Comprehensive Physiology Wiley Online Library

Extrarenal Mechanisms in Hydromineral and Acid‐Base Regulation in Aquatic Vertebrates

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Physical Background
1.1 Dissipative Flows
2 Hyperosmotic Regulation
2.1 Reducing Dissipative Flows
2.2 Compensatory Flows: Water
2.3 Compensatory Flows: Active Ion Absorption
2.4 The Frog Skin Model: Symmetric Solutions and Voltage Clamp
2.5 A Revised Model: Open‐Circuit and Dilute Solutions
2.6 Ionic Regulation in Other Aquatic Vertebrates
2.7 Apical Membrane Behavior: Fluxes and Electrical
2.8 Apical Membrane Mechanisms and the Frog Skin Model
2.9 The Energetic Cost of Osmotic Regulation in Freshwater Vertebrates
3 Acid‐Base Regulation and Epithelial Ion Transfer
4 Hypoosmotic‐Hypoionic Regulation
4.1 Reducing Dissipative Flows
4.2 Compensatory Flows: Water
4.3 Compensatory Flows: Ions
4.4 Model for Salt Extrusion by Gills
4.5 Remaining Questions about Hyporegulator Gill Function
4.6 Reptilian Salt Gland
5 Acid‐Base Balance in Marine Fish
6 Isosmotic, Hypoionic Regulation
6.1 Diffusion Gradients
6.2 Evasive Mechanisms: Urea/TMAO
6.3 Compensatory Mechanisms: Urea/TMAO
6.4 Evasive Mechanisms: Water and Electrolytes
6.5 Compensatory Flows: Ions
6.6 Intracellular Osmotic Regulation
6.7 Crab‐Eating Frog and Coelacanth
6.8 The Energetic Cost of Osmotic Regulation in SW
7 Marine Mammals
8 Summary
8.1 Osmotic Regulation: FW
8.2 Osmotic Regulation: SW
8.3 Acid‐Base Balance
Figure 1. Figure 1.

KU model for NaCl absorption across frog skin to about 1980. Skin is shown bathed on both sides by Ringer's solution since that was how most experiments were conducted. Dashed lines, diffusion; solid lines, active transport. Channels are shown as cylinders, pumps as circles. Chloride movement is depicted as diffusive through a paracellular pathway. However, it was recognized at about this time that the Cl pathway was through the mr cells 207,345. The polarity of Vap was shown to be cell‐negative to outside solution 136,250, though originally thought to be positive (cf. Fig. 2 and text).

Figure 2. Figure 2.

Equivalent circuit for the original KU model. Vap is cell‐positive to outside bathing solution. The pathway for diffusion of Cl (and other ions) is shown as a shunt in parallel with the Na+ transport pathway. The force acting on Na+ at the apical membrane is an inward‐oriented electrochemical gradient (ΔμNa). At the basolateral membrane, it is the electrochemical potential of the Na+‐K+ pump (Vpump).

Figure 3. Figure 3.

NaCl absorption by frog skin from a dilute external solution (2 mM). The upper is a principal cell with an apical Na+ channel and basolateral Na+‐K+ pump. The lower is an mr cell with carbonic anhydrase (C.A.), an apical proton pump, and a Cl‐HCO3 exchanger. The apical membrane also contains the concentration‐dependent Cl channel shown closed (constricted) in dilute solution. These cells also transport a small fraction of the total Na+ absorbed. The mechanism appears to be the same as in the principal cells.

Figure 4. Figure 4.

Data generated by the mathematical model based on Figure 3. Open circles, Na+ influx (Jin); solid circles, apical membrane potential (Vap), both over the “physiological” range of Na+ concentrations. Inset shows Vap over a much extended concentration range.

compare with data in ref. 251
Figure 5. Figure 5.

Model accounting for Cl absorption by frog skin from Na+‐free solution. The proton pump is shown on the basolateral membrane.

Figure 6. Figure 6.

Correlation between Jin(Na) and Jeff(NH4) in rainbow trout (squares; 172) and goldfish (circles; 219). Solid line is a regression of data from another experiment on rainbow trout 237.

Figure 7. Figure 7.

Effect of environmental hyperoxia on blood gases and acid‐base status in rainbow trout 141. Fish were initially exposed to air bubbled through their aquaria. From 0.5 to 72 h the gas was oxygen, and at 72 h it was changed back to air. Upper panel shows ambient (P1O2) and arterial (P4O2) oxygen concentrations. Middle and lower panels show arterial Pco2, pH, and [HCO3]. Compensation for initial acidosis was complete by 72 hr. Subsequent alkalosis was almost completely reversed in 24 h.

Reprinted from reference 140) by permission of Elsevier Science Publishers BV, Academic Publishing Division
Figure 8. Figure 8.

Compensation for hypercapnic acidosis in rainbow trout. The aeration gas was 1% CO2 in air. Ambient [Na+] was either 40 μM (open circles) or 3 m M (closed circles). The line is drawn from data in reference 267.

Figure 9. Figure 9.

Relation between net SID fluxes (ordinate) and acid equivalent fluxes (abscissa) in rainbow trout exposed sequentially to normoxia, hyperoxia, and normoxia as in Figure 7.

Reprinted from reference 361 by permission of Elsevier Science Publishers BV, Academic Publishing Division
Figure 10. Figure 10.

Fluid absorption from gut lumen to blood in a marine teleost. The apical cotransporter permits entry of Na+ (diffusive), K+ (active), and 2Cl (active) into the cell. Sodium is pumped actively into the paracellular channel, with K+ and Cl following passively. Entry of these ions raises paracellular osmotic concentration above luminal and permits osmotic water flow across the intracellular junction into the channel. Since there is little impediment at the basal end, convective flow will carry the fluid (water and ions) into the ECF. Some water may also enter the channel from the cells as shown. Half of the Na+ absorbed flows through the cation‐selective paracellular pathway, the other half through the cells (cotransporter plus Na+ −K+ pump).

Figure 11. Figure 11.

NaCl extrusion from blood to SW or salt gland lumen in marine fish. The NaK2Cl cotransporter is shown on the basolateral membrane in this model. Chloride, but not Na+, channels are shown in the apical membrane. With the [Cl]cell shown, there is a small (2–5 mV) gradient favoring Cl diffusion from cell to external medium. Sodium transfer is shown as passive through the paracellular pathway. TEP is characteristic of the elasmobranch rectal gland. In teleost epithelia, it would be 20–30 mV. Putative apical K+ channels, suggested in the text, are not shown.

Figure 12. Figure 12.

Excretion of solutes by the dolphin after feeding. A female Tursiops truncatus (10 kg) was fed 4.7 kg of mackerel and 2 h later give 1 l SW by stomach tube (shown as hour 0). The first urine sample was taken 1 h after the SW, but the urine was forming throughout this period and the value is placed midway between 0 and 1 h. Urine was collected periodically and assayed for volume (○), osmolality (X), and urea (•) concentrations. Values obtained for [Na+] and [Cl] are not shown. The lower dashed line represents mean urine volume during fasting, and the upper dashed line is the average osmolality during fasting.

Data are from reference 284, and the figure is reprinted from reference 184 by permission of John Wiley & Sons, Inc


Figure 1.

KU model for NaCl absorption across frog skin to about 1980. Skin is shown bathed on both sides by Ringer's solution since that was how most experiments were conducted. Dashed lines, diffusion; solid lines, active transport. Channels are shown as cylinders, pumps as circles. Chloride movement is depicted as diffusive through a paracellular pathway. However, it was recognized at about this time that the Cl pathway was through the mr cells 207,345. The polarity of Vap was shown to be cell‐negative to outside solution 136,250, though originally thought to be positive (cf. Fig. 2 and text).



Figure 2.

Equivalent circuit for the original KU model. Vap is cell‐positive to outside bathing solution. The pathway for diffusion of Cl (and other ions) is shown as a shunt in parallel with the Na+ transport pathway. The force acting on Na+ at the apical membrane is an inward‐oriented electrochemical gradient (ΔμNa). At the basolateral membrane, it is the electrochemical potential of the Na+‐K+ pump (Vpump).



Figure 3.

NaCl absorption by frog skin from a dilute external solution (2 mM). The upper is a principal cell with an apical Na+ channel and basolateral Na+‐K+ pump. The lower is an mr cell with carbonic anhydrase (C.A.), an apical proton pump, and a Cl‐HCO3 exchanger. The apical membrane also contains the concentration‐dependent Cl channel shown closed (constricted) in dilute solution. These cells also transport a small fraction of the total Na+ absorbed. The mechanism appears to be the same as in the principal cells.



Figure 4.

Data generated by the mathematical model based on Figure 3. Open circles, Na+ influx (Jin); solid circles, apical membrane potential (Vap), both over the “physiological” range of Na+ concentrations. Inset shows Vap over a much extended concentration range.

compare with data in ref. 251


Figure 5.

Model accounting for Cl absorption by frog skin from Na+‐free solution. The proton pump is shown on the basolateral membrane.



Figure 6.

Correlation between Jin(Na) and Jeff(NH4) in rainbow trout (squares; 172) and goldfish (circles; 219). Solid line is a regression of data from another experiment on rainbow trout 237.



Figure 7.

Effect of environmental hyperoxia on blood gases and acid‐base status in rainbow trout 141. Fish were initially exposed to air bubbled through their aquaria. From 0.5 to 72 h the gas was oxygen, and at 72 h it was changed back to air. Upper panel shows ambient (P1O2) and arterial (P4O2) oxygen concentrations. Middle and lower panels show arterial Pco2, pH, and [HCO3]. Compensation for initial acidosis was complete by 72 hr. Subsequent alkalosis was almost completely reversed in 24 h.

Reprinted from reference 140) by permission of Elsevier Science Publishers BV, Academic Publishing Division


Figure 8.

Compensation for hypercapnic acidosis in rainbow trout. The aeration gas was 1% CO2 in air. Ambient [Na+] was either 40 μM (open circles) or 3 m M (closed circles). The line is drawn from data in reference 267.



Figure 9.

Relation between net SID fluxes (ordinate) and acid equivalent fluxes (abscissa) in rainbow trout exposed sequentially to normoxia, hyperoxia, and normoxia as in Figure 7.

Reprinted from reference 361 by permission of Elsevier Science Publishers BV, Academic Publishing Division


Figure 10.

