambridge Univ. Press, 1994, p. 337–369.
 95. Cork, S. J., and W. J. Foley. Digestive and metabolic strategies of arboreal mammalian folivores to chemical defenses in temperate and tropical forests. In: Plant Defenses against Mammalian Herbivory, edited by R. T. Palo and C. T. Robbins. Boca Raton, FL: CRC Press, 1991, p. 133–166.
 96. Cork, S. J., and G. J. Kenagy. Nutritional value of hypogeous fungus for a forest‐dwelling ground squirrel. Ecology 70: 577–586, 1989.
 97. Cork, S. J., and A.C.I. Warner. The passage of digesta markers through the gut of a folivorous marsupial, the koala (Phasco larctos cinereus). J. Comp. Physiol. [B] 152: 43–51, 1983.
 98. Cornelius, C., G. Dandrifosse, and C. Jeuniaux. Biosynthesis of chitinases by mammals of the order carnivora. Biochem. Systematics Ecol. 3: 121–122, 1975.
 99. Corring, T., C. Juste, and E. F. Lhoste. Nutritional regulation of pancreatic and biliary secretions. Nutr. Res. Rev. 2: 161–180, 1989.
 100. Crane, R. K. The physiology of the intestinal absorption of sugars. In: Physiological Effects of Food Carbohydrates, edited by A. James and J. Hodges. Washington, DC: Am. Chem. Soc., 1975, p. 1–19.
 101. Cremaschi, D., P. S. James, G. Meyer, M. A. Peacock, and M. W. Smith. Membrane potentials of differentiating enterocytes. Biochim. Biophys. Acta 688: 271–274, 1982.
 102. Cripps, A. W., and V. J. Williams. The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat. Br. J. Nutr. 33: 17–32, 1975.
 103. Crouzoulon, G., and A. Korier. Fructose transport by rat intestinal brush border membrane vesicles. Effect of high fructose diet followed by return to standard diet. Comp. Biochem. Physiol. [A] 100: 175–182, 1991.
 104. Csaky, T. Z., and E. Fischer. Effects of ketohexosemia on the ketohexose transport in the small intestine of rats. Biochim. Biophys. Acta 772: 259–263, 1984.
 105. Dabrowski, K. The role of proteolytic enzymes in fish digestion. In: Cultivation of Fish Fry and Its Live Food, edited by E. Jaspers. Bredene, Belgium: Eur. Mariculture Soc., 1979, p. 107–126.
 106. Dabrowski, K. Digestion of protein and amino acid absorption in stomachless fish, common carp (Cyprinus carpio). Comp. Biochem. Physiol. [A] 74: 409–415, 1983.
 107. Dabrowski, K., and H. Dabrowska. Digestion of protein by rainbow trout (Salmo gairdneri Rich) and absorption of amino acids within the alimentary tract. Comp. Biochem. Physiol. [A] 69: 99–111, 1981.
 108. Dagorn, J. C., and R. G. Lahaie. Dietary regulation of pancreatic protein synthesis. I. Rapid and specific modulation of enzyme synthesis by changes in dietary composition. Biochim. Biophys. Acta 654: 111–118, 1981.
 109. Danulat, E. The effects of various diets on chitinase and beta‐glucosidase activities and the condition of cod, Gadus morhua. J. Fish Biol. 28: 191–198, 1986.
 110. David, E. S., D. S. Cingari, and R. P. Ferraris. Dietary induction of intestinal fructose absorption in weaning rats. Pediatr. Res. 37: 777–782, 1995.
 111. Davies, N. T., and R. B. Williams. The effects of pregnancy on uptake and distribution of copper in the rat. Abstr. Proc. Nutr. Soc. 35: 4A, 1976.
 112. Davis, G., C. Santa‐Ana, S. Morawski, and J. Fordtran. Permeability characteristics of human jejunum ileum, proximal colon and distal colon: results of potential difference measurements and unidirectional fluxes. Gastroenterology 83: 844–850, 1982.
 113. Dawson, T. J., and R. M. Herd. Digestion in the emu, Dromaius novaehollandiae: low energy and nitrogen requirements of this large ratite bird. Comp. Biochem. Physiol. A 75: 41–45, 1983.
 114. Debnam, E. S. Effects of fasting and glucagon on the kinetics of active hexose absorption across the rat distal ileum in vivo. Q. J. Exp. Physiol. 67: 587–594, 1982.
 115. Debnam, E. S. Adaptation of hexose uptake by the rat jejunum induced by the perfusion of sugars in the distal ileum. Digestion 31: 25–30, 1985.
 116. Debnam, E. S. Rapid adaptation of intestinal sugar transport. News Physiol. Sci. 9: 84–88, 1994.
 117. Debnam, E. S., W. H. Karasov, and C. S. Thompson. Nutrient uptake by rat enterocytes during diabetes mellitus; evidence for an increased sodium electrochemical gradient. J. Physiol. (Lond.) 397: 503–512, 1988.
 118. Dellow, D. W. Studies on the nutrition of macropodine marsupials. III. The flow of digesta through the stomach and intestine of macropodines and sheep. Aust. J. Zool. 30: 751–765, 1982.
 119. Dellow, D. W., and I. D. Hume. Studies on the nutrition of macropodine marsupials. IV. Digestion in the stomach and intestine of Macropus giganteus, Thylogale thetis and Macropus eugenii. Aust. J. Zool. 30: 767–777, 1982.
 120. Dellow, D. W., J. V. Nolan, and I. D. Hume. Studies on the nutrition of macropodine marsupials. V. Microbial fermentation in the forestomach of Thylogale thetis and Macropus eugenii. Aust. J. Zool. 31: 433–443, 1983.
 121. Demment, M. W., and P. J. Van Soest. Body Size, Digestive Capacity and Feeding Strategies of Herbivores. Morrilton, AK: Winrock, 1983, p. 1–66.
 122. Demment, M. W., and P. J. Van Soest. A nutritional explanation for body‐size patterns of ruminant and nonruminant herbivores. Am. Nat. 125: 641–672, 1985.
 123. Denigris, S. J., M. Hamosh, D. K. Kasjelar, T. Lee, and P. Hamosh. Lingual and gastric lipases: species differences in the origin of prepancreatic digestive lipases and in the localization of gastric lipase. Biochim. Biophys. Acta 959: 38–45, 1988.
 124. Deren, J. J., S. A. Broitman, and N. Zamcheck. Effect of diet upon intestinal disaccharidases and disaccharide absorption. J. Clin. Invest. 46: 2253–2262, 1967.
 125. Derting, T. L., and B. A. Bouge. Responses of the gut to moderate energy demands in a small herbivore (Microtus pennsylvanicus). J. Mammal. 74: 59–68, 1993.
 126. Diamond, A. W., and A. R. Place. Wax digestion by black‐throated honey‐guides (Indicator indicator). Ibis 130: 558–561, 1988.
 127. Diamond, J., and K. Hammond. The matches, achieved by natural selection, between biological capacities and their natural loads. Experientia 48: 551–557, 1992.
 128. Diamond, J. M. Evolutionary design of intestinal nutrient absorption: enough but not too much. News Physiol. Sci. 6: 92–96, 1991.
 129. Diamond, J. M., and W. H. Karasov. Effect of dietary carbohydrate on monosaccharide uptake by mouse small intestine in vitro. J. Physiol. (Lond.) 349: 419–440, 1984.
 130. Diamond, J. M., and W. H. Karasov. Adaptive regulation of intestinal nutrient transporters. Proc. Natl. Acad. Sci. USA 84: 2242–2245, 1987.
 131. Diaz, M., and A. Lorenzo. Aldosterone regulation of active sodium chloride transport in the lizard colon (Gallotia galloti). J. Comp. Physiol. [B] 162: 189–196, 1992.
 132. Di Magno, E. P., V.L.W. Go, and W.H.J. Summerskill. Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. N. Engl. J. Med. 288: 813–815, 1973.
 133. Dobson, A. Active transport through the epithelium of the reticulo‐rumen sac. J. Physiol. (Lond.) 146: 235–251, 1959.
 134. Dominguez‐Bello, M. G., M. Lovera, P. Suarez, and F. Michelangeli. Microbial digestive symbionts of the crop of the hoatzin (Opisthocomus hoazin): an avian foregut fermenter. Physiol. Zool. 66: 374–383, 1993.
 135. Dowling, R. H., E. O. Riecken, J. W. Laws, and J. W. Booth. The intestinal response to high bulk feeding in the rat. Clin. Sci., (Colch.) 32: 1–9, 1967.
 136. Dror, Y., A. Shamgar, and P. Budowski. Effect of dietary fat on pancreatic lipase activity in chicken. Int. J. Vitam. Nutr. Res. 46: 83–86, 1976.
 137. Dudeja, P. K., J. M. Harig, R. K. Wali, S. M. Knaup, K. Ramaswamy, and T. A. Brasitus. Differential modulation of human small intestinal brush‐border membrane hemileaflet fluidity affects leucine aminopeptidase activity and transport of d‐glucose and l‐glutamate. Arch. Biochem. Biophys. 284: 338–345, 1991.
 138. Duke, G. E. Gastrointestinal motility and its regulation. Poult. Sci. 61: 1245–1256, 1989.
 139. Duke, G. E., A. R. Place, and B. Jones. Gastric emptying and gastrointestinal motility in Leach's storm‐petrel chicks (Oceanodroma leucorrhoa). Auk 106: 80–85, 1989.
 140. Duncan, P., T. J. Foose, I. J. Gordon, C. G. Gakahu, and M. Lloyd. Comparative nutrient extraction from forages by grazing bovids and equids: a test of the nutritional model of equid/bovid competition and coexistence. Oecologia 84: 411–418, 1990.
 141. Dunham, A. E., B. W. Grant, and K. L. Overall. Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol. Zool. 62: 335–355, 1989.
 142. Dyer, J., R. B. Beechey, J. P. Gorvel, R. T. Smith, R. Wootton, and S. P. Shirazi‐Beechey. Glycyl l‐proline transport in rabbit enterocyte basolateral‐membrane vesicles. Biochem. J. 269: 565–571, 1990.
 143. Dykstra, C. R., and W. H. Karasov. Changes in gut structure and function of house wrens (Troglodytes aedon) in response to increased energy demands. Physiol. Zool. 65: 422–442, 1992.
 144. Engelhardt, W., G. Gros, M. Burmester, K. Hansen, G. Becker, and G. Rechkemmer. Functional role of bicarbonate in propionate transport across guinea‐pig isolated caecum and proximal colon. J. Physiol. (Lond.) 477: 365–371, 1994.
 145. Engelhardt, W. V., and R. Hauffe. Role of the omasum in absorption and secretion of water and electrolytes in sheep and goats. In: Digestion and Metabolism in the Ruminant, edited by I. W. McDonald and A.C.I. Warner. Armidale, Australia: Univ. New England, 1975, p. 216–230.
 146. Engelhardt, W. V., and G. Rechkemmer. The physiological effects of short‐chain fatty acids in the hindgut. In: Fibre in Human and Animal Nutrition, edited by G. Wallace and L. Bells. Wellington, NZ: R. Soc. New Zealand, 1983, Bull. 20, p. 149–155.
 147. Engelhardt, W. V., and G. Rechkemmer. Segmental differences of short‐chain fatty acid transport across guinea‐pig large intestine. Exp. Physiol. 77: 491–499, 1992.
 148. Fan, C. C., R. G. Faust, and D. W. Powell. Coupled sodium‐chlorine transport by rabbit ileal brush‐border membrane vesicles. Am. J. Physiol. 244: 375–385, 1983.
 149. Erickson, R. H., J. R. Gum, Jr., M. M. Lindstrom, D. McKean, and Y. S. Kim. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs. Biochem. Biophys. Res. Commun. 216: 249–257, 1995.
 150. Fange, R., and D. Grove. Digestion. In: Fish Physiology, edited by W. S. Hoar, D. J. Randall, and J. R. Brett. New York: Academic, 1979, vol. 8, p. 161–260.
 151. Farner, D. S. Digestion and the digestive system. In: Biology and Comparative Physiology of Birds, edited by A. J. Marshall. New York: Academic, 1960, p. 411–467.
 152. Fell, B. F. Adaptations of the digestive tract during reproduction in the mammal. World Rev. Nutr. Diet 14: 180–256, 1972.
 153. Fenna, L., and D. A. Boag. Adaptive significance of the caeca in Japanese quail and spruce grouse (Galliformes). Can. J. Zool. 52: 1577–1584, 1974.
 154. Ferraris, R. P., and J. Diamond. Crypt–villus site of glucose transporter induction by dietary carbohydrate in mouse intestine. Am. J. Physiol. 262 (Gastrointest. Liver Physiol. 25): G1069–G1073, 1992.
 155. Ferraris, R. P., and J. M. Diamond. Use of phlorizin binding to demonstrate induction of intestinal glucose transporters. J. Membr. Biol. 94: 77–82, 1986.
 156. Ferraris, R. P., and J. M. Diamond. Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu. Rev. Physiol. 51: 125–141, 1989.
 157. Ferraris, R. P., W. W. Kwan, and J. Diamond. Regulatory signals for intestinal amino acid transporters and peptidases. Am. J. Physiol. 255 (Gastrointest. Liver Physiol. 18): G151–G157, 1988.
 158. Ferraris, R. P., P. P. Lee, and J. M. Diamond. Origin of regional and species differences in intestinal glucose uptake. Am. J. Physiol. 257: (Gastrointest. Liver Physiol. 20) G689–G697, 1989.
 159. Ferraris, R. P., S. A. Villenas, B. A. Hirayama, and J. Diamond. Effect of diet on glucose transporter site density along the intestinal crypt‐villus axis. Am. J. Physiol. 262 (Gastrointest. Liver Physiol. 25): G1060–G1068, 1992.
 160. Ferraris, R. P., S. Yasharpour, K.C.K. Lloyd, R. Mirzayan, and J. M. Diamond. Luminal glucose concentrations in the gut under normal conditions. Am. J. Physiol. 259 (Gastrointest. Liver Physiol. 22): G822–G837, 1990.
 161. Fich, A., S. F. Phillips, M. Neri, R. B. Hanson, and A. R. Zinsmeister. Regulation of postprandial motility in the canine ileum. Am. J. Physiol. 259 (Gastrointest. Liver Physiol. 22): G767–G774, 1990.
 162. Fine, K. D., C.A.S. Ana, J. L. Porter, and J. S. Fordtran. Mechanism by which glucose stimulates the passive absorption of small solutes by the human jejunum in vivo. Gastroenterology 107: 389–395, 1994.
 163. Fine, K. D., C. A. S. Ana, J. L. Porter, and J. S. Fordtran. Effect of changing intestinal flow rate on a measurement of intestinal permeability. Gastroenterology 108: 983–989, 1995.
 164. Fine, K. D., C. A. Santa Ana, J. L. Porter, and J. S. Fordtran. Effect of d‐glucose on intestinal permeability and its passive absorption in human small intestine in vivo. Gastroenterology 105: 1117–1125, 1993.
 165. Fingerote, R. J., K. A. Doring, and A.B.R. Thomson. Gradient for d‐glucose and linoleic acid uptake along the crypt‐villus axis of rabbit jejunal brush border membane vesicles. Lipids 29: 117–127, 1994.
 166. Fish, G. R. The comparative activity of some digestive enzymes in the alimentary canal of tilapia and perch. Hydrobiologia 15: 153–179, 1960.
 167. Flores, C. A., J. Bezerra, T. Goda, S. Bustamante, M. P. Macdonald, M. Kaplan, and O. Koldovsky. Effect of a high‐dextrose diet on sucrase and lactase activity in jejunum of obese mice (C57BL/6J obob). J. Am. Coll. Nutri. 5: 565–576, 1986.
 168. Flores, C. A., P. M. Brannon, S. A. Bustamante, J. Bezerra, K. T. Butler, T. Goda, and O. Koldovsky. Effect of diet on intestinal and pancreatic enzyme activities in the pig. J. Pediatr. Gastroenterol. Nutr. 7: 914–921, 1988.
 169. Foley, W. J., A. Bouskila, A. Shkolnik, and I. Choshniak. Microbial digestion in the herbivorous lizard Uromastyx aegyptius (Agamidae). J. Zool. (Lond). 226: 387–398, 1992.
 170. Foley, W. J., and I. D. Hume. Passage of digesta markers in two species of arboreal folivorous marsupials: the greater glider (Petauroides volans) and the brushtail possum (Trichosurus vulpecula). Physiol. Zool. 60: 103–113, 1987.
 171. Frankignoul, M., and C. Jeuniaux. Effect of chitin on chitinase secretion by rodents. Life Sci. 4: 1669–1672, 1965.
 172. Froment, G. E., and K. B. Bischoff. Chemical Reactor Analysis and Design. New York: Wiley, 1979.
 173. Fromter, E., and J. M. Diamond. Route of passive ion permeation in epithelia. Nature [New Biol.] 135: 9–13, 1972.
 174. Ganapathy, V., and F. H. Leibach. Peptide transport in intestinal and renal brush border membrane vesicles. Life Sci. 30: 2137–2146, 1982.
 175. Ganapathy, V., and F. H. Leibach. Is intestinal peptide transport energized by a proton gradient. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G153–G160, 1985.
 176. Garg, V. K. Site and rate of sugar and amino acid transport in the intestine and pyloric caeca of teleost fishes. J. Exp. Biol. 16: 1095–1097, 1978.
 177. Gidenne, T. Effect of fibre level, particle size and adaptation period on digestibility and rate of passage as measured at the ileum and in the faeces in the adult rabbit. Br. J. Nutr. 67: 133–146, 1992.
 178. Ginsburg, J. M., and F. W. Heggeness. Adaptation in monosaccharide absorption in infant and adult rats. J. Nutr. 96: 494–498, 1968.
 179. Giorgi, D., J. P. Bernard, R. Lapointe, and J. C. Dagorn. Regulation of amylase messenger RNA concentration in rat pancreas by food content. EMBO J. 3: 1521–1524, 1984.
 180. Giorgi, D., W. Renaud, J. P. Berrnard, and J. C. Dagorn. Regulation of proteolytic enzyme activities and mRNA concentrations in rat pancreas by food content. Biochem. Biophys. Res. Commun. 127: 937–942, 1985.
 181. Goda, T., and S. Takase. Dietary carbohydrate and fat independently modulate disaccharidase activities in rat jejunum. J. Nutr. 124: 2233–2239, 1994.
 182. Goda, T., and S. Takase. Effect of dietary fat content on microvillus in rat jejunum. J. Nutr. Sci. Vitaminol. 40: 127–136, 1994.
 183. Goda, T., K. Yamada, S. Bustamante, and O. Koldovsky. Dietary‐induced rapid decrease of microvillar carbohydrase activity in rat jejunoileum. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G418–G423, 1983.
 184. Goda, T., H. Yasutake, Y. Suzuki, S. Takase, and O. Koldovsky. Diet‐induced changes in gene expression of lactase in rat jejunum. Am. J. Physiol. 268 (Gastrointest. Liver Physiol. 31): G1066–G1073, 1995.
 185. Goldstein, D. L. Absorption by the cecum of wild birds: is there interspecific variation? J. Exp. Zool. Suppl. 3: 103–110, 1989.
 186. Goldstein, D. L. Transport of water and electrolytes by the lower intestine and its contribution to avian osmoregulation. In: Avian Osmoregulation, edited by M. R. Hughes and A. Chadwick. Leeds: Leeds Philosophical and Literary Soc., 1989, p. 271–294.
 187. Goldstein, D. L. Influence of dietary sodium and other factors on plasma aldosterone concentrations and in vitro properties of the lower intestine in house sparrows (Passer domesticus). J. Exp. Biol. 176: 159–174, 1993.
 188. Goodrich, T. D., and R. Y. Morita. Bacterial chitinase in the stomachs of marine fishes from Yaquina Bay, Oregon, U.S.A. Marine Biol. 41: 355–360, 1977.
 189. Gore, J., C. Hoinard, J. M. Antoine, and C. Couet. Effect of calcium and mineral waters on oleic‐acid uptake by isolated hamster enterocytes. Reprod. Nutr. Dev. 34: 439–448, 1994.
 190. Gould, S. J., and G. D. Holman. The glucose transporter family: structure, function and tissue‐specific expression. J. Biochem. 295: 329–341, 1993.
 191. Gould, S. J., and R. C. Lewontin. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist's programme. Proc. R. Soc. Lond. Biol. Sci. 205: 581–598, 1979.
 192. Grajal, A. Structure and function of the digestive tract of the hoatzin (Opisthocomus hoazin): a folivorous bird with foregut fermentation. Auk 112: 20–28, 1995.
 193. Grajal, A., S. D. Strahl, R. Parra, M. G. Dominguez, and A. Neher. Foregut fermentation in the hoatzin, a neotropical leaf‐eating bird. Science 245: 1236–1238, 1989.
 194. Grant, B. W., and W. P. Porter. Modeling global macroclimatic constraints on ectotherm energy budgets. Am. Zool. 32: 154–178, 1992.
 195. Green, D. A., and J. S. Millar. Changes in gut dimensions and capacity of Peromyscus maniculatus relative to diet quality and energy needs. Can. J. Zool. 65: 2159–2162, 1987.
 196. Griffiths, M. Biology of the Monotremes. New York: Academic, 1978.
 197. Griffiths, M., and D. Davies. The role of the soft pellets in the production of lactic acid in the rabbit stomach. J. Nutr. 80: 171–180, 1963.
 198. Groot, J. A., H. Albus, R. Bakker, and K. Dekker. Changes in sugar transport and in electrophysiological characteristics of intestinal preparations of temperature‐acclimated goldfish (Carrassius auratus L.). J. Comp. Physiol. [B] 151: 163–170, 1983.
 199. Gross, J. E., Z. Wang, and B. A. Wunder. Effects of food quality and energy needs: changes in gut morphology and capacity of Microtus ochrogaster. J. Mammal. 66: 661–667, 1985.
 200. Grove, D. J. Gastro‐intestinal physiology: rates of food processing in fish. In: Fish Physiology: Recent Advances. London: Croom Helm, 1986, p. 140–152.
 201. Hainsworth, F. R. Food quality and foraging efficiency: the efficiency of sugar assimilation by hummingbirds. J. Comp. Physiol. [B] 88: 425–431, 1974.
 202. Halm, D. R. and R. A. Frizzell. Ion transport across the large intestine. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by M. Field and R. A. Frizzell. Bethesda, MD: Am. Physiol. Soc., 1991, sect. 6, vol. IV, p. 257–273.
 203. Halse, S. A. Food intake, digestive efficiency, and retention time in spur‐winged geese Plectropterus gambensis. S. Afr. J. Wildl. Res. 14: 106–110, 1984.
 204. Hammond, K. A., and J. Diamond. An experimental test for a ceiling on sustained metabolic rate in lactating mice. Physiol. Zool. 65: 952–977, 1992.
 205. Hammond, K. and J. Diamond. Limits to dietary nutrient intake and intestinal nutrient uptake in lactating mice. Physiol. Zool. 67: 282–303, 1994.
 206. Hammond, K. A., M. Konarzewski, R. M. Torres, and J. Diamond. Metabolic ceilings under a combination of peak energy demands. Physiol. Zool. 67: 1479–1506, 1994.
 207. Hammond, K. A., and B. A. Wunder. The role of diet quality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogaster. Physiol. Zool. 64: 541–567, 1991.
 208. Harig, J. M., K. H. Soergel, J. A. Barry, and K. Ramaswamy. Transport of propionate by human ileal brush‐border membrane vesicles. Am. J. Physiol. 260 (Gastrointest. Liver Physiol. 23): G776–G782, 1991.
 209. Haslewood, G. A. D. Bile salt evolution. J. Lipid Res. 8: 535–550, 1967.
 210. Haslewood, G. A. D. Examples of vertebrate evolution as indicated by bile salt types and by general morphology. In: Biochemical Evolution and the Origin of Life, edited by E. Schoffeniels. Amsterdam: North‐Holland, 1971, p. 191–202.
 211. Hatch, M. Short‐chain fatty acid transport and its effects on ion transport by rabbit cecum. Am. J. Physiol. 253 (Gastrointest. Liver Physiol. 16): G171–G178, 1987.
 212. Hazzard, C. E., and G. A. Ahearn. Rapid stimulation of intestinal d‐glucose transport in teleosts by 17‐methyltestosterone. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 33): R412–R418, 1992.
 213. Hediger, M. A., M. Coady, T. Ikeda, and E. Wright. Expression cloning and cDNA sequencing of the Na +/glucose cotransporter. Nature 330: 379–381, 1987.
 214. Henning, S. J. Postnatal development: coordination of feeding, digestion, and metabolism. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G199–G213, 1981.
 215. Henning, S. J. Ontogeny of enzymes in the small intestine. Annu. Rev. Physiol. 47: 231–245, 1985.
 216. Herd, R. M., and T. J. Dawson. Fiber digestion in the emu, Dromaius novaehollandiae, a large bird with a simple gut and high rates of passage. Physiol. Zool. 57: 70–84, 1984.
 217. Hernandez, A., and C. Martinez del Rio. Intestinal disaccharidases in five species of phyllostomatoid bats. Comp. Biochem. Physiol. [B] 103: 105–111, 1992.
 218. Herzberg, G. R., and J. Lerner. Intestinal absorption of choline in the chick. Biochim. Biophys. Acta 307: 234–242, 1973.
 219. Hirayama, B. A., D.D.F. Loo, and E. M. Wright. Protons drive sugar transport through the Na+/ glucose cotransporter (SGLT1). J. Biol. Chem. 269: 21407–21410, 1994.
 220. Hobbs, N. T., D. L. Baker, and R. B. Gill. Comparative nutritional ecology of Montana ungulates during winter. J. Wildl. Manage. 47: 1–16, 1983.
 221. Hofer, R. The adaptation of digestive enzyme to temperature, season and diet in roach, Rutilus rutilus, and rudd, Scardinius erythrophthalmus, proteases. J. Fish Biol. 15: 373–379, 1979.
 222. Hofer, R. Morphological adaptations of the digestive tract of tropical cyprinids and cichlids to diet. J. Fish Biol. 33: 399–408, 1988.
 223. Hofer, R., H. Ladurner, A. Gattringer, and A. Wieser. Relationship between the temperature preferenda of fishes, amphibians and reptiles and the substrate affinities of their trypsin. J. Comp. Physiol. [B] 99: 345–355, 1975.
 224. Hofer, R., and F. Schiemer. Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia 48: 342–345, 1981.
 225. Hofer, R., and A. N. Uddin. Digestive processes during the development of the roach, Rutilus rutilus. J. Fish Biol. 26: 683–689, 1985.
 226. Hofmann, R. R. The Ruminant Stomach. Nairobi: East African Literature Bureau, 1973.
 227. Hofmann, R. R. Morphological evolutionary adaptations of the ruminant digestive system. In: Aspects of Digestive Physiology in Ruminants, edited by A. Dobson and M. J. Dobson. Ithaca, NY: Comstock, 1988, p. 1–20.
 228. Hollander, D., E. M. Gerard, and C.A.R. Boyd. Transport of butyric acid in vascularly perfused anuran (Rana esculenta) small intestine: importance of pH and anion transport. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G469–G474, 1986.
 229. Holzer, H. H., C. M. Turkelson, T. E. Solomon, and H. E. Raybould. Intestinal lipid inhibits gastric emptying via CCK and a vagal capsaicin‐sensitive afferent pathway in rats. Am. J. Physiol. 267 (Gastrointest. Liver Physiol. 30): G000–G629, 1994.
 230. Hoover, W. H., and R. N. Heitmann. Cecal nitrogen metabolism and amino acid absorption in the rabbit. J. Nutr. 105: 245–252, 1975.
 231. Hopfer, U. Diabetes mellitus: changes in the transport properties of isolated intestinal microvillus membranes. Proc. Natl. Acad. Sci. USA 72: 2027–2031, 1975.
 232. Hopfer, U. Membrane transport mechanisms for hexoses and amino acids in the small intestine. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1987, p. 1499–1526.
 233. Hoppe, P. P. Rumen Fermentation and Body Weight in African Ruminants. Atlanta, GA: Int. Congr. Game Biologists, 1977, p. 141–150.
 234. Horn, M. H., and K. S. Messer. Fish guts as chemical reactors: a model of the alimentary canals of marine herbivorous fishes. Marine Biol. 113: 527–535, 1992.
 235. Hörnicke, H., and G. Bjornhag. Coprophagy and related strategies for digesta utilization. In: Digestive Physiology and Metabolism in Ruminants, edited by Y. Ruckebusch and P. Thivend. Lancaster: MTP, 1980, p. 707–730.
 236. Houpt, T. R. Patterns of duodenal osmolality in young pigs fed solid food. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 32): R569–R575, 1991.
 237. Hulan, H. W., and F. H. Bird. Effect of fat level in isonitrogenous diets on the composition of avian pancreatic juice. J. Nutr. 102: 459–468, 1972.
 238. Hume, I. D. Production of volatile fatty acids in two species of wallaby and in sheep. Comp. Biochem. Physiol. [A] 56: 299–304, 1977.
 239. Hume, I. D. Digestive Physiology and Nutrition of Marsupials. Cambridge: Cambridge Univ. Press, 1982.
 240. Hume, I. D. Optimal digestive strategies in mammalian herbivores. Physiol. Zool. 62: 427–451, 1989.
 241. Hume, I. D., and D. W. Dellow. Form and function of the macropod marsupial digestive tract. In: Comparative Physiology: Primitive Mammals, edited by K. Schmidt‐Nielsen, L. Bolls, and C. R. Taylor. Cambridge: Cambridge Univ. Press, 1980, p. 78–89.
 242. Hume, I. D., W. H. Karasov, and B. W. Darken. Acetate, butyrate and proline uptake in the caecum and colon of prairie voles (Microtus ochrogaster). J. Exp. Biol. 176: 285–297, 1993.
 243. Hume, I. D., K. R. Morgan, and G. J. Kenagy. Digesta retention and digestive performance in sciurid and microtine rodents: effects of hindgut morphology and body size. Physiol. Zool. 66: 396–411, 1993.
 244. Hume, I. D., and E. Sakaguchi. Patterns of digesta flow and digestion in foregut and hindgut fermenters. In: Physiological Aspects of Digestion and Metabolism in Ruminants, edited by T. Tsuda, Y. Sasaki, and R. Kawashima. San Diego: Academic Press, 1991, p. 427–451.
 245. Hume, I. D., and A.C.T. Warner. Evolution of microbial digestion in mammals. In: Digestive Physiology and Metabolism in Ruminants, edited by Y. Ruckebusch and P. Thivend. Lancaster: MTP, 1980, p. 665–684.
 246. Hungate, R. E. The Rumen and Its Microbes. New York: Academic, 1966.
 247. Hungate, R. E., G. D. Phillips, A. McGregor, D. P. Hungate, and H. K. Buechner. Microbial fermentation in certain mammals. Science 130: 1192–1194, 1959.
 248. Hwang, E. S., B. A. Hirayama, and E. M. Wright. Distribution of the SGLT1 sodium–glucose cotransporter and mRNA along the crypt–villus axis of rabbit small intestine. Biochem. Biophys. Res. Commun. 181: 1208–1217, 1991.
 249. Illius, A. W., and I. J. Gordon. Prediction of intake and digestion in ruminants by a model of rumen kinetics integrating animal size and plant characteristics. J. Agr. Sci. 116: 145–158, 1991.
 250. Illius, A. W., and I. J. Gordon. Modelling the nutritional ecology of ungulate herbivores: evolution of body size and competitive interactions. Oecologia 89: 428–434, 1992.
 251. Imondi, A. R., and F. H. Bird. Effects of dietary protein level on growth and proteolytic activity of the avian pancreas. J. Nutr. 91: 421–428, 1967.
 252. Imoto, S., and S. Namioka. VFA metabolism in the pig. J. Anim. Sci. 46: 479–487, 1978.
 253. Iverson, J. B. Colic modifications in iguanine lizards. J. Morphol. 163: 79–93, 1980.
 254. Jackson, S. Do seabird gut sizes and mean retention times reflect adaptation to diet and foraging method? Physiol. Tool. 65: 674–697, 1992.
 255. Jackson, S., and A. R. Place. Gastrointestinal transit and lipid assimilation efficiencies in three species of sub‐Antarctic sea‐bird. J. Exp. Zool. 255: 141–154, 1990.
 256. Jackson, S., A. R. Place, and L. J. Seiderer. Chitin digestion and assimilation by seabirds. Auk 109: 758–770, 1992.
 257. Jacobs, L. R., S. Bloom, P. Harsoulis, and R. H. Dowling. Intestinal adaptation to hypothermic hyperphagia. Abstr. Clin. Sci. Mol. Med. 48: 14, 1975.
 258. Jain, D. K. Pancreatic and intestinal amylase level in frugivorous, carnivorous, and omnivorous birds. Acta Biol. Acad. Sci. Hung. 27: 317–319, 1976.
 259. Janssens, P. A., and M. Messer. Changes in nutritional metabolism during weaning. In: The Developing Marsupial—Models for Biomedical Research, edited by C. H. Tyndale‐Biscoe and P. A. Janssens. Berlin: Springer‐Verlag, 1988, p. 162–175.
 260. Jarman, P. The social organization of antelope in relation to their ecology. Behaviour 48: 215–266, 1974.
 261. Jeuniaux, C. Chitinase: an addition to the list of hydrolases in the digestive tract of vertebrates. Nature 192: 135–136, 1961.
 262. Jeuniaux, C. On some biochemical aspects of regressive evolution in animals. In: Biochemical Evolution and the Origin of Life, edited by E. Schoffeniels. Amsterdam: North Holland, 1971.
 263. Jeuniaux, C., and C. Cornelius. Distribution and activity of chitolytic enzymes in the digestive tract of birds and mammals. In: Chitin and Chitosans, edited by R.A.A. Muzzarelli and E. R. Pariser. Cambridge, MA: MIT, 1978, p. 542–549.
 264. Justice, K. E., and F. A. Smith. A model of dietary fiber utilization by small mammalian herbivores, with empirical results for Neotoma. Am. Nat. 139: 398–416, 1992.
 265. Kamei, Y., T. Sakata, and D. Kakimoto. Microflora in the alimentary tract of tilapia: characterization and distribution of anaerobic bacteria. J. Gen. Appl. Microbiol. 31: 115–124, 1985.
 266. Kapoor, B. G., H. Smit, and I. A. Verighina. The alimentary canal and digestion in teleosts. Adv. Marine Biol. 13: 109–239, 1975.
 267. Kararli, T. T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16: 351–380, 1995.
 268. Karasov, W. H. Nutrient requirements and the design and function of guts in fish, reptiles, and mammals. In: Comparative Physiology: Life in Water and on Land, edited by P. Dejours, L. Bolis, C. R. Taylor, and E. R. Weibel. Padova: Liviana, 1987, Fidia Research Series, p. 181–191.
 269. Karasov, W. H. Nutrient transport across vertebrate intestine. In: Advances in Comparative and Environmental Physiology, edited by R. Gilles. Berlin: Springer‐Verlag, 1988, p. 131–172.
 270. Karasov, W. H. Can terrestrial vertebrates digest and absorb chitin [Abstract]. Am. Zool. 29: 24A, 1989.
 271. Karasov, W. H. Digestion in birds: chemical and physiological determinants and ecological implications. Stud. Avian Biol. 13: 391–415, 1990.
 272. Karasov, W. H. Daily energy expenditure and the cost of activity in mammals. Am. Zool. 32: 238–248, 1992.
 273. Karasov, W. H. Tests of the adaptive modulation hypothesis for dietary control of intestinal nutrient transport. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 34): R496–R502, 1992.
 274. Karasov, W. H. Digestive adaptations in avian omnivores. In: Nutrition in a Sustainable Environment, edited by M. Wahlqvist. Edinburgh: Smith‐Gordon, 1994, p. 494–497.
 275. Karasov, W. H., D. Afik, and B. W. Darken. Do northern bobwhite quail modulate intestinal nutrient absorption in response to dietary change? A test of an adaptational hypothesis. Comp. Biochem. Physiol. 113A: 233–238, 1996.
 276. Karasov, W. H., R. K. Buddington, and J. M. Diamond. Adaptation of intestinal sugar and amino acid transport in vertebrate evolution. In: Transport Processes, Iono‐ and Osmoregulation, edited by R. Gilles and M. Gilles‐Baillien. Heidelberg: Spring‐Verlag, 1985, p. 227–239.
 277. Karasov, W. H., and S. J. Cork. Glucose absorption by a nectarivorous bird: the passive pathway is paramount. Am. J. Physiol 267 (Gastrointest. Liver Physiol. 30): G18–G26, 1994.
 278. Karasov, W. H. and S. J. Cork. Test of a reactor‐based digestion optimization model for nectar‐eating rainbow lorikeets. Physiol. Zool. 69: 117–138, 1996.
 279. Karasov, W. H., B. W. Darken, and M. C. Bottum. Dietary regulation of intestinal ascorbate uptake in guinea pigs. Am. J. Physiol. 260 (Gastrointest. Liver Physiol. 23): G108–G118, 1991.
 280. Karasov, W. H., and J. M. Diamond. Adaptive regulation of sugar and amino acid transport by vertebrate intestine. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G443–G462, 1983.
 281. Karasov, W. H., and J. M. Diamond. A simple method for measuring solute uptake in vitro. J. Comp. Physiol. [B] 152: 105–116, 1983.
 282. Karasov, W. H., and J. M. Diamond. Adaptation of intestinal nutrient transport. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1987, p. 1489–1497.
 283. Karasov, W. H., and J. M. Diamond. Interplay between physiology and ecology in digestion. BioScience 38: 602–611, 1988.
 284. Karasov, W. H., and D. J. Levey. Digestive system trade‐offs and adaptations of frugivorous passerine birds. Physiol. Zool. 63: 1248–1270, 1990.
 285. Karasov, W. H., E. Petrossian, L. Rosenberg, and J. M. Diamond. How do food passage rate and assimilation differ between herbivorous lizards and nonruminant mammals? J. Comp. Physiol. [B] 156: 599–609, 1986.
 286. Karasov, W. H., D. Phan, J. M. Diamond, and F. L. Carpenter. Food passage and intestinal nutrient absorption in hummingbirds. Auk 103: 453–464, 1986.
 287. Karasov, W. H., R. S. Pond, D. H. Solberg, and J. M. Diamond. Regulation of proline and glucose transport in mouse intestine by dietary substrate levels. Proc. Natl. Acad. Sci. USA 80: 7674–7677, 1983.
 288. Karasov, W. H., D. Solberg, S. Carter, M. Hughes, D. Phan, F. Zollman, and J. M. Diamond. Uptake pathways for amino acids in mouse intestine. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G501–G508, 1986.
 289. Karasov, W. H., D. H. Solberg, S. D. Chang, M. Hughes, E. D. Stein, and J. M. Diamond. Is intestinal transport of sugars and amino acids subject to critical‐period programming? Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G770–G785, 1985.
 290. Karasov, W. H., D. H. Solberg, and J. M. Diamond. What transport adaptations enable mammals to absorb sugars and amino acids faster than reptiles? Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G271–G283, 1985.
 291. Kaske, M., S. Hatipoglu, and W. V. Engelhardt. Rumination of particles of different sizes and densities in sheep. Acta Vet. Scand. Suppl. 86: 53–54, 1989.
 292. Kaunitz, J. D., and G. Sachs. Identification of a vanadate‐sensitive potassium‐dependent proton pump from rabbit colon. J. Biol. Chem. 261: 14005–14010, 1986.
 293. Kawai, S., and S. Ikeda. Studies on digestive enzymes of fishes—II. Effect of dietary change on the activities of digestive enzymes in carp intestine. Bull. Jpn. Soc. Sci. Fish. 38: 265–270, 1972.
 294. Kawai, S., and S. Ikeda. Studies on digestive enzymes of fishes—III. Development of the digestive system of rainbow trout after hatching and the effect of dietary change on the activities of digestive enzymes in the juvenile stage. Bull. Jpn. Soc. Sci. Fish. 39: 819–823, 1973.
 295. Kawai, S., and S. Ikeda. Studies on digestive enzymes of fishes—IV. Development of the digestive enzymes of carp and black sea bream after hatching. Bull. Jpn. Soc. Sci. Fish. 39: 877–881, 1973.
 296. Kay, R. F., and W. S. Sheine. On the relationship between chitin particle size and digestibility in the primate Galago senegalensis. Am. J. Phys. Anthropol. 50: 301–308, 1979.
 297. Kehoe, F. P., C. D. Ankney, and R. T. Alisauskas. Effects of dietary fiber and diet diversity on digestive organs of captive mallards (Anas platyrhynchos). Can. J. Zool. 66: 1597–1602, 1988.
 298. Kenagy, G. J., R. D. Stevenson, and D. Masman. Energy requirements for lactation and postnatal growth in captive Golden‐mantled ground squirrels. Physiol. Zool. 62: 487–470, 1989.
 299. Kendeigh, S. C. Effect of temperature and season on energy resources of the English sparrow. Auk 66: 470–487, 1949.
 300. Kerry, K. R. Intestinal disaccharidase activity in a monotreme and eight species of marsupials (with an added note on the disaccharidases of five species of sea birds). Comp. Biochem. Physiol. 29: 1015–1022, 1969.
 301. Kessler, J. W., T. J. Nguyen, and O. P. Thomas. The amino acid excretion values in intact and cecectomized negative control roosters used for determining metabolic plus endogenous urinary losses. Poult. Sci. 60: 1576–1577, 1981.
 302. Keys, J.E.J., and P. J. Van Soest. Digestibility of forages by the meadow vole Microtus pennsylvanicus. J. Dairy Sci. 53: 1502–1508, 1970.
 303. Kimmich, G. A. Intestinal absorption of sugar. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1981, p. 1035–1061.
 304. King, I. S., F. V. Sepulveda, and M. W. Smith. Cellular distribution of neutral and basic amino acid transport in rabbit ileal mucosa. J. Physiol. (Lond.) 319: 355–368, 1981.
 305. Kintner, W. B., and T. H. Wilson. Autoradiographic study of sugar and amino acid absorption by everted sacs of hamster intestine. J. Cell Biol. 25: 19–39, 1965.
 306. Kitchin, S. E., and D. Morris. The effect of acclimation temperature on amino acid transport in the goldfish intestine. Comp. Biochem. Physiol. [A] 40: 431–443, 1971.
 307. Koldovsky, O. Developmental, dietary and hormonal control of intestinal disaccharidases in mammals (including man). In: Carbohydrate Metabolism and Its Disorders, edited by J. P. Randle, D. F. Steiner, W. J. Shelan, and W. P. Whelan. London: Academic, 1981, p. 418–522.
 308. Kontogiannis, J. E. Effect of temperature and exercise on energy intake and body weight of the white‐throated sparrow, Lonotrichia albicollis. Physiol. Zool. 41: 54–64, 1968.
 309. Kostelecka‐Myrcha, A., and A. Myrcha. The rate of passage of foodstuffs through the alimentary tracts of certain Microtidae under laboratory conditions. Acta Theriol. 9: 37–51, 1964.
 310. Kotb, A. R., and T. D. Luckey. Markers in nutrition. Nutr. Abstr. Rev. 42: 813–845, 1972.
 311. Koteja, P. On the relation between basal and field metabolic rates in birds and mammals. Funct. Ecol. 5: 56–64, 1991.
 312. Krasinski, S. D., G. Estrada, K. Y. Yeh, M. Yeh, P. G. Traber, E.H.H.M. Rings, H. A. Buller, M. Verhave, R. K. Montgomery, and R. J. Grand. Transcriptional regulation of intestinal hydrolase biosynthesis during postnatal development in rats. Am. J. Physiol. 267 (Gastrointest. Liver Physiol. 30): G584–G594, 1994.
 313. Kretchmer, N. Food: a selective agent in evolution. In: Nutrition and Evolution, edited by D. N. Walcher and N. Kretchmer. New York: Masson, 1981, p. 37–48.
 314. Krugliak, P., D. Hollander, C. C. Schlaepfer, H. Nguyen, and T. Y. Ma. Mechanisms and sites of mannitol permeability of small and large intestine in the rat. Dig. Dis. Sci. 39: 796–801, 1994.
 315. Kunstyr, I. Some quantitative and qualitative aspects of the stomach microflora of the conventional rat and hamster. Zentralbl. Veterinarmed [A] 21: 553–561, 1974.
 316. Langer, P., D. W. Dellow, and I. D. Hume. Stomach structure and function in three species of macropodine marsupials. Aust. J. Zool. 28: 1–18, 1980.
 317. Lauff, M., and R. Hofer. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture 37: 335–346, 1984.
 318. Lee, A. C., and A. R. Cossins. Adaptation of intestinal morphology in the temperature‐acclimated carp, Cyprinus carpio. Cell Tissue Res. 251: 451–456, 1988.
 319. Lei, K. Y., and S. J. Slinger. Energy utilization in the chick in relation to certain environmental stresses. Can. J. Anim. Sci. 50: 285–292, 1970.
 320. Lerner, J. Cell membrane amino acid transport processes in the domestic fowl (Gallus domesticus). Comp. Biochem. Physiol. [A] 78: 205–215, 1984.
 321. Lerner, J., and R. Smagula. Myo‐inositol transport in the small intestine of the domestic fowl. Comp. Biochem. Physiol. [A] 62: 939–945, 1979.
 322. Levenspiel, O. Chemical Reaction Engineering. New York: Wiley, 1972.
 323. Levey, D. J. Seed size and fruit‐handling techniques of avian frugivores. Am. Nat. 129: 471–485, 1987.
 324. Levey, D. J., and M. L. Cipollini. Is most glucose absorbed passively in northern bobwhite?. Comp. Biochem. Physiol. 113A: 225–231, 1996.
 325. Levey, D. J., and G. E. Duke. How do frugivores process fruit? Gastrointestinal transit and glucose absorption in cedar waxwings (Bombycilla cedrorum). Auk 109: 722–730, 1992.
 326. Levey, D. J., and W. H. Karasov. Digestive responses of temperate birds switched to fruit or insect diets. Auk 106: 675–686, 1989.
 327. Levey, D. J., and W. H. Karasov. Digestive modulation in a seasonal frugivore, the American robin (Turdus migratorius). Am. J. Physiol. 262 (Gastrointest. Liver Physiol. 25): G711–G718, 1992.
 328. Lhoste, E. F., M. Fiszlewicz, A. M. Gueugneau, and T. Corring. Adaptation of exocrine pancreas to dietary proteins: Effect of the nature of protein and rat strain on enzyme activities and messenger RNA levels. J. Nutr. Bioch. 5: 84–94, 1994.
 329. Lhoste, E. F., M. Fiszlewicz, A. M. Gueugneau, P. C. Wicker, A. Puigserver, and T. Corring. Effects of dietary proteins on some pancreatic mRNAs encoding digestive enzymes in the pig. J. Nutr. Biochem. 4: 143–152, 1993.
 330. Lichtenstein, B., and D. Winne. The influence of blood flow on the absorption of 3‐O‐methylglucose from the jejunum of the rat. Arch. Pharmacol. 279: 153–172, 1973.
 331. Lilja, C. A comparative study of postnatal growth and organ development in some species of birds. Growth 47: 317–339, 1983.
 332. Lilja, C., I. Sperber, and H. L. Marks. Postnatal growth and organ development in Japanese quail selected for high growth rate (Coturnix coturnix japonica). Growth 49: 51–62, 1985.
 333. Linder, M. C., and H. N. Munro. Iron and copper metabolism during development. Enzyme 15: 111–138, 1973.
 334. Lindsay, G.J.H. Distribution and function of digestive tract chitinolytic enzymes in fish. J. Fish Biol. 24: 529–536, 1984.
 335. Lindsay, G.J.H., M. J. Walton, J. W. Adron, T. C. Fletcher, C. Y. Cho, and C. B. Cowey. The growth of rainbow trout (Salmo gairdneri) given diets containing chitin and its relationship to chitinolytic enzymes and chitin digestibility. Aquaculture 37: 315–334, 1984.
 336. Loeb, S. C., R. G. Schwab, and M. W. Demment. Response of pocket gophers (Thomomys bottae) to changes in diet quality. Oecologia 86: 542–551, 1991.
 337. Love, R. M. The Chemical Biology of Fishes. London: Academic, 1980.
 338. Low, A. G. Studies on digestion and absorption in the intestines of growing pigs 6: measurements of flow of amino acids. Br. J. Nutr. 41: 147–156, 1979.
 339. Low, A. G. Nutritional regulation of gastric secretion, digestion, and emptying. Nutr. Res. Rev. 3: 229–252, 1990.
 340. Mackie, R. I. Microbial digestion of forages in herbivores. In: The Nutrition of Herbivores, edited by J. B. Hacker and J. H. Ternouth. Sydney: Academic, 1987, p. 233–265.
 341. Madara, J. L. Tight junction dynamics: is paracellular transport regulated? Cell 53: 497–498, 1988.
 342. Madara, J. L. Physiological regulation of intestinal epithelial tight junctions as a consequence of Na +‐coupled nutrient transport. Gastroenterology 109: 1391–1396, 1995.
 343. Maffia, M., R. Acierno, G. Deceglie, S. Vilella, and C. Storelli. Adaptation of intestinal cell membrane enzymes to low temperatures in the antarctic teleost Pagothenia bernacchii. J. Comp. Physiol. [B] 163: 265–270, 1993.
 344. Maffia, M., G. A. Ahearn, S. Vilella, V. Zonno, and C. Storelli. Ascorbic acid transport by intestinal brush‐border membrane vesicles of the teleost Anguilla anguilla. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 35): R1248–R1253, 1993.
 345. Maffia, M., G. Cassano, D. Marcucci, S. Vilella, and C. Storelli. The sodium ion‐dependent proline carrier, of eel intestinal brush‐border membrane, sequentially binds proline and then soium ion. Biochim. Biophys. Acta 1027: 8–16, 1990.
 346. Malagelda, J. R., and F. Azpiroz. Determinants of gastric emptying and transit in the small intestine. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by M. Field and R. A. Frizzell. Bethesda, MD: Am. Physiol. Soc. 1989, sec. 6, vol. IV, p. 409–437.
 347. Maloiy, G.M.O. Water economy of the Somali donkey. Am. J. Physiol. 219: 1522–1527, 1970.
 348. Malone, C. R. Dispersal of plankton: rate of food passage in mallard ducks. J. Wildl. Manage. 29: 529–533, 1965.
 349. Marken Lichtenbelt, W.D.V. Digestion in an ectothermic herbivore, the green iguana (Iguana iguana): effect of food composition and body temperature. Physiol. Zool. 65: 649–673, 1992.
 350. Martinez, V., M. Miménez, E. Goñalons, and P. Vergara. Intraluminal lipids modulate avian gastrointestinal motility. Am. J. Physiol. 269 (Regulatory Integrative Comp. Physiol., 40): R445–R452, 1995.
 351. Martinez del Rio, C. Dietary, phylogenetic, and ecological correlates of intestinal sucrase and maltase activity in birds. Physiol. Zool. 63: 987–1011, 1990.
 352. Martinez del Rio, C. Sugar preferences in hummingbirds: the influence of subtle chemical differences on food choice. Condor 92: 1022–1030, 1990.
 353. Martinez del Rio, C., K. E. Brugger, J. L. Rios, M. E. Vergara, and M. Witmer. An experimental and comparative study of Dietary modulation of intestinal enzymes in European starlings (Sturnus vulgaris). Physiol. Zool. 68: 490–511, 1995.
 354. Martinez del Rio, C., and W. H. Karasov. Digestion strategies in nectar‐eating and fruit‐eating birds and the sugar composition of plant rewards. Am. Nat. 136: 618–637, 1990.
 355. Martinez del Rio, C., W. H. Karasov, and D. J. Levey. Physiological basis and ecological consequences of sugar preferences in cedar waxwings. Auk 106: 64–71, 1989.
 356. Martinez del Rio, C., B. R. Stevens, D. E. Daneke, and P. T. Andreadis. Physiological correlates of preference and aversion for sugars in three species of birds. Physiol. Zool. 61: 222–229, 1988.
 357. Mateos, G. G., J. L. Sell, and J. A. Eastwood. Rate of food passage (transit time) as influenced by level of supplemental fat. Poult. Sci. 61: 94–100, 1982.
 358. Mavrias, D. A., and R. J. Mayer. Metabolism of fructose in the small intestine. I. The effect of fructose feeding on fructose transport and metabolism in rat small intestine. Biochim. Biophys. Acta 291: 531–537, 1973.
 359. McCarthy, D. M., J. A. Nicholson, and Y. S. Kim. Intestinal enzyme adaptation to normal diets of different composition. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G445–G451, 1980.
 360. McLeese, J. M., and E. D. Stevens. The effect of acclimation temperature, assay temperature, and ration on the specific activity of trypsin and chymotrypsin from rainbow trout. Comp. Biochem. Physiol. [B] 73: 631–634, 1982.
 361. Meddings, J. B. Lipid permeability of the intestinal microvillus membrane may be modulated by membrane fluidity in the rat. Biochim. Biophys. Acta 984: 158–166, 1989.
 362. Meddings, J. B., and H. Westergaard. Intestinal glucose transport using perfused rat jejunum in vivo: model analysis and derivation of corrected kinetic constants. Clin. Sci. (Colch.) 76: 403–44, 1989.
 363. Mertens, D. R., and L. O. Ely. A dynamic model of fiber digestion and passage in the ruminant for evaluating forage quality. J. Anim. Sci. 49: 1085–1095, 1979.
 364. Meyer, J. H., E. A. Mayer, D. Jehn, Y. Gu, A. S. Fink, and M. Fried. Gastric processing of fat. Gastroenterology 90: 1085–1095, 1986.
 365. Micha, J. C., G. Dandrifosse, and C. Jeauniaux. Distribution et localisation tissularie de la synthèse des chitinases chez les vertèbres inferieurs. Arch. Int. Physiol. Biochim. 81: 439–451, 1973.
 366. Mircheff, A. K., C. H. Van Os, and E. M. Wright. Pathways for alanine transport in intestinal basal lateral membrane vesicles. J. Membr. Biol. 52: 83–92, 1980.
 367. Misch, D. W., P. E. Giebel, and R. G. Faust. Intestinal microvilli: responses to feeding and fasting. Eur. J. Cell Biol. 21: 269–279, 1980.
 368. Miyamoto, K. I., K. Hase, T. Takagi, T. Fujii, Y. Taketani, H. Minami, T. Oka, and Y. Nakabou. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem. J. 295: 211–215, 1993.
 369. Mohsin, M. S. Comparative morphology and histology of the alimentary canals in certain groups of teleosts. Acta Zool. 43: 79–133, 1962.
 370. Moin‐un‐nisa, Q., B. K. Zain, and M. Zain‐ul‐abedin. Intestinal transport of amino acids in a lizard during hibernation and activity. Comp. Biochem. Physiol. 36: 569–577, 1970.
 371. Montgomery, W. L. Diet and gut morphology in fishes, with special reference to the monkey face prickleback, Cebidichthys violaceus (Stichaeidae Blennioidei). Copeia 1977: 178–182, 1977.
 372. Moreau, H., Y. Gargouri, D. Lecat, J. L. Junien, and R. Verger. Screening of preduodenal lipases in several mammals. Biochim. Biophys. Acta 959: 247–252, 1988.
 373. Moreto, M., C. Amat, A. Puchal, R. K. Buddington, and J. M. Planas. Transport of lproline and alpha‐methyl‐d‐glucoside by chicken proximal cecum during development. Am. J. Physiol. 260 (Gastrointest. Liver Physiol. 23): G457–G463, 1991.
 374. Mukhopadhyay, P. K. Studies on the enzymatic activities related to varied pattern of diets in the air‐breathing catfish, Clarias batrachus. Hydrobiologia 52: 235–237, 1977.
 375. Munck, B. G. Intestinal absorption of amino acids. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1981, p. 1097–1122.
 376. Munck, B. G. Comparative aspects of amino acid transport in guinea pig, rabbit and rat small intestine. In: Intestinal Transport, edited by M. Gilles‐Baillie and R. Gilles. Berlin: Springer‐Verlag, 1983, p. 260–283.
 377. Munck, L. K., and B. G. Munck. Amino acid transport in the small intestine. Physiol. Res. 43: 335–346, 1994.
 378. Musacchia, X. J., and A. M. Hartner. Intestinal absorption of glucose and blood glucose and hematocrit in pregnant and nonpregnant hamsters. Proc. Soc. Exp. Biol. Med. 135: 307–310, 1970.
 379. Nagase, G. Contribution to the physiology of digestion in Tilapia mossambica Peters: digestive enzymes and the effects of diets on their activity. Z. vergleich. Physiol. 49: 270–284, 1964.
 380. Nagy, K. A. Cellulose digestion and nutrient assimilation in Sauromalus obesus, a plant‐eating lizard. Copeia 355–362, 1977.
 381. Nagy, T. R., and N. C. Negus. Energy acquisition and allocation in male collared lemmings (Dicrostonyx groenlandicus): effects of photoperiod, temperature, and diet quality. Physiol. Zool. 66: 537–560, 1993.
 382. Nicholson, J. A., D. M. McCarthy, and Y. S. Kim. The responses of rat intestinal brush border and cytosol peptide hydrolase activities to variation in dietary protein content. J. Clin. Invest. 54: 890–898, 1974.
 383. Nitsan, A., and E. Alumot. Role of the cecum in the utilization of raw soybean in chicks. J. Nutr. 80: 299–304, 1963.
 384. Obendorf, D. L. The macropodid oesophagus. II. Morphological studies of its adherent bacteria using light and electron microscopy. Aust. J. Biol. Sci. 37: 99–116, 1984.
 385. Obst, B. S. The avian feeding system: intestinal nutrient absorption in birds. In: Acta XX Congressus Internationalis Ornithologici. Christchurch, NZ: New Zealand Ornithological Trust, 1991, p. 920–926.
 386. Obst, B. S., and J. M. Diamond. Interspecific variation in sugar and amino acid transport by the avian cecum. J. Exp. Zool. Suppl. 3: 117–126, 1989.
 387. O'Grady, S. M., M. W. Musch, and M. Field. Stoichiometry and ion affinities of the sodium–potassium–chloride cotransport system in the intestine of the winter flounder (Pseudopleuronectes americanus). J. Membr. Biol. 91: 33–42, 1986.
 388. Owen, T. G., and A. J. Wiggs. Thermal compensation in the stomach of the brook trout (Salvelinus fontinalis). Comp. Biochem. Physiol. [B] 40: 465–473, 1971.
 389. Owens, P. N., and A. L. Goetsch. Ruminal fermentation. In: The Ruminant Animal. Digestive Physiology and Nutrition, edited by D. C. Church. Englewood Cliffs, NJ: Prentice Hall, 1988, p. 145–171.
 390. Pajor, A. M., B. A. Hirayama, and E. M. Wright. Molecular biology approaches to comparative study of sodium glucose cotransport. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 34): R489–R495, 1992.
 391. Pappenheimer, J. R. Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: relation to body size. Am. J. Physiol. 259 (Gastrointest. Liver Physiol. 22): G290–G299, 1990.
 392. Pappenheimer, J. R. On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28): G409–G417, 1993.
 393. Pappenheimer, J. R., C. E. Dahl, M. L. Karnovsky, and J. E. Maggio. Intestinal absorption and excretion of octapeptides composed of d‐amino acids. Proc. Natl. Acad. Sci. U.S.A. 91: 1942–1945, 1994.
 394. Pappenheimer, J. R., and K. Z. Reiss. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J. Membr. Biol. 100: 123–136, 1987.
 395. Pappenheimer, J. R., and K. Volpp. Transmucosal impedance of small intestine: correlation with transport of sugars and amino acids. Am. J. Physiol. 263 (Cell Physiol. 34): C480–C493, 1992.
 396. Parmelee, J. T., and J. L. Renfro. Esophageal desalination of seawater in flounder: role of active sodium transport. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 16): R888–R893, 1983.
 397. Parmenter, R. R. Digestive turnover rates in freshwater turtles: the influence of temperature and body size. Comp. Biochem. Physiol. A 70: 235–238, 1981.
 398. Parra, R. Comparisons of foregut and hindgut fermentation in herbivores. In: The Ecology of Arboreal Folivores, edited by G. G. Montgomery. Washington, DC: Smithsonian Institution, 1978, p. 205–229.
 399. Parsons, T. S., and J. E. Cameron. Internal relief of the digestive tract. In: Biology of the Reptilia, edited by C. Gaus and T. S. Parsons. London: Academic, 1977, vol. 6, p. 159–223.
 400. Patterson, T. L. Contribution to the physiology of the stomach XXXVI. The physiology of the gastric hunger contractions in the amphibian and the reptilia: comparative studies. Am. J. Physiol. 42: 56–88, 1917.
 401. Patton, J. S., and A. A. Benson. A comparative study of wax ester digestion in fish. Comp. Biochem. Physiol. [B] 52: 111–116, 1975.
 402. Pavlov, J. P. The Work of the Digestive Glands. London: Griffin, 1902.
 403. Penry, D. L., and P. A. Jumars. Modeling animal guts as chemical reactors. Am. Nat. 129: 69–96, 1987.
 404. Penzes, L., R. C. Noble, and O. Regius. Morphometric changes in the duodenal microvillous surface area of the non‐pregnant, pregnant and lactating female rat. Acta Morphol. Neer. Scand. 26: 9–18, 1988.
 405. Penzes, L., and G. Simon. Intestinal absorption and turnover of l‐methionine during reproduction in the rat. Jpn. J. Physiol. 18: 288–296, 1968.
 406. Perez, M., A. Barber, and F. Ponz. In vivo increase of passive intestinal absorption by cotransporters activation in rat. Rev. Esp. Fisiol. 49: 259–264, 1993.
 407. Perrin, M. R., and B. A. Curtis. Comparative morphology of the digestive system of 19 species of southern African myo‐morph rodents in relation to diet and evolution. S. Afr. J. Zool. 15: 22–33, 1980.
 408. Phillipson, A. T. Ruminant digestion. In: Duke's Physiology of Domestic Animals, edited by M. J. Swenson. Ithaca, NY: Cornell Univ. Press, 1970, p. 250–286.
 409. Piersma, T., A. Koolhaas, and A. Dekinga. Interactions between stomach structure and diet choice in shorebirds. Auk 110: 552–564, 1993.
 410. Place, A. R. Bile is essential for lipid assimilation in Leach's storm petrel, Oceanodroma leucorhoa. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 34): R389–R399, 1992.
 411. Place, A. R. Comparative aspects of lipid digestion and absorption: Physiological correlates of wax ester digestion. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 34): R464–R471, 1992.
 412. Place, A. R., and E. W. Stiles. Living off the wax of the land: bayberries and yellow‐rumped warblers. Auk 109: 334–345, 1992.
 413. Planas, J. M., R. Ferrer, and M. Moreto. Relation between alpha‐methyl‐d‐glucoside influx and brush border surface area in enterocytes from chicken cecum and jejunum. Pflugers Arch. 408: 515–518, 1987.
 414. Planas, J. M., M. C. Villa, R. Ferrer, and M. Moreto. Hexose transport by chicken cecum during development. Pflugers Arch. 407: 216–220, 1986.
 415. Poppi, D. P., B. W. Norton, D. J. Minson, and R. E. Hendricksen. The validity of the critical size theory for particles leaving the rumen. J. Agr. Sci. 94: 275–280, 1980.
 416. Powell, D. W. Intestinal water and electrolyte transport. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson, J. Christensen, M. J. Jackson, and J. H. Walsh. New York: Raven, 1987, p. 1267–1306.
 417. Prop, J., and T. Vulink. Digestion by barnacle geese in the annual cycle: the interplay between retention time and food quality. Funct. Ecol. 6: 180–190, 1992.
 418. Quiroz, R., K. Pond, E. Tolley, and W. Johnson. Selection among nonlinear models for rate of passage studies in ruminants. J. Anim. Sci. 66: 2977–2986, 1988.
 419. Rajendran, V. M., J. M. Harig, and K. Ramaswamy. Characteristics of glyycl‐l‐proline transport in intestinal brush‐border membrane vesicles. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 23): G281–G286, 1987.
 420. Raul, F., T. Goda, F. Gosse, and O. Koldovsky. Short‐term effect of high‐protein/low‐carbohydrate diet on aminopeptidase in adult rat jejunoileum. Biochem. J. 247: 401–405, 1987.
 421. Raul, F., M. Kedinger, P. M. Simon, J. F. Grenier, and K. Haffen. Comparative in vivo and in vitro effect of mono‐ and disaccharides on intestinal brush‐border enzyme activities in suckling rats. Biol. Neonate 390: 200–207, 1981.
 422. Raybould, H. E., T. T. Zittel, H. H. Holzer, K.C.K. Lloyd, and J. H. Meyer. Gastroduodenal sensory mechanisms and CCK in inhibition of gastric emptying in response to a meal. Dig. Dis. Sci. 39: 41S–43S, 1994.
 423. Rechkemmer, G., K. Ronnau, and W. V. Engelhardt. Fermentation of polysaccharides and absorption of short‐chain fatty acids in the mammalian hindgut. Comp. Biochem. Physiol. A 90: 563–568, 1988.
 424. Reenstra, W. W., J. D. Bettenbourt, and J. G. Forte. Mechanisms of active chloride‐secretion by frog gastric mucosa. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 23): G543–G547, 1987.
 425. Reisneauer, A. M., and R. O. Castillo. Regulation of the ontogenic and regional expression of intestinal aminooligopeptidase. J. Pediatr. Gastroenterol. Nutr. 18: 1–8, 1994.
 426. Reisenauer, A. M., and G. M. Gray. Abrupt induction of a membrane digestive enzyme by its intraintestinal substrate. Science 227: 70–71, 1985.
 427. Reshkin, S. J., and G. A. Ahearn. Basolateral glucose transport by intestine of teleost, Oreochromis mossambicus. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 252): R573–R586, 1987.
 428. Reshkin, S. J., and G. A. Ahearn. Intestinal glycyl‐l‐phenylalanine and l‐phenylalanine transport in a euryhaline teleost. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 31): R563–R569, 1991.
 429. Reshkin, S. J., M. L. Grover, R. D. Howerton, E. G. Grau, and G. A. Ahearn. Dietary hormonal modification of growth, intestinal ATPase, and glucose transport in tilapia. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E610–E618, 1989.
 430. Reshkin, S. J., S. Vilella, G. A. Ahearn, and C. Storelli. Basolateral inositol transport by intestines of carnivorous and herbivorous teleosts. Am. J. Physiol. 256 (Gastrointest. Liver Physiol. 19): G509–G516, 1989.
 431. Reshkin, S. J., S. Vilella, G. Cassano, G. A. Ahearn, and C. Storelli. Basolateral amino acid and glucose transport by the intestine of the teleost, Anguilla anguilla. Comp. Biochem. Physiol. [A] 91: 779–788, 1988.
 432. Reuss, L. Salt and water transport by gallbladder epithelium. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by M. Field and R. A. Frizzell. Bethesda, MD: Am. Physiol. Soc., 1991, sect. 6, vol. IV, p. 303–322.
 433. Riby, J. E., and N. Kretchmer. The effect of dietary sucrose on synthesis and degradation of intestinal sucrase. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G757–G764, 1984.
 434. Richardson, K. C., M. K. Vidyadaran, T. I. Azmi, and N. H. Fuzinz. The radiographic anatomy of the gastrointestinal tract of the lesser mouse deer (Tragulus jaranicus). Pertanika 11: 427–435, 1988.
 435. Ricketts, J., and P. M. Brannon. Amount and type of dietary fat regulate pancreatic lipase gene expression in rats. J. Nutr. 124: 1166–1171, 1994.
 436. Ricklefs, R. E. Avian postnatal development. In: Avian Biology, edited by D. S. Farmer and J. R. King. New York: Academic, 1983, vol. VII, p. 1–83.
 437. Rimmer, D. W., and W. J. Wiebe. Fermentative microbial digestion in herbivorous fishes. J. Fish Biol. 31: 229–236, 1987.
 438. Roby, D. D., K. L. Brink, and A. R. Place. Relative passage rates of lipid and aqueous digesta in the formation of stomach oils. Auk 106: 303–313, 1989.
 439. Rose, R. C. Intestinal absorption of water‐soluble vitamins. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1987, p. 1581–1596.
 440. Rose, R. C. and J. L. Choi. Intestinal absorption and metabolism of ascorbic acid in rainbow trout. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 29): R1238–R1241, 1990.
 441. Rose, R. C., and D. L. Nahrwold. Intestinal ascorbic acid transport following diets of high or low ascorbic acid content. Int. J. Vitam. Nutr. Res. 48: 382–386, 1978.
 442. Rozdzial, M. M. Digestive Assimilation and Biomass Production Efficiency, and Gut Evacuation Rate as a Function of Temperature in Four Anuran Amphibians: A Bioenergetic Approach. Fullerton: California State University, 1980. M.S. Thesis.
 443. Rübsamen, K., I. D. Hume, and W. V. Engelhardt. Physiology of the rock hyrax. Comp. Biochem. Physiol. A 72: 271–277, 1982.
 444. Sabapathy, U., and L. H. Teo. Some properties of the intestinal proteases of the rabbitfish, Siganus canaliculatus (Park). Fish Physiol. Biochem. 14: 215–221, 1995.
 445. Said, H. M., and I. Derweesh. Carrier‐mediated mechanism for biotin transport in rabbit intestine: studies with brush‐border membrane vesicles. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 32): R94–R97, 1991.
 446. Said, H. M, D. M. Mock, and J. C. Collins. Regulation of intestinal biotin transport in the rat: effect of biotin deficiency and supplementation. Am. J. Physiol. 256 (Gastrointest. Liver Physiol. 19): G306–G311, 1989.
 447. Saito, M., and M. Suda. Effect of diet on enzymes of the brush border of the small intestine and kidney of rats. J. Nutr. Sci. Vitaminol. (Tokyo) 21: 207–215, 1975.
 448. Sakaguchi, E., and I. D. Hume. Digesta retention and fiber digestion in brushtail possums, ringtail possums and rabbits. Comp. Biochem. Physiol. [A] 96: 351–354, 1990.
 449. Sakaguchi, E., H. Itoh, S. Uchida, and T. Horigome. Comparison of fiber digestion and digesta retention time between rabbits, guinea pigs, rats and hamsters. Br. J. Nutr. 58: 149–158, 1987.
 450. Salloum, R. M., W. W. Souba, A. Fernandez, and B. R. Stevens. Dietary modulation of small intestinal glutamine transport in intestinal brush border membrane vesicles of rats. J. Surg. Res. 48: 635–638, 1990.
 451. Sandstrom, B., H. Andersson, B. Kivisto, and A. S. Sandberg. Apparent small intestinal absorption of nitrogen and minerals from soy and meat‐protein‐based diets: a study on human ileostomy subjects. J. Nutr. 116: 2209–2218, 1986.
 452. Sass, M. D., H. P. Dreyer, and J. Seifert. Rapid insorption of small particles in the gut. Am. J. Gastroenterol. 85: 255–260, 1990.
 453. Satoh, S., M. Furuse, Y. H. Choi, and J. Okumura. Cholecys‐tokinin is not a major regulator in the digestive system in the chicken. Experientia 50: 812–814, 1994.
 454. Satoh, S., M. Furuse, and J. Okumura. Factors influencing the intestinal phase of pancreatic exocrine secretion in the turkey. Experientia 51: 249–251, 1995.
 455. Savage, D. C. Interactions between the host and its microbes. In: Microbial Ecology of the Gut, edited by R.T.J. Clarke and T. Bauchop. London: Academic, 1977, p. 277–310.
 456. Savory, C. J. Gastrointestinal morphology and absorption of monosaccharides in fowls conditioned to different types and levels of dietary fibre. Br. J. Nutr. 67: 77–89, 1992.
 457. Savory, C. J., and M. J. Gentle. Effects of dietary dilution with fibre on the food intake and gut dimensions of Japanese quail. Br. Poult. Sci. 17: 561–570, 1976.
 458. Scalera, V., D. Natuzzi, and G. Prezioso. myo‐Inositol transport in rat intestinal brush border membrane vesicles, and its inhibition by d‐glucose. Biochim. Biophys. Acta 1062: 187–192, 1991.
 459. Scharrer, E. Developmental changes of sugar and amino acid transport in different tissues of ruminants. In: Digestion and Metabolism in the Ruminant, edited by I. W. McDonald. Armidale, Australia: Univ. New England, 1975, p. 49–59.
 460. Scharrer, E. Developmental changes of sugar transport in the ovine small intestine. Pflugers Arch. 366: 147–151, 1976.
 461. Scharrer, E., S. Wolfram, W. Raab, B. Amann, and N. Agae. Adaptive changes of amino acid and sugar transport across the brush border of rat jejunum. In: Mechanisms of Intestinal Adaptation, edited by J.W.L. Robinson, R. H. Dowling, and E. O. Riecken. Lancaster, UK: MTP, 1981, p. 123–137.
 462. Schieck, J. O., and J. S. Millar. Alimentary tract measurements as indicators of diets of small mammals. Mammalia 49: 93–104, 1985.
 463. Schmidt‐Nielsen, K., A. Borut, P. Lee, and E. Crawford. Nasal salt excretion and the possible function of the cloaca in water conservation. Science 142: 1300–1301, 1963.
 464. Schultz, S. G., and P. F. Curran. Coupled transport of sodium and organic solutes. Physiol. Rev. 50: 637–718, 1970.
 465. Schwartz, C. C., and J. E. Ellis. Feeding ecology and niche separation in some native and domestic ungulates on the shortgrass prairie. J. Anim. Ecol. 18: 343–353, 1981.
 466. Secor, S. M., and J. Diamond. Adaptive responses to feeding in Burmese pythons: pay before pumping. J. Exp. Biol. 198: 1313–1325, 1995.
 467. Secor, S. M., E. D. Stein, and J. Diamond. Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. Am. J. Physiol. 266 (Gastrointest. Liver Physiol. 29): G695–G705, 1994.
 468. Sell, J. L., O. Kolodovsky, and B. L. Reid. Intestinal disaccharidases of young turkeys: temporal development and influence of diet composition. Poult. Sci. 68: 265–277, 1989.
 469. Sellers, A. F., J. E. Lowe, C. J. Drost, V. T. Fendano, J. R. Georgi, and M. C. Roberts. Retropulsion–propulsion in equine large colon. Am. J. Vet. Res. 43: 390–396, 1982.
 470. Semenza, G., and S. Auricchio. Small‐intestine disaccharidases. In: The Metabolic Basis of Inherited Disease (II), edited by C. R. Scribner, A. L. Beaudet, W. S. Sly, and D. Valle. New York: McGraw Hill, 1989, p. 2975–2997.
 471. Shiau, Y., J. T. Boyle, C. Umstetter, and O. Koldovsky. Apical distribution of fatty acid esterification capacity along the villus–crypt unit of rat jejunum. Gastroenterology 79: 47–53, 1980.
 472. Shiau, Y. F. Lipid digestion and absorption. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1987, p. 1527–1556.
 473. Shirazi‐Beechey, S. P. Molecular biology of intestinal glucose transport. Nutr. Res. Rev. 8: 27–41, 1995.
 474. Shirazi‐Beechey, S. P., B. A. Hirayama, Y. Wang, D. Scott, M. W. Smith, and E. M. Wright. Ontogenic development of lamb intestinal sodium‐glucose co‐transporter is regulated by diet. J. Physiol. (Lond.) 437: 699–708, 1991.
 475. Shirazi‐Beechey, S. P., M. W. Smith, Y. Wang, and P. S. James. Postnatal development of lamb intestinal digestive enzymes is not regulated by diet. J. Physiol. (Lond.) 437: 691–698, 1991.
 476. Shulman, R. J., S. J. Henning, and B. L. Nichols. The miniature pig as an animal model for the study of intestinal enzyme development. Pediatr. Res. 23: 311–315, 1988.
 477. Sibly, R. M. Strategies of digestion and defecation. In: Physiological Ecology, edited by C. R. Townsend and P. Calow. Sunderland, MA: Sinauer, 1981, p. 109–139.
 478. Siddons, R. C. Effect of diet on disaccharidase activity in the chick. Biochem. J. 112: 51–59, 1972.
 479. Siegle, M. L., and H. J. Ehrlein. Digestive motor patterns and transit of luminal contents in canine ileum. Am. J. Physiol. 254 (Gastrointest. Liver Physiol. 17): G552–G559, 1988.
 480. Siegle, M. L., H. R. Schmid, and H. J. Ehrlein. Effects of ileal infusions of nutrients on motor patterns of canine small intestine. Am. J. Physiol. 259 (Gastrointest. Liver Physiol. 22): G78–G85, 1990.
 481. Skadhauge, E. Water transport in the vertebrate intestine. In: Animals and Environmental Fitness, edited by R. Gilles. Elmsford, NY: Pergamon, 1980, p. 79–90.
 482. Skadhauge, E. Osmoregulation in Birds. Berlin: Springer‐Verlag, 1981.
 483. Skoczylas, R. Physiology of the digestive tract. In: Biology of the Reptilia, edited by C. Gans. London: Academic, 1978, p. 589–717.
 484. Smit, M. The influence of temperature on the rate of gastric juice secretion in the brown bullhead, Ictalurus nebulosus. Comp. Biochem. Physiol. 21: 125–132, 1967.
 485. Smith, G. C. Ecological energetics of three species of ectothermic vertebrates. Ecology 57: 252–264, 1976.
 486. Smith, M. W. Expression of digestive and absorptive function in differentiating enterocytes. Annu. Rev. Physiol. 47: 247–260, 1985.
 487. Smith, M. W., and L. G. Jarvis. Growth and cell replacement in the newborn pig intestine. Proc. R. Soc. Lond. Biol. Sci. 203: 69–89, 1978.
 488. Smith, M. W., J.Y.F. Paterson, and M. A. Peacock. A comprehensive description of brush border membrane development applying to enterocytes taken from a wide variety of mammalian species. Comp. Biochem. Physiol. [A] 93: 617–622, 1989.
 489. Smith, M. W., and M. A. Peacock. Comparative aspects of microvillus development in avian and mammalian enterocytes. Comp. Biochem. Physiol. [A] 93: 617–622, 1989.
 490. Soergel, K. H., and A. F. Hofmann. Absorption. In: Pathophysiology: Altered Regulatory Mechanisms in Disease, edited by E. D. Frohlich. Philadelphia: Lippincott, 1976, p. 499–529.
 491. Solberg, D. H., and J. M. Diamond. Comparison of different dietary sugars as inducers of intestinal sugar transporters. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G574–G584, 1987.
 492. Sonoyama, K., S. Kiriyama, and R. Niki. Effect of dietary protein level on intestinal aminopeptidase activity and mRNA level in rats. J. Nutr. Biochem. 5: 291–297, 1994.
 493. Spalinger, D. E., and C. T. Robbins. The dynamics of particle flow in the rumen of mule deer (Odsocoileus hemionus hemionus) and elk (Cervus elaphus nelsoni). Physiol. Zool. 65: 379–402, 1992.
 494. Spencer, R., and K. Brody. Biotin transport by small intestine of rat, hamster, and other species. Am. J. Physiol. 206: 653–657, 1964.
 495. Spiller, R. C., I. F. Trotman, B. E. Higgins, K. Ghateig, Y. C. Grimble, Y. C. Lee, S. R. Bloom, J. J. Misiewics, and B. A. Silk. The ileal brake inhibition of jejunal motility after ilial fat perfusion in man. Gut 25: 365–374, 1984.
 496. Stabile, B. E., M. Borzatta, R. S. Stubbs, and H. T. Debas. Intravenous mixed amino acids and fats do not stimulate exocrine pancreatic secretion. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G274–G280, 1984.
 497. Starck, J. M., and E. Kloss. Structural responses of Japanese quail intestine to different diets. DTW 102: 146–150, 1995.
 498. Stein, E. D., S. D. Chang, and J. M. Diamond. Comparison of different dietary amino acids as inducers of intestinal amino acid transport. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G626–G635, 1987.
 499. Stein, E. D., and J. M. Diamond. Do dietary levels of pantothenic acid regulate its intestinal uptake in mice? J. Nutr. 119: 1973–1983, 1989.
 500. Stevens, B. R. Amino acid transport in intestine. In: Mammalian Amino Acid Transport, edited by M. S. Kilberg and D. Haussinger. New York: Plenum, 1992, p. 149–163.
 501. Stevens, B. R. Vertebrate intestine apical membrane mechanisms of organic nutrient transport. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 34): R458–R463, 1992.
 502. Stevens, B. R., J. D. Kaunitz, and E. M. Wright. Intestinal transport of amino acids and sugars. Annu. Rev. Physiol. 46: 417–433, 1984.
 503. Stevens, B. R., and E. M. Wright. Kinetics of the intestinal brush border proline (Imino) carrier. J. Biol. Chem. 262: 6546–6551, 1987.
 504. Stevens, C. E. Comparative physiology of the digestive system. In: Duke's Physiology of Domestic Animals, edited by M. J. Swenson. Ithaca, NY: Cornell Univ. Press, 1977, p. 216–232.
 505. Stevens, C. E., R. A. Argenzio, and M. C. Roberts. Comparative physiology of the mammalian colon and suggestions for animal models of human disorders. Clin. Gastroenterol. 15: 763–786, 1986.
 506. Stevens, C. E., and I. D. Hume. Comparative Physiology of the Vertebrate Digestive System. Cambridge: Cambridge University Press, 1995.
 507. Stevens, C. E., A. F. Sellers, and F. A. Spurrell. Function of the bovine omasum in ingesta transfer. Am. J. Physiol. 198: 449–455, 1960.
 508. Stevens, E. D., and J. M. McLeese. Why bluefin tuna have warm tummies: temperature effect on trypsin and chymotrypsin. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R487–R494, 1984.
 509. Storelli, C., S. Vilella, M. P. Romano, M. Maffia, and G. Cassano. Brush‐border amino acid transport mechanisms in carnivorous eel intestine. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 28): R506–R510, 1989.
 510. Storey, M. L., and N. K. Allen. Apparent and true metabolizable energy of feedstuffs for mature, nonlaying female Embden geese. Poult. Sci. 59: 1275–1279, 1982.
 511. Stremmel, W. Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J. Clin. Invest. 82: 2001–2010, 1988.
 512. Stryer, L. Biochemistry. San Francisco: Freeman, 1974.
 513. Studier, E. H. Bioenergetics of growth, pregnancy, and lactation in the laboratory mouse, Mus musculus. Comp. Biochem. Physiol. [A] 64: 473–481, 1979.
 514. Sullivan, S. K., and M. Field. Ion transport across mammalian small intestine. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by M. Field and R. A. Frizzell. Bethesda, MD: Am. Physiol. Soc., 1991, sect. 6, vol. IV, p. 287–301.
 515. Sunshine, P., and N. Kretchmer. Intestinal disaccharidases: absence in two species of sea lions. Science 144: 850–852, 1964.
 516. Suzuki, Y., R. H. Erickson, B. C. Yoon, and Y. S. Kim. Transcriptional regulation of rat intestinal angiotensin‐converting enzyme and dipeptidyl peptidase IV by a high proline diet. Nutr. Res. 15: 571–579, 1995.
 517. Tajima, K., R. Takada, H. Itabashi, K. I. Kameoka, and K. I. Sugimura. Effects of long‐ and medium‐chain triglycerides on amino acid uptake in rat intestinal brush border membrane vesicles. Comp. Biochem. Physiol [A] 106: 719–723, 1993.
 518. Tanaka, M., S. Kawai, and S. Yamamoto. On the development of the digestive system and changes in activities of digestive enzymes during larval and juvenile stage. Bull. Jp. Soc. Sci. Fish. 38: 1143–1152, 1972.
 519. Taylor, C. R., and E. R. Weibel. Design of the mammalian respiratory system. I. Problem and strategy. Respir. Physiol. 44: 1–10, 1981.
 520. Thomas, D. H. Salt and water excretion by birds: the lower intestine as an integrator of renal and intestinal excretion. Comp. Biochem. Physiol. [A] 71: 527–535, 1982.
 521. Thomas, D. H., and E. Skadhuge. Time course of adaptation to low and high NaC1 diets in the domestic fowl: effects on electrical behaviour of isolated epithelia from the lower intestine. Pflugers Arch. 395: 165–170, 1982.
 522. Thomas, D. H., and E. Skadhauge. Transport function and control in bird caeca. Comp. Biochem. Physiol. [A] 90: 591–596, 1988.
 523. Thomas, D. H., and E. Skadhauge. Water and electrolyte transport by the avian ceca. J. Exp. Zool. Suppl. 3: 95–102, 1989.
 524. Thomson, A.B.R. Ileal resection and dietary control of sucrose influence the intestinal uptake of monosaccharides. Can. J. Physiol. Pharmacol. 65: 2281–2286, 1987.
 525. Thomson, A.B.R. The level of dietary protein and carbohydrate has a different effect on intestinal uptake of hexoses and lipids in rabbits with an ileal resection than in those with an intact intestinal tract. Can. J. Physiol. Pharmacol. 65: 219–225, 1987.
 526. Thomson, A.B.R., C. I. Cheeseman, M. Keelan, R. Fedorak, and M. T. Clandinim. Crypt cell production rate, enterocyte turnover time and appearance of transport along the jejunal villus of the rat. Biochim. Biophys. Acta 1191: 197–204, 1994.
 527. Thomson, A.B.R., and J. M. Dietschy. Experimental demonstration of the effect of the unstirred water layer on the kinetic constants of the membrane transport of d‐glucose in rabbit jejunum. J. Membr. Biol. 54: 221–229, 1980.
 528. Thomson, A.B.R., and J. M. Dietschy. The role of the unstirred water layer in intestinal permeation. In: Handbook of Experimental Pharmacology, edited by T. Z. Czaky. Berlin: Springer‐Verlag, 1984, vol. 70/II, p. 165–269.
 529. Thomson, A.B.R., C. A. Hotke, and B. D. O'Brien. Intestinal uptake of fatty acids and cholesterol in four animal species and man: role of unstirred water layer and bile salt micelle. Comp. Biochem. Physiol. [A] 75: 221–232, 1983.
 530. Thomson, A.B.R., M. Keelan, M. Garg, and M. T. Clandinin. Dietary effects of omega‐3‐fatty acids on intestinal transport function. Can. J. Physiol. Pharmacol. 66: 985–992, 1988.
 531. Thomson, A.B.R., M. Keelan, M. Garg, and M. T. Clandinin. Evidence for critical‐period programming of intestinal transport function: variations in the dietary ratio of polyunsaturated to saturated fatty acids alters ontogeny of the rat intestine. Biochim. Biophys. Acta 1001: 302–315, 1989.
 532. Thomson, A.B.R., Y. Mcintyre, J. Macleod, and M. Keelan. Dietary fat content influences uptake of hexoses and lipids into rabbit jejunum following ileal resection. Digestion 35: 78–88, 1986.
 533. Thomson, A.B.R., C. Schoeller, M. Keelan, L. Smith, and M. T. Clandinin. Lipid absorption: passing through the unstirred layers, brush‐border membrane, and beyond. Can. J. Physiol. Pharmacol. 71: 531–555, 1993.
 534. Titus, E., and G. A. Ahearn. Short‐chain fatty acid transport in the intestine of a herbivorous teleost. J. Exp. Biol. 135: 77–94, 1988.
 535. Titus, E., and G. A. Ahearn. Transintestinal acetate transport in a herbivorous teleost: anion exchange at the basolateral membrane. J. Exp. Biol. 156: 41–62, 1991.
 536. Titus, E., and G. A. Ahearn. Vertebrate gastrointestinal fermentation: transport mechanisms for volatile fatty acids. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 33): R547–R553, 1992.
 537. Titus, E., W. H. Karasov, and G. A. Ahearn. Dietary modulation of intestinal nutrient transport in the teleost fish tilapia. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 32): R1568–R1574, 1991.
 538. Toloza, E. M., and J. M. Diamond. Ontogenetic development of transporter regulation in bullfrog intestine. Am. J. Physiol. 258 (Gastrointest. Liver Physiol. 21): G770–G773, 1990.
 539. Toloza, E. M., and J. Diamond. Ontogenetic development of nutrient transporters in rat intestine. Am. J. Physiol. 263 (Gastrointest. Liver Physiol. 26): G593–G604, 1992.
 540. Toloza, E. M., M. Lam, and J. Diamond. Nutrient extraction by cold‐exposed mice: a test of digestive safety margins. Am. J. Physiol. 261 (Gastrointest. Liver Physiol. 24): G608–G620, 1991.
 541. Traber, P. G., L. Yu, G. D. Wu, and T. A. Judge. Sucrase‐isomaltase gene expression along crypt–villus axis of human small intestine is regulated at level of mRNA abundance. Am. J. Physiol. 262 (Gastrointest. Liver Physiol. 25): G123–G130, 1992.
 542. Troyer, K. Structure and function of the digestive tract of a herbivorous lizard Iguana iguana. Physiol. Zool. 57: 1–8, 1984.
 543. Tsai, A., M. R. Cowan, D. G. Johnson, and P. M. Brannon. Regulation of pancreatic amylase and lipase gene expression by diet and insulin in diabetic rats. Am. J. Physiol. 267 (Gastrointest. Liver Physiol. 30): G575–G583, 1994.
 544. Tsang, R., Z. Ao, and C. Cheeseman. Influence of vascular and luminal hexoses on rat intestinal basolateral glucose transport. Can. J. Physiol. Pharmacol. 72: 317–326, 1994.
 545. Tsuboi, K. K., L. K. Kwong, K. Yamada, P. Sunshine, and O. Koldovsky. Nature of elevated rat intestinal carbohydrase activities after high‐carbohydrate diet feeding. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G510–G518, 1985.
 546. Uden, P., and P. J. Van Soest. Comparative digestion of timothy (Phleum pratense) fibre by ruminants, equines, and rabbits. Br. J. Nutr. 47: 267–272, 1982.
 547. Uhing, M. R., and R. E. Kimura. The effect of surgical bowel manipulation and anesthesia on intestinal glucose absorption in rats. J. Clin. Invest. 95: 2790–2798, 1995.
 548. Uhing, M. R., and R. E. Kimura. Active transport of 3‐O‐methyl‐glucose by the small intestine in chronically catheterized rats. J. Clin. Invest. 95: 2799–2805, 1995.
 549. Ulshen, M. H., and R. J. Grand. Site of substrate stimulation of jejunal sucrase in the rat. J. Clin. Invest. 64: 1097–1102, 1979.
 550. van Hoven, W., R. A. Prins, and A. Lankhorst. Fermentative digestion in the African elephant. S. Afr. J. Wildl. Res. 11: 78–86, 1981.
 551. Van Soest, P. J. Nutritional Ecology of the Ruminant. Ithaca, NY: Cornell University Press, 1994, p. 374.
 552. Van Soest, P. J., C. J. Sniffen, and M. S. Allen. Rumen dynamics. In: Aspects of Digestive Physiology in Ruminants, edited by A. Dobson and M. J. Dobson. Ithaca, NY: Cornstock, 1988, p. 21–42.
 553. Van Soest, P. J., P. Uden, and K. F. Wrick. Critique and evaluation of markers for use in nutrition of humans and farm and laboratory animals. Nutr. Rep. Int. 27: 17–28, 1983.
 554. Vilella, S., S. J. Reshkin, C. Storelli, and G. A. Ahearn. Brush‐border inositol transport by intestines of carnivorous and herbivorous teleosts. Am. J. Physiol. 256 (Gastrointest. Liver Physiol. 19): G501–G508, 1989.
 555. Vinardell, M. P., and M. T. Lopera. Jejunal and cecal 3‐oxymethyl‐d‐glucose absorption in chicken using a perfusion system in vivo. Comp. Biochem. Physiol. 86: 625–628, 1987.
 556. Vispo, C., and W. H. Karasov. The interaction of avian gut microbes and their host: an elusive symbiosis. In: Gastrointestinal Microbiology, edited by R. I. Mackie. New York: Chapman Hall, 1996, (in press).
 557. Vonk, H. J. Die Verdauung bei den niederen Vertebraten. Adv. Enzymol. 1: 371–417, 1941.
 558. Vonk, H. J., and R. H. Western. Comparative Biochemistry and Physiology of Enzymatic Digestion. London: Academic, 1984.
 559. Waldo, D. R., L. W. Smith, and E. L. Cox. Model of cellulose disappearance from the rumen. J. Dairy Sci. 55: 125–129, 1972.
 560. Waldschmidt, S. R., S. M. Jones, and W. P. Porter. The effect of body temperature and feeding regime on activity, passage time, and digestive coefficient in the lizard Uta stansburiana. Physiol. Zool. 59: 376–383, 1986.
 561. Walsh, K. A. Trypsinogens and trypsins in various species. 5. Chymotrypsinogens–chymotrypsins. In: Proteolytic Enzymes, edited by G. E. Perlmann and L. Lorand. New York: Academic, 1970, p. 41–108.
 562. Warner, A.C.I. Rate of passage of digesta through the gut of mammals and birds. Nutr. Abstr. Rev. 51: 789–820, 1981.
 563. Watanabe, Y. Intracellular digestion of horse radish peroxidase by the intestinal cells of teleost larvae and juveniles. Bull. Jp. Soc. Sci. Fish. 48: 37–42, 1988.
 564. Watson, A.J.M., E. J. Elliott, D.D.K. Rolston, M. M. Borodo, M.J.G. Farthing, and P. D. Fairclough. Acetate absorption in the normal and secreting rat jejunum. Gut 31: 170–174, 1990.
 565. Weiner, J. Limits to energy budget and tactics in energy investments during reproduction in the Djungarian hamster (Phodopus sungorus sungorus Pallas 1770). Symp. Zool. Soc. Lond. 57: 167–187, 1987.
 566. Weser, E., A. Vandeventer, and T. Tawil. Nonhormonal regulation of intestinal adaptation. Scan. J. Gastroenterol. Suppl. 74: 105–113, 1982.
 567. Westergaard, H. The passive permeability properties of in vivo perfused rat jejunum. Biochim. Biophys. Acta 900: 129–138, 1987.
 568. Whitelaw, F. G., J. Hyldgaard‐Jensen, R. S. Reid, and M. G. Kay. Volatile fatty acid production in the rumen of cattle given an all‐concentrate diet. Br. J. Nutr. 24: 179–195, 1970.
 569. Wicker, C., and A. Puigserver. Changes in messenger RNA levels of rat pancreatic lipase in the early days of consumption of a high‐lipid diet. Eur. J. Biochem. 180: 563–568, 1989.
 570. Winne, D. Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim. Biophys. Acta 298: 27–31, 1973.
 571. Winne, D., and J. Remischovsky. Intestinal blood flow and absorption of non‐dissociable substances. J. Pharm. Pharmacol. 22: 640–641, 1970.
 572. Wolffram, S., E. Eggenberger, and E. Scharrer. Kinetics of d‐glucose and l‐leucine transport into sheep and pig intestinal brush border membrane vesicles. Comp. Biochem. Physiol. [A] 84: 589–593, 1986.
 573. Woodall, P. F., and J. D. Skinner. Dimensions of the intestine, diet and faecal water loss in some African antelope. J. Zool. (Lond.) 229: 457–471, 1993.
 574. Wright, E. M., E. Turk, B. Zabel, S. Mundlos, and J. Dyer. Molecular genetics of intestinal glucose transport. J. Clin. Invest. 88: 1435–1440, 1991.
 575. Wrong, O. M., L. J. Edmonds, and V. S. Chadwick. The Large Intestine. Lancaster, UK: MTP, 1981.
 576. Yahav, S., and R. Buffenstein. The effect of temperature on caecal fermentation processes in a poikilothermic mammal, Heterocephalus glaber. J. Therm. Biol. 16: 345–350, 1991.
 577. Yahav, S., and R. Buffenstein. Caecal function provides the energy of fermentation without liberating heat in the poikilothermic mammal, Heterocephalus glaber. J. Comp. Physiol. [B] 162: 216–218, 1992.
 578. Yamamoto, M., and T. Hirana. Morphological changes in the esophageal epithelium of the eel, Anguilla japonica, during adaptation to seawater. Cell Tissue Res. 192: 25–36, 1978.
 579. Yasutake, H., T. Goda, and S. Takase. Dietary regulation of sucrase‐isomaltase gene expression in rat jejunum. Biochim. Biophys. Acta 1243: 270–276, 1995.
 580. Yoshizawa, S., S. Moriuchi, and N. Hosoya. Induction of chicks' embryonic intestinal disaccharidases by hydrocortisone and sucrose in the organ culture system. J. Nutr. Sci. 23: 227–235, 1977.
 581. Zimmerman, L. C., and C. R. Tracy. Interactions between the environment and ectothermy and herbivory in reptiles. Physiol. Zool. 62: 374–409, 1989.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

William H. Karasov, Ian D. Hume. Vertebrate Gastrointestinal System. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 409-480. First published in print 1997. doi: 10.1002/cphy.cp130107