Comprehensive Physiology Wiley Online Library

Endocrinology of the Vertebrates

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 The Vertebrate Endocrine System
1.1 The Brain
1.2 The Pineal Complex
1.3 The Hypothalamo–Hypophyseal Complex
1.4 The Gastrointestinal Tract
1.5 The Thyroid Gland
1.6 The Parathyroid Glands
1.7 The Ultimobranchial Bodies
1.8 The Urophysis
1.9 The Adrenal Gland: Interrenal Gland (Tissue) and Pheochromaffin Tissue—Homologs of the Mammalian Adrenal Cortex and Adrenal Medulla, Respectively
1.10 The Gonads
1.11 The Heart
1.12 The Kidney
1.13 The Corpuscles of Stannius
1.14 The Vascular Endothelium
2 Cellular and Molecular Aspects of Hormonal Action and Evolution
3 Reproduction
4 Calcium and Skeletal Homeostasis
5 Growth and Maintenance of the Differentiated Adult
6 Extracellular Fluid and Cardiovascular Homeostasis
7 Conclusions
Figure 1. Figure 1.

Mechanisms employed for the delivery of hormones to their target sites via their specific receptors. In this scheme there are genomic interactions, but this need not always occur. H, hormone; R, receptor (binding protein).

from ref. 668
Figure 2. Figure 2.

A cartoon/scatter diagram to illustrate the near ubiquity of distinct endocrine glands throughout the vertebrates. This repertoire is remarkably uniform; from sharks to penguins, from deer to frogs, secreted hormones participate in the regulation of growth, sexual differentiation, reproduction, salt and water balance, cardiovascular function, behavior, and skeletal development in all types. All structures have exact homologies in all groups, with the exceptions of parathyroid glands, the urophysis, the placenta, and the integument. Note that growth factors and cytokines are not included.

Figure 3. Figure 3.

Pineal complexes of vertebrates representing six major classes: agnathan and teleostean fishes, anuran amphibian, bird, lacterilian reptile, and mammal. *Pineal organ; **parapineal organ (agnathan and teleost), frontal organ (frog), and parietal eye (lizard); lines, central nervous connection to the pineal; dots, basal lamina; dashes, sympathetic nerve fibers.

based on refs. 481,665
Figure 4. Figure 4.

Diagrammatic representations of the pinealocytes typical of fish/amphibian, avian, and mammalian in relation to their light and neural inputs and presence of a “biological clock” (cartoon of clock). NAT, N‐acetyltransferase.

based on ref. 766
Figure 5. Figure 5.

Biosynthesis of melatonin from tryptophan. The enzymes responsible, in sequence, are tryptophan‐5 monooxygenase, aromatic l‐amino decarboxylase, arylamine acetyltransferase, and acetylserotonin methyltransferase.

Figure 6. Figure 6.

Arrangement of hypothalamic neurosecretory nuclei of the human brain.

from ref. 43
Figure 7. Figure 7.

Classical illustrations of Wingstrand 910 showing the embryological (a) and adult (b) organization of the amniote hypophysis exemplified by the reptilian arrangement. 1, saccus infundibuli; 2, anterior process; 3, lateral lobe; 4, aboral lobe; 5, opening of the lateral lobe cavity; 6, oral process; 7, constriction of Rathke's pouch; 8, epithelial stalk; 9, median eminence; 10, infundibular stem; 11, neural lobe; 12, pars intermedia; 13, hypophyseal cleft; 14, juxtaneural pars tuberalis; 15, portotuberal tract; 16, pars tuberalis interna; 17, cephalic lobe of the pars distalis; 18, caudal lobe of the pars distalis; 19, pars oralis tuberis.

Figure 8. Figure 8.

Arrangement of histidine (His), proline (Pro), and pyroglutaminic acid (pyro‐Glu) to form thyrotropin‐releasing hormone (TRH).

Figure 9. Figure 9.

Posttranslational processing of bovine pre‐pro‐opiomelanocortin toward the active fragments of the gene product. ACTH, adrenocorticotropic hormone; MSH, melanocyte‐stimulating hormone; LPH, lipotropin; CLIP, corticotropin‐like intermediate lobe peptide.

Figure 10. Figure 10.

Amino acid sequence of ovine prolactin.

Figure 11. Figure 11.

Amino acid sequence of human growth hormone.

Figure 12. Figure 12.

Amino acids comprising α‐ and β‐subunits of human follicle‐stimulating hormone.

Figure 13. Figure 13.

Amino acids comprising α‐ and β‐subunits of ovine luteining hormone.

Figure 14. Figure 14.

Amino acids comprising α‐ and β‐subunits of bovine thyroid‐stimulating hormone.

Figure 15. Figure 15.

Sagittal section of the hypothalamo–hypophyseal arrangement in Myxine. Arrows indicate direction of blood flow (thin arrows, possible portal veins; solid arrows, veins; dashed arrows, arteries). Hypothalamic neurosecretory neurons with axons terminating on capillaries (open circles). NH, neurohypophysis; AH, adenohypophysis.

from ref. 404
Figure 16. Figure 16.

Anatomical arrangements within the hypothalamus of the lamprey, Entosphenus japonica. Sagittal (left panel) and cross‐sectional views (right panel taken from a to d). AHA, anterior hypothalamic area; AHL, lateral hypothalamic area; APOL, lateral preoptic area; APOM, medial preoptic area; CO, optic chiasma; ME, median eminence; NAPD, periventricular arcuate nucleus (dorsal part); NAPV, periventricular arcuate nucleus (ventral part); NPO, preoptic nucleus; Pr.SO, primordial supraoptic nucleus.

from ref. 567
Figure 17. Figure 17.

Neural and vascular relationships between hypothalamus and hypophysis of the lamprey. Arrows indicate direction of blood flow (solid arrows, veins; dashed arrows, arteries). Hypothalamic neurosecretory neurons with axons terminating on capillaries (open circles). NL, neural lobe; PI, pars intermedia; PPD, proximal pars distalis; RPD, rostral pars distalis. Neurosecretory nuclei are shown with axons toward the neural lobe.

from ref. 404
Figure 18. Figure 18.

Hypothalamo–hypophyseal neurovascular relationships in the holocephalan fish. Arrows indicate direction of blood flow (solid arrows, veins; dashed arrows, arteries). ME, median eminence; SV, saccus vasculosus; PPD, proximal pars distalis; PD, rostral pars distalis; NIL, neurointermediate lobe. Hypothalamic neurosecretory tracts are shown terminating on capillaries in the neurointermediate lobe and median eminence (open circles).

from ref. 404
Figure 19. Figure 19.

Hypothalamo–hypophyseal neurovascular relations in the selachian fish. AME, anterior median eminence; PME, posterior median eminence; VL, ventral lobe; SV, saccus vasculosus; PPD, proximal pars distalis; RPD, rostral pars distalis; NIL, neurointermediate lobe. Hypothalamic neurosecretory tracts are shown terminating on capillaries in the neurointermediate lobe and median eminence (open circles).

from ref. 404
Figure 20. Figure 20.

Section of pituitary complex of Polypterus, a chondrostean fish. Key features are the orohypophyseal duct and the contiguity of fluids within the saccus vasculosus, the neurohypophysis, and the third cranial ventricle.

from ref. 404
Figure 21. Figure 21.

Section of hypothalamo–hypophyseal complex of Acipenser, the chondrostean sturgeon. IN, infundibulum; INF, infundibular funnel; INR, infundibular recess; NH, neurohypophysis; NLT, nucleus lateralis tuberis; NPO, preoptic nucleus; ON, optic nerve; PD, pars distalis; PI, pars intermedia; SV, saccus vasculosus.

from ref. 404
Figure 22. Figure 22.

Longitudinal section of hypothalamo–hypophyseal complex of Amia calva, a holostean fish. INR, infundibular recess; NH, neurohypophysis; NLT, nucleus lateralis tuberis; ON, optic nerve; PD, pars distalis; PI, pars intermedia; PON, preoptic nucleus; SV, saccus vasculosus.

from ref. 404
Figure 23. Figure 23.

Diagram illustrating the almost zonal arrangement of cell types in the hypophysis of sexually mature platyfish. Upper panel is a midsagittal section and lower is a cross‐section through the caudal pars distalis. Arrows in upper panel show planes of lower cross‐section. OC, optic chiasma; ACTH, corticotrops; T, thyrotrops; S, somatotrops; MSH, melanotrops; GTHP, gonadotrops. Hatching indicates neurohypophyseal tissue.

from ref. 775
Figure 24. Figure 24.

Anatomical arrangements within the hypothalamus of the eel, Anguilla japonica. Sagittal (left panel) and cross‐sectional (right panel taken from a to d) views. APOL, lateral preoptic area; APOM, medial preoptic area; CA, anterior commissure; CO, optic chiasma; ME, median eminence; LFB, lateral forebrain bundle; MFB, medial forebrain bundle; NAPD, periventricular arcuate nucleus (dorsal part); NAPV, periventricular arcuate nucleus (ventral part); NO, optic nerve; NPP, periventricular preoptic nucleus; NPO, preoptic nucleus; NRL, nucleus recessus lateralis; NTA, anterior tuberal nucleus; NTL, lateral tuberal nucleus; NTP, posterior tuberal nucleus; PVA, anterior periventricular nucleus of hypothalamus.

from ref. 567
Figure 25. Figure 25.

Distribution of the cellular types within the hypophysis of the eel, Anguilla anguilla.

from ref. 32
Figure 26. Figure 26.

Sagittal section of pituitary gland of the lungfish, Protopterus sp., showing its relationships with the hypothalamus. Arrows indicate direction of blood flow (thin arrows, possible portal veins; solid arrows, veins; dashed arrows, arteries). Hypothalamic neurosecretory neurons with axons terminating on capillaries (open circles). NL, neural lobe; ME, median eminence; PD, pars distalis; PI, pars intermedia.

from ref. 404
Figure 27. Figure 27.

Anatomical arrangements within hypothalamus of the bullfrog. Rana catesbeiana. Sagittal (left panel) and cross‐sectional (right panel taken from a to d) views. APOL, lateral preoptic area; APOM, medial preoptic area; CA, anterior commissure; CO, optic chiasma; ME, median eminence; LFB, laterial forebrain bundle; NID, dorsal infundibular nucleus; NIV, ventral infundibular nucleus; NO, optic nerve; NPO, preoptic nucleus; OVLT, organum vasculosum of the lamina terminalis; PVO, paraventricular organ.

from ref. 567
Figure 28. Figure 28.

Arrangement of hypophyseal components in amphibians: (a) anuran, (b) urodele, and (c) apodan. 1, Saccus infundibuli; 2, neural lobe; 3, pars intermedia; 4, median eminence; 5, zona tuberalis; 6, hypothalamo–hypophyseal portal vessels.

from refs. 404,910
Figure 29. Figure 29.

Anatomical arrangements within hypothalamus of the snake, Elaphe conspicillata. Sagittal (left panel) and cross‐sectional (right panel taken from a to d) views. AHA, anterior hypothalamic area; AHD, dorsal hypothalamic area; AHP, posterior hypothalamic area; APOL, lateral preoptic area; APOM, medial preoptic area; ARC, arcuate nucleus; CA, anterior commissure; CO, optic chiasma; F, fornix; ME, median eminence; LFB, lateral forebrain bundle; MFB, medial forebrain bundle; ML, lateral mammillary nucleus; MM, medial mammillary nucleus; NID, dorsal infundibular nucleus; NIV, ventral infundibular nucleus; NO, optic nerve; NPO, preoptic nucleus; OVLT, organum vasculosum of the lamina terminalis; PM, premammillary nucleus; PV, paraventricular nucleus; PVO, paraventricular organ; SO, supraoptic nucleus; TO, optic tract.

from ref. 567
Figure 30. Figure 30.

Overall arrangements of the hypophysis of selected reptiles: (a) Sphenodon; (b) Testudo; (c) Alligator; (d) Lacerta, and (e) Phython. 1, Median eminence; 2, infundibular stem; 3, neural lobe; 4, pars intermedia; 5, juxtaneural pars tuberalis; 6, portotuberal tract with hypothalamo–hypophyseal portal vessels; 7, pars tuberalis interna; 8, cephalic lobe of the pars distalis; 9, caudal lobe of the pars distalis. In the chelonian, there is a zone (10) associated with the pars tuberalis and a hypophyseal cavity (11), while in the lizard plates of the pars tuberalis are present 12. 13, A region of connective tissue and portal vessels; 14, the infundibular floor anterior to the median eminence.

from refs. 404,910
Figure 31. Figure 31.

Anatomical arrangements within the hypothalamus of the Japanese quail, Coturnix coturnix. Sagittal (left panel) and cross‐sectional (right panel taken from a to d) views. AL, ansa lenticularis; AHA, anterior hypothalamic area; AHD, dorsal hypothalamic area; AHL, lateral hypothalamic area; AHP, posterior hypothalamic area; APOL, lateral preoptic area; APOM, medial preoptic area; ARC, arcuate nucleus; CA, anterior commissure; CO, optic chiasma; F, fornix; ME, median eminence; LFB, lateral forebrain bundle; MFB, medial forebrain bundle; ML, lateral mammillary nucleus; MM, medial mammillary nucleus; NI, infundibular nucleus; NID, dorsal infundibular nucleus; NIV, ventral infundibular nucleus; NO, optic nerve; NPO, preoptic nucleus; NPOD, dorsolateral preoptic nucleus; OM, occipitomesencephalic tract; OVLT, organum vasculosum of the lamina terminalis; PM, premammillary nucleus; PV, paraventricular nucleus; PVO, paraventricular organ; SC, suprachiasmatic nucleus; SO, supraoptic nucleus; TO, optic tract; TSM, septomesencephalic tract.

from ref. 567
Figure 32. Figure 32.

Complex neuroendocrine and neural connections within the avian hypothalamo–hypophyseal system. PVN, paraventricular nuclei; SON, supraoptic nuclei; PN, neurohypophysis; AME, anterior median eminence; PME, posterior median eminence; INC, infundibular nuclear complex; PD, pars distalis; HPV, hypothalamo–hypophyseal portal vessels; III, third ventricle; OC, optic chiasma. Pathways from the PVN and SON are shown as well as aminergic tracts, by dotted lines.

from refs. 243,666
Figure 33. Figure 33.

Hypophysis of the goose shows general arrangement of the avian pituitary.

from ref. 404
Figure 34. Figure 34.

General arrangement and considerable variation of the mammalian hypophysis exemplified by the dog (A), rabbit (B), mouse (C), rhesus monkey (D), orangutan (E), and human (F). 1, optic chiasma; 2, infundibular recess; 3, infundibulum; 4, mammillary body; 5, hypophyseal cleft; 6, entry of hypophyseal artery; 7, pars distalis/pars intermedia/infundibular association; 8, infundibular process; 9, rostral projection of pars intermedia. The various tones, shadings, and hatching identify the key elements such as anterior lobe (or adenohypophysis). Arrangements are relatively straightforward as regards associations between the various constituents in the rabbit and mouse (B and C). In the primates (D–F), several permutations present themselves, which include variations in the dimensions of the various lobes and distributions of the infundibulum and its accessories (1, 2, 3, 6), the mammillary body (4), the optic chiasma (5), the tuber cinereum (7, 8), and satellites of the pars distalis (9).

from ref. 371
Figure 35. Figure 35.

General organization of the hypophyses of prototherian mammals: (a) Tachyglossus setosus; (b) Tachyglossus aculeatus, and (c) Ornithorhynchus anatinus. O, Optic chiasma; M, mammillary body. The median eminence (dark crisscross), the infundibular component (checked), the pars intermedia (solid black), the pars distalis, and the pars tuberalis (fine stripple) are shown.

from ref. 352
Figure 36. Figure 36.

General organization of the hypophyses of two marsupials: Setonix setosus (upper figure) and Didelphis virignianus (lower figure). O, Optic chiasma; M, mammillary body. The median eminence (dark crisscross), the infundibular component (checked), the pars intermedia (solid black), the pars distalis, and the pars tuberalis (fine stripple) are shown.

from ref. 352
Figure 37. Figure 37.

Suggested scheme to relate evolutionary relationships of the component parts of the vertebrate hypophysis. Key elements are the variations in occurrence of a hypothalamo–hypophyseal portal system, the differentiation of distinct lobes, the extent of the development of the pars intermedia, and the degree of separation of the neurohypophysis.

from ref. 331
Figure 38. Figure 38.

Gastrointestinal endocrine, paracrine, and autocrine relationships. Hormone‐secreting cells are incorporated into the gut wall, and their products may act locally on neighboring absorptive/secretory cells, blood vessels, nerves, and smooth muscle of the gut to affect motility or systemically to affect sphincter activity, satiety, or foraging behavior.

from refs. 341,344
Figure 39. Figure 39.

Regional distribution of regulatory peptides in the vertebrate gut as exemplified by three species of reptile: Testudo graeca, Mauremys caspica, and Lacerta lepida. E, esophagus; US, upper stomach; LS, lower stomach; SI, small intestine; LI, large intestine; 5‐HT, serotonin; BOMB, bombesin: INS, insulin; GAS, gastrin; GLUC, glucagon; NT, neurotensin; PYY, peptide tyrosine‐tyrosine; SOM, somatostatin‐14; PP, pancreatic polypeptide.

from ref. 698
Figure 40. Figure 40.

Classical illustration by Orci and Unger 671 of insulin, somatostatin, and glucagon cells in the human islets of Langerhans.

Figure 41. Figure 41.