Fluid absorption from gut lumen to blood in a marine teleost. The apical cotransporter permits entry of Na+ (diffusive), K+ (active), and 2Cl (active) into the cell. Sodium is pumped actively into the paracellular channel, with K+ and Cl following passively. Entry of these ions raises paracellular osmotic concentration above luminal and permits osmotic water flow across the intracellular junction into the channel. Since there is little impediment at the basal end, convective flow will carry the fluid (water and ions) into the ECF. Some water may also enter the channel from the cells as shown. Half of the Na+ absorbed flows through the cation‐selective paracellular pathway, the other half through the cells (cotransporter plus Na+ −K+ pump).



Figure 11.

NaCl extrusion from blood to SW or salt gland lumen in marine fish. The NaK2Cl cotransporter is shown on the basolateral membrane in this model. Chloride, but not Na+, channels are shown in the apical membrane. With the [Cl]cell shown, there is a small (2–5 mV) gradient favoring Cl diffusion from cell to external medium. Sodium transfer is shown as passive through the paracellular pathway. TEP is characteristic of the elasmobranch rectal gland. In teleost epithelia, it would be 20–30 mV. Putative apical K+ channels, suggested in the text, are not shown.



Figure 12.

Excretion of solutes by the dolphin after feeding. A female Tursiops truncatus (10 kg) was fed 4.7 kg of mackerel and 2 h later give 1 l SW by stomach tube (shown as hour 0). The first urine sample was taken 1 h after the SW, but the urine was forming throughout this period and the value is placed midway between 0 and 1 h. Urine was collected periodically and assayed for volume (○), osmolality (X), and urea (•) concentrations. Values obtained for [Na+] and [Cl] are not shown. The lower dashed line represents mean urine volume during fasting, and the upper dashed line is the average osmolality during fasting.

Data are from reference 284, and the figure is reprinted from reference 184 by permission of John Wiley & Sons, Inc
References
 1. Abel, J. H., Jr., and R. A. Ellis. Histochemical and electron microscopic observations on the salt secreting lachrymal glands of marine turtles. Am. J. Anat. 118: 337–358, 1966.
 2. Al‐Awqati, Q. H+ transport in urinary epithelia. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 6): F77–F88, 1978.
 3. Al‐Awqati, Q., A. Mueller, and P. R. Steinmetz. Transport of H+ against electrochemical gradients in turtle urinary bladder. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 4): F502–F508, 1977.
 4. Altringham, J. D., P. H. Yancey, and I. A. Johnson. The effects of osmoregulatory solutes on tension generation by dogfish skinned muscle fibres. J. Exp. Biol. 96: 443–445, 1982.
 5. Alvarado, R. H. Amphibians, In: Comparative Physiology of Osmoregulation in Animals, edited by C.M.O. Maloiy. New York: Academic, 1979. p. 261–303.
 6. Alvarado, R. H., and T. H. Dietz. Effects of salt depletion on hydromineral balance in larval Ambystoma gracile: II kinetics of ion exchange. Comp. Biochem. Physiol. 33: 93–110, 1970.
 7. Alvarado, R. H., T. H. Dietz, and T. L. Mullen. Chloride transport across the isolated skin of Rana pipiens. Am. J. Physiol. 229: 869–876, 1975.
 8. Alvarado, R. H., and L. B. Kirschner. Osmotic and ionic regulation in Ambystoma tigrinum. Comp. Biochem. Physiol. 10: 55–67, 1963.
 9. Alvarado, R. H., and A. Moody. Sodium and chloride transport in tadpoles of the bullfrog Rana catesbeiana Am. J. Physiol. 218: 1510–1516, 1970.
 10. Alvarado, R. H., A. M. Poole, and T. H. Mullen. Chloride balance in Rana pipiens. Am. J. Physiol. 229: 861–868, 1975.
 11. Anderson, P. M. Glutamine‐ and N‐acetylglutamate‐dependent carbamoyl phosphate synthetase in elasmobranchs. Science 208: 291–293, 1980.
 12. Aull, F. Absorption of fluid from isolated intestine of the toadfish, Opsanus tau. Comp. Biochem. Physiol. 17: 867–870, 1966.
 13. Beauwens, R., and Q. Al‐Awqati. Active H+ transport in the turtle urinary bladder. Coupling of transport to glucose oxidation. J. Gen. Physiol. 68: 421–438, 1976.
 14. Bennett, J. M., L. E. Taplin, and G. C. Grigg. Sea water drinking as a homeostatic response to dehydration in hatchling loggerhead turtles, Caretta caretta. Comp. Biochem. Physiol. A 83: 507–513, 1986.
 15. Bennett, M. B. Morphometric analysis of the gills of the European eel, Anguilla anguilla. J. Zool. (Lond.) 215: 549–560, 1988.
 16. Benos, D. J. Amiloride: chemistry, kinetics and structure–activity relationships. In: Na+/H+ Exchange, edited by S. Grinstein. Cleveland, OH: CRC, 1988. p. 121–136.
 17. Benos, D. J., L. J. Mandell, and R. S. Balaban. On the mechanism of the amiloride–sodium entry interaction in anuran skin epithelia. J. Gen. Physiol. 73: 307–326, 1979.
 18. Bentley, P. J., J. Maetz, and P. Payan. A study of the unidirectional fluxes of Na and Cl across the gills of the dogfish Scyliorhinus canicula (Chondrichthyes). J. Exp. Biol. 64: 629–637, 1976.
 19. Biber, T.U.L., and P. F. Curran. Direct measurement of uptake of sodium at the outer surface of the frog skin. J. Gen. Physiol. 56: 83–99, 1970.
 20. Bierther, M. Die chloridzellen des stichlings. Z. Zellforsch. 107: 421–446, 1970.
 21. Boyd, T. A., C. J. Cha, R. P. Forster, and L. Goldstein. Free amino acids in tissues of the skate Raja erinacea and the stingray Dasyatis sabina: effects of environmental dilution. J. Exp. Zool. 199: 435–442, 1977.
 22. Bruus, K., P. Kristensen, and E. H. Larsen. Pathways for chloride and sodium transport across toad skin. Acta Physiol. Scand. 97: 21–47, 1976.
 23. Burg, M. B., B. L. Stoner, J. Cardinal, and N. Green. Furosemide effect on isolated, perfused tubules. Am. J. Physiol. 225: 119–124, 1973.
 24. Burger, J. W. Roles of the rectal gland and the kidneys in salt and water excretion in the spiny dogfish. Physiol. Zool. 38: 191–196, 1965.
 25. Burger, J. W., and W. N. Hess. Function of the rectal gland in the spiny dogfish. Science 131: 670–671, 1960.
 26. Burton, R. F. Cell potassium and the significance of osmolarity in vertebrates. Comp. Biochem. Physiol. 27: 763–777, 1968.
 27. Cameron, J. N. Branchial ion uptake in Arctic grayling: resting values and effects of acid‐base disturbance. J. Exp. Biol. 64: 711–725, 1976.
 28. Cameron, J. N., and G. K. Iwama. Compromises between ionic regulation and acid‐base regulation in aquatic animals. Can. J. Zool. 67: 3078–3084, 1989.
 29. Chan, D.K.O., J. G. Phillips, and I. Chester Jones. Studies on electrolyte balance in the lip‐shark, Hemiscyllium plagiosum (Bennett), with special reference to hormonal influence on the rectal gland. Comp. Biochem. Physiol. 23: 185–198, 1967.
 30. Christensen, C. U. Adaptations in the water economy of some anuran amphibians. Comp. Biochem. Physiol. A 47: 1035–1050, 1974.
 31. Christensen, C. U. Effect of arterial perfusion on net water flux and active sodium transport across the isolated skin of Bufo bufo bufo. J. Comp. Physiol. 93: 93–104, 1974.
 32. Civan, M. M., K. Peterson‐Yantorno, D. R. Dibona, D. F. Wilson, and M. Erecinska. Bioenergetics of Na+ transport across frog skin: chemical and electrical measurements. Am. J. Physiol. 245: (Renal Fluid Electrolyte Physiol. 16): F691–F700, 1983.
 33. Claiborne, J. B., and N. Heisler. Acid‐base regulation in the carp (Cyprinus carpio) during and after exposure to environmental hypercapnia. J. Exp. Biol. 108: 25–43, 1984.
 34. Coulombe, H. N., S. H. Ridgway, and W. E. Evans. Respiratory water exchange in two species of porpoise. Science 149: 86–88, 1965.
 35. Crocker, C. E., and D. F. Stiffler. The effects of amiloride on electrolyte balance in the larval salamander, Ambystoma tigrinum. J. Comp. Physiol. B 161: 460–464, 1991.
 36. Curran, P. F., and A. K. Solomon. Ion and water fluxes in the ileum of rats. J. Gen. Physiol. 41: 143–168, 1957.
 37. Curtis, B. J., and C. M. Wood. The function of the urinary bladder in vivo in the freshwater rainbow trout. J. Exp. Biol. 155: 567–583, 1991.
 38. Degnan, K. J. Sodium and chloride dependence of chloride secretion by the opercular epithelium. J. Exp. Zool. 231: 11–17, 1984.
 39. Degnan, K. J., K. J. Karnaky, and J. A. Zadunaisky. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill‐like epithelium rich in chloride cells. J. Physiol (Lond.) 271: 155–191, 1977.
 40. Degnan, K. J., and J. A. Zadunaisky. Ionic contributions to the potential and current across the opercular epithelium. Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 9): R231–R239, 1980.
 41. Degnan, K. J., and J. A. Zadunaisky. Passive sodium movements across the opercular epithelium: the paracellular shunt pathway and ionic conductance. J. Membr. Biol. 55: 175–185, 1980.
 42. Dejours, P. Variation of CO2 output of a fresh‐water teleost upon change of the ionic composition of the water. J. Physiol. (Lond.) 202: 113P, 1969.
 43. De Renzis, G. The branchial chloride pump in the goldfish Carassius auratus: relationship between Cl–/HCO3– and Cl–/CI– exchanges and the effect of thiocyanate. J. Exp. Biol. 63: 587–602, 1975.
 44. De Renzis, G., and M. Bornancin. A Cl–/HCO3–‐ATPase in the gills of Carassius auratus; its inhibition by thiocyanate. Biochim. Biophys. Acta 467: 192–207, 1977.
 45. De Renzis, G., and M. Bornancin. Ion transport and gill ATPases. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1984, vol. 10B. p. 65–104.
 46. De Renzis, G., and J. Maetz. Studies on the mechanism of chloride absorption by the goldfish gill. Relation with acid‐base regulation. J. Exp. Biol. 59: 339–358, 1973.
 47. Dietl, P. and B. A. Stanton. The amphibian distal nephron. In: New Insights in Vertebrate Kidney Function, edited by J. A. Brown, R. J. Balment, and J. C. Rankin. Cambridge: Cambridge University Press 1993. p. 115–134.
 48. Dietz, T. H., L. B. Kirschner, and D. Porter. The roles of sodium transport and anion permeability in generating transepithelial potential differences in larval salamanders. J. Exp. Biol. 46: 85–96, 1967.
 49. Doyle, W. L. The principal cells of the salt‐gland of marine birds. Exp. Cell. Res. 21: 386–393, 1960.
 50. Doyle, W. L. Tubular cells of the rectal salt gland. Am. J. Anat. 111: 386–393, 1962.
 51. Duffey, M. F., S. M. Thompson, R. A. Frizzell, and S. G. Schultz. Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder. J. Membr. Biol. 50: 331–341, 1979.
 52. Dunson, W. A. Sodium fluxes in fresh‐water turtles. J. Exp. Zool. 165: 171–182, 1967.
 53. Dunson, W. A. Salt gland secretion in the pelagic sea snake Pelamis. Am. J. Physiol. 215: 1512–1517, 1968.
 54. Dunson, W. A. Electrolyte excretion by the salt gland of the Galapagos marine iguana. Am. J. Physiol. 216: 995–1002, 1969.
 55. Dunson, W. A. Some aspects of electrolyte and water balance in three estuarine reptiles, the diamond terrapin, American and “salt water” crocodiles. Comp. Biochem. Physiol. 32: 161–174, 1970.
 56. Dunson, W. A. Control mechanisms in reptiles. In: Mechanisms of Osmoregulation in Animals, edited by R. Gilles. New York: Wiley, 1979, p. 273–322.
 57. Dunson, W. A. and F. J. Mazzotti. Salinity as a limiting factor in the distribution of reptiles in Florida bay: a theory for the estuarine origin of marine snakes and turtles. Bull. Mar. Sci. 44: 229–244, 1989.
 58. Dunson, W. A., and G. D. Robinson. Sea snake skin: permeable to water but not to sodium. J. Comp. Physiol. 108: 303–311, 1976.
 59. Eddy, F. B. The effect of calcium on gill potentials and on sodium and chloride fluxes in the goldfish Carassius auratus. J. Comp. Physiol. 96: 131–142, 1975.
 60. Ehrenfeld, J., and F. Garcia Romeu. Active hydrogen excretion and sodium absorption through isolated frog skin. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 4): F46–F54, 1977.
 61. Ehrenfeld, J., F. Garcia Romeu, and B. J. Harvey. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport. J. Physiol. (Lond.) 359: 331–355, 1985.
 62. Ehrenfeld, J., I. Lacoste, F. Garcia Romeu, and B. Harvey. Interdependence of Na+ and H+ transport in frog skin. In: Animal Nutrition and Transport Processes, edited by J. P. Truchot and B. Lahlou. Basel: Karger, 1990, p. 152–170.
 63. Ehrenfeld, J., I. Lacoste and B. J. Harvey. The key role of the mitochondria‐rich cell in Na+ and H+ transport across the frog skin epithelium. Pflügers Arch. 414: 59–67, 1989.
 64. Ellis, R. A., and J. H. Abel. Intercellular channels in the salt‐secreting glands of marine turtles. Science 144: 1340–1342, 1964.
 65. Ellis, R. A., and C. C. Goertemiller. Cytological effects of salt stress and localization of transport adenosine triphosphatase in the lateral nasal salt glands of the desert iguana, Dipsosaurus dorsalis. Anat. Rec. 180: 285–298, 1974.
 66. Emilio, M. G., M. M. Machado, and H. P. Menano. The production of a hydrogen ion gradient across the isolated frog skin. Quantitative aspects and the effect of acetazolamide. Biochim. Biophys. Acta. 203: 394–409, 1970.
 67. Emilio, M. G., and H. P. Menano. The excretion of hydrogen ion by the isolated amphibian skin: effects of antidiuretic hormone and amiloride. Biochim. Biophys. Acta. 382: 344–352, 1975.
 68. Epstein, F. H., A. I. Katz, and G. E. Pickford. Sodium and potassium‐activated adenosine triphosphatase of gills: role in adaptation of teleosts to salt water. Science 156: 1245–1247, 1967.
 69. Epstein, F. H., J. Maetz, and G. De Renzis. Active transport of chloride by the teleost gill: inhibition by thiocyanate. Am. J. Physiol. 224: 1295–1299, 1973.
 70. Epstein, F. H., and P. Silvio. Na‐K‐Cl cotransport in chloride‐transporting epithelia. Ann. N. Y. Acad. Sci. 456: 187–197, 1985.
 71. Eriksson, O., and P. J. Wistrand. Chloride transport inhibition by various types of loop diuretics in fish opercular epithelium. Acta Physiol. Scand. 126: 93–101, 1986.
 72. Ernst, S. A. Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabain‐sensitive, potassium‐dependent phosphatase activity in the secretory epithelium of the avian salt gland. J. Histochem. Cytochem. 20: 23–28, 1972.
 73. Evans, D. H. Sodium uptake by the sailfin molly Poecilia latipinna: kinetic analysis of a carrier system present in both freshwater acclimated and sea‐water acclimated individuals. Comp. Biochem. Physiol. A 45: 843–850, 1973.
 74. Evans, D. H. The effects of various external cations and sodium transport inhibitors on sodium uptake by the sailfin molly Poecilia latipinna acclimated to sea water. J. Comp. Physiol. 96: 111–115, 1975.
 75. Evans, D. H. Fish, In: Comparative Physiology of Osmoregulation in Animals, edited by C.M.O. Maloiy. New York: Academic, 1979, p. 305–390.
 76. Evans, D. H. Kinetic studies of ion transport by fish gill epithelium. Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 9): R224–R230, 1980.
 77. Evans, D. H. Mechanisms of acid extrusion by two marine fishes: the teleost Opsanus beta and the elasmobranch Squalus acanthias. J. Exp. Biol. 97: 289–299, 1982.
 78. Evans, D. H. Gill Na+/H+ and Cl–/HCO3– exchange systems evolved before the vertebrates entered fresh water. J. Exp. Biol. 113: 465–469, 1984.
 79. Evans, D. H. The roles of gill permeability and transport mechanisms in euryhalinity. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1984, vol. 10B, p. 239–283.
 80. Evans, D. H., and J. N. Cameron. Gill ammonia transport. J. Exp. Zool. 239: 17–23, 1986.
 81. Evans, D. H., J. C. Carrier, and M. B. Bogan. The effect of external potassium ions on the electrical potential measured across the gills of the teleost, Dormitator maculatus. J. Exp. Biol. 61: 277–283, 1974.
 82. Evans, D. H., and K. Cooper. The presence of Na/Na and Na/K exchange in sodium extrusion by three species of fish. Nature 259: 241–242, 1976.
 83. Evans, D. H., and C. Hooks. Sodium fluxes across the hagfish Myxine glutinosa. Bull. Mt. Desert Island Biol. Sta. 23: 61–62, 1983.
 84. Evans, D. H., G. A. Kormanik, and E. J. Krasny, Jr. Mechanisms of acid and ammonia extrusion by the little skate Raja erinacea. J. Exp. Zool. 208: 431–437, 1979.
 85. Fänge, R., K. Schmidt‐Nielsen, and M. Robinson. Control of secretion from the avian salt gland. Am. J. Physiol. 195: 321–326, 1958.
 86. Febry, R., and P. Lutz. Energy partitioning in fish: the activity‐related cost of osmoregulation in a euryhaline cichlid. J. Exp. Biol. 128: 63–85, 1987.
 87. Ferreira, K.T.G., and H. G. Ferreira. The regulation of volume and ion composition in frog skin. Biochim. Biophys. Acta 646: 193–202, 1981.
 88. Field, M., K. J. Karnaky, P. L. Smith, J. E. Bolton, and W. B. Kinter. Ion transport across the isolated intestinal mucosa of the winter flounder, Pseudopleuronectes americanus. I. Functional and structural properties of the cellular and paracellular pathways for Na and Cl. J. Membr. Biol. 41: 265–293, 1978.
 89. Field, M., P. L. Smith, and J. E. Bolton. Ion transport across the isolated intestinal mucosa of the winter flounder, Pseudopleuronectes americanus. II. Effects of cyclic AMP. J. Membr. Biol. 55: 157–163, 1980.
 90. Florkin, M. La régulation isosmotique intracellulaire chez les invertebrates marins euryhalins. Bull. Acad. R. Belg. Cl. Sci. 48: 687–694, 1962.
 91. Forster, R. P., and L. Goldstein. Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. Am. J. Physiol. 230: 925–931, 1976.
 92. Foskett, J. K., and C. Scheffy. The chloride cell: definitive identification as the salt‐secretory cell in teleosts. Science 215: 164–166, 1982.
 93. Fossat, B., and B. Lahlou. The mechanism of coupled transport of sodium and chloride in isolated urinary bladder of trout. J. Physiol. (Lond.) 294: 211–222, 1979.
 94. Frain, W. J. The effect of external sodium and calcium concentrations on sodium fluxes by salt‐depleted and non‐depleted minnows, Phoxinus phoxinus. J. Exp. Zool. 131: 417–425, 1987.
 95. Frielman, P. A., and S. C. Hebert. Diluting segment in kidney of dogfish shark. I. Localization and characterization of chloride absorption. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 29): R398–R408, 1990.
 96. Frizzell, R. A., D. R. Halm, M. W. Musch, C. P. Stewart, and M. Field. Potassium transport by flounder intestinal mucosa. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 17): F946–F951, 1984.
 97. Frizzell, R. A., P. L. Smith, E. Vosburgh, and M. Field. Coupled sodium–chloride influx across brush border of flounder intestine. J. Membr. Biol. 46: 27–39, 1979.
 98. Fuchs, W., E. H. Larsen, and B. Lindemann. Current‐voltage curve of sodium channels and concentration dependence of sodium permeability in the frog skin. J. Physiol. (Lond.) 267: 137–166, 1977.
 99. Funder, J., H. H. Ussing, and J. O. Wieth. The effects of CO2 and hydrogen ions on active sodium transport in the isolated frog skin. Acta Physiol. Scand. 71: 65–76, 1967.
 100. Galeotti, G. Über die elektromotorischen Krafte, welche an der Oberflache tierischer Membranen bei der Berührung mit verschiedenen Elektrolyten zustand kommen. Z. Phys. Chem. 49: 542–562, 1904.
 101. Garcia Romeu, F., and J. Ehrenfeld. In vivo Na+ and Cl– transport across the skin of Rana esculenta. Am. J. Physiol. 228: 839–844, 1975.
 102. Garcia Romeu, F., and J. Maetz. The mechanism of sodium and chloride uptake by the gills of a fresh water fish: I. Evidence for an independent uptake of sodium and chloride ions. J. Gen. Physiol. 47: 1195–1207, 1964.
 103. Garcia Romeu, F., and A. Masoni. Sur la mise en evidence des cellule a chlorure de la branchie des poissons. Arch. Anat. Microsc. Morphol. Exp. 59: 289–294, 1970.
 104. Garcia Romeu, F., A. Salibian, and S. Pezzani‐Hernandez. The nature of the in vivo sodium and chloride uptake mechanisms through the epithelium of the Chilean frog Calyptoceph alella gayi (Dum. et Bibr.) J. Gen. Physiol. 53: 816–835, 1969.
 105. Gilles, R. Intracellular organic osmotic effectors. In: Mechanisms of Osmoregulation in Animals, edited by R. Gilles. New York: Wiley, 1979, p. 111–154.
 106. Goertemiller, C. C., Jr., and R. A. Ellis. Localization of ouabain‐sensitive, potassium‐dependent nitrophenylphosphatase in the rectal gland of the spiny dogfish, Squalus acanthias. Cell. Tissue Res. 175: 101–112, 1976.
 107. Gögelein, H., and R. Greger. Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pflügers Arch. 406: 198–203, 1986.
 108. Gögelein, H., E. Schlatter, and R. Greger. The “small” conductance chloride channel in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Pflügers Arch. 409: 122–125, 1987.
 109. Goldman, D. E. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27: 37–60, 1943.
 110. Goldstein, L., and S. Dewitt‐Harley. Trimethylamine oxidase of nurse shark liver and its relation to mammalian mixed function amine oxidase. Comp. Biochem. Physiol. [B] 45: 895–903, 1973.
 111. Goldstein, L., and D. Funkhouser. Biosynthesis of trimethylamine oxide in the nurse shark Ginglymostoma cirratum. Comp. Biochem. Physiol. A 42: 51–57, 1972.
 112. Goldstein, L., and P. J. Palatt. Trimethylamine oxide excretion rates in elasmobranchs. Am. J. Physiol. 227: 1268–1272, 1974.
 113. Gordon, M. S., K. Schmidt‐Nielsen, and H. M. Kelly. Osmotic regulation in the crab‐eating frog (Rana cancrivora). J. Exp. Biol. 38: 659–678, 1961.
 114. Gordon, M. S., and V. A. Tucker. Osmotic regulation in the tadpoles of the crab‐eating frog (Rana cancrivora). J. Exp. Biol. 42: 437–445, 1965.
 115. Gordon, M. S., and V. A. Tucker. Further observations on the physiology of salinity adaptation in the crab‐eating frog (Rana cancrivora). J. Exp. Biol. 49: 185–193, 1968.
 116. Goss, G. G., and C. M. Wood. Na+ and Cl– uptake kinetics, diffusive effluxes and acidic equivalent fluxes across the gills of rainbow trout. I. Responses to environmental hyperoxia. J. Exp. Biol. 152: 521–547, 1990.
 117. Goss, G. G., and C. M. Wood. Na+ and Cl– uptake kinetics, diffusive effluxes and acidic equivalent fluxes across the gills of rainbow trout. II. Responses to bicarbonate infusion. J. Exp. Biol. 152: 549–571, 1990.
 118. Gould, S. J. Male nipples and clitoral ripples. In: Bully for Brontosaursu. London: Penguin, 1991, p. 124–138.
 119. Greenwald, L. Sodium balance in the leopard frog (Rana pipiens). Physiol. Zool. 44: 149–161, 1971.
 120. Greenwald, L. Sodium balance in amphibians from different habitats. Physiol. Zool. 45: 229–237, 1972.
 121. Greger, R., and E. Schlatter. Mechanism of NaCl secretion in the rectal gland of spiny dogfish (Squalus acanthias). I. Experiments in isolated in vitro perfused rectal gland tubules. Pflügers Arch. 402: 63–75, 1984.
 122. Greger, R., and E. Schlatter. Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). II. Effects of inhibitors. Pflügers Arch. 402: 364–375, 1984.
 123. Greger, R., E. Schlatter, and H. Gögelein. Chloride channels in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Properties of the “larger” conductance channel. Pflügers Arch. 409: 114–121, 1987.
 124. Griffith, R. W., B. L. Umminger, B. F. Grant, P.K.T. Pang, L. Goldstein, and G. E. Pickford. Composition of bladder urine of the coelacanth Latimeria chalumnae. J. Exp. Zool. 196: 371–380, 1976.
 125. Griffith, R. W., B. L. Umminger, B. F. Grant, P.K.T. Pang, and G. E. Pickford. Serum composition in the coelacanth Latimeria chalumnae Smith. J. Exp. Zool. 187: 87–102, 1974.
 126. Guggino, W. B., H. Oberleithner, and G. Giebisch. The amphibian diluting segment. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 25): F615–F627, 1988.
 127. Hannafin, J., E. Kinne‐Saffran, D. Friedman, and R. Kinne. Presence of a sodium–potassium chloride cotransport system in the rectal gland of Squalus acanthias. J. Membr. Biol. 75: 73–83, 1983.
 128. Harck, A. F., and E. H. Larsen. Concentration dependence of halide fluxes and selectivity of the anion pathway in toad skin. Acta Physiol. Scand. 128: 289–304, 1986.
 129. Harvey, B. J. Energization of sodium absorption by the H+‐ATPase pump in mitochondria‐rich cells of frog skin. J. Exp. Biol. 172: 289–309; 1992.
 130. Harvey, B. J., and J. Ehrenfeld. Regulation of intracellular sodium and pH by the electrogenic H+ pump in frog skin. Pflügers Arch. 406: 362–366, 1986.
 131. Harvey, B. J., and J. Ehrenfeld. Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium. J. Gen. Physiol. 92: 793–810, 1988.
 132. Harvey, B. J., and R. P. Kernan. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain. J. Physiol. (Lond.) 349: 501–517, 1984.
 133. Harvey, B. J., and R. P. Kernan. Sodium‐selective microelectrode study of apical permeability in frog skin: effects of sodium, amiloride and ouabain. J. Physiol. (Lond.) 356: 359–374, 1984.
 134. Haywood, G. P. A preliminary investigation into the roles played by the rectal gland and kidneys in osmoregulation of the striped dogfish Poroderma africanum. J. Exp. Zool. 193: 167–176, 1975.
 135. Heisler, N. Acid‐base regulation in fishes. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1984, vol. 10A, p. 315–401.
 136. Helman, S. L., and R. S. Fisher. Microelectrode studies of the active Na transport pathway of frog skin. J. Gen. Physiol. 69: 571–604, 1977.
 137. Henderson, I. W., L. B. O'Toole, and N. Hazon. Kidney function. In: Physiology of Elasmobranch Fishes, edited by T. J. Shuttleworth. Berlin: Springer‐Verlag, 1988, p. 201–252.
 138. Hickman, C. P. Ingestion, intestinal absorption and elimination of sea water and salts in the southern flounder, Paralichthys lethostigma. Can. J. Zool. 46: 457–466, 1968.
 139. Hickman, C. P., Jr., and B. F. Trump. The kidney. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1969, vol. 1, p. 91–239.
 140. Hōbe, H., C. M. Wood, and B. R. McMahon. Mechanisms of acid‐base and ionoregulation in white suckers (Catestomus commersoni) in natural soft water. J. Comp. Physiol. [B] 154: 35–46, 1984.
 141. Hōbe, H., C. M. Wood, and M. G. Wheatly. The mechanisms of acid‐base and ionoregulation in the freshwater rainbow trout during environmental hyperoxia and subsequent normoxia. I. Extra‐ and intracellular acid‐base status. Respir. Physiol. 55: 139–154, 1984.
 142. Hodgkin, A. L., and B. Katz. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108: 37–77, 1949.
 143. Holeton, G. F., and N. Heisler. Contribution of net ion transfer mechanisms to the acid‐base regulation after exhaustingactivity in the larger spotted dogfish (Scyliorhynus stellarus). J. Exp. Biol. 103: 31–46, 1983.
 144. Holmes, W. N., and E. M. Donaldson. The body compartments and distribution of electrolytes. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1969. vol. 1, p. 1–89.
 145. Holmes, W. N., and I. M. Stainer. Studies on the renal excretion of electrolytes by the trout (Salmo gairdneri). J. Exp. Biol. 44: 33–46, 1966.
 146. Hootman, S. R., and C. W. Philpott. Ultracytochemical localization of Na+, K+‐activated ATPase in chloride cells of a euryhaline teleost. Anat. Rec. 193: 99–130, 1979.
 147. Hootman, S. R., and C. W. Philpott. Accessory cells in teleost branchial epithelium. Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 9): R199–R206, 1980.
 148. House, C. R. Water Transport in Cells and Tissues. London: Arnold, 1974.
 149. House, C. R., and K. Green. Ion and water transport in isolated intestine of the marine teleost, Cottus scorpius. J. Exp. Biol. 42: 177–189, 1965.
 150. House, C. R., and J. Maetz. On the electrical gradient across the gill of the sea water‐adapted eel. Comp. Biochem. Physiol. A 47: 917–924, 1974.
 151. Howe, D., and J. Gutknecht. Role of urinary bladder in osmoregulation in marine teleost Opsanus tau. Am. J. Physiol. 235 (Regulatory Integrative Comp. Physiol. 6): R48–R54, 1978.
 152. Huang, K. C., and T.S.T. Chen. Ion transport across intestinal mucosa of winter flounder, Pseudopleuronectes americanus. Am. J. Physiol. 220: 1734–1738, 1971.
 153. Hughes, G. M., and N. K. Al‐Kadhomiy. Changes in scaling of respiratory systems during the development of fishes. J. Mar. Biol. Assoc. U.K. 68: 489–498, 1988.
 154. Hughes, G. M., and M. Morgan. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475, 1973.
 155. Hughes, G. M., S. F. Perry, and J. Piiper. Morphometry of the gills of the elasmobranch Scyliorhynus stellaris in relation to body size. J. Exp. Biol. 121: 27–42, 1986.
 156. Hui, C. A. Seawater consumption and water flux in the common dolphin Delphinus delphis. Physiol. Zool. 54: 430–440, 1981.
 157. Hutchison, V. H., W. G. Whitford and M. Kohl. Relation of body size and surface area to gas exchange in anurans. Physiol. Zool. 41: 65–85, 1968.
 158. Hyde, D. A., and S. F. Perry. Differential approaches to blood acid‐base regulation during exposure to prolonged hypercapnia in two freshwater teleosts: the rainbow trout (Salmo gairdneri) and the American eel (Anguilla rostrata). Physiol. Zool. 62: 1164–1186, 1989.
 159. Irving, L., K. C. Fisher, and F. C. McIntosh. The water balance of a marine mammal, the seal. J. Cell. Comp. Physiol. 6: 387–391, 1935.
 160. Irving, L., P. F. Scholander, and S. W. Grinnell. The respiration of the porpoise, Tursiops truncatus. J. Cell. Comp. Physiol. 17: 145–168, 1944.
 161. Isaia, J. Comparative effects of temperature on the sodium and water permeabilities of the gills of a stenohaline freshwater fish (Carassius auratus) and a stenohaline marine fish (Serranus scriba, Serranus cabrilla). J. Exp. Biol. 57: 359–366, 1972.
 162. Jampol, L. M., and F. H. Epstein. Sodium–potassium‐activated adenosine triphosphatase and osmotic regulation by fishes. Am. J. Physiol. 218: 607–611, 1970.
 163. Kamiah, M., and S. Utida. Sodium–potassium activated adenosine triphosphatase activity in gills of fresh‐water, marine and euryhaline teleosts. Comp. Biochem. Physiol. 31: 671–674, 1969.
 164. Karnaky, K. J., K. J. Degnan, L. T. Garretson, and J. A. Zadunaisky. Identification and quantification of mitochondriarich cells in transporting epithelia. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R770–R775, 1984.
 165. Karnaky, K. J., K. J. Degnan, and J. A. Zadunaisky. Chloride transport across isolated opercular epithelium of killifish: a membrane rich in chloride cells. Science 195: 203–205, 1977.
 166. Karnaky, K. J., and W. B. Kinter. Killifish opercular epithelium. A flat epithelium with a high density of chloride cells. J. Exp. Zool. 199: 355–364, 1977.
 167. Karnaky, K. J., L. B. Kinter, W. B. Kinter, and C. E. Stirling. Teleost chloride cell. II. Autoradiographic localization of gill Na, K‐ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J. Cell. Biol. 70: 157–177, 1976.
 168. Katz, U. The effect of salt adaptation and amiloride on the in vivo acid‐base status of the euryhaline toad Bufo viridis. J. Exp. Biol. 93: 93–99, 1981.
 169. Katz, U., and S. Gabby. Mitochondria‐rich cells and carbonic anhydrase content of toad skin epithelium. Cell Tissue Res. 251: 425–431, 1988.
 170. Kempton, R. T. Studies on the elasmobranch kidney. II. Reabsorption of urea by the smooth dogfish Mustelus canis. Biol. Bull. 104: 45–56, 1953.
 171. Kerstetter, T. H., and L. B. Kirschner. Active chloride transport by the gills of rainbow trout (Salmo gairdneri). J. Exp. Biol. 56: 263–272, 1972.
 172. Kerstetter, T. H., L. B. Kirschner, and D. D. Rafuse. On the mechanism of sodium ion transport by the irrigated gills of rainbow trout. J. Gen. Physiol. 56: 342–359, 1970.
 173. Keys, A. B. The heart–gill preparation of the eel and its perfusion for the study of a natural membrane in situ. Z. Vergl. Physiol. 15: 352–363, 1931.
 174. Keys, A. B., and E. N. Wilmer. Chloride‐secreting cells in the gills of fishes with special reference to the common eel. J. Physiol. (Lond.) 76: 368–378, 1932.
 175. King, P. A., and L. Goldstein. Organic osmolytes and cell volume regulation in fish. Mol. Physiol. 4: 53–66, 1983.
 176. Kirsch, R. The kinetics of peripheral exchanges of water and electrolytes in the silver eel (Anguilla anguilla L.) in fresh water and in sea water. J. Exp. Biol. 57: 489–512, 1972.
 177. Kirschner, L. B. On the mechanism of active sodium transport across the frog skin. J. Cell. Comp. Physiol. 45: 61–87, 1955.
 178. Kirschner, L. B. Invertebrate excretory organs. Annu. Rev. Physiol. 29: 169–196, 1967.
 179. Kirschner, L. B. Ventral aortic pressure and sodium fluxes in perfused eel gills. Am. J. Physiol. 217: 596–604; 1969.
 180. Kirschner, L. B. The study of active NaCl transport in aquatic animals. Am. Zool. 10: 365–375, 1970.
 181. Kirschner, L. B. Control mechanisms in crustaceans and fishes. In: Mechanisms of Osmoregulation in Animals, edited by R. Gilles. New York: Wiley, 1979. p. 157–222.
 182. Kirschner, L. B. Sodium chloride absorption across the body surface: frog skins and other epithelia. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 15): R429–R443, 1983.
 183. Kirschner, L. B. Basis for apparent saturation kinetics of Na+‐influx in freshwater hyperregulators. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 25): R984–R988, 1988.
 184. Kirschner, L. B. Water and ions. In: Environmental and Metabolic Animal Physiology, edited by C. L. Prosser. New York: Wiley‐Liss, 1991. p. 13–107.
 185. Kirschner, L. B. The energetics of osmoregulation in ureotelic and hypoosmotic fishes. J. Exp. Zool. 267: 19–26, 1993.
 186. Kirschner, L. B. Energetics of osmoregulation in fresh water vertebrates. J. Exp. Zool. 271: 243–252; 1995.
 187. Kirschner, L. B., L. Greenwald, and T. H. Kerstetter. Effect of amiloride on sodium transport across body surfaces of fresh water animals. Am. J. Physiol. 224: 832–837, 1973.
 188. Kirschner, L. B., L. Greenwald, and M. J. Sanders. On the mechanism of sodium extrusion across the irrigated gill of the sea water‐adapted rainbow trout (Salmo gairdneri). J. Gen. Physiol. 64: 148–165, 1974.
 189. Kirschner, L. B., and D. Howe. Exchange diffusion, active transport and diffusional components of transbranchial Na and Cl fluxes. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 11): R364–R369, 1981.
 190. Koch, A. R. Transport equations and criteria for active transport. Am. Zool. 10: 331–346, 1970.
 191. Koefoed Johnsen, V. The effect of g‐strophanthin (ouabain) on active transport of sodium through the isolated frog skin. Acta Physiol. Scand. 42 (suppl. 145): 87–88, 1958.
 192. Koefoed Johnsen, V., H. Levi, and H. H. Ussing. The mode of passage of chloride ions through the isolated frog skin. Acta Physiol. Scand. 25: 150–163, 1952.
 193. Koefoed Johnsen, V., and H. H. Ussing. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.
 194. Komnick, H. Elektronmikroscopische untersuchungen zur funktionellen morphologie des iontransportes in der saltdrüse von Larus argentatus. I teil: Bau und feinstruktur der saltdrüse. Protoplasma 56: 274–314, 1963.
 195. Kooistra, T. A., and D. H. Evans. Sodium balance in the green turtle, Chelonia mydas in seawater and freshwater. J. Comp. Physiol. 107: 229–240, 1976.
 196. Kormanik, G. A., and J. N. Cameron. Ammonia excretion in animals that breathe water: a review. Mar. Biol. Lett. 2: 11–23, 1981.
 197. Kristensen, P. Chloride transport across isolated frog skin. Acta Physiol. Scand. 102: 22–34, 1972.
 198. Kristensen, P. Exchange diffusion, electrodiffusion and rectification in the chloride transport pathway of frog skin. J. Membr. Biol. 72: 141–151, 1983.
 199. Kristensen, P., and E. H. Larsen. Relation between chloride exchange diffusion and a conductive chloride pathway across isolated skin of the toad (Bufo bufo). Acta Physiol. Scand. 102: 22–34, 1978.
 200. Krogh, A. Osmotic regulation in fresh water fishes by active absorption of chloride ions. Z. Vergl. Physiol. 24: 656–666, 1937.
 201. Krogh, A. The active absorption of ions in some freshwater animals. Z. Vergl. Physiol. 25: 335–350, 1938.
 202. Krogh, A. Osmotic Regulation in Aquatic Animals. London: Cambridge Univ. Press, 1939.
 203. Lacy, E. R., and E. Reale. The elasmobranch kidney. II. Sequence and structure of the nephrons. Anat. Embryol. 173: 163–186, 1985.
 204. Lacy, E. R., E. Reale, D. S. Schlusselburg, W. K. Smith, and D. J. Woodward. A renal countercurrent system in marine elasmobranch fish: a computer assisted reconstruction. Science 227: 1351–1354, 1985.
 205. Larsen, E. H. NaCl transport in amphibian skin. In: NaCl Transport in Epithelia, edited by R. Greger. Berlin: Springer‐Verlag, 1988, p. 189–248.
 206. Larsen, E. H., and P. Kristensen. Properties of a conductive cellular chloride pathway in the skin of the toad (Bufo Bufo). Acta Physiol. Scand. 102: 1–21, 1978.
 207. Larsen, E. H., H. H. Ussing, and K. R. Spring. Ion transport by mitochondria‐rich cells in toad skin. J. Membr. Biol. 99: 25–40, 1987.
 208. Larsen, E. H., N. J. Williumsen, and B. C. Christoffersen. Role of proton pump of mitochondria‐rich cells for active transport of chloride ions in toad skin epithelium. J. Physiol. (Lond.) 450: 203–216, 1992.
 209. Larsen, E. H., N. J. Willumsen, L. Vestergaard, and B. C. Christoffersen. Active chloride current in amphibian epidermis is energized by an apical rheogenic proton pump of mitochondria‐rich cells. J. Physiol. (Lond.) 439: 22P, 1989.
 210. Lin, H., and D. Randall. Evidence for the presence of an electrogenic proton pump on the trout gill epithelium. J. Exp. Biol. 161: 119–134, 1991.
 211. Lindemann, B., and W. Van Driessche. Sodium specific channels of frog skin are pores: current fluctuations reveal high turnover. Science 195: 292–294, 1977.
 212. Long, W. S. Renal handling of urea in Rana catesbeiana Am. J. Physiol. 224: 482–490, 1973.
 213. Loretz, C. A. Water exchange across fish gills: tritiated‐water flux measurements. J. Exp. Biol. 79: 147–162, 1979.
 214. Lutz, P. L., and J. D. Robertson. Osmotic constituents of coelacanth Latimeria chalumnae Smith. Biol. Bull. 141: 553–560, 1971.
 215. MacFarland, N.A.A., and J. Maetz. Acute response to a salt load of the NaCl excretion mechanisms of the gill of Platichthys flesus in sea water. J. Comp. Physiol. 102: 101–113, 1975.
 216. Maetz, J. Les échanges de sodium chez le poisson Carassius auratus L. Action d'un inhibiteur de l'anhydrase carbonique. J. Physiol. Paris 48: 1085–1099, 1956.
 217. Maetz, J. Sea water teleosts: evidence for a sodium–potassium exchange in the branchial sodium‐excreting pump. Science 166: 613–615, 1969.
 218. Maetz, J. Branchial sodium exchange and ammonia excretion in the goldfish Carassius auratus. Effects of ammonia loading and temperature changes. J. Exp. Biol. 56: 601–620, 1972.
 219. Maetz, J. Na+/NH4+, Na+/H+ exchanges and NH3 movement across the gill of Carassius auratus. J. Exp. Biol. 58: 255–275, 1973.
 220. Maetz, J. Transport of ions and water across the epithelium of fish gills. In: Lung Liquids, edited by R. Porter and M. O'Conner. Amsterdam: Elsevier, 1976, p. 133–155.
 221. Maetz, J., and M. Bornancin. Biochemical and biophysical aspects of salt secretion by chloride cells in teleosts. Fortschr. Zool. 23: 322–362, 1975.
 222. Maetz, J., and G. Campanini. Potentiels transepitheliaux de la branchie d'Anguilla in vivo en eau douce et en eau de mer. J. Physiol. Paris 58: 248, 1966.
 223. Maetz, J., and F. Garcia Romeu. The mechanism of sodium and chloride uptake by the gills of a fresh‐water fish, Carassius auratus: II. Evidence for NH4+/Na+ and HCO3–/Cl– exchanges. J. Gen. Physiol. 47: 1209–1227, 1964.
 224. Maetz, J., and B. Lahlou. Les échanges de sodium et de chlore chez un elasmobranche Scyliorhinus mesures a l'aide des isotopes 24Na et 36Cl. J. Physiol. Paris 58: 249, 1966.
 225. Maetz, J., P. Payan, and G. De Renzis. Controversial aspects of ionic uptake in freshwater animals. In: Perspectives in Experimental Biology, edited by P. S. Davies. Oxford: Pergamon, 1975, vol. 1, p. 77–92.
 226. Maetz, J., and P. Pic. New evidence for a Na+/K+ and Na+/Na+ exchange carrier linked with the Cl– pump in the gill of Mugil capito in sea water. J. Comp. Physiol. [B] 102: 85–100, 1975.
 227. Maetz, J., and E. Skadhauge. Drinking rates and gill ionic turnover in relation to external salinities in the eel. Nature 217: 371–373, 1968.
 228. Marshall, E. K., and H. W. Smith. Glomerular development of the vertebrate kidney in relation to habitat. Biol. Bull. 59: 135–153, 1930.
 229. Marshall, W. S. Transepithelial potential and short‐circuit current across the isolated skin of Gillichthys mirabilus, adapted to 5% and 100% seawater. J. Comp. Physiol. [B] 114: 157–165, 1977.
 230. Marshall, W. S. Active transport of Rb+ across skin of the teleost Gillichthys mirabilus. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 12): F482–F486, 1981.
 231. Marshall, W. S. Sodium dependency of active chloride transport across isolated fish skin. J. Physiol. (Lond.) 319: 165–178, 1981.
 232. Marshall, W. S. Independent Na+ and Cl– transport by urinary bladder of brook trout. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R227–R234, 1986.
 233. Marshall, W. S., and R. S. Nishioka. Relation of mitochondria‐rich chloride cells to active chloride transport in the skin of a marine teleost. J. Exp. Zool. 214: 147–156, 1980.
 234. Martin, D. W., and P. F. Curran. Reversed potentials in frog skin. II Active transport of chloride. J. Cell. Physiol. 67: 367–374, 1966.
 235. Mauro, A. Osmotic flow in a rigid porous membrane. Science 149: 867–869, 1965.
 236. Mazzotti, F. J., and W. A. Dunson. Osmoregulation in crocodilians. Am. Zool. 29: 903–920, 1989.
 237. McDonald, D. G., and E. T. Prior. Branchial mechanisms of ion and acid‐base regulation in the freshwater rainbow trout, Salmo gairdneri Can. J. Zool. 66: 2699–2708, 1988.
 238. McDonald, D. G., Y. Tang, and R. G. Boutilier. Acid and ion transfer across the gills of fish: mechanisms and regulation. Can. J. Zool. 67: 3046–3054, 1989.
 239. McFarland, W. N., and F. W. Munz. Regulation of body weight and serum composition by hagfish in different media. Comp. Biochem. Physiol. 14: 383–398, 1965.
 240. McWilliams, P. G., and W.T.W. Potts. The effect of pH and calcium concentration on gill potentials in the brown trout Salmo trutta. J. Comp. Physiol. [B] 126: 277–286, 1978.
 241. Middler, S. A., C. R. Kleeman, and E. Edwards. The role of the urinary bladder in salt and water metabolism of the toad Bufo marinus. Comp. Biochem. Physiol. 26: 57–68, 1968.
 242. Minnich, J. E. Reptiles, In: Comparative Physiology of Osmoregulation in Animals, edited by C.M.O. Maloiy. New York: Academic, 1979, p. 391–641.
 243. Mommsen, T. P., and P. J. Walsh. Evolution of urea synthesis in vertebrates: the piscine connection. Science 243: 72–75, 1989.
 244. Morris, R., and J. M. Bull. Studies on freshwater osmoregulation in the ammocoete larva of Lampetra planeri (Bloch). III. The effect of external and internal sodium on sodium transport. J. Exp. Biol. 52: 275–290, 1970.
 245. Motais, R. Les mécanismes d'échanges ioniques branchiaux chez les téléostéens. Ann. Inst. Oceanogr. Monaco 45: 1–83, 1967.
 246. Motais, R., and J. Isaia. Temperature‐dependence of permeability to water and to sodium of the gill epithelium of the eel, Anguilla anguilla. J. Exp. Biol. 56: 587–600, 1972.
 247. Motais, R., J. Isaia, J. C. Rankin, and J. Maetz. Adaptive changes in water permeability of the teleostean gill epithelium in relation to external salinity. J. Exp. Biol. 51: 521–546, 1969.
 248. Mullen, T. L., and R. H. Alvarado. Osmotic and ionic regulation in amphibians. Physiol. Zool. 49: 11–23, 1976.
 249. Musch, M. W., S. A. Orellana, L. S. Kimberg, M. Field, D. R. Halm, E. J. Krasny, and R. A. Frizzell. Na–K–Cl cotransport in the intestine of a marine teleost. Nature 300: 351–353, 1982.
 250. Nagel, W. The intracellular electrical potential profile of the frog skin epithelium. Pflügers Arch. 365: 135–143, 1976.
 251. Nagel, W. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution. J. Physiol. (Lond.) 269: 777–796, 1977.
 252. Nagel, W., J. F. Garcia‐Diaz, and W. McD. Armstrong. Intracellular ion activities in frog skin. J. Membr. Biol. 61: 127–134, 1981.
 253. Nielsen, R. A 3 to 2 coupling of the Na–K pump responsible for the transepithelial Na transport in frog skin disclosed by the effect of Ba. Acta Physiol. Scand. 107: 189–191, 1979.
 254. Nishimura, H., M. Imai, and M. Ogawa. Sodium chloride and water transport in the renal distal tubule of the rainbow trout. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 15): F247–F254, 1983.
 255. Nishioka, R. S. Relation of mitochondria‐rich chloride cells to active chloride transport in the skin of a marine teleost. J. Exp. Zool. 214: 147–156, 1980.
 256. Oberleithner, H., F. Lang, G. Messner, and W. Wang. Mechanism of hydrogen ion transport in the diluting segment of frog kidney. Pflügers Arch. 402: 272–280, 1984.
 257. O'Grady, S. M., M. W. Musch, and M. Field. Stoichiometry and ion affinities of the Na–K–Cl cotransport system in the intestine of the winter flounder (Pseudopleuronectes americanus). J. Membr. Biol. 91: 33–41, 1986.
 258. Oide, M., and S. Utida. Changes in ion and water transport in isolated intestine of the eel during salt adaptation and migration. Mar. Biol. 1: 102–106, 1967.
 259. Parsons, R., and L. C. Stoner. The movement of solutes and water across the vertebrate distal nephron. Renal. Physiol. 8: 237–248, 1985.
 260. Parsons, R. H., L. M. Thorn, S. M. Salerno, and S. Petronis. Salt‐load effects on osmotic water flow, tritated water difusion and cardiovascular system in Rana pipiens and Rana catesbeiana. Physiol. Zool. 63: 571–586, 1990.
 261. Pärt, L., L. Norrgren, E. Bergstrom, and P. Sjoberg. Primary cultures of epithelial cells from rainbow trout gills. J. Exp. Biol. 175: 219–232; 1993.
 262. Payan, P., L. Goldstein, and R. P. Forster. Gills and kidneys in ureosmotic regulation in euryhaline skates. Am. J. Physiol. 224: 367–372, 1973.
 263. Payan, P., and J. Maetz. Balance hydrique chez les élasmobranches: arguments en faveur d'un contrôle endocrinien. Gen. Comp. Endocrinol. 16: 535–554, 1970.
 264. Payan, P., and J. Maetz. Balance hydrique et minerale chez les élasmobranches: arguments en faveur d'un contrôle endocrinien. Bull. Inf. Sci. Tech. CEA 146: 77–96, 1970.
 265. Payan, P., and J. Maetz. Branchial sodium transport mechanisms in Scyliorhynus canicula: evidence for Na+/NH4+ and Na+/H+ exchanges and for a role of carbonic anhydrase. J. Exp. Biol. 58: 487–502, 1973.
 266. Perry, S. F., M. S. Haswell, D. J. Randall, and A. P. Farrell. Branchial ionic uptake and acid‐base regulation in the rainbow trout, Salmo gairdneri. J. Exp. Biol. 92: 289–303, 1981.
 267. Perry, S. F., S. Malone, and D. Ewing. Hypercapnic acidosis in the rainbow trout (Salmo gairdneri). I. Branchial ion fluxes and blood acid‐base status. Can. J. Zool. 65: 888–895, 1987.
 268. Perry, S. F., and D. J. Randall. Effects of amiloride and SITS on branchial ion fluxes in rainbow trout, Salmo gairdneri. J. Exp. Zool. 215: 225–228, 1981.
 269. Phillips, J. G., and D. M. Ensor. The significance of environmental factors in the hormone mediated changes of nasal (salt) gland activity in birds. Gen. Comp. Endocrinol. 3 (Suppl.): 393–404, 1972.
 270. Philpott, C. W., and D. E. Copeland. Fine structure of chloride cells from three species of Fundulus. J. Cell. Biol. 18: 389–404, 1963.
 271. Pic, P. A comparative study of the mechanism of Na+ and Cl– excretion by the gill of Mugil capito and Fundulus heteroclitus: effect of stress. J. Comp. Physiol. [B] 123: 155–162, 1978.
 272. Pickford, G. E., and B. F. Grant. Serum osmolality in the coelocanth Latimeria chalumnae: urea retention and ion regulation. Science 155: 568–570, 1967.
 273. Pora, A. E., and O. Prekup. A study of the excretory processes of freshwater fish. Part II. Influence of environmental temperature on the excretory processes of the carp and Cruscian carp. Vopr. Ikhtiol. 15: 138–147; 1960.
 274. Post, R. L., and P. C. Jolly. The linkage of sodium, potassium and ammonium transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25: 118–128, 1957.
 275. Post, R. L., C. R. Merritt, C. R. Kinsolving, and C. D. Albright. Membrane adenosine triphosphatase as a participant in active transport of sodium and potassium in the human erythrocyte. J. Biol. Chem. 235: 1796–1802, 1960.
 276. Potts, W. T. W. Transepithelial potentials in fish gills. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1984, vol. 10B, p. 105–138.
 277. Potts, W. T. W., and F. B. Eddy. Gill potentials and sodium fluxes in the flounder Platichthys flesus. J. Comp. Physiol. B 87: 29–48, 1973.
 278. Potts, W.T.W., and D. H. Evans. Sodium and chloride balance in the killifish Fundulus heteroclitus. Biol. Bull. 133: 411–425, 1967.
 279. Potts, W.T.W., and A. J. Hedges. Gill potentials in marine teleosts. J. Comp. Physiol. B 161: 401–405, 1991.
 280. Randall, D. J., H. Lin, and P. A. Wright. Gill water flow and the chemistry of the boundary layer. Physiol. Zool. 64: 26–38, 1991.
 281. Randall, D. J., C. M. Wood, S. F. Perry, H. Bergman, G.M.O. Maloiy, T. P. Mommsen, and P. A. Wright. Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature 337: 165, 1989.
 282. Rao, G.M.M. Oxygen consumption of rainbow trout (Salmo gairdneri) in relation to activity and salinity. Can. J. Zool. 46: 781–786, 1968.
 283. Rick, R., A. Dörge, E. Von Arnum, and K. Thurau. Electron microprobe analysis of frog skin epithelium: evidence for a syncitial sodium transport compartment. J. Membr. Biol. 39: 313–331, 1978.
 284. Ridgway, S. H. Homeostasis in the aquatic environment. In: Mammals of the Sea. Biology and Medicine, edited by S. H. Ridgway. Springfield, IL: Thomas, 1972, p. 500–747.
 285. Robertson, J. D. The habitat of the early vertebrates. Biol. Rev. 32: 156–187, 1957.
 286. Robertson, J. D. Osmotic constituents of the blood plasma and parietal muscle of Squalus acanthias. Biol. Bull. 148: 303–319, 1975.
 287. Robertson, J. D. Chemical composition of the body fluids of the hagfish Myxine glutinosa and the rabbit‐fish Chimaera monstrosa. J. Zool. (Lond.) 178: 261–277, 1976.
 288. Robinson, G. D., and W. A. Dunson. Water and sodium balance in the estuarine diamond terrapin (Malaclemys). B J. Comp. Physiol. B 105: 129–152, 1976.
 289. Rosen, S., and N. J. Friedley. Carbonic anhydrase activity in Rana pipiens skins: biochemical and histochemical analysis. Histochemie 36: 1–4, 1973.
 290. Sanders, M. J., and L. B. Kirschner. Potassium metabolism in seawater teleosts. II. Evidence for active potassium extrusion across the gill. J. Exp. Biol. 104: 29–40, 1983.
 291. Sardet, C., M. Pisam, and J. Maetz. The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation. J. Cell. Biol. 80: 96–117, 1979.
 292. Schmidt‐Nielsen, B., and D. F. Laws. Invertebrate mechanisms for diluting and concentrating the urine. Annu. Rev. Physiol. 25: 631–658, 1963.
 293. Schmidt‐Nielsen, B., B. Truninger, and L. Rabinowitz. Sodium‐linked urea transport by the renal tubule of the spiny dogfish Squalus acanthias. Comp. Biochem. Physiol. A 42: 13–25, 1972.
 294. Schmidt‐Nielsen, K., and R. Fänge. Salt glands in marine reptiles. Nature 182: 783–785, 1958.
 295. Schmidt‐Nielsen, K., and P. Lee. Kidney function in the crab‐eating frog (Rana cancrivora). J. Exp. Biol. 39: 167–177, 1962.
 296. Schultz, S. G. Electrical potential differences and electromotive forces in epithelial tissues. J. Gen. Physiol. 59: 794–798, 1972.
 297. Sharratt, B. M., I. Chester Jones, and D. Bellamy. Water and electrolyte composition of the body and renal function of the eel (Anguilla anguilla). Comp. Biochem. Physiol. 11: 9–18, 1964.
 298. Shaw, J. The absorption of sodium ions by the crayfish, Astacus pallipes Lereboullet. II The effect of external anion. J. Exp. Biol. 37: 534–547, 1960.
 299. Shehadeh, Z. H., and M. S. Gordon. The role of the intestine in salinity adaptation of the rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. 30: 397–418, 1969.
 300. Shirai, N., and S. Utida. Development and degeneration of the chloride cell during sea water and fresh water adaptation of the Japanese eel, Anguilla japonica. Z. Zellforsch. 103: 247–264, 1972.
 301. Shoemaker, V. H., K. A. Nagy, and S. D. Bradshaw. Studies on the control of electrolyte excretion by the nasal gland of the lizard Dipsosaurus dorsalis. Comp. Biochem. Physiol. A 42: 749–757, 1972.
 302. Shuttleworth, T. J. Salt and water balance—extrarenal mechanisms. In. Physiology of Elasmobranch Fishes, edited by T. J. Shuttleworth. Berlin: Springer‐Verlag, 1988, p. 171–199.
 303. Shuttleworth, T. J., and J. L. Thompson. Oxygen consumption in the rectal gland of the dogfish, Scyliorhynus canicula and the effects of cyclic AMP. J. Comp. Physiol. [B] 136: 39–43, 1980.
 304. Shuttleworth, T. J., and J. L. Thompson. The mechanism of cyclic AMP stimulation of secretion in the dogfish rectal gland. J. Comp. Physiol. [B] 140: 209–216, 1980.
 305. Silva, P., and M. A. Myers. Stoichiometry of sodium chloride transport by rectal gland of Squalus acanthias. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 21): F516–F519; 1986.
 306. Silva, P., J. S. Stoff, M. Field, L. Fine, J. N. Forrest, and F. H. Epstein. Mechanism of active chloride secretion by shark rectal gland: role of Na–K ATPase in chloride transport. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 4): F298–F306, 1977.
 307. Silva, P., J. S. Stoff, R. J. Solomon, R. Rosa, A. Stevens, and J. Epstein. Oxygen cost of chloride transport in perfused rectal gland of Squalus acanthias. J. Membr. Biol. 53: 215–221, 1980.
 308. Skadhauge, E. The mechanism of salt and water absorption in the intestine of the eel (Anguilla anguilla) adapted to waters of different salinities. J. Physiol. (Lond.) 204: 135–158, 1969.
 309. Skadhauge, E. Coupling of transmural flows of NaCl and water in the intestine of the eel (Anguilla anguilla). J. Exp. Biol. 60: 535–546, 1974.
 310. Skou, J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochem. Biophys. Acta. 23: 394–401, 1957.
 311. Smith, H. W. Water regulation and its evolution in the fishes. Q. Rev. Biol. 7: 1–26, 1932.
 312. Smith, H. W. The retention and physiological role of urea. Biol. Rev. 11: 49–82, 1936.
 313. Smith, P. G. The ionic relations of Artemia salina (L). J. Exp. Biol. 51: 739–757, 1969.
 314. Smith, P. R., and D. J. Benos. Epithelial Na+ channels. Annu. Rev. Physiol. 53: 509–530, 1991.
 315. Solomon, R., M. Taylor, S. Sheth, P. Silva, and F. H. Epstein. Primary role of volume expansion in stimulation of rectal gland function. Am. J. Physiol. 248: 638–640, 1985.
 316. Stanton, B. A. Electroneutral NaCl transport by distal tubule: Evidence for Na+/H+‐Cl–/HCO3– exchange. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F80–F86; 1988.
 317. Staverman, A. J. The theory of measurement of osmotic pressure. Recl. Trav. Chim. Pays Bas 70: 344–352, 1951.
 318. Steinbach, H. B. The electrical potential across living frog skin. J. Cell. Comp. Physiol. 3: 1–27, 1933.
 319. Steinbach, H. B. The prevalence of K. Perspect. Biol. Med. 5: 338–355, 1962.
 320. Steinmetz, P. R. Cellular mechanisms of urinary acidification. Physiol. Rev. 54: 890–956, 1974.
 321. Steinmetz, P. R. Cellular organization of urinary acidification. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 22): F173–F187, 1986.
 322. Stetson, D. L., and P. R. Steinmetz. Alpha and beta types of carbonic anhydrase‐rich cells in turtle bladder. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 20): F553–F565, 1985.
 323. Stewart, P. A. How to Understand Acid‐Base. New York: Elsevier, 1981.
 324. Stiffler, D. F. Partitioning of acid‐base regulation between renal and extrarenal sites in the adult stage of the salamander Ambystoma tigrinum during respiratory acidosis. J. Exp. Biol. 157: 47–62, 1991.
 325. Stiffler, D. F., and R. H. Alvarado. Renal function in response to reduced osmotic load in larval salamanders. Am. J. Physiol. 226: 1243–1249, 1974.
 326. Stiffler, D. F., and N. Bachoura. Metabolic alkalosis in the larval salamander, Ambystoma tigrinum: partitioning regulatory responses between the skin and kidneys. J. Exp. Zool. 258: 196–203, 1991.
 327. Stiffler, D. F., M. L. Deruyter, and C. R. Talbot. Osmotic and ionic regulation in the aquatic caecilian Typhlonectes compressicauda and the terrestrial caecilian Ichthyopsis kohtaoensis Physiol. Zool. 63: 649–668, 1990.
 328. Stiffler, D. F., J. B. Graham, K. A. Dickson, and W. Stockman. Cutaneous ion transport in the freshwater teleost Synbranchus marmoratus. Physiol. Zool. 59: 406–418, 1986.
 329. Stiffler, D. F., S. L. Ryan, and R. A. Mushkot. Interactions between acid‐base balance and cutaneous ion transport in larval Ambystoma tigrinum in response to hypercapnia. J. Exp. Biol. 130: 389–404, 1987.
 330. Stoddard, J. S., E. Jacobsson, and S. I. Helman. Basolateral membrane chloride transport in isolated epithelia of frog skin. Am. J. Physiol. 249 (Cell Physiol. 18): C318–C329, 1985.
 331. Stoff, J. S., P. Silva, M. Field, J. N. Forrest, A. Stevens, and F. H. Epstein. Cyclic AMP regulation of active chloride transport in the rectal gland of marine elasmobranchs. J. Exp. Zool. 199: 443–448, 1977.
 332. Stolte, H., R. G. Galaske, G. M. Eisenbach, C. Lechene, B. Schmidt‐Nielsen, and J. W. Boylan. Renal tubule ion transport and collecting duct function in the elasmobranch little skate Raja erinacea. J. Exp. Zool. 199: 403–410, 1977.
 333. Stoner, L. C. Isolated, perfused amphibian renal tubules: the diluting segment. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 4): F438–F444, 1977.
 334. Stoner, L. C. The movement of solutes and water across the vertebrate distal nephon. Renal Physiol. 8: 237–248, 1985.
 335. Talbot, C. R., and D. F. Stiffler. Effects of hypoxia on acid‐base balance, blood gases, catecholamines and cutaneous ion exchange in the larval tiger salamander (Ambystoma tigrinum). J. Exp. Zool. 257: 299–305, 1991.
 336. Talbot, C. R., and D. F. Stiffler. Cutaneous ion exchange, and renal and extrarenal partitioning of acid and ammonia excretion in the larval tiger salamander, Ambystoma tigrinum following ingestion of ammonium salts. J. Comp. Physiol. [B] 162: 416–423, 1992.
 337. Taplin, L. E. Sodium and water budgets of the fasted estuarine crocodile, Crocodylus porosus, in sea water. J. Comp. Physiol. [B] 155: 501–513, 1985.
 338. Taplin, L. E. Osmoregulation in crocodilians. Biol. Rev. 63: 333–377, 1988.
 339. Telfer, N., L. H. Cornell, and J. H. Prescott. Do dolphins drink water? J. Am. Vet. Med. Assoc. 157: 555–558, 1970.
 340. Templeton, J. R. Salt and water balance in desert lizards. Symp. Zool. Soc. Lond. 31: 61–77, 1972.
 341. Teorell, H. Membrane electrophoresis in relation to bioelectrical polarization effects. Arch. Sci. Physiol. 3: 205–219, 1949.
 342. Toes, D. P., G. F. Holeton, and N. Heisler. Regulation of acid‐base status during hypercapnia in the marine teleost fish Conger conger. J. Exp. Biol. 107: 9–20, 1983.
 343. Truchot, J. P. Comparative Aspects of Extracellular Acid‐Base Balance. Berlin: Springer‐Verlag, 1987.
 344. Ussing, H. H. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 19: 43–56, 1948.
 345. Ussing, H. H. Pathways for transport in epithelia. In: Functional Regulation at the Cellular and Molecular Levels, edited by R. A. Corradino. Amsterdam: Elsevier, 1982, p. 285–297.
 346. Ussing, H. H., and K. Zerahn. Active transport of sodium as the source of electric current in the short‐circuited frog skin. Acta Physiol. Scand. 23: 110–127, 1951.
 347. Van Lennep, E. W. Electron microscopic histochemical studies on salt‐excreting glands in elasmobranchs and marine catfish. J. Ultrastruct. Res. 25: 94–108, 1968.
 348. Van Lennep, E. W., and W.J.R. Lanzing. The ultrastructure of glandular cells in the external dendritic organ of some marine catfish. J. Ultrastruct. Res. 18: 333–344, 1967.
 349. Walker, A. M., C. L. Hudson, T. Findley, Jr., and A. N. Richards. The total molecular concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia. The site of chloride reabsorption. Am. J. Physiol. 118: 121–129, 1937.
 350. Webb, J. T., and G. W. Brown, Jr. Glutamine synthetase: assimilatory role in liver as related to urea retention in marine chondrichthyes. Science 208: 293–295, 1980.
 351. Welch, M. J., P. L. Smith, and R. A. Frizzell. Intracellular chloride activities in the isolated perfused shark rectal gland. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 16): F640–F644, 1983.
 352. Wheatly, M. G., C. M. Wood, and H. Hōbe. The mechanism of acid‐base and ionoregulation in the freshwater rainbow trout during environmental hyperoxia and subsequent normoxia. II. The role of the kidney. Respir. Physiol. 55: 155–173, 1984.
 353. Whitford, W. G., and V. Hutchison. Body size and metabolic rate in salamanders. Physiol. Zool. 40: 127–133, 1967.
 354. Willumsen, N. J., and E. H. Larsen. Passive Cl– currents in toad skin: potential dependence and relation to mitochondria‐rich cell density. In: Transport Processes, Iono‐ and Osmoregulation, edited by R. Gilles and M. Gilles‐Baillien. Berlin: Springer‐Verlag, 1985, p. 20–30.
 355. Willumsen, N. J., and E. H. Larsen. Membrane potentials and intracellular Cl– activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl– conductance. J. Membr. Biol. 94: 173–190, 1986.
 356. Willumsen, N. J., L. Vestergaard, and E. H. Larsen. Cyclic AMP‐ and β‐agonist activated chloride conductance of a toad‐skin epithelium. J. Physiol. (Lond.) 449: 641–653, 1992.
 357. Wilson, R. W., P. M. Wright, S. Munger, and C. M. Wood. Ammonia excretion in freshwater rainbow trout (Oncorhynchus mykiss) and the importance of gill boundary acidification: lack of evidence for Na+/NH4+ exchange. J. Exp. Biol. 191: 37–58, 1994.
 358. Wong, T. M., and D.K.O. Chan. Physiological adjustments to dilution of the external medium in the lip‐shark Hemiscyllium plagiosum (Bennet). II. Branchial, renal and rectal gland function. J. Exp. Zool. 200: 85–96, 1977.
 359. Wood, C. M. Acid‐base and ionic exchanges at gills and kidney after exhaustive exercise in the rainbow trout. J. Exp. Biol. 136: 461–481, 1988.
 360. Wood, C. M. Branchial ion and acid‐base transfer in freshwater teleost fish: environmental hyperoxia as a probe. Physiol. Zool. 64: 68–102, 1991.
 361. Wood, C. M., S. F. Perry, P. A. Wright, H. L. Bergman, and D. J. Randall. Ammonia and urea dynamics in the Lake Magadi tilapia, a ureotelic teleost fish adapted to an extremely alkaline environment. Respir. Physiol. 77: 1–20, 1989.
 362. Wood, C. M., and D. J. Randall. The influence of swimming activity on sodium balance in the rainbow trout (Salmo gairdneri). J. Comp. Physiol. 82: 207–233, 1973.
 363. Wood, C. M., M. G. Wheatly, and H. Hōbe. The mechanisms of acid‐base and ion regulation in freshwater rainbow trout during environmental hyperoxia and subsequent normoxia. III Branchial exchanges. Respir. Physiol. 55: 175–192, 1984.
 364. Wright, P. A., D. J. Randall, and S. F. Perry. Fish gill water boundary layer: a site of linkage between carbon dioxode and ammonia excretion. J. Comp. Physiol. [B] 158: 627–635, 1989.
 365. Wright, P. A., and C. M. Wood. An analysis of branchial ammonia excretion in the freshwater rainbow trout: effects of environmental pH change and sodium uptake blockade. J. Exp. Biol. 114: 329–353, 1985.
 366. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero. Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222, 1982.
 367. Yancey, P. H., and G. N. Somero. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem. J. 183: 317–323, 1979.
 368. Yancey, P. H., and G. N. Somero. Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J. Exp. Zool. 212: 205–213, 1980.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Leonard B. Kirschner. Extrarenal Mechanisms in Hydromineral and Acid‐Base Regulation in Aquatic Vertebrates. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 577-622. First published in print 1997. doi: 10.1002/cphy.cp130109