Morphological diversity of the endocrine and exocrine components of the vertebrate pancreas: (a) Myxine, islet follicles around distal end of bile duct; (b) shark (left inset), islets arranged around small ducts and holocephalan; (right inset) some scattered cells but also small ducts; (c) tetrapod type, islets scattered in compact pancreas; (d) teleost, strands of exocrine tissue with aggregations of islets, B, bile duct; EP, exocrine pancreas; G, gall bladder; I, islet tissue; IT, intestine; L, liver.

from refs. 268,269
Figure 42. Figure 42.

Variations in gross morphology of vertebrate thyroid glands.

from ref. 331
Figure 43. Figure 43.

Cellular and molecular processes in thyroid hormone biosynthesis.

Figure 44. Figure 44.

Structures of thyroid hormones and their precursors.

Figure 45. Figure 45.

Variations in the anatomical dispositions of parathyroid glands in selected tetrapods: 1, Urodele amphibian, one pair of glands; 2, anuran amphibian, two pairs of glands; 3, lacertilian reptile, one pair of glands; 4, ophidian reptile, two pairs of glands; 5, bird, two pairs of glands located near thyroid gland; 6, mammal, one or two pairs of glands depending on species (rat, shown here, has one pair). A, atrium; CCA, common carotid artery; CG, carotid gland; CJV, common jugular vein; ECA, external carotid artery; EJV, external jugular vein; ICA, internal carotid artery; LCCA, left common carotid artery; LJV, left jugular vein; LSA, left systemic arch; PA, pulmonary artery; PT, parathyroid gland; PV, cardinal vein; RJV, right jugular vein; SA, systemic arch; THM, thymus; THR, thyroid gland; TR, trachea; V, ventricle; VBB, ventral branchial body.

from ref. 657
Figure 46. Figure 46.

Variations in the anatomical dispositions of ultimobranchial bodies (glands) in selected vertebrates. 1, Stingray, single pair of glands embedded in dorsal wall of pericardial; 2, goldfish, unpaired median structure on ventral surface of pharynx; 3, newt, very small structure dorsal left to pulmonary artery; 4, rat snake, one pair of glands anterior to thymus; 5, starling, glands scattered around parathyroid and thyroid glands. A, atrium; ES, esophagus; H, heart; PHT, pharyngeal tooth; PT, parathyroid gland; T, trachea; THM, thymus; THR, thyroid gland; UB, ultimobranchial bodies.

from ref. 761
Figure 47. Figure 47.

Variations in urophyseal morphology among selected teleost fish. Upper illustrations depict the gland in transverse and longitudinal sections and for Esox and Gadus, in only transverse section. Thin lines indicate border of urophysis; arrows, processes of Dahlgren cells; stippling, neurohemal region.

from ref. 308
Figure 48. Figure 48.

Vascular perfusion of the caudal neurosecretory system of Salvelinus leucomaenis pluvius. a. Artery; v, vein.

from ref. 409
Figure 49. Figure 49.

Associations between adrenocortical homolog (interrenal tissue, dense stipple) and adrenomedullary homolog (chromaffin tissue, black) in relation to kidney in a range of vertebrate groups.

Figure 50. Figure 50.

General biosynthetic pathways of gonadal and adrenocortical steroids from cholesterol.

Figure 51. Figure 51.

Biosynthetic and potential interconversions between gonadal and adrenocorticosteroids.

from ref. 383
Figure 52. Figure 52.

Biosynthetic cascade toward the production of epinephrine. PNMT, phenylethanolamine‐N‐methyl transferase.

Figure 53. Figure 53.

Development of the testis and ovary from the genital ridge of the mesonephric blastema. From A, when the celomic epithelium begins to differentiate, development progresses through the sexually indifferent stage toward the definitive testis or ovary. The pluripotential of gonadal structures exist, in intersexual species.

from ref. 865
Figure 54. Figure 54.

Examples of ovarian diversity among vertebrates. 1, Carp, typical of teleosts, ovary is hollow paired structure often continuous with oviduct; 2, hollow gestational ovary of viviparous guppy; 3, amphibian ovaries, paired and lobular structures that possess fluid‐filled cavities; 4, typical mammalian ovary, progressive follicular maturation toward Graafian follicle, which ovulates and is succeeded by the corpus luteum.

from refs. 610,865
Figure 55. Figure 55.

Variations in cellular morphology in vertebrate testis. 1, Development of germinal cysts in the newt; 2, lobular (A) and tubular (B) types of teleostean testis; 3, zonate testis of an elasmo‐branch fish, I to VIII show progression from the point of aggregation of gonia and Sertoli cells through stages of spermatogenesis to the final stage of an ampulla containing only Sertoli cells; 4, general cellular types with the seminiferous tubule of the mammalian testis.

from refs. 608,808
Figure 56. Figure 56.

Amino acid composition and arrangement in three cardiac natriuretic peptides of the rat.

Figure 57. Figure 57.

Glomerular and tubular arrangements within the kidney of vertebrates. A complete juxtaglomerular apparatus may exist only in mammals. (a) Hagfish, Paramyxine atami; (b) lamprey, Lampetra japonicus; (c) ray, Dasyatis akajei; (d) goldfish, Carassius auratus; (e) bullfrog, Rana catesbeiana; (f) snake, Elaphe quadrvirgata; (g) chicken, Callus domesticus; (h) rat, Rattus norvegicus. Arrows show direction of blood flow in afferent and efferent arterioles.

from ref. 381 as modified from ref. 806
Figure 58. Figure 58.

Renin‐angiotensin and kallikrein–kinin cascades showing interactions between participating enzymes.

Figure 59. Figure 59.

Vitamin D3 (cholecalciferol) hormonal system established for mammals, birds, and most probably reptiles and amphibians, leading to the production of at least one active metabolite, calcitriol. The status of the system in fishes remains equivocal.

Figure 60. Figure 60.

Distribution of corpuscles of Stannius (black dots) on kidneys of Amia calva, the bowfin (a); Oncorhynchus mykiss, the rainbow trout (b); the stickleback, Gasterosteus aculeatus (c); and two specimens of catfish, Clarias batrachus (d, e).

from ref. 898
Figure 61. Figure 61.

Innervation and vascularization of corpuscles of Stannius (CS) of Gasterosteus aculeatus. sn, Sympathetic nerve; sg, sympathetic ganglion; u, “ureters” (mesonephric ducts); vcv, ventrocaudal vein; dcv, dorsocaudal vein; hv, veins from hypaxial muscles. Arrows indicate direction of blood flow.

from ref. 899
Figure 62. Figure 62.

Vascular endothelium as an endocrine organ regulating vasomotor activity in the mammal. The complex interactions have been definitively established for only a limited number of laboratory preparations and are not present in all vascular beds. AII, angiotensin II; VP, vasopressin; TNF, tumor necrosis factor; T; BK, bradykinin; ACh, acetylcholine; P; 5HT, 5‐hydroxytryptamine (serotonin); ET, endothelin; ECE, endothelin‐converting enzyme.

from ref. 875
Figure 63. Figure 63.

l‐Arginine‐nitric oxide pathway.

from ref. 199
Figure 64. Figure 64.

Consequences of nucleotide alterations on the biosynthesis of hormones which are either direct genomic expressions (proteins, polypeptides) or part of an enzymic cascade (steroids, catecholamines, thyroid hormones). Enzymes (proteins) in a cascade may lose their substrate specificity.

from ref. 435
Figure 65. Figure 65.

Generalized molecular modes of hormonal action. Hormones may act via interaction with membrane receptors or directly within the nucleus.

from ref. 43
Figure 66. Figure 66.

Nuclear hormone receptors for hormones which include steroids and thyroid hormones (upper panel) and their possible phylogenetic relationships (lower panel). In the upper panel, six functional domains are shown in which A/B,F (top) are modulating regions; C, the DNA‐binding region; D, the “hinge” region; and E, the ligand‐binding region. Boxes indicate highly conserved domains; thin lines are regions of low homology. Numbers are amino acids from the amino terminus (1). In the lower panel, possible evolutionary relationships of the receptors are shown together with receptor locations on human chromosomes. The suggestion is that a progenitor gene, by duplication and divergence, produced both the steroid receptor and the thyroid hormone and retinoic acid receptor. COUP, chicken ovalbumin upstream promoter; ER, estrogen receptor; PR, progesterone receptor; GR, glucocorticoid receptor; MR, mineralocorticoid receptor; AR, androgen receptor; VitD3, vitamin D3 receptor; RAR, retinoic acid receptor; TR, thyroid hormone receptor.

from ref. 687
Figure 67. Figure 67.

Intracellular changes induced by hormones.

from refs. 43,643
Figure 68. Figure 68.

Levels of endocrine control and their interactions in the control of vertebrate reproduction. An all‐embracing scheme is presented from environmental cues (level 1) that combine to initiate the processes to the completion of the reproductive cycle (level 6); internal rhythms are ignored, and feedback, synergism, and antagonism occur at and between each level. Many hormones are involved at each stage, while others have unique effects at particular phases (for example, Müllerian‐inhibiting hormone).

Figure 69. Figure 69.

Components of the bone‐remodeling unit of vertebrates. The general scheme may not apply throughout, and some special features, such as the medullary bone of birds, the lime sacs of amphibians, and the presence of so‐called acellular bone, are not included. Scleroblasts are specialized osteoblast‐like cells associated with the scales of teleost fishes.

Figure 70. Figure 70.

Basic metabolic pathways from the diet following digestion toward anabolic or catabolic systems.

from ref. 570
Figure 71. Figure 71.

General relationships between the metabolism of dietary carbohydrate (top), fatty acids (middle), and proteins (bottom).

from ref. 570
Figure 72. Figure 72.

Utilization of proteins, fatty acids, and carbohydrates and the actions of some key hormones.

Figure 73. Figure 73.

Homeostatic factors that maintain balance of body water, sodium, and calcium contents at “set points” for any one species; + indicates surfeit, − deficit from optimal homeostatic level.

from ref. 35a


Figure 1.

Mechanisms employed for the delivery of hormones to their target sites via their specific receptors. In this scheme there are genomic interactions, but this need not always occur. H, hormone; R, receptor (binding protein).

from ref. 668


Figure 2.

A cartoon/scatter diagram to illustrate the near ubiquity of distinct endocrine glands throughout the vertebrates. This repertoire is remarkably uniform; from sharks to penguins, from deer to frogs, secreted hormones participate in the regulation of growth, sexual differentiation, reproduction, salt and water balance, cardiovascular function, behavior, and skeletal development in all types. All structures have exact homologies in all groups, with the exceptions of parathyroid glands, the urophysis, the placenta, and the integument. Note that growth factors and cytokines are not included.



Figure 3.

Pineal complexes of vertebrates representing six major classes: agnathan and teleostean fishes, anuran amphibian, bird, lacterilian reptile, and mammal. *Pineal organ; **parapineal organ (agnathan and teleost), frontal organ (frog), and parietal eye (lizard); lines, central nervous connection to the pineal; dots, basal lamina; dashes, sympathetic nerve fibers.

based on refs. 481,665


Figure 4.

Diagrammatic representations of the pinealocytes typical of fish/amphibian, avian, and mammalian in relation to their light and neural inputs and presence of a “biological clock” (cartoon of clock). NAT, N‐acetyltransferase.

based on ref. 766


Figure 5.

Biosynthesis of melatonin from tryptophan. The enzymes responsible, in sequence, are tryptophan‐5 monooxygenase, aromatic l‐amino decarboxylase, arylamine acetyltransferase, and acetylserotonin methyltransferase.



Figure 6.

Arrangement of hypothalamic neurosecretory nuclei of the human brain.

from ref. 43


Figure 7.

Classical illustrations of Wingstrand 910 showing the embryological (a) and adult (b) organization of the amniote hypophysis exemplified by the reptilian arrangement. 1, saccus infundibuli; 2, anterior process; 3, lateral lobe; 4, aboral lobe; 5, opening of the lateral lobe cavity; 6, oral process; 7, constriction of Rathke's pouch; 8, epithelial stalk; 9, median eminence; 10, infundibular stem; 11, neural lobe; 12, pars intermedia; 13, hypophyseal cleft; 14, juxtaneural pars tuberalis; 15, portotuberal tract; 16, pars tuberalis interna; 17, cephalic lobe of the pars distalis; 18, caudal lobe of the pars distalis; 19, pars oralis tuberis.



Figure 8.

Arrangement of histidine (His), proline (Pro), and pyroglutaminic acid (pyro‐Glu) to form thyrotropin‐releasing hormone (TRH).



Figure 9.

Posttranslational processing of bovine pre‐pro‐opiomelanocortin toward the active fragments of the gene product. ACTH, adrenocorticotropic hormone; MSH, melanocyte‐stimulating hormone; LPH, lipotropin; CLIP, corticotropin‐like intermediate lobe peptide.



Figure 10.

Amino acid sequence of ovine prolactin.



Figure 11.

Amino acid sequence of human growth hormone.



Figure 12.

Amino acids comprising α‐ and β‐subunits of human follicle‐stimulating hormone.



Figure 13.

Amino acids comprising α‐ and β‐subunits of ovine luteining hormone.



Figure 14.

Amino acids comprising α‐ and β‐subunits of bovine thyroid‐stimulating hormone.



Figure 15.

Sagittal section of the hypothalamo–hypophyseal arrangement in Myxine. Arrows indicate direction of blood flow (thin arrows, possible portal veins; solid arrows, veins; dashed arrows, arteries). Hypothalamic neurosecretory neurons with axons terminating on capillaries (open circles). NH, neurohypophysis; AH, adenohypophysis.

from ref. 404


Figure 16.

Anatomical arrangements within the hypothalamus of the lamprey, Entosphenus japonica. Sagittal (left panel) and cross‐sectional views (right panel taken from a to d). AHA, anterior hypothalamic area; AHL, lateral hypothalamic area; APOL, lateral preoptic area; APOM, medial preoptic area; CO, optic chiasma; ME, median eminence; NAPD, periventricular arcuate nucleus (dorsal part); NAPV, periventricular arcuate nucleus (ventral part); NPO, preoptic nucleus; Pr.SO, primordial supraoptic nucleus.

from ref. 567


Figure 17.

Neural and vascular relationships between hypothalamus and hypophysis of the lamprey. Arrows indicate direction of blood flow (solid arrows, veins; dashed arrows, arteries). Hypothalamic neurosecretory neurons with axons terminating on capillaries (open circles). NL, neural lobe; PI, pars intermedia; PPD, proximal pars distalis; RPD, rostral pars distalis. Neurosecretory nuclei are shown with axons toward the neural lobe.

from ref. 404


Figure 18.

Hypothalamo–hypophyseal neurovascular relationships in the holocephalan fish. Arrows indicate direction of blood flow (solid arrows, veins; dashed arrows, arteries). ME, median eminence; SV, saccus vasculosus; PPD, proximal pars distalis; PD, rostral pars distalis; NIL, neurointermediate lobe. Hypothalamic neurosecretory tracts are shown terminating on capillaries in the neurointermediate lobe and median eminence (open circles).

from ref. 404


Figure 19.

Hypothalamo–hypophyseal neurovascular relations in the selachian fish. AME, anterior median eminence; PME, posterior median eminence; VL, ventral lobe; SV, saccus vasculosus; PPD, proximal pars distalis; RPD, rostral pars distalis; NIL, neurointermediate lobe. Hypothalamic neurosecretory tracts are shown terminating on capillaries in the neurointermediate lobe and median eminence (open circles).

from ref. 404


Figure 20.

Section of pituitary complex of Polypterus, a chondrostean fish. Key features are the orohypophyseal duct and the contiguity of fluids within the saccus vasculosus, the neurohypophysis, and the third cranial ventricle.

from ref. 404


Figure 21.

Section of hypothalamo–hypophyseal complex of Acipenser, the chondrostean sturgeon. IN, infundibulum; INF, infundibular funnel; INR, infundibular recess; NH, neurohypophysis; NLT, nucleus lateralis tuberis; NPO, preoptic nucleus; ON, optic nerve; PD, pars distalis; PI, pars intermedia; SV, saccus vasculosus.

from ref. 404


Figure 22.

Longitudinal section of hypothalamo–hypophyseal complex of Amia calva, a holostean fish. INR, infundibular recess; NH, neurohypophysis; NLT, nucleus lateralis tuberis; ON, optic nerve; PD, pars distalis; PI, pars intermedia; PON, preoptic nucleus; SV, saccus vasculosus.

from ref. 404


Figure 23.

Diagram illustrating the almost zonal arrangement of cell types in the hypophysis of sexually mature platyfish. Upper panel is a midsagittal section and lower is a cross‐section through the caudal pars distalis. Arrows in upper panel show planes of lower cross‐section. OC, optic chiasma; ACTH, corticotrops; T, thyrotrops; S, somatotrops; MSH, melanotrops; GTHP, gonadotrops. Hatching indicates neurohypophyseal tissue.

from ref. 775


Figure 24.

Anatomical arrangements within the hypothalamus of the eel, Anguilla japonica. Sagittal (left panel) and cross‐sectional (right panel taken from a to d) views. APOL, lateral preoptic area; APOM, medial preoptic area; CA, anterior commissure; CO, optic chiasma; ME, median eminence; LFB, lateral forebrain bundle; MFB, medial forebrain bundle; NAPD, periventricular arcuate nucleus (dorsal part); NAPV, periventricular arcuate nucleus (ventral part); NO, optic nerve; NPP, periventricular preoptic nucleus; NPO, preoptic nucleus; NRL, nucleus recessus lateralis; NTA, anterior tuberal nucleus; NTL, lateral tuberal nucleus; NTP, posterior tuberal nucleus; PVA, anterior periventricular nucleus of hypothalamus.

from ref. 567


Figure 25.

Distribution of the cellular types within the hypophysis of the eel, Anguilla anguilla.

from ref. 32


Figure 26.

Sagittal section of pituitary gland of the lungfish, Protopterus sp., showing its relationships with the hypothalamus. Arrows indicate direction of blood flow (thin arrows, possible portal veins; solid arrows, veins; dashed arrows, arteries). Hypothalamic neurosecretory neurons with axons terminating on capillaries (open circles). NL, neural lobe; ME, median eminence; PD, pars distalis; PI, pars intermedia.

from ref. 404


Figure 27.

Anatomical arrangements within hypothalamus of the bullfrog. Rana catesbeiana. Sagittal (left panel) and cross‐sectional (right panel taken from a to d) views. APOL, lateral preoptic area; APOM, medial preoptic area; CA, anterior commissure; CO, optic chiasma; ME, median eminence; LFB, laterial forebrain bundle; NID, dorsal infundibular nucleus; NIV, ventral infundibular nucleus; NO, optic nerve; NPO, preoptic nucleus; OVLT, organum vasculosum of the lamina terminalis; PVO, paraventricular organ.

from ref. 567


Figure 28.

Arrangement of hypophyseal components in amphibians: (a) anuran, (b) urodele, and (c) apodan. 1, Saccus infundibuli; 2, neural lobe; 3, pars intermedia; 4, median eminence; 5, zona tuberalis; 6, hypothalamo–hypophyseal portal vessels.

from refs. 404,910


Figure 29.

Anatomical arrangements within hypothalamus of the snake, Elaphe conspicillata. Sagittal (left panel) and cross‐sectional (right panel taken from a to d) views. AHA, anterior hypothalamic area; AHD, dorsal hypothalamic area; AHP, posterior hypothalamic area; APOL, lateral preoptic area; APOM, medial preoptic area; ARC, arcuate nucleus; CA, anterior commissure; CO, optic chiasma; F, fornix; ME, median eminence; LFB, lateral forebrain bundle; MFB, medial forebrain bundle; ML, lateral mammillary nucleus; MM, medial mammillary nucleus; NID, dorsal infundibular nucleus; NIV, ventral infundibular nucleus; NO, optic nerve; NPO, preoptic nucleus; OVLT, organum vasculosum of the lamina terminalis; PM, premammillary nucleus; PV, paraventricular nucleus; PVO, paraventricular organ; SO, supraoptic nucleus; TO, optic tract.

from ref. 567


Figure 30.

Overall arrangements of the hypophysis of selected reptiles: (a) Sphenodon; (b) Testudo; (c) Alligator; (d) Lacerta, and (e) Phython. 1, Median eminence; 2, infundibular stem; 3, neural lobe; 4, pars intermedia; 5, juxtaneural pars tuberalis; 6, portotuberal tract with hypothalamo–hypophyseal portal vessels; 7, pars tuberalis interna; 8, cephalic lobe of the pars distalis; 9, caudal lobe of the pars distalis. In the chelonian, there is a zone (10) associated with the pars tuberalis and a hypophyseal cavity (11), while in the lizard plates of the pars tuberalis are present 12. 13, A region of connective tissue and portal vessels; 14, the infundibular floor anterior to the median eminence.

from refs. 404,910


Figure 31.

Anatomical arrangements within the hypothalamus of the Japanese quail, Coturnix coturnix. Sagittal (left panel) and cross‐sectional (right panel taken from a to d) views. AL, ansa lenticularis; AHA, anterior hypothalamic area; AHD, dorsal hypothalamic area; AHL, lateral hypothalamic area; AHP, posterior hypothalamic area; APOL, lateral preoptic area; APOM, medial preoptic area; ARC, arcuate nucleus; CA, anterior commissure; CO, optic chiasma; F, fornix; ME, median eminence; LFB, lateral forebrain bundle; MFB, medial forebrain bundle; ML, lateral mammillary nucleus; MM, medial mammillary nucleus; NI, infundibular nucleus; NID, dorsal infundibular nucleus; NIV, ventral infundibular nucleus; NO, optic nerve; NPO, preoptic nucleus; NPOD, dorsolateral preoptic nucleus; OM, occipitomesencephalic tract; OVLT, organum vasculosum of the lamina terminalis; PM, premammillary nucleus; PV, paraventricular nucleus; PVO, paraventricular organ; SC, suprachiasmatic nucleus; SO, supraoptic nucleus; TO, optic tract; TSM, septomesencephalic tract.

from ref. 567


Figure 32.

Complex neuroendocrine and neural connections within the avian hypothalamo–hypophyseal system. PVN, paraventricular nuclei; SON, supraoptic nuclei; PN, neurohypophysis; AME, anterior median eminence; PME, posterior median eminence; INC, infundibular nuclear complex; PD, pars distalis; HPV, hypothalamo–hypophyseal portal vessels; III, third ventricle; OC, optic chiasma. Pathways from the PVN and SON are shown as well as aminergic tracts, by dotted lines.

from refs. 243,666


Figure 33.

Hypophysis of the goose shows general arrangement of the avian pituitary.

from ref. 404


Figure 34.

General arrangement and considerable variation of the mammalian hypophysis exemplified by the dog (A), rabbit (B), mouse (C), rhesus monkey (D), orangutan (E), and human (F). 1, optic chiasma; 2, infundibular recess; 3, infundibulum; 4, mammillary body; 5, hypophyseal cleft; 6, entry of hypophyseal artery; 7, pars distalis/pars intermedia/infundibular association; 8, infundibular process; 9, rostral projection of pars intermedia. The various tones, shadings, and hatching identify the key elements such as anterior lobe (or adenohypophysis). Arrangements are relatively straightforward as regards associations between the various constituents in the rabbit and mouse (B and C). In the primates (D–F), several permutations present themselves, which include variations in the dimensions of the various lobes and distributions of the infundibulum and its accessories (1, 2, 3, 6), the mammillary body (4), the optic chiasma (5), the tuber cinereum (7, 8), and satellites of the pars distalis (9).

from ref. 371


Figure 35.

General organization of the hypophyses of prototherian mammals: (a) Tachyglossus setosus; (b) Tachyglossus aculeatus, and (c) Ornithorhynchus anatinus. O, Optic chiasma; M, mammillary body. The median eminence (dark crisscross), the infundibular component (checked), the pars intermedia (solid black), the pars distalis, and the pars tuberalis (fine stripple) are shown.

from ref. 352


Figure 36.

General organization of the hypophyses of two marsupials: Setonix setosus (upper figure) and Didelphis virignianus (lower figure). O, Optic chiasma; M, mammillary body. The median eminence (dark crisscross), the infundibular component (checked), the pars intermedia (solid black), the pars distalis, and the pars tuberalis (fine stripple) are shown.

from ref. 352


Figure 37.

Suggested scheme to relate evolutionary relationships of the component parts of the vertebrate hypophysis. Key elements are the variations in occurrence of a hypothalamo–hypophyseal portal system, the differentiation of distinct lobes, the extent of the development of the pars intermedia, and the degree of separation of the neurohypophysis.

from ref. 331


Figure 38.

Gastrointestinal endocrine, paracrine, and autocrine relationships. Hormone‐secreting cells are incorporated into the gut wall, and their products may act locally on neighboring absorptive/secretory cells, blood vessels, nerves, and smooth muscle of the gut to affect motility or systemically to affect sphincter activity, satiety, or foraging behavior.

from refs. 341,344


Figure 39.

Regional distribution of regulatory peptides in the vertebrate gut as exemplified by three species of reptile: Testudo graeca, Mauremys caspica, and Lacerta lepida. E, esophagus; US, upper stomach; LS, lower stomach; SI, small intestine; LI, large intestine; 5‐HT, serotonin; BOMB, bombesin: INS, insulin; GAS, gastrin; GLUC, glucagon; NT, neurotensin; PYY, peptide tyrosine‐tyrosine; SOM, somatostatin‐14; PP, pancreatic polypeptide.

from ref. 698


Figure 40.

Classical illustration by Orci and Unger 671 of insulin, somatostatin, and glucagon cells in the human islets of Langerhans.



Figure 41.

Morphological diversity of the endocrine and exocrine components of the vertebrate pancreas: (a) Myxine, islet follicles around distal end of bile duct; (b) shark (left inset), islets arranged around small ducts and holocephalan; (right inset) some scattered cells but also small ducts; (c) tetrapod type, islets scattered in compact pancreas; (d) teleost, strands of exocrine tissue with aggregations of islets, B, bile duct; EP, exocrine pancreas; G, gall bladder; I, islet tissue; IT, intestine; L, liver.

from refs. 268,269


Figure 42.

Variations in gross morphology of vertebrate thyroid glands.

from ref. 331


Figure 43.

Cellular and molecular processes in thyroid hormone biosynthesis.



Figure 44.

Structures of thyroid hormones and their precursors.



Figure 45.

Variations in the anatomical dispositions of parathyroid glands in selected tetrapods: 1, Urodele amphibian, one pair of glands; 2, anuran amphibian, two pairs of glands; 3, lacertilian reptile, one pair of glands; 4, ophidian reptile, two pairs of glands; 5, bird, two pairs of glands located near thyroid gland; 6, mammal, one or two pairs of glands depending on species (rat, shown here, has one pair). A, atrium; CCA, common carotid artery; CG, carotid gland; CJV, common jugular vein; ECA, external carotid artery; EJV, external jugular vein; ICA, internal carotid artery; LCCA, left common carotid artery; LJV, left jugular vein; LSA, left systemic arch; PA, pulmonary artery; PT, parathyroid gland; PV, cardinal vein; RJV, right jugular vein; SA, systemic arch; THM, thymus; THR, thyroid gland; TR, trachea; V, ventricle; VBB, ventral branchial body.

from ref. 657


Figure 46.

Variations in the anatomical dispositions of ultimobranchial bodies (glands) in selected vertebrates. 1, Stingray, single pair of glands embedded in dorsal wall of pericardial; 2, goldfish, unpaired median structure on ventral surface of pharynx; 3, newt, very small structure dorsal left to pulmonary artery; 4, rat snake, one pair of glands anterior to thymus; 5, starling, glands scattered around parathyroid and thyroid glands. A, atrium; ES, esophagus; H, heart; PHT, pharyngeal tooth; PT, parathyroid gland; T, trachea; THM, thymus; THR, thyroid gland; UB, ultimobranchial bodies.

from ref. 761


Figure 47.

Variations in urophyseal morphology among selected teleost fish. Upper illustrations depict the gland in transverse and longitudinal sections and for Esox and Gadus, in only transverse section. Thin lines indicate border of urophysis; arrows, processes of Dahlgren cells; stippling, neurohemal region.

from ref. 308


Figure 48.

Vascular perfusion of the caudal neurosecretory system of Salvelinus leucomaenis pluvius. a. Artery; v, vein.

from ref. 409


Figure 49.

Associations between adrenocortical homolog (interrenal tissue, dense stipple) and adrenomedullary homolog (chromaffin tissue, black) in relation to kidney in a range of vertebrate groups.



Figure 50.

General biosynthetic pathways of gonadal and adrenocortical steroids from cholesterol.



Figure 51.

Biosynthetic and potential interconversions between gonadal and adrenocorticosteroids.

from ref. 383


Figure 52.

Biosynthetic cascade toward the production of epinephrine. PNMT, phenylethanolamine‐N‐methyl transferase.



Figure 53.

Development of the testis and ovary from the genital ridge of the mesonephric blastema. From A, when the celomic epithelium begins to differentiate, development progresses through the sexually indifferent stage toward the definitive testis or ovary. The pluripotential of gonadal structures exist, in intersexual species.

from ref. 865


Figure 54.

Examples of ovarian diversity among vertebrates. 1, Carp, typical of teleosts, ovary is hollow paired structure often continuous with oviduct; 2, hollow gestational ovary of viviparous guppy; 3, amphibian ovaries, paired and lobular structures that possess fluid‐filled cavities; 4, typical mammalian ovary, progressive follicular maturation toward Graafian follicle, which ovulates and is succeeded by the corpus luteum.

from refs. 610,865


Figure 55.

Variations in cellular morphology in vertebrate testis. 1, Development of germinal cysts in the newt; 2, lobular (A) and tubular (B) types of teleostean testis; 3, zonate testis of an elasmo‐branch fish, I to VIII show progression from the point of aggregation of gonia and Sertoli cells through stages of spermatogenesis to the final stage of an ampulla containing only Sertoli cells; 4, general cellular types with the seminiferous tubule of the mammalian testis.

from refs. 608,808


Figure 56.

Amino acid composition and arrangement in three cardiac natriuretic peptides of the rat.



Figure 57.

Glomerular and tubular arrangements within the kidney of vertebrates. A complete juxtaglomerular apparatus may exist only in mammals. (a) Hagfish, Paramyxine atami; (b) lamprey, Lampetra japonicus; (c) ray, Dasyatis akajei; (d) goldfish, Carassius auratus; (e) bullfrog, Rana catesbeiana; (f) snake, Elaphe quadrvirgata; (g) chicken, Callus domesticus; (h) rat, Rattus norvegicus. Arrows show direction of blood flow in afferent and efferent arterioles.

from ref. 381 as modified from ref. 806


Figure 58.

Renin‐angiotensin and kallikrein–kinin cascades showing interactions between participating enzymes.



Figure 59.

Vitamin D3 (cholecalciferol) hormonal system established for mammals, birds, and most probably reptiles and amphibians, leading to the production of at least one active metabolite, calcitriol. The status of the system in fishes remains equivocal.



Figure 60.

Distribution of corpuscles of Stannius (black dots) on kidneys of Amia calva, the bowfin (a); Oncorhynchus mykiss, the rainbow trout (b); the stickleback, Gasterosteus aculeatus (c); and two specimens of catfish, Clarias batrachus (d, e).

from ref. 898


Figure 61.

Innervation and vascularization of corpuscles of Stannius (CS) of Gasterosteus aculeatus. sn, Sympathetic nerve; sg, sympathetic ganglion; u, “ureters” (mesonephric ducts); vcv, ventrocaudal vein; dcv, dorsocaudal vein; hv, veins from hypaxial muscles. Arrows indicate direction of blood flow.

from ref. 899


Figure 62.

Vascular endothelium as an endocrine organ regulating vasomotor activity in the mammal. The complex interactions have been definitively established for only a limited number of laboratory preparations and are not present in all vascular beds. AII, angiotensin II; VP, vasopressin; TNF, tumor necrosis factor; T; BK, bradykinin; ACh, acetylcholine; P; 5HT, 5‐hydroxytryptamine (serotonin); ET, endothelin; ECE, endothelin‐converting enzyme.

from ref. 875


Figure 63.

l‐Arginine‐nitric oxide pathway.

from ref. 199


Figure 64.

Consequences of nucleotide alterations on the biosynthesis of hormones which are either direct genomic expressions (proteins, polypeptides) or part of an enzymic cascade (steroids, catecholamines, thyroid hormones). Enzymes (proteins) in a cascade may lose their substrate specificity.

from ref. 435


Figure 65.

Generalized molecular modes of hormonal action. Hormones may act via interaction with membrane receptors or directly within the nucleus.

from ref. 43


Figure 66.

Nuclear hormone receptors for hormones which include steroids and thyroid hormones (upper panel) and their possible phylogenetic relationships (lower panel). In the upper panel, six functional domains are shown in which A/B,F (top) are modulating regions; C, the DNA‐binding region; D, the “hinge” region; and E, the ligand‐binding region. Boxes indicate highly conserved domains; thin lines are regions of low homology. Numbers are amino acids from the amino terminus (1). In the lower panel, possible evolutionary relationships of the receptors are shown together with receptor locations on human chromosomes. The suggestion is that a progenitor gene, by duplication and divergence, produced both the steroid receptor and the thyroid hormone and retinoic acid receptor. COUP, chicken ovalbumin upstream promoter; ER, estrogen receptor; PR, progesterone receptor; GR, glucocorticoid receptor; MR, mineralocorticoid receptor; AR, androgen receptor; VitD3, vitamin D3 receptor; RAR, retinoic acid receptor; TR, thyroid hormone receptor.

from ref. 687


Figure 67.

Intracellular changes induced by hormones.

from refs. 43,643


Figure 68.

Levels of endocrine control and their interactions in the control of vertebrate reproduction. An all‐embracing scheme is presented from environmental cues (level 1) that combine to initiate the processes to the completion of the reproductive cycle (level 6); internal rhythms are ignored, and feedback, synergism, and antagonism occur at and between each level. Many hormones are involved at each stage, while others have unique effects at particular phases (for example, Müllerian‐inhibiting hormone).



Figure 69.

Components of the bone‐remodeling unit of vertebrates. The general scheme may not apply throughout, and some special features, such as the medullary bone of birds, the lime sacs of amphibians, and the presence of so‐called acellular bone, are not included. Scleroblasts are specialized osteoblast‐like cells associated with the scales of teleost fishes.



Figure 70.

Basic metabolic pathways from the diet following digestion toward anabolic or catabolic systems.

from ref. 570


Figure 71.

General relationships between the metabolism of dietary carbohydrate (top), fatty acids (middle), and proteins (bottom).

from ref. 570


Figure 72.

Utilization of proteins, fatty acids, and carbohydrates and the actions of some key hormones.



Figure 73.

Homeostatic factors that maintain balance of body water, sodium, and calcium contents at “set points” for any one species; + indicates surfeit, − deficit from optimal homeostatic level.

from ref. 35a
References
 1. Acher, R., J. Chauvet, and M. T. Chauvet. Identification de deux nouvelles hormones neurohypophysaires, la valitocine (Val8‐ocytocine) et l'aspartocine (Asn4‐ocytocine) chez un poisson sélacien, l'aiguillat (Squalus acanthias). Co.R. Acad. Sci. III 274: 313, 1972.
 2. Acher, R., J. Chauvet, M. T. Chauvet, and D. Crepy. Isolement d'une nouvelle hormone neurohypophysaire, l'isotocine présente chez les poissons osseux. Biochem. Biophys. Acta 58: 624–625, 1962.
 3. Acher, R., J. Chauvet, M. T. Chauvet, and D. Crepy. Phylogénie des peptides neurophypophysaires: isolement de la mésotocine (Ileu8‐ocytocine) de la grenouille, intermédiaire entre la Ser4‐Ileu8‐ocytocine des poissons osseux et l'ocytocine des mammifères. Biochem. Biophys. Acta 90: 613–615, 1964.
 4. Acher, R., J. Chauvet, M. T. Chauvet, and D. Crepy. Phylogénie des peptides neurophypophysaires: isolement d'une nouvelle hormone, la glumitocine (Ser4‐Gln8‐ocytocine) présente chez un poisson cartilagineux, la raie (Raia clavata). Biochem. Biophys. Acta 107: 393–396, 1965.
 5. Acher, R., J. Chauvet, Y. Rouille, and G. Michel. The hormonal control of water homeostasis: hydrins, new hydroosmotic neuropeptides derived by adaptive differential processing. Program, Ninth International Congress of Endocrinology, Nice, Abstract P‐18.04.065, 1992.
 6. Agulleiro, B., A. G. Ayala, and M. E. Abad. An immunocytochemical and ultrastructural study of the endocrine pancreas of Pseudemys scripta elegans (Chelonia). Gen. Comp. Endocrinol. 60: 95–103, 1985.
 7. Akagi, H., T. Hayashi, T. Nakayama, T. Nakajima, T. Watanabe, and H. Sokabe. Comparative studies on angiotensins. IV. Structure of angiotensin I originated by renal renin in the dog, guinea pig, rabbit and reexamination of the peptides in pig, horse and ox using homologous renin sources. Chem. Pharm. Bull. (Tokyo) 30: 2492–2502, 1982.
 8. Alumets, J., R. Hakanson, G. Lundqvist, F. Sundler, and J. Thorell. Ontogeny and ultrastructure of somatostatin and clacitonin cells in the thyroid of the rat. Cell Tissue Res., 206: 193–201, 1980.
 9. Anastasi, A. V., Erspamer, G. Bertaccini, and J. M. Cei. Isolation and amino acid sequence, and biological activity of phyllokinin (bradykinyl‐isoleucyl‐tyrosine O‐sulfate), a bradykinin‐like endecapeptide of the skin of Phyllomedusa rohdei. In: Hypotensive Peptides, edited by E. G. Erdös, N. Back, and F. Sicuteri. New York: Springer‐Verlag, 1966, p. 76.
 10. Anastasi, A., V. Erspamer, and M. Bucci. Isolation and amino acid sequences of alytesin and bombesin, two analogous active tetradecapeptides from the skin of European discoglossid frogs. Arch. Biochem. Biophys. 148: 443–446, 1972.
 11. Anastasi, A., V. Erspamer, and J. M. Cei. Isolation and amino acid sequence of physalaemin, the main polypeptide of the skin of Physalaeminus fuscumaculatus. Arch. Biochem. Biophys. 108: 341–348, 1964.
 12. Anastasi, A., V. Erspamer, and R. Endean. Structure of uperolein, a physaelamin‐like endecapeptide occurring in the skin of Uperoleia rugosa and Uperoleia marmorata. Experientia 31: 394–395, 1975.
 13. Anastasi, A., P. Montecucci, V. Erspamer, and J. Visser. Amino acid composition and sequence of kassinin, a tachykinin dodecapeptide from the skin of the African frog Kassina senegalensis. Experientia 33: 857–858, 1977.
 14. Anderson, T. R., D. S. Pitts, and C. S. Nicoll. Prolactin's mitogenic action on the pigeon crop‐sac muscosal epithelium involves direct and indirect mechanisms. Gen. Comp. Endocrinol. 54: 236–246, 1984.
 15. Anderson, T. R., J. Rodriguiz, and C. S. Nicoll. The synlactin hypothesis: prolactin's mitogenic action may involve synergism with a somatomedin‐like molecule. In: Insulin‐Like Growth Factors/Somatomedins, edited by E. M. Spencer. New York: de Gruyter, 1983, p. 71–78.
 16. Ando, S., M. Hatano, and K. Zama. Deterioration of chum salmon muscle during spawning migration—I. Changes in proximate composition of chum salmon muscle during spawning migration. Comp. Biochem. Physiol. [B] 80: 303–307, 1985.
 17. Andrews, P. C., D. H. Hawke, T. D. Lee, K. Legesse, B. D. Noe, and J. E. Shively. Isolation and structure of the principal products of pre‐proglucagon processing, including an amidated glucagon‐like peptide. J. Biol. Chem. 261: 8128–8133, 1986.
 18. Andrews, P. C., D. Hawke, J. E. Shively, and J. E. Dixon. A non‐amidated peptide homologous to porcine peptide YY and neuropeptide Y. Endocrinology 116: 2677–2681, 1985.
 19. Andrews, P. C., H. G. Pollock, W. M. Elliot, J. H. Youson, and E. M. Plisetskaya. Isolation and characterization of a variant somatostatin‐12 and two related somatostatins of 34 and 37 residues from lamprey (Petromyzon marinus). J. Biol. Chem. 263: 15809–15814, 1988.
 20. Andrews, P. C., and P. Ronner. Isolation and structures of glucagon and glucagon‐like peptide from catfish pancreas. J. Biol. Chem. 260: 3910–3914, 1985.
 21. Anggard, E. E. The endothelium—the body's largest endocrine gland. J. Endocrinol. 127: 371–375, 1990.
 22. Ariens, J. Kappers The pineal organ: an introduction. In: The Pineal Gland, edited by G. E. W. Wolstenholme and J. Knight. London: Churchill Livingstone, 1971, p. 3–34.
 23. Arnold‐Reed, D. E., and R. J. Balment. Atrial natriuretic factor stimulates in vivo and in vitro secretion of cortisol in teleosts. J. Endocrinol. 128: R17–R20, 1991.
 24. Arnold‐Reed, D. E., R. J. Balment, C. R. McCrohan, and C. M. Hackney. The caudal neurosecretory system of Platichthys flesus: general morphology and responses to altered salinity. Comp. Biochem. Physiol. A 99: 137–143, 1991.
 25. Arriza, J. L., C. Weinberger, T. Glaser, B. L. Handelin, D. E. Housman, and R. M. Evans. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237: 268–275, 1987.
 26. Assem, H., and W. Hanke. A comparison between the effects of cortisol and prolactin on the euryhaline tilapia (Sarotherodon mossambicus). Zool. Jb. Physiol. 88: 423–431, 1984.
 27. Auletta, F. J., D.S.C. Jones, and A.P.F. Flint. Does the human corpus luteum synthesize neurohypophysial hormones? J. Endocrinol. 16: 163–165, 1988.
 28. Austin, H. B. The effects of norethindrone on the Mullerian ducts of the American alligator. Gen. Comp. Endocrinol. 84: 300–307, 1991.
 29. Avioli, L. V., and J. G. Haddad. Vitamin D: current concepts. Metabolism 22: 507–531, 1973.
 30. Bajaj, M., T. L. Blundell, J. E. Pitts, S. P. Wood, M. A. Tatnell, S. Falkmer, S. O. Emdin, L. K. Gowan, H. Crow, C. Schwabe, A. Wollmer, and W. Strassburger. Dogfish insulin: primary structure, conformation and biological properties of an elasmobranch insulin. Eur. J. Biochem. 135: 535–542, 1983.
 31. Baker, B. I. Melanin‐concentrating hormone: a general vertebrate neuropeptide. Int. Rev. Cytol. 126: 1–47, 1991.
 32. Ball, J. N., and B. I. Baker. The pituitary gland: anatomy and histophysiology. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. London: Academic, 1969, vol. 2, p. 1–110.
 33. Balment, R. J., N. Hazon, and M. N. Perrott. Control of corticosteroid secretion and its relation to osmoregulation in lower vertebrates. In: Comparative Physiology of Environmental Adaptations, edited by R. Kirsch and B. Lahlou. London: Karger, 1987, vol. 1, p. 92–102.
 34. Balment, R. J., and I. W. Henderson. Secretions of endocrine glands and their relationship to osmoregulation. In: Fundamentals of Comparative Vertebrate Endocrinology, edited by I. Chester‐Jones, P. M. Ingleton, and J. G. Phillips. London: Plenum Press, 1987, p. 411–495.
 35. Balment, R. J., I. W. Henderson, and I. Chester‐Jones. The adrenal cortex and its homologue throughout the vertebrates: evolutionary considerations. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester‐Jones and I. W. Henderson. London: Academic, 1980, vol. 3, p. 525–562.
 36. Barker‐Jorgensen, C. B. Acta Hist. Sci. Nat. Med. 24: 7–54, 1971.
 37. Barnett, B. J., C. Y. Cho, and S. J. Slinger. The essentiality of cholecalciferol in the diets of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. A 63: 291–297, 1979.
 38. Barrington, E.J.W. Hormones and Evolution. London: English Universities Press, 1964.
 39. Barrington, E.J.W., and M. Sage. The endostyle and thyroid In: The Biology of Lampreys, edited by M. W. Hardisty and I. C. Potter. London: Academic, 1972, vol. 2, p. 105–134.
 40. Barrington, E.J.W., and A. Thorpe. The identification of monoiodotyrosine, diiodotyrosine and thyroxine in extracts of the endostyle of the ascidian, Ciona intestinalis L. Proc. R. Soc. Lond. B 163: 136–149, 1975.
 41. Baskaran, G., and A. G. Sathyanesan. Tetrapod‐like hypothalamo‐hypophysial portal system in the teleost Megalops cyprinoides (Broussonet). Gen. Comp. Endocrinol. 86: 211–219, 1992.
 42. Bataille, D., A. M. Coudray, M. Carlqvist, G. Rosselin, and V. Mutt. Isolation of glucagon‐37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejuno‐ileum. FEBS Lett. 146: 73–78, 1982.
 43. Baulieu, E.‐E. Hormones, a complex communications network. In: Hormones, From Molecules to Disease, edited by E.‐E. Baulieu and P. A. Kelly, London: Chapman and Hall, 1992, p. 1–170.
 44. Baulieu, E.‐E. and P. A. Kelly (Eds). Hormones—From Molecules to Disease. New York: Chapman and Hall, 1990.
 45. Baverstock, P. R., and S. D. Bradshaw. Variation in the rate of growth and adrenal corticosteroidogenesis in field and laboratory populations of the lizard, Amphibolurus ornatus. Comp. Biochem. Physiol. A 52: 557–565, 1975.
 46. Bayliss, W. M., and E. H. Starling. On the uniformity of the pancreatic mechanism in Vertebrata. J. Physiol. (Lond.) 29: 174–180, 1903.
 47. Bayliss, W. M., and E. H. Starling. The chemical regulation of the secretory process. R. Soc. Proc. 73: 310–322, 1904.
 48. Beal, A. M. Effect of phosphate‐regulating hormones on plasma composition, cardiovascular function, and parotid salivary phosphate secretion in red kangaroos (Macropus rufus). Gen. Comp. Endocrinol. 81: 64–71, 1991.
 49. Belanger, L. F., and D. J. Copp. The skeletal effects of prolonged calcitonin administration in birds under various conditions. In: Calcium, Parathyroid Hormone and the Calcitonins. Proceedings of the 4th Parathyroid Conference, Chapel Hill, edited by R. V. Talmage and P. L. Munson. Amsterdam: Excerpta Medica, 1972, p. 41–50.
 50. Bennett, H.P.J., P. J. Lowry, C. McMartin, and A. P. Scott. Structural studies of alpha melanocyte‐stimulating hormone and a novel β melanocyte‐stimulating hormone from the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias. Biochem. J. 141: 439–444, 1974.
 51. Benoit, R., P. Bohlen, P. Brazeau, N. Ling, and R. Guillemin. Isolation and characterization of rat pancreatic somatostatin. Endocrinology 107: 2127–2129, 1980.
 52. Bentley, P. J. Comparative Vertebrate Endocrinology. Cambridge: Cambridge University Press, 1982.
 53. Berger, P. J. Eleven month embryonic diapause in a marsupial. Nature 211: 435–436, 1966.
 54. Bern, H. A. Urophysis and caudal neurosecretory system. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. London: Academic, 1969, vol. 2, p. 399–418.
 55. Bern, H. A. Some questions on the nature and function of cranial and caudal neurosecretory systems in non‐mammalian vertebrates. Prog. Brain Res. 38: 85–96, 1972.
 56. Bern, H. A. The “new” endocrinology: its scope and its impact. Am. Zool. 30: 877–885, 1990.
 57. Bern, H. A., D. Pearson, B. A. Larson, and R. S. Nishioka. Neurohormones from fish tails—the caudal neurosecretory system. Recent Prog. Horm. Res. 41: 533–552, 1985.
 58. Bhattacharya, S., E. Plisetskaya, W. W. Dickhoff, and A. Gorbman. The effects of estradiol and triiodothyronine on protein synthesis by hepatocytes of juvenile coho salmon (Oncorhynchus kisutch). Gen. Comp. Endocrinol. 57: 103–109, 1985.
 59. Bidwell, C. A., K. J. Kroll, E. Severud, S. I. Doroshov, and D. M. Carlson. Identification and preliminary characterization of white sturgeon (Acipenser transmontanus) vitellogenin mRNA. Gen. Comp. Endocrinol. 83: 415–424, 1991.
 60. Bisbal, G. A., and J. L. Specker. Cortisol stimulates hypoosmoregulatory ability in Atlantic salmo, Salmo salar L. J. Fish Biol. 39: 421–432, 1991.
 61. Bjenning, C., and S. Holmgren. Neuropeptides in the fish gut: an immunohistochemical study of evolutionary patterns. Histochemistry 88: 155–163, 1988.
 62. Bjenning, C., A.‐C. Jönsson, and S. Holmgren. Bombesin‐like immunoreactive material in the gut, and the effect of bombesin on the stomach circulatory system of an elasmobranch fish, Squalus acanthias. Regul. Pept. 28: 57–69, 1990.
 63. Björnsson, B. Th., C. Haux, H. A. Bern, and L. J. Deftos. 17β‐Estradiol increases plasma calcitonin levels in salmonid fish. Endocrinology 125: 1754–1760, 1989.
 64. Björnsson, B. Th., C. Haux, L. Förlin, and L. J. Deftos. The involvement of calcitonin in the reproductive physiology of the rainbow trout. J. Endocrinol. 108: 17–23, 1986.
 65. Björnsson, B. Th., T. Ogasawara, T. Hirano, J. P. Bolton, and H. A. Bern. Elevated growth hormone levels in stunted Atlantic salmon, Salmo salar. Aquaculture. 73: 275–281, 1988.
 66. Björnsson, B. Th., H. Thorarensen, T. Hirano, T. Ogasawara, and J. B. Kristinsson. Photoperiod and temperature affect plasma growth hormone levels, growth, condition factor and hypoosmoregulatory ability of juvenile Atlantic salmon (Salmo salar) during par‐smolt transformation. Aquaculture 82: 77–91, 1989.
 67. Björnsson, B. Th., G. Young, R. J. Lin, L. J. Deftos, and H. A. Bern. Smoltification and seawater adaptation in coho salmon (Oncorhynchus kisutch): plasma calcium regulation, osmoregulation, and calcitonin. Gen. Comp. Endocrinol. 74: 346–354, 1989.
 68. Blair‐West, J. R., J. P. Coghlan, D. A. Denton, A. P. Gibson, C. J. Oddie, W. H. Sawyer, and B. A. Scoggins. Plasma renin activity and blood corticosteroids in the Australian lungfish Neoceratodus forsteri. J. Endocrinol. 74: 137–142, 1977.
 69. Blondin, G. A., B. D. Kulkarni, and W. R. Nes. A study of the origin of vitamin D from 7‐dehydrocholesterol in fish. Comp. Biochem. Physiol. 20: 379–390, 1967.
 70. Blondin, G. A., B. D. Kulkarni, and W. R. Nes. Concerning the nonphotochemical biosynthesis of vitamin D3 in fish. J. Am. Chem. Soc. 86: 2528–2529, 1964.
 71. Bloom, S., and J. M. Polak. Gut Hormones. London: Churchill Livingstone, 1981.
 72. Bodanszky, M., Y. S. Klausner, and S. I. Said. Biological activities of synthetic peptides corresponding to fragments of and to the entire sequence of the vasoactive intestinal peptide. Proc. Natl. Acad. Sci. U.S.A. 70: 382–384, 1973.
 73. Bolton, J. P., N. L. Collie, H. Kawauchi, and T. Hirano. Osmoregulatory actions of growth hormone in rainbow trout (Salmo gairdneri). J. Endocrinol. 112: 63–68, 1987.
 74. Bonato, C., J. Eng, J. D. Hulmes, M. Miedel, Y.‐C. E. Pan, and R. S. Yalow. Sequences of gastrins purified from a single antrum of dog and of goat. Peptides 7: 689–693, 1986.
 75. Boschwitz, D. The parathyroid glands of Bufo viridis Laurenti. Herpetologia 17: 192–199, 1961.
 76. Bownes, M. Expression of the genes coding for vitellogenin (yolk protein). Annu. Rev. Entomol. 31: 507–531, 1986.
 77. Bradshaw, S. D. The endocrine control of water and electrolyte metabolism in desert reptiles. Gen. Comp. Endocrinol. 3 (Suppl.): 360–373, 1972.
 78. Bradshaw, S. D., J. A. Tom, and S. E. Bunn. Corticosteroids and control of nasal salt gland function in the lizard, Tilqua rugosa. Gen. Comp. Endocrinol. 54: 308–313, 1984.
 79. Bradshaw, S. D., M. Lemire, R. Vernet, and C. J. Grenot. Aldosterone and the control of secretion by the nasal gland of the North African desert lizard, Uromastix acanthinurus. Gen. Comp. Endocrinol. 54: 314–323, 1984.
 80. Brahma, K. C., and B. K. Patnik. Changes in morphometric parameters and the characteristics of collagen following thyroxine and thiourea treatments in young male garden lizards. Gen. Comp. Endocrinol. 53: 100–106, 1984.
 81. Brazeau, P., W. Vale, R. Burgus, N. Ling, M. Butcher, J. Rivier, and R. Guillemin. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79, 1973.
 82. Bres, O., and J. G. Eales. Thyroid hormone binding to isolated trout (Salmo gairdneri) liver nuclei in vitro: binding affinity, capacity, and chemical specificity. Gen. Comp. Endocrinol. 61: 29–39, 1986.
 83. Brewer, H. B., and R. Ronan. Amino acid sequence of bovine thyrocalcitonin. Proc. Natl. Acad. Sci. U.S.A. 63: 940–947, 1969.
 84. Broadhead, C. L., U. T. O'Sullivan, C. F. Deacon, and I. W. Henderson. Atrial natriuretic peptide in the eel, Anguilla anguilla L.: its cardiac distribution, receptors and actions on isolated branchial cells. J. Mol. Endocrinol. 9: 103–114, 1992.
 85. Bromer, W. W., M. E. Boucher, and J. E. Koffenberger. Amino acid sequence of bovine glucagon. J. Biol. Chem. 246: 2822–2827, 1971.
 86. Broughton Pipkin, F. The renin system and reproduction in animals. In: The Renin–Angiotensin System, edited by J. I. S. Robertson and M. G. Nicholls. London: Gower, 1993, vol. 1, p. 49.1–49.9.
 87. Brown, M. R. Peptide biology: past, present and future. Ann. N. Y. Acad. Sci. 579: 8–16, 1990.
 88. Brudieux, R., P. Chirvan‐Nia, and P. Delost. Sur les relations entre la médullo‐surrénale et les cortex surrénal. J. Physiol. (Paris) 58: 213–217, 1966.
 89. Buchan, A. M. J. An immunocytochemical study of endocrine pancreas of snakes. Cell Tissue Res. 235: 657–661, 1984.
 90. Burger, H. and D. De Kretser (Eds). The Testis. New York: Raven, 1981.
 91. Burgus, R., M. Butcher, M. Amoss, N. Ling, M. Monahan, J. Rivier, R. Fellows, R. Blackwell, W. Vale, and R. Guillemin. Primary structure of the ovine hypothalamic luteinizing hormone‐releasing factor (LRF). Proc. Natl. Acad. Sci. U.S.A. 69: 278–282, 1972.
 92. Burnside, J., S. S. Liou, C. Zhong, and L. A. Cogburn. Abnormal growth hormone receptor gene expression in the sex‐linked dwarf chicken. Gen. Comp. Endocrinol. 87: 20–28, 1992.
 93. Burzawa‐Gerard, E., and A. Dumas‐Vidal. Effects of 17β‐estradiol and carp gonadotropin on vitellogenesis in normal and hypophysectomized European silver female eel (Anguilla anguilla L.) employing a homologous radioimmunoassay for vitellogenin. Gen. Comp. Endocrinol. 84: 264–276, 1991.
 94. Butkus, A., P. J. Roche, R. T. Fernley, J. Haralambidis, J. D. Penschow, G. B. Ryan, J. F. Trahair, G. W. Tregear, and J. P. Coghlan. Purification and cloning of a corpuscles of Stannius protein from Anguilla australis. Mol. Cell. Endocrinol. 54: 123–133, 1987.
 95. Butkus, A., N. A. Yates, D. H. Copp, C. Milliken, J. G. McDougall, P. J. Roche, G. W. Tregear, and J. P. Coghlan. Processing and bioactivity of the corpuscles of Stannius protein of the Australian eel. Fish Physiol. Biochem. 7: 359–365, 1989.
 96. Call, R. N., and P. A. Janssens. Histochemical studies of the adrenocortical homologue in the kidney of the Australian lungfish Neoceratodus forsteri. Cell Tissue Res. 156: 533–538, 1975.
 97. Call, R. N., and P. A. Janssens. Hypertrophic adrenocortical tissue of the Australian brush‐tailed possum (Trichosurus vulpecula): uniformity during reproduction. J. Endocrinol. 101: 263–267, 1984.
 98. Callard, G. V. Reproduction in male elasmobranch fishes. In: Oogenesis, Spermatogenesis and Reproduction: Comparative Physiology, edited by R.K.H. Kinne, E. Kinnie‐Saffan, and K. W. Beyenbach. Basle: Karger, 1991, p. 104–154.
 99. Callard, G. V., P. Mak, W. Duboi, and M. E. Canick. Regulation of spermatogenesis: the shark testis model. J. Exp. Zool. 2 (Suppl.): 23–24, 1989.
 100. Callard, I. P., S. M. Ho, D. A. Gapp, S. Taylor, D. Danko, and G. Wulcryn. Estrogen and estrogenic actions in fish, amphibians and reptiles. In: Estrogens in the Environment, edited by J. A. McLachlan. New York: Elsevier, 1980, vol. 4, p. 213–237.
 101. Campantico, E., and A. Guastalla. Immunocytochemical identification of growth hormone‐ and prolactin‐producing cells in the hypophysis of the newt Triturus cristatus carnifex Laur. Gen. Comp. Endocrinol. 86: 197–202, 1992.
 102. Campbell, D. J. Metabolism of prorenin, renin, angiotensinogen and the angiotensins by tissues. In: The Renin–Angiotensin System, edited by J. I. S. Roberton and M. G. Nicholls. London: Gower, 1993, vol. 1, p. 23.1–23.23.
 103. Capelli, J. P., L. G. Wesson, and G. E. Aponte. A phylogenetic study of the renin–angiotensin system. Am. J. Physiol. 218: 1171–1178, 1970.
 104. Carlquist, M., W. G. Forsmann, L. Thulin, C. Johansson, and V. Mutt. Human secretin is not identical to the porcine/bovine hormone. IRCS Med. Sci. Biochem. 13: 217–218, 1985.
 105. Carlquist, M., H. Jornvall, and V. Mutt. Isolation and amino acid sequence of bovine secretin. FEBS Lett. 127: 71–74, 1981.
 106. Carlquist, M., T. J. McDonald, V. L. Go, D. Bataille, C. Johansson, and V. Mutt. Isolation and amino acid composition of human vasoactive intestinal polypeptide (VIP). Horm. Metab. Res. 14: 28–29, 1982.
 107. Carnevali, O., and G. Mosconi. In vitro induction of vitellogenin synthesis in Rana esculenta: role of the pituitary. Gen. Comp. Endocrinol. 86: 352–358, 1992.
 108. Carnevali, O., G. Mosconi, F. Angelini, E. Limatola, G. Ciarcia, and A. Polzonetii‐Magni. Plasma vitellogenin and 17β‐estradiol levels during the annual reproductive cycle of Podarcis s. sicula Raf. Gen. Comp. Endocrinol. 84: 337–343, 1991.
 109. Carraway, R. E., and Y. M. Bhatnagar. Isolation, structure, and biological activity of chicken intestinal neurotensin. Peptides 1: 167–174, 1980.
 110. Carraway, R. E., and S. E. Leeman. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem. 248: 6854–6861, 1973.
 111. Chadard, D., G. Desvages, C. Pieua, and C. Dournon. Aromatase activity in larval gonads of Pleurodeles waltl (Urodele Amphibia) during normal sex differentiation and during sex reversal by thermal treatment effect. Gen. Comp. Endocrinol. 99: 100–107, 1995.
 112. Chakraborti, P. K., and M. Weisbart. High‐affinity cortisol receptor activity in the liver of the brook trout, Salvelinus fontinalis (Mitchill). Can. J. Zool. 65: 2498–2503, 1987.
 113. Chakraborti, P. K., M. Weisbart, and A. Chakraborti. The presence of corticosteroid receptor activity in the gills of the brook trout, Salvelinus fontinalis. Gen. Comp. Endocrinol. 66: 323–332, 1987.
 114. Chan, A. S. Ultrastructure of the parathyroid glands in the chick. Acta Anat. 97: 205–212, 1977.
 115. Chan, A. S. Ultrastructure of the ultimobranchial follicles of the laying hen. Cell Tissue Res. 195: 309–316, 1978.
 116. Chan, D.K.O. The urophysis and the caudal circulation of teleost fish. Mem. Soc. Endocrinol. 19: 391–412, 1971.
 117. Chan, D.K.O., I. Chester‐Jones, and R. N. Smith. The effect of mammalian calcitonin on the plasma levels of calcium and inorganic phosphate in the European eel (Anguilla anguilla L). Gen. Comp. Endocrinol. 11: 243–245, 1968.
 118. Chan, M. Y., and W. N Holmes. Studies on a “renin–angiotensin” system in the normal and hypophysectomized pigeon (Columba livia). Gen. Comp. Endocrinol. 16: 304–311, 1971.
 119. Chan, S.T.H., and W.S.B. Yeung. Sex control and sex reversal in fish under natural conditions. In: Fish Physiology, edited by W. S. Hoar, D. J. Randall, and E. Donaldson. London: Academic, 1983, vol. 9, pt. B. p. 171–222.
 120. Chang, M. M., S. E. Leeman, and H. D. Niall. Amino acid sequence of substance P. Nature New Biol. 232: 86–87, 1971.
 121. Chang, W. C., D. Chung, and C. H. Li. Isolation and characterization of β‐lipotropin and adrenocorticotropin from turkey pituitary glands. Int. J. Pept. Protein. Res. 15: 261–270, 1980.
 122. Chang, Y. S., C. J. Huang, F. L. Huang, and T. B. Lo. Primary structure of carp gonadotropin subunits deduced from cDNA nucleotide sequences. Int. J. Pept. Protein Res. 32: 556–564, 1988.
 123. Chang, Y. S., C. S. Liu, F. L. Huang, and T. B. Lo. The primary structures of growth hormones of three Cyprinid species: bighead carp, silver carp, and grass carp. Gen. Comp. Endocrinol. 87: 385–393, 1992.
 124. Chartier, M. M., C. Milet, E. Martelly, E. Lopez, and S. Warrot. Stimulation par la vitamine D3 et le 1,25‐dihroxyvitamine D3 de la absorption intestinale du calcium chez l'anguille (Anguilla anguilla L.) J. Physiol. (Paris) 75: 275–282, 1979.
 125. Chauvet, J., M. T. Lencl, and R. Acher. Présence de deux vasopressines dans la neurohypophyse du poulet. Biochem. Biophys. Acta 38: 571–573, 1960.
 126. Chauvet, J., G. Michel, Y. Rouille, M.‐T. Chauvet, and R. Acher. Study of frog (Rana esculenta) pro‐opiomelanocortin processing in the intermediate pituitary. Int. J. Pept. Protein Res. 37: 236–240, 1991.
 127. Chauvet, J., Y. Rouille, G. Michel, M. T. Chauvet, and R. Acher. Two new neurohypophysial hormones, asvatocin and phasvatocin. Evolutionary duplications in the oxytocin‐vasopressin superfamily. Program, Ninth International Congress of Endocrinology. Nice, Abstract P‐18.04.066, 1992.
 128. Chauvet, M. T., D. Hurpet, J. Chauvet, and R. Acher. Phenypressin (Phe2‐Arg8‐vasopressin), a new neurohypophysial peptide found in marsupials. Nature 287: 640–642, 1980.
 129. Chen, T. T. Identification and characterization of estrogen gene products in the liver of rainbow trout. Can. J. Biochem. 61: 802–810, 1983.
 130. Cherin, M. I., A. F. Candia, L. L. Stark, J. F. Aceto, and K. M. Baker. Fetal expression of renin, angiotensinogen and atriopeptin genes in chick heart. Clin. Exp. Hypertens. A Theory Pract. 12: 617–630, 1990.
 131. Chesnel, F., A. Bourry, D. Boujard, and J. Joly. A nonsteroidal follicular factor is involved in maturation process of Xenopus laevis oocytes. Gen. Comp. Endocrinol. 86: 304–312, 1992.
 132. Chester‐Jones, I. The Adrenal Cortex. London: Cambridge University Press, 1957.
 133. Chester‐Jones, I. (Ed). Hormones in fish. In: Symposium of the Zoological Society of London. London: Zoological Society of London, 1960, vol. 1.
 134. Chester‐Jones, I., and I. W. Henderson. Introduction. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester‐Jones, and I. W. Henderson. London: Academic, 1976, vol. 1, p. xv–xvi.
 135. Chester‐Jones, I., I. W. Henderson, and D. G. Butler. Water and electrolyte flux in the European eel. Arch. Anat. Microscop. Morphol. Exp. 54: 453–470, 1965.
 136. Chester‐Jones, I., P. M. Ingleton and J. G. Phillips, (Eds). Fundamentals of Comparative Vertebrate Endocrinology. New York: Plenum, 1987.
 137. Chester‐Jones, I., and W. Mosley. The interrenal gland in Pisces. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester Jones and I. W. Henderson. London: Academic, 1980, vol. 3, p. 395–472.
 138. Chester‐Jones, I., and J. G. Phillips. The adrenal and interrenal glands. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications. Morphological Considerations, edited by P. K. T. Pang and M. P. Schreibman. London: Academic, 1986, vol. 1, p. 319–350.
 139. Chester‐Jones, I., G. R. Rodgers, S. D. Bradshaw, F. J. Bradshaw, and T. Stewart. Observations on the adrenocortical structure of the female brush‐tailed possum (Trichosurus vupecula) and locations of cell division. Gen. Comp. Endocrinol. 93: 163–176, 1994.
 140. Cheung, R., L.C.G. Ferreira, and J. H. Youson. Distribution of two forms of somatostatin and peptides belonging to the pancreatic polypeptide family in tissues of larval lampreys, Petromyzon marinus L.: an immunohistochemical study. Gen. Comp. Endocrinol. 82: 93–102, 1991.
 141. Chevalier, G. Ultrastructural changes in the caudal neurosecretory cells of the trout, Salvelinus fontinalis in relation to external salinity. Gen. Comp. Edocrinol. 29: 441–454, 1976.
 142. Chieffi, G. New trends in the regulation of the gonadal activity in vertebrates: paracrine and autocrine control. Zool. Sci. 6: 623–637, 1989.
 143. Chieffi, G, and R. Pierantoni. Regulation of ovarian steroidogenesis. In: Hormones and Reproduction in Fishes, Amphibians and Reptiles, edited by O. Norris and R. E. Jones. New York: Plenum, 1987.
 144. Chieffi, G. Baccari, S. Minucci, L. di Matteo, and G. Chieffi. Ultrastructural investigation of the corpora atretica of the electric ray, Torpedo marmorata. Gen. Comp. Endocrinol. 86: 72–80, 1992.
 145. Chin, W. W., J. E. Godine, D. R. Klein, A. S. Chang, L. K. Tan, and J. F. Habener. Nucleotide sequence of the cDNA encoding the precursor of the β subunit of rat lutropin. Proc. Natl. Acad. Sci. U.S.A. 80: 4649–4653, 1983.
 146. Cho, K. W., S. Z. Kim, S. H. Kim, G. Y. Koh, and K. H. Seul. Characterization of angiotensin I‐converting enzyme activity in the freshwater turtle, Amyda japonica Comp. Biochem. Physiol. A 87: 645–648, 1987.
 147. Chopra, I. J., S. Y. Wu, Y. Nakamura, and D. H. Solomon. Monodeiodination of 3,5,3′‐triiodothyronine and 3,3′,5′ triodothyronine to 3,3′diiodothyronine in vitro. Endocrinology 102: 1099–1106, 1978.
 148. Choudhury, A. M., G. W. Kenner, S. Moore, K. L. Ramachandran, W. D. Thorpe, R. Ramage, G. J. Dockray, R. A. Gregory, L. Hood, and M. Hunkapiller. N‐terminal sequence of human big gastrin: sequence, synthetic and immunochemical studies. Biol. Chem. Hoppe Seyler 361: 1719, 1980.
 149. Chow, N. Y., Y. C. Yen‐Chow, and D. M. Woodbury. Effects of thyrotropin, acetazolamine, 4‐acetamido‐4′‐isothiocyanostilbene‐2,2′disulfonic acid, perchlorate and ouabain on the distribution of iodine ions in cells and luminal fluid of turtle thyroid. Endocrinology 110: 121–125, 1982.
 150. Christensen, J. A., S. Knuttson, and A. Bohle. Granular epithelioid cells in the kidney of the Atlantic salmon (Salmo salar). Kidney Int. 22 (Suppl. 12): S179–S184, 1982.
 151. Christensen, J. A., I. Morild, E. Mikeler, and A. Bohle. Juxtag‐lomerular apparatus in the domestic fowl (Gallus domesticus). Kidney Int. 22 (Suppl. 12): S24–S29, 1982.
 152. Clark, N. B. The parathyroid. In: Biology of the Reptilia, edited by C. Gans and T. S. Parsons. New York: Academic, 1970, p. 235–262.
 153. Clark, N. B. The ultimobranchial bodies of reptiles. J. Exp. Zool. 178: 115–124, 1971.
 154. Clark, N. B., K. Kaul, and S. I. Roth. The parathyroid glands. In: Vertebrate Endocrinology: Fundamental and Biomedical Implications. Morphological Considerations, edited by P.K.T. Pang and M. P. Schriebman. London: Academic, 1986, vol. 1, p. 207–234.
 155. Cochran, R. C., and H. J. Grier. Regulation of sexual succession in the protogynous black sea bass, Centropristis striatus (Osteichthyes: Serranidae). Gen. Comp. Endocrinol. 82: 69–77, 1991.
 156. Coleman, R. Ultrastructural observations on the parathyroid glands of Xenopus laevis Daudin. Z. Zellforsch. Mikrosk. Anat. 100: 210–214, 1969.
 157. Coleman, R., and A. D. Phillips. Ultimobranchial gland ultrastructure of larval axolotls, Ambystoma mexicanum, with some observations on the newt, Pleurodeles watlii. Z. Zellforsch. Mikrosk. Anat. 134: 183–192, 1972.
 158. Conlon, J. M. [Ser5]‐somatostatin‐14: isolation from the pancreas of a holocephalan fish, the pacific ratfish (Hydrolagus colliei). Gen. Comp. Endocrinol. 80: 314–320, 1990.
 159. Conlon, J. M., D. V. Agoston, and L. Thim. An elasmobranch somatostatin: primary structure and tissue distribution in Torpedo marmorata. Gen. Comp. Endocrinol. 60: 406–413, 1985.
 160. Conlon, J. M., P. C. Andrews, L. Thim, and T. W. Moon. The primary structure of glucagon‐like peptide but not insulin has been conserved bewtween the American eel, Anguilla rostrata and the European eel, Anguilla anguilla. Gen. Comp. Endocrinol. 82: 23–32, 1991.
 161. Conlon, J. M., D. Arnold‐Reed, and R. J. Balment. Posttranslational processing of prepro‐urotensin II. FEBS Lett. 266: 37–40, 1990.
 162. Conlon, J. M., U. Askensten, S. Falkmer, and L. Thim. Primary structures of somatostatins from the islet organ of the hagfish suggest an anomalous pathway of posttranslational processing of prosomatostatin‐I. Endocrinology 122: 1855–1859, 1988.
 163. Conlon, J. M., A. Balasubramaniam, and N. Hazon. Structural characterization and biological activity of a neuropeptide Y‐related peptide from the dogfish (Scyliorhinus canicula). Endocrinology 128: 2273–2279, 1991.
 164. Conlon, J. M., and R. J. Balment. Synthesis and release of acetylcholine by the isolated perfused trout caudal neurosecretory system. Gen. Comp. Endocrinol. 103: 36–40, 1996.
 165. Conlon, J. M., C. Bjenning, T. W. Moon, J. H. Youson, and L. Thim. Neuropeptide Y‐related peptides from the pancreas of a teleostean (eel), holostean (bowfin) and elasmobranch (skate) fish. Peptides 12: 221–226, 1991.
 166. Conlon, J. M., B. Bjornholm, F. S. Jorgensen, J. H. Youson, and T. W. Schwartz. Primary structure and conformational analysis of peptide methionine‐tyrosine, a peptide related to neuropeptide Y and peptide YY isolated from lamprey intestine. Eur. J. Biochem. 199: 293–298, 1991.
 167. Conlon, J. M., E. Dafgard, S. Falkmer, and L. Thim. A glucagon‐like peptide, structurally related to mammalian oxyntomodulin, from the pancreas of holocephalan fish, Hydrolagus colliei. Biochem. J. 245: 851–855, 1987.
 168. Conlon, J. M., M. S. Davis, S. Falkmer, and L. Thim. Structural characterization of peptides derived from prosomatostatins I and II isolated from the pancreatic islets of two species of teleostean fish: the daddy sculpin and the flounder. Eur. J. Biochem. 168: 647–652, 1987.
 169. Conlon, J. M., M. S. Davis, and L. Thim. Primary structure of insulin and glucagon from the flounder (Platichthys flesus). Gen. Comp. Endocrinol. 66: 203–209, 1987.
 170. Conlon, J. M., C. F. Deacon, N. Hazon, I. W. Henderson, and L. Thim. Somatostatin‐related and glucagon‐related peptides with unusual structural features from the European eel (Anguilla anguilla). Gen. Comp. Endocrinol. 72: 181–189, 1988.
 171. Conlon, J. M., C. F. Deacon, L. O'Toole, and L. Thim. Scyliorhinin I and II: two novel tachykinins from dogfish gut. FEBS Lett. 200: 111–116, 1986.
 172. Conlon, J. M., S. Falkmer, and L. Thim. Primary structures of three fragments of proglucagon from the pancreatic islets of the daddy sculpin (Cottus scorpius). Eur. J. Biochem. 164: 117–122, 1987.
 173. Conlon, J. M., R. Goke, P. C. Andrews, and L. Thim. Multiple molecular forms of insulin and glucagon‐like peptide from the pacific ratfish (Hydrolagus colliei). Gen. Comp. Endocrinol. 73: 136–146, 1989.
 174. Conlon, J. M., H. F. Hansen, and T. W. Schwartz. Primary structure of glucagon and a partial sequence of oxyntomodulin (glucagon‐37) from the guinea pig. Regul. Pept. 11: 309–320, 1985.
 175. Conlon, J. M., I. W. Henderson, and L. Thim. Gastrin‐releasing peptide from the intestine of the elasmobranch fish, Scyliorhinus canicula (common dogfish). Gen. Comp. Endocrinol. 68: 415–420, 1987.
 176. Conlon, J. M., and J. W. Hicks. Isolation and structural characterization of insulin, glucagon and somatostatin from the turtle, Pseudomys scripta. Peptides 11: 461–466, 1990.
 177. Conlon, J. M., J. W. Hicks, and D. D. Smith. Isolation and biological activity of a novel kinin ([Thr6]bradykinin) from the turtle, Pseudomys scripta. Endocrinology 126: 985–991, 1990.
 178. Conlon, J. M., S. Katsoulis, W. E. Schmidt, and L. Thim. [Arg3] substance P and neurokinin A from chicken small intestine. Regul. Pept. 20: 171–180, 1988.
 179. Conlon, J. M., and D. M. McCarthy. Fragments of prosomatostatin isolated from a human pancreatic tumour. Mol. Cell. Endocrinol. 38: 81–86, 1984.
 180. Conlon, J. M., P. F. Nielsen, and J. H. Youson. Primary structures of glucagon and glucagon‐like peptide isolated from the intestine of the parasitic phase lamprey Petromyzon marinus. Gen. Comp. Endocrinol. 91: 96–104, 1993.
 181. Conlon, J. M., F. O'Harte, D. D. Smith, R. J. Balment, and N. Hazon. Purification and characterization of urotensin II and parvalbumin from an elasmobranch fish, Scyliorhinus canicula (common dogfish). Neuroendocrinology 55: 230–235, 1992.
 182. Conlon, J. M., F. O'Harte, and H. Vaudry. Primary structures of the bombesin‐like neuropeptides in frog brain show that bombesin is not the amphibian gastrin‐releasing peptide. Biochem. Biophys. Res. Commun. 178: 526–530, 1991.
 183. Conlon, J. M., L. O'Toole, and L. Thim. Primary structure of glucagon from the gut of the common dogfish (Scyliorhinus canicula). FEBS Lett. 214: 50–56, 1987.
 184. Conlon, J. M., W. E. Schmidt, B. Gallwitz, S. Falkmer, and L. Thim. Characterization of an aminated form of pancreatic polypeptide from the daddy sculpin (Cottus scorpius). Regul Pept. 11: 461–466, 1986.
 185. Conlon, J. M., and L. Thim. Primary structure of glucagon from an elasmobranchian fish Torpedo marmorata. Gen. Comp. Endocrinol. 60: 398–405, 1985.
 186. Conlon, J. M., and L. Thim. Primary structure of insulin and a truncated C‐peptide from an elasmobranch fish, Torpedo marmorata. Gen. Comp. Endocrinol. 64: 199–205, 1986.
 187. Conlon, J. M., J. H. Youson, and J. Whittaker. Structure and receptor‐binding activity of insulin from a holostean fish, the bowfin (Amia calva). Biochem. J. 276: 261–264, 1991.
 188. Contesse, V., C. Delarue, F. Leboulanger, H. Lefebvre, F. Héry, and H. Vaudry. Serotonin produced in the adrenal gland regulates corticosteroid secretion through a paracrine mode of communication. In: Cellular Communication in Reproduction, edited by F. Facchinettei, I. W. Henderson, R. Pierantoni, and A. M. Polzonetti‐Magni. Bristol: J. Endocrinol. Ltd., 1993, p. 187–198.
 189. Cooke, N. E., D. Coit, J. Shine, J. D. Baxter, and J. A. Martial. Human prolactin cDNA structural analysis and evolutionary comparisons. J. Biol. Chem. 256: 4007–4016, 1981.
 190. Cooke, N. E., D. Coit, R. I. Weiner, J. D. Baxter, A. Joseph, and J. A. Martial. Structure of cloned DNA complementary to rat prolactin mRNA. J. Biol. Chem. 255: 6502–6510, 1980.
 191. Copeland, P. A., J. P. Sumpter, T. K. Walker, and M. Croft. Vitellogenin levels in male and female rainbow trout (Salmo gairdneri) at various stages of the reproductive cycle. Comp. Biochem. Physiol. [B] 83: 487–493, 1986.
 192. Cortelyou, J. R., and D. J. McWhinnie. Parathyroid glands of amphibia. Parathyroid structure and function with emphasis on regulation of mineral ions in body fluids. Am. Zool. 7: 843–855, 1967.
 193. Coupland, R. E. The Natural History of the Chromaffin Cell. London: Longmans, 1965.
 194. Coupland, R. E. Blood supply of the adrenal gland. In: Handbook of Physiology. Endocrinology, edited by H. Blaschko, G. Sayers, and A. D. Smith. Washington, DC: Am. Physiol. Soc., 1975, sect. 7, vol. VI, p. 283–294.
 195. Coupland, R. E. Catecholamines. In: Hormones and Evolution, edited by E. J. W. Barrington. London: Academic, 1979, p. 309–340.
 196. Crews, D. J., J. Bull, and T. Wibbels. Estrogen and sex reversal in turtles: a dose‐dependent phenomenon. Gen. Comp. Endocrinol. 81: 357–364, 1991.
 197. Cuevas, M. E., and G. Callard. In vitro secretion by staged spermatocysts (Sertoli/germ cell units) of dogfish (Squalus acanthias) testis. Gen. Comp. Endocrinol. 88: 151–165, 1992.
 198. Cunha, G. R., P. S. Cooke, R. Bigsby, and J. R. Brody. Ontogeny of sex steroid receptors in mammals. In: Nuclear Hormone Receptors, edited by M. G. Parker. London: Academic, 1991, p. 233–268.
 199. Curzon, N. P., J.M.D. Griffiths, and T. W. Evans. Role of the endothelium in modulating the vascular response to sepsis. Clin. Sci. (Colch.) 86: 359–374, 1994.
 200. Dacke, C. G. Calcium Regulation in Submammalian Vertebrates. New York: Academic, 1979.
 201. Dahlgren, U. On the electric motor nerve‐centre in skates (Rajidae). Science 40: 862–863, 1914.
 202. Danforth, E., Jr. Effects of fasting and altered nutrition on thyroid hormone metabolism in man. In: Thyroid Hormone Metabolism, edited by G. Henneman. New York: Dekker, 1986, p. 335–358.
 203. Daniel, T. O., and H. E. Ives. Endothelial control of vascular function. News Physiol. Sci. 4: 139–143, 1989.
 204. Danks, J. A., A. J. Devlin, P.M.W. Ho, H. Diefenbach‐Jagger, D. M. Power, A. Canario, T. J. Martin, and P. M. Ingleton. Parathyroid hormone‐related protein is a factor in normal fish pituitary. Gen. Comp. Endocrinol. 92: 210–212, 1993.
 205. Dantzler, W. H. Studies on nonmammalian nephrons. Kidney Int. 2: 560–570, 1982.
 206. Dantzler, W. H. Comparative Physiology of the Vertebrate Kidney. Berlin: Springer‐Verlag, 1989.
 207. Darling, D. S., W. W. Dickhoff, and A. Gorbman. Comparison of thyroid hormone binding to hepatic nuclei of the rat and a teleost (Oncorhynchus kisutch). Endocrinology 111: 1936–1943, 1982.
 208. Daughaday, W. H., M. Kapadia, C. E. Yanow, K. Fabrick, and I. K. Mariz. Insulin‐like growth factors I and II of nonmammalian sera. Gen. Comp. Endocrinol. 59: 316–325, 1985.
 209. Davies, P. F. How do vascular endothelial cells respond to flow?
 210. Davis, K. B., C. A. Goudie, B. A. Simco, T. R. Tiersch, and G. J. Carmichael. Influence of dihydrotestosterone on sex determination in channel catfish and blue catfish: period of developmental sensitivity. Gen. Comp. Endocrinol. 86: 147–151, 1992.
 211. Dayhoff, M. O. Ed. Atlas of Protein Sequence and Structure. Silver Spring, MD: Natl. Biomed. Foundation, 1973, suppl. 3.
 212. Deacon, C. F., W. Mosley, and I. Chester Jones. The X‐zone of the mouse adrenal cortex of the Swiss albino strain. Gen. Comp. Endocrinol. 61: 87–99, 1986.
 213. De Bold, A. Atrial natriuretic factor: a hormone produced by the heart. In: Biotechnology: The Renewable Frontier, edited by D. E. Koshland. Washington, DC: Am. Assoc. Advancement of Science, 1986, p. 217–224.
 214. De Bold, A. J., H. B. Borenstein, A. T. Veress, and H. A. Sonnenberg. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci. 28: 89–94, 1981.
 215. De Court, D., and B. Lahlou. Evidence for the direct intervention of angiotensin II in the release of cortisol in teleost fish. Life Sci. 41: 1517–1524, 1987.
 216. Decuypere, E., and E. R. Kuhn. Thyroid hormone physiology in galliformes: age and strain related changes in physiological control. Am. Zool. 28: 401–415, 1988.
 217. Deftos, L. J., E. G. Watts, D. H. Copp, and J. T. Potts, Jr. Sex differences in calcitonin (CT) secretion by salmon. IVth Int. Congr. Endocrinol. Int. Congr. Ser. 256: 180, 1972.
 218. De Jesus, E. G., T. Hirano, and Y. Inui. Changes in cortisol and thyroid hormone concentrations during early development and metamorphosis in the Japanese flounder, Paralichthys olivaceus. Gen. Comp. Endocrinol. 82: 369–376, 1991.
 219. Delidow, B. C., R. A. Baldocchi, and C. S. Nicoll. Evidence for hepatic involvement in the regulation of amphibian development by prolactin. Gen. Comp. Endocrinol. 70: 418–424, 1988.
 220. Delidow, B. C., N. Herbert, S. Steiny, and C. S. Nicoll. Secretion of prolactin‐synergizing activity (synlactin) by the liver of ectothermic vertebrates in vitro. J. Exp. Zool. 238: 147–153, 1986.
 221. De Luca, H. F. The vitamin D story: a collaborative effort of basic science and medicine. FASEB J. 2: 224–236, 1988.
 222. De Luca, H. F., and H. K. Schnoes. Vitamin D: recent advances. Annu. Rev. Biochem. 52: 411–439, 1983.
 223. De Luze, A., and J. Leloup. Fish growth hormone enhances peripheral conversion of thyroxine to triiodothyronine in the eel Anguilla anguilla L. Gen. Comp. Endocrinol. 56: 308–312, 1984.
 224. Dent, J. The thyroid gland. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications—Morphological Considerations, edited by P.K.T. Pang and M. P. Schreibman. New York: Academic, 1986, vol. 1, p. 175–206.
 225. Denver, R. J., and P. Licht. Dependence of body growth on thyroid activity in turtles. J. Exp. Zool. 258: 48–59, 1991.
 226. De Smet, D. Considerations on the Stannius corpuscles and the interrenal tissues of bony fishes, especially based on researches into Amia calva. Acta Zool. (Stockh.) 43: 201–219, 1962.
 227. De Vlaming, V. L., and R. J. Pardo. In vitro effects of insulin on liver lipid and carbohydrate metabolism in the teleost, Notemigonus crysoleucas. Comp. Biochem. Physiol. [B] 51: 489–497, 1975.
 228. Devlin, A. J., J. A. Danks, M. K. Faulkner, D. M. Power, A.V.M. Canario, T. J. Martin, and P. M. Ingleton. Immunochemical detection of parathyroid hormone‐related protein in the saccus vasculosus of a teleost fish. Gen. Comp. Endocrinol. 101: 83–90, 1996.
 229. Dibattista, J. A., A. Z. Mehdi, and T. Sandor. Intestinal triamcinolone acetonide receptors of the eel (Anguilla rostrata). Gen. Comp. Endocrinol. 51: 28–38, 1983.
 230. Dickhoff, W. W., and D. S. Darling. Evolution of thyroid function and its control in lower vertebrates. Am. Zool. 23: 697–707, 1983.
 231. Dimaline, R., J. R. Reeve, J. E. Shively, and D. Hawke. Isolation and characterization of rat vasoactive intestinal peptide. Peptides 5: 183–187, 1984.
 232. Dimaline, R., J. Young, and H. Gregory. Isolation, primary amino acid sequence and biological actions of chicken gastrin. Regul. Pept. 15: 172, 1986.
 233. Dimaline, R., J. Young, D. T. Thwaites, C. M. Lee, T. J. Shuttleworth, and M. C. Thorndyke. A novel vasoactive intestinal peptide (VIP) from elasmobranch intestine has full affinity for mammalian pancreatic VIP receptors. Biochim. Biophys. Acta 930: 97–100, 1987.
 234. Ding, J. L., L. Heep, and T. J. Lam. Two forms of vitellogenin in the plasma and gonads of male Oreochromis aureus. Comp. Biochem. Physiol. 93: 363–370, 1989.
 235. Dixon, J. S., and C. H. Li. The isolation and structure of alpha melanocyte‐stimulating hormone from horse pituitaries. J. Am. Chem. Soc. 82: 4568–4572, 1960.
 236. Dixon, J. S., and C. H. Li. The isolation and structure of β melanocyte‐stimulating hormone from horse pituitary glands. Gen. Comp. Endocrinol. 1: 161–169, 1961.
 237. Dockray, G. J. Comparative biochemistry and physiology of gut hormones. Annu. Rev. Physiol. 41: 83–95, 1979.
 238. Dockray, G. J. Evolutionary relationships of the gut hormones. Federation Proc. 38: 2295–2301, 1979.
 239. Dodd, J. M. The endocrine regulation of gametogenesis and gonad maturation in fishes. Gen. Comp. Endocrinol. 3: 675–687, 1972.
 240. Dodd, J. M. Reproduction in cartilaginous fishes (Chondrichthyes). In: Fish Physiology, edited by W. S. Hoar, D. J. Randall, and E. M. Donaldson. London: Academic, 1983, vol. 9, pt. A, p. 31–95.
 241. Dodd, J. M. The ovary. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications, edited by P. K. T. Pang and M. P. Schreibman. London: Academic, 1986, vol. 1, p. 351–397.
 242. Dodd, J. M., and M. H. I. Dodd. The ventral lobe and rachenachhypophyse (buccal lobe of the pituitary gland of cartilagenous fishes). In: Current Trends in Comparative Endocrinology, edited by B. Lofts and W. N. Holmes. Hong Kong: Hong Kong University Press, 1985, vol. 1, p. 127–130.
 243. Dodd, J. M., B. K. Follett, and P. J. Sharp. Hypothalamic control of pituitary function in submammalian vertebrates. Comp. Biochem. Physiol. 4: 113–223, 1971.
 244. Dodd, J. M., and T. Kerr. Comparative morphology and histology of the hypothalamo‐neurohypophysial system. Symp. Zool. Soc. Lond. 9: 9–27, 1963.
 245. Dodd, J. M., and J. P. Sumpter. Fishes. In: Marshall's Physiology of Reproduction, edited by G. E. Lamming. London: Churchill Livingstone, 1984, vol. 1, p. 1–126.
 246. Drakenberg, K., V. R. Sara, K. I. Lindahl, and B. Kewish. The study of insulin like growth factors in tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 84: 173–180, 1989.
 247. Drouin, J., and H. M. Goodman. Most of the coding region of rat ACTH β‐LPH precursor gene lacks intervening sequences. Nature 288: 610–613, 1980.
 248. Du, B. H., J. Eng, J. D. Hulmes, M. Chang, Y.‐C. E. Pan, and R. S. Yalow. Guinea pig has a unique mammalian VIP. Biochem. Biophys. Res. Commun. 128: 1093–1098, 1985.
 249. Duan, C., and T. Hirano. Stimulation of 35S‐sulfate uptake by mammalian insulin‐like growth factors I and II in cultured cartilages of the Japanese eel, Anguilla japonica. J. Exp. Zool. 356: 347–350, 1990.
 250. Duan, C., and Y. Inui. Effects of recombinant eel growth hormone on the uptake of [35S] sulfate by ceratobranchial cartilages of the Japanese eel, Anguilla japonica. Gen. Comp. Endocrinol. 79: 320–325, 1990.
 251. Duan, C., and Y. Inui. Evidence for the presence of a somatomedin‐like plasma factor(s) in the Japanese eel, Anguilla japonica. Gen. Comp. Endocrinol. 79: 326–331, 1990.
 252. Dunn, A. D. Ultrastructural autoradiography and cytochemistry of the iodine‐binding cells in the ascidian endostyle. J. Exp. Zool. 188: 103–123, 1974.
 253. Dunn, A. D. Iodine metabolism in the ascidian, Molgula manhattensis. Gen. Comp. Endocrinol. 25: 83–95, 1975.
 254. Dunn, R. S., and A. M. Perks. Comparative studies of plasma kinins: the kallikrein–kinin system in poikilotherm and other vertebrates. Gen. Comp. Endocrinol. 26: 165–178, 1975.
 255. Dupe‐Godet, M., and Y. Adjovi. Somatostatin‐like immunore‐activity in pancreatic extracts of a Sahelian lizard (Varanus exanthematicus) during starvation. Comp. Biochem. Physiol. A 75: 347–352, 1983.
 256. Dupont, W., F. Leboulanger, H. Vaudry, and R. Vallaint. Regulation of the aldosterone secretion in the frog, Rana esculenta. Gen. Comp. Endocrinol. 29: 51–60, 1976.
 257. Du Vigneaud, V. Hormones of the posterior pituitary gland: oxytocin and vasopressin. Harvey Lect. 50: 1–26, 1954–1955.
 258. Eales, J. G. Thyroid function in cyclostomes and fishes. In: Hormones and Evolution, edited by E. J. W. Barrington. New York: Academic, 1979, vol. 1, p. 341–436.
 259. Eales, J. G. Thyroid function and nutritional status in various vertebrates. Am. Zool. 28: 351–362, 1988.
 260. Eales, J. G., and K. R. Finnson. Response of hepatic thyroxine 5′‐deiodinase of rainbow trout, Oncorhynchus mykiss, to chronic ingestion of 3,5,3′‐triiodo‐l‐thyronine. J. Exp. Zool. 257: 230–235, 1991.
 261. Eales, J. G., D. A. Higgs, L. M. Uin, D. L. Maclathcy, O. Bres, J. R. McBride, and B. S. Dosanjh. Influence of dietary lipid and carbohydrate levels and chronic 3,5,3′‐triiodo‐l‐thyronin treatment on thyroid function in immature rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 80: 146–154, 1990.
 262. Eales, J. G., and D.A.R. Sinclair. Enterohepatic cycling of thyroxine in starved and fed brook trout. Salvelinus fontinalis (Mitchill). Comp. Biochem. Physiol. A 49: 661–672, 1974.
 263. Ekholm, R., and U. B. Jorkman. Generation of hydrogen peroxide, a factorin thyroglobulin iodination. In: Thyroglobulin—The Prothyroid Hormone, edited by M. C. Eggo and G. N. Burrows. New York: Raven, 1985, vol. 2, p. 153–158.
 264. El‐Salhy, M., and L. Grimelius. Histochemical and immunohistochemical studies of the endocrine pancreas of lizards. Histochemistry 72: 237–247, 1981.
 265. Enami, M. Studies in neurosecretion. II. Caudal neurosecretory system in the eel (Anguilla japonica). Gunma J. Med. Sci. 4: 23–26, 1955.
 266. Eng, J., B.‐H. Du, G. F. Johnson, S. Kanakamedala, S. Samuel, J.‐P. Raufman, and E. Straus. Cat gastrinoma and the sequence of cat gastrins. Regul. Pept. 37: 9–13, 1992.
 267. Engler, D., and A. D. Burger. The deiodination of the iodothyronines and of their derivatives in man. Endocr. Rev. 5: 151–184, 1984.
 268. Epple, A. The endocrine pancreas. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. London: Academic, 1969, vol. 2, p. 271–319.
 269. Epple, A., and J. E. Brinn. Pancreatic islets. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications, edited by P. K. T. Pang and M. P. Schreibman. London: Academic, 1986, vol. 1. p. 279–317.
 270. Erspamer, V., G. F. Erspamer, and G. Linari. Occurrence of tachykinins (physalemin‐ or substance P‐like peptides) in the amphibian skin and their actions on smooth muscle preparations. In: Substance P (Nobel Symposium 37), edited by U. S. von Euler and B. Penow. New York: Raven, 1977, p. 67–74.
 271. Erwin, C. R., M. L. Croyle, J. E. Donelson, and R. A. Maurer. Nucleotide sequence of cloned complementary deoxyribonucleic acid for the alpha subunit of bovine pituitary glycoprotein hormones. Biochemistry 22: 4856–4860, 1983.
 272. Esch, F., N. Ling, P. Bohlen, A. Baird, R. Benoit, and R. Guillemin. Isolation and characterization of the bovine hypothalamic corticotropin‐releasing factor. Biochem. Biophys. Res. Commun. 122: 899–905, 1984.
 273. Esch, F. S., A. J. Mason, K. Cooksey, M. Mercado, and S. Shimasaki. Cloning and DNA sequence analysis of the cDNA for the precursor of the β chain of bovine follicle stimulating hormone. Proc. Natl. Acad. Sci. U.S.A. 83: 6618–6621, 1986.
 274. Eschbach, J. W., J. C. Egrie, M. R. Downing, J. K. Browne, and J. W. Adamson. Correction of the anemia of end stage renal disease with recombinant human erythropoeitin. N. Engl. J. Med. 316: 73–78, 1987.
 275. Evans, D. H. An emerging role for a cardiac peptide hormone in fish osmoregulation. Annu. Rev. Physiol. 52: 43–60, 1990.
 276. Fabbri, E., L. Brighenti, C. Ottolenghi, A. C. Puviani, and A. Capuzzo. β‐Adrenergic receptors in catfish liver membranes: characterization and coupling to adenylate cyclase. Gen. Comp. Endocrinol. 85: 254–260, 1992.
 277. Falkmer, S., R. E. Carraway, M. El‐Salhy, S. O. Emden, L. Grimelius, J. F. Rehfeld, M. Reinecke, and T. W. Schwartz. Phylogeny of the gastroenteropancreatic neuroendocrine system. In: Cellular Basis of Chemical Messengers in the Digestive System, edited by M. I. Grossman, M. A. Brazier, and J. Lechago. New York: Academic, 1981, p. 13–42.
 278. Falkmer, S., M. El‐Salhy, and M. Titbach. Evolution of the neuroendocrine system in vertebrates. In: Evolution of and Tumour Pathology of the Neuroendocrine System, edited by S. Falkmer, R. Hakanson, and F. Sundler. Amsterdam: Elsevier, 1984, p. 59–87.
 279. Farbridge, K. J., and J. F. Leatherland. A comparative immunohistochemical study of the pars distalis in six species of teleost fishes. Fish Physiol. Biochem. 1: 63–74, 1986.
 280. Farnsworth, N. R. New drugs from ancient wisdom: approaches to drug discovery using higher plants. In: History of the Healing Professions, edited by A. R. Michell. Wallingford, UK: C. A. B. International, 1993, p. 45–64.
 281. Fasano, S., M. d'Antonio, R. Pierantoni, and G. Chieffi. Plasma and follicular tissue steroid levels in the elasmobranch fish, Torpedo marmorata. Gen. Comp. Endocrinol. 85: 327–333, 1992.
 282. Fasano, S., S. Minucci, L. di Matteo, M. d'Antonio, and R. Pierantoni. Intratesticular feedback mechanisms in the regulation of steroid profiles in the frog, Rana esculenta. Gen. Comp. Endocrinol. 75: 335–342, 1989.
 283. Fasano, S., R. Pierantoni, and G. Chieffi. Reproductive biology of elasmobranchs with emphasis on endocrines. J. Exp. Zool. Suppl. 2: 53–61, 1989.
 284. Fasano, S., R. Pierantoni, S. Minucci, L. di Matteo, M. d'Antonio, and G. Chieffi. Effects of intratesticular injections of estradiol and gonadotropin‐releasing hormone (GnRHA, HOE 766) on plasma androgen levels in intact and hypophysectomized Torpedo marmorata and Torpedo ocellata. Gen. Comp. Endocrinol. 75: 349–354, 1989.
 285. Feist, G., C. B. Schreck, M. S. Fitzpatrick, and J. M. Redding. Sex steroid profiles of coho salmon (Oncorhynchus kisutch) during early development and sexual differentiation. Gen. Comp. Endocrinol. 80: 299–313, 1990.
 286. Fenwick, J. C. Effect of vitamin D3 (cholecalciferol) on plasma calcium and intestinal 45Ca absorption in goldfish, Carassius auratus. Can. J. Zool. 62: 34–46, 1984.
 287. Fenwick, J. C., and J. G. Brasseur. Effects of stanniectomy and experimental hypercalcemia on plasma calcium levels and calcium influx in American eels, Anguilla rostrata, LeSeur. Gen. Comp. Endocrinol. 82: 459–465, 1991.
 288. Fenwick, J. C., and T. J. Lam. Effects of calcitonin on plasma calcium and phosphate in the mudskipper, Periophthalmodon schlosseri (Teleostei), in water and during exposure to air. Gen. Comp. Endocrinol. 70: 224–230, 1988.
 289. Fenwick, J. C., K. Smith, J. Smith, and G. Flik. Effect of various vitamin D analogs on plasma calcium and phosphorus and intestinal calcium absorption in fed and unfed American eel, Anguilla rostrata. Gen. Comp. Endocrinol. 55: 398–404, 1984.
 290. Fenwick, J. C., and M. G. Vermette. Vitamin D3 and the renal handling of phosphate in American eels. Fish Physiol. Biochem. 7: 351–358, 1989.
 291. Fernandez‐Pardal, J., J. C. Perseguino, D. M. Berman, and A. Coviello. Angiotensin converting enzyme in the toad Bufo arenarum. Comp. Biochem. Physiol. A 83: 331–332, 1986.
 292. Fisher, A.W.F., K. Wong, V. Gill, and K. Lederis. Immunocytochemical localization of urotensin I neurons in the caudal neurosecretory system of the white sucker (Catostomus commersoni). Cell Tissue Res. 235: 19–23, 1984.
 293. Fleming, W. R., J. Brehe, and R. Hanson. Some complicating factors in the study of calcium metabolism in teleosts. Am. Zool. 13: 793–797, 1973.
 294. Flik, G., T. Labedez, F.P.J.G. Lafeber, S. E. Wendelaar Bonga, and P.K.T. Pang. Studies on teleost corpuscles of Stannius: physiological and biochemical aspects of synthesis and release of hypocalcin in trout, goldfish and eel. Fish Physiol. Biochem. 7: 343–349, 1989.
 295. Flint, A.P.F., and E. L. Sheldrick. Evidence for a systemic role for ovarian oxytocin in luteal regression in sheep. J. Reprod. Fertil. 67: 215–225, 1983.
 296. Flint, A.P.F., and E. L. Sheldrick. Ovarian secretion of oxytocin is stimulated by prostaglandin. Nature 297: 587–588, 1982.
 297. Flint, A.P.F., E. L. Sheldrick, T. J. McCann, B. R. Brinklow, and A.S.I. Loudon. Prostaglandin‐induced secretion of oxytocin and prolactin in red (Cervus elaphus) and Pere David's (Elaphurus davidianus) deer hinds: evidence for oxytocin of luteal origin. Gen. Comp. Endocrinol. 83: 432–438, 1991.
 298. Flood, C. G., and J. G. Eales. Effects of starvation and refeeding on plasma T4 and T3 levels and T4 deiodination in rainbow trout, Salmo gairdneri, Can. J. Zool. 61: 1949–1953, 1983.
 299. Floyd, J. C., S. S. Fujans, S. Pek, and R. E. Chance. A newly recognised pancreatic polypeptide; plasma levels in health and disease. Recent Prog. Horm. Res. 33: 519–570, 1977.
 300. Folley, S. J. The milk‐ejection reflex: a neuroendorine theme in biology, myth and art. J. Endocrinol. 44: x–xx, 1969.
 301. Fontaine, M. Corpuscules de Stannius et regulation ionique (Ca, K et Na) du millieu interieur de l'anguille (Anguilla anguilla). C. R. Acad. Sci III 259: 875–878, 1964.
 302. Fontaine, Y., J. Leloup‐Hatey, and S. Dufour. Endocrine control of reproduction. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications, edited by P. K. T. Pang and M. P. Scriebman. New York: Academic, 1991, vol. 4, p. B, p. 311–331.
 303. Forssmann, W. G., K. Nokihara, M. Gagelmann, D. Hock, S. Feller, P. Schutz‐Knappe, and F. Herbst. The heart is the center of a new endocrine paracrine and neurocrine system. Arch. Histol. Cytol. 52: (Suppl.): 93–315, 1989.
 304. Fouchereau‐Peron, Y., Y. Arlot‐Bonnemains, M. S. Moukhtar, and G. Milhaud. Adaptation of rainbow trout (Salmo gairdnerii) to sea water: changes in calcitonin levels. Comp. Biochem. Physiol. A 83: 83–87, 1986.
 305. Fraser, D. R. Regulation of the metabolism of vitamin D. Physiol. Rev. 60: 551–628, 1980.
 306. Fraser, D. R., and E. Kodicek. Unique biosynthesis by the kidney of a biologically active vitamin D metabolite. Nature 228: 764–766, 1970.
 307. Fridberg, G. Studies on the caudal neurosecretory system in teleosts. Acta Zool. Stockh. 43: 1–77, 1962.
 308. Fridberg, G., and H. A. Bern. The urophysis and the caudal neurosecretory system of fishes. Biol. Rev. 43: 175–199, 1968.
 309. Fryer, J. N. A radioreceptor assay for purified teleost growth hormone. Gen. Comp. Endocrinol. 39: 123–130, 1979.
 310. Fujiki, Y., P. Rathnam, and B. B. Saxena. Amino acid sequence of the β‐subunit of the follicle‐stimulating hormone from equine pituitary glands. J. Biol. Chem. 253: 5363–5368, 1978.
 311. Fujita, T., and H. Kobayashi. The cells and hormones of the GEP endocrine system. In: Gastro‐Entero‐Pancreatic Endocrine System: A Cell Biological Approach, edited by T. Fujita. Amsterdam: Excerpta Medica, 1974, p. 1–16.
 312. Fujita, T., and S. Kobayashi. Structure and function of gut endocrine cells. Int. Rev. Cytol. 6: (Suppl.) 187–233, 1977.
 313. Funder, J. W. Paracrine, cryptocrine, acrocrine. Mol. Cell. Endocrinol. 70: C21–C24, 1990.
 314. Furchgott, R. F., and J. V. Zawadsi. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376, 1980.
 315. Furspan, P. B., J.S.K. Sham, R. L. Shew, G. Peng, and P.K.T. Pang. Cardiac actions of parathyroid hormones in some vertebrates. Gen. Comp. Endocrnol. 56: 246–251, 1984.
 316. Galardy, R., P. Podhansky, and K. R. Olson. Angiotensin‐converting enzyme activity in tissues of the rainbow trout. J. Exp. Zool. 230: 155–158, 1984.
 317. Galton, V. A. The role of thyroid hormones in amphibian development. Am. Zool. 28: 309–318, 1988.
 318. Galton, V. A., and A. Hiebert. The ontogeny of iodothyronine 5′monodeiodinase activity in Rana catesbeiana tadpoles. Endocrinology 122: 640–645, 1988.
 319. Gancedo, B., I. Corpas, A. L. Alonso‐Gomez, M. J. Delgado, G. Morreale de Escobar, and M. Alonso‐Bedate. Corticotropin‐releasing factor stimulates metamorphosis and increases thyroid hormone concentration in prometamorphic Rana perezi larvae. Gen. Comp. Endocrinol. 87: 6–13, 1992.
 320. Garcia, Ayala A., M. T. Lozano, and B. Agulleiro. Comparative study on the endocrine cells in the pancreas of Mauremys caspica (Chelonia) in summer and winter. Gen. Comp. Endocrinol. 75: 363–375, 1989.
 321. Garnier, D. H., and J. Joly. Sexual steroids in Salamandra salamandra (L.) during ontogeny. Gen. Comp. Endocrinol. 81: 83–92, 1991.
 322. Geschwind, I. I., C. H. Li, and L. Barnafi. The isolation, characterization and amino acid sequence of a melanocyte‐stimulating hormone from bovine pituitary glands. J. Am. Chem. Soc. 79: 6394–6401, 1957.
 323. Gill, V. E., G. D. Burford, K. Lederis, and E. A. Zimmerman. An immunocytochemical investigation for arginine vasotocin and neurophysin in the pituitary gland and the caudal neurosecretory system of Catostomus commersoni. Gen. Comp. Endocrinol. 32: 505–511, 1977.
 324. Glass, G.B.J. (Ed). Gastrointestinal Hormones. New York: Raven, 1981.
 325. Godine, J. E., W. W. Chin, and J. F. Habener. Alpha subunit of rat pituitary glycoprotein hormones: primary structure of the precursor determined from the nucleotide sequence of cloned cDNAs. J. Biol. Chem. 257: 8368–8371, 1982.
 326. Goldstein, D. L., and E. J. Braun. Proportions of mammalian‐type and reptilian‐type nephrons in the kidneys of two passerine birds. J. Morphol. 187: 173–179, 1986.
 327. Gorbman, A. (Ed.). Comparative Endocrinology. New York: Wiley, 1959.
 328. Gorbman, A. Early development of the hagfish pituitary gland: evidence for the endodermal origin of the adenohypophysis. Am. Zool. 23: 639–654, 1983.
 329. Gorbman, A. Reproduction in cyclostome fishes and its regulation. In: Fish Physiology, edited by W. S. Hoar, D. J. Randal, and E. M. Donaldson. London: Academic, 1983, vol. 9, pt. A, p. 1–29.
 330. Gorbman, A. Olfactory origins and evolution of the brain‐pituitary endocrine system: facts and speculation. Gen. Comp. Endocrinol. 97: 171–178, 1995.
 331. Gorbman, A., and H. A. Bern. A Textbook of Comparative Endocrinology. New York: Wiley, 1962.
 332. Gorbman, A., and C. W. Creaser. Accumulation of radioactive iodine by the endostyle of larval lampreys and the problem of homology of the thyroid. J. Exp. Zool. 89: 391–406, 1942.
 333. Gorbman, A., W. W. Dickhoff, S. R. Vigna, N. B. Clark, and C. L. Ralph. Comparative Endocrinology. New York: Wiley, 1983.
 334. Gossen, D., A. Vandermeers, M.‐C. Vandermeers‐Piret, J. Rathe, A. Cauvin, P. Robberecht, and J. Christophe. Isolation and primary structure of rat secretin. Biochem. Biophys. Res. Commun. 160: 862–867, 1989.
 335. Graf, L., and C. H. Li. On the primary structures of pituitary bovine growth hormone. Biochem. Biophys. Res. Commun. 56: 168–176, 1974.
 336. Grau, E. G., L.M.H. Helms, S. K. Shimoda, C. Ford, J. Le‐Grand, and K. Yamauchi. The thyroid gland of the Hawaiian parrot fish and its use as an in vitro model system. Gen. Comp. Endocrinol. 61: 100–108, 1986.
 337. Gray, D. A., H. Schütz, and R. Gerstberger. Interaction of atrial natriuretic factor and osmoregulatory hormones in the Pekin duck. Gen. Comp. Endocrinol. 81: 246–255, 1991.
 338. Grier, H. J., J. R. Linton, J. F. Linton, J. F. Leatherland, and V. L. De Vlaming. Structural evidence for two different testicular types in teleost fishes. Am. J. Anat. 159: 331–345, 1980.
 339. Grill, G., P. Granger, and K. Thurau. The renin–angiotensin system of amphibians. I. Determination of the renin content of the amphibian kidney. Pflugers Arch. 331: 1–12, 1972.
 340. Grimmelikhuijzen, C.J.P., K. Dierickz, and G. J. Boer. Oxytocin/vasopressin‐like immunoreactivity is present in the nervous system of hydra. Neuroscience 7: 3191–3199, 1982.
 341. Grube, D., and W. G. Forssmann. Morphology and function of the entero‐endocrine cells. Horm. Metab. Res. 11: 589–606, 1979.
 342. Guimaraes, J. A., J. V. Pierce, V. Hial, and J. J. Pisano. Methionyl‐lysyl‐bradykinin: the kinin released by pepsin from human kininogens. In: Advances in Experimental Medicine and Biology, Kinins: Pharmacodynamics and Biological Roles, edited by F. Sicuteri, N. Back, and G. L. Haberland. New York: Plenum, 1976, vol. 70, p. 265.
 343. Guttmann, S. Chemistry and structure–activity relationship of natural and synthetic calcitonins. In: Calcitonin 1980: Proceedings of the International Symposium, Milan, edited by A. Pecile. Amsterdam: Excerpta Medica, 1981, p. 11–24.
 344. Hadley, M. E. Endocrinology. London: Prentice‐Hall, 1992.
 345. Hanke, W. The adrenal cortex of Amphibia. In: General. Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester‐Jones and I. W. Henderson. London: Academic, 1978. vol. 2, p. 419–495.
 346. Hanke, W. Corticosteroid function: evolutionary aspects. In: Progress in Comparative Endocrinology. New York: Wiley‐Liss, 1990, p. 445–452.
 347. Hanke, W., and P. A. Janssens. The role of hormones in regulation of carbohydrate metabolism in the Australian lungfish Neoceratodus forsteri. Gen. Comp. Endocrinol. 51: 364–369, 1983.
 348. Hanke, W., U. Kaltenhäuser, C. Maser‐Glutch, and V. Pathak. Regulation of interrenal activity by electrolytes and peptide hormones. Fortschr. Zool. 38: 241–255, 1990.
 349. Hanke, W., and C. Maser‐Gluth. The influence of osmolality and ions on the interrenal secretion in Amphibia. Zoo. Jb. Physiol. 89: 453–467, 1985.
 350. Hanke, W., and R. Yousri. Regulation of the pituitary interrenal axis of Rana temporaria. Zoo. Jb. Physiol. 92: 429–445, 1988.
 351. Hanner, R. H., and G. B. Ryan. Ultrastructure of the renal juxtaglomerular complex and peripolar cells in the axolotl (Ambystoma mexicanum) and toad (Bufo marinus). J. Anat. 130: 445–455, 1980.
 352. Hanström, B. Gross anatomy of the hypophysis in mammals. In: The Pituitary Gland, edited by G. W. Harris and B. T. Donovan. London: Butterworths, 1966, p. 2–57.
 353. Hara, J., and K. Yamada. Chemocytological observations on the parathyroid glands of the toad (Bufo vulgaris japonicus) in specimens taken throughout the year. Z. Zellforsch. Mikrosk. Anat. 68: 814–828, 1965.
 354. Hardisty, M. W. Gonadogenesis, sex differentiation and gametogenesis. In: The Biology of Lampreys, edited by M. W. Hardisty and I. C. Potter. London: Academic, 1971, p. 295–359.
 355. Harmon, J. S., C. D. Eilertson, M. A. Sheridan, and E. M. Plisetskaya. Insulin suppression is associated with hypersomatostatinemia and hyperglucagonemia in glucose‐injected rainbow trout. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 32): R609–R613, 1991.
 356. Harmon, J. S., and M. A. Sheridan. Effects of nutritional state, insulin, and glucagon on lipid mobilization in rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 87: 214–221, 1992.
 357. Harris, J. I. Structure of a melanocyte‐stimulating hormone from the human pituitary gland. Nature 184: 167–169, 1959.
 358. Harris, J. I., and A. B. Lerner. Amino acid sequence of the alpha melanocyte‐stimulating hormone. Nature 179: 1346–1347, 1957.
 359. Harris, J. I., and P. Roos. The structure of β melanocyte‐stimulating hormone from pig pituitary gland. Biochem. J. 71: 434–445, 1959.
 360. Harvey, S., H. Klandorf, and J. G. Phillips. Effects of food or water deprivation on circulating levels of pituitary, thyroid and adrenal hormones and on glucose and electrolyte concentrations in domestic ducks (Anas platyrhynchos). J. Zool. (Lond.) 194: 341–361, 1981.
 361. Hasegawa, K., H. Nishimura, and M. C. Khosla. Angiotensin induced endothelium‐dependent relaxation of fowl aorta. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 35): R903–R911, 1993.
 362. Hasegawa, Y., M. Cipolle, T. X. Watanabe, T. Nakajima, H. Sokabe, and J. E. Zehr. Chemical structure of angiotensin in the turtle, Pseudemys scripta. Gen. Comp. Endocrinol. 53: 159–162, 1984.
 363. Hasegawa, Y., T. X. Watanabe, H. Sokabe, and T. Nakajima. Chemical structure of angiotensin in the bullfrog Rana catesbeiana. Gen. Comp. Endocrinol. 50: 75–80, 1983.
 364. Haux, C., B.T.H. Björnsson, and L. Förlin. Influence of cadmium exposure on plasma calcium, vitellogenin and calcitonin in vitellogenic rainbow trout. Mar. Environ. Res. 24: 199–202, 1988.
 365. Hayashi, H., T. Hayashi, and Y. Hanaoka. Amphibian lutropin and follitropin from the bullfrog Rana catesbeiana. Complete amino acid sequence of the alpha subunit. Eur. J. Biochem. 203: 185–191, 1992.
 366. Hayashi, H., T. Hayashi, and Y. Hanaoka. Amphibian lutropin from the bullfrog Rana catesbeiana. Complete amino acid sequence of the β subunit. Eur. J. Biochem. 205: 105–110, 1992.
 367. Hayashi, H., K. Imai, and K. Imai. Characterization of chicken ACTH and alpha‐MSH: the primary sequence of chicken ACTH is more similar to Xenopus ACTH than to other avian ACTH. Gen. Comp. Endocrinol. 82: 434–443, 1991.
 368. Hayashi, T., Y. Hanaoka, and H. Hayashi. The complete amino acid sequence of the follitropin β‐subunit of the bullfrog, Rana catesbeiana. Gen. Comp. Endocrinol. 88: 144–150, 1992.
 369. Hayashi, T., T. Nakayama, T. Nakajima, and H. Sokabe. Comparative studies on angiotensins. V. Structure of angiotensin formed by the kidney of Japanese goosefish and its identification by Dansyl method. Chem. Pharm. Bull. (Tokyo) 26: 215–219, 1978.
 370. Hayes, M. E., D. F. Guilland‐Cumming, R.G.G. Russell, and I. W. Henderson. Metabolism of 25‐hydroxycholecalciferol in a teleost fish (Salmo gairdneri). Gen. Comp. Endocrinol. 64: 143–150, 1986.
 371. Haymaker, W. Hypothalamo‐pituitary neural pathways and the circulatory system of the pituitary. In: The Hypothalamus, edited by W. Haymaker, E. Anderson, and W. J. H. Nauta. Springfield, IL: Thomas, 1969, p. 219–250.
 372. Hayslett, J. P., M. Epstein, D. Spector, J. D. Myers, H. V. Murdaugh, and F. H. Epstein. Effect of calcitonin on sodium metabolism in Squalus acanthus and Anguilla rostrata. Bull. Mt. Desert Island Biol. Lab. 11: 33–35, 1971.
 373. Hazlewood, R. L., and S. D. Turner. Spectrum effects of a new polypeptide (third hormone?) isolated from chicken pancreas. Gen. Comp. Endocrinol. 21: 485–497, 1973.
 374. Hazon, N., and I. W. Henderson. Secretory dynamics of 1α‐hydroxycorticosterone in the dogfish, Scyliorhinus canicula. J. Endocrinol. 103: 205–211, 1984.
 375. Hazon, N., and I. W. Henderson. Factors affecting the secretory dynamics of 1α‐hydroxycorticosterone in the dogfish Scyliorhinus canicula. Gen. Comp. Endocrinol. 59: 50–55, 1985.
 376. Heinrich, G., H. M. Kronenberg, J. T. Potts, and J. F. Habener. Gene encoding parathyroid hormone. Nucleotide sequence of the rat gene and deduced amino acid sequence of rat preproparathyroid hormone. J. Biol. Chem. 259: 3320–3329, 1984.
 377. Henderson, I. W. Phylogeny of renal, cardiovascular and endocrine activity of the renin–angiotensin system. In: Neurobiology of the Cardiorespiratory System, edited by E. W. Taylor. Manchester: Manchester University Press, 1987, p. 394–414.
 378. Henderson, I. W. The expanding endocrine system. J. Endocrinol. 115: 195–197, 1987.
 379. Henderson, I. W. Water and sodium disturbances in space. J. Br. Interplanet. Soc. 42: 363–366, 1989.
 380. Henderson, I. W., J. A. Brown, and R. J. Balment. The renin–angiotensin system. In: New Insights in Vertebrate Kidney Function, (Soc. Exp. Biol. Semin. Series 52) edited by J. A. Brown, R. J. Balment, and J. C. Rankin. Cambridge: Cambridge University Press, 1993, p. 311–350.
 381. Henderson, I. W., and C. F. Deacon. Phylogeny and comparative physiology of the renin–angiotensin system. In: The Renin–Angiotensin System, edited by J. I. S. Robertson and M. G. Nicholls. London: Gower, 1993, vol. 1 p. 2.1–2.28.
 382. Henderson, I. W., V. Jotisankasa, W. Mosley, and M. Oguri. Endocrine and environmental influences upon plasma cortisol concentrations and plasma renin activity of the eel, Anguilla anguilla L. J. Endocrinol. 70: 81–95, 1976.
 383. Henderson, I. W., and D. E. Kime. The adrenal cortical steroids. In: Vertebrate Endocrinology: Fundamental and Biomedical Implications, edited by P. K. T. Pang and M. P. Schreibman. London: Academic, 1986, vol. 2, p. 121–142.
 384. Henderson, I. W., L. B. O'Toole, and N. Hazon. Kidney function. In: Physiology of Elasmobranch Fishes, edited by T. J. Shuttleworth. London: Springer‐Verlag, 1988, p. 201–214.
 385. Henderson, I. W., L. B. O'Toole, and G. W. Souness. Sodium, water and hormones. In: Adaptations to Salinity and Dehydration, edited by R. Kirsch and B. Lahlou. Basel: Karger, 1987, p. 1–12.
 386. Henderson, N. E. Structural similarities between the adenohypophysis of brook trout and tetrapods. Gen. Comp. Endocrinol. 12: 148–153, 1969.
 387. Henry, J. S., V. A. Lance, and J. M. Conlon. Primary structure of pancreatic polypeptide from four species of Perissodactyla (Przewalski's horse, zebra, rhino, tapir). Gen. Comp. Endocrinol. 84: 440–446, 1991.
 388. Hickman, C. P., and B. F. Trump. The kidney. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. London: Academic 1969, vol. 1, p. 91–240.
 389. Higgs, D. A., and J. G. Eales. Influence of food deprivation on radioiodothyronine and radioiodide kinetics in yearling Brook trout, Salvelinus fontinalis (Mitchill) with a consideration of the extent of l‐thyroxine conversion to 3,5,3′‐triiodo‐l‐thyronine. Gen. Comp. Endocrinol. 32: 9–40, 1977.
 390. Higgs, D. A., U.H.M. Fagerlund, J. G. Eales, and J. R. McBride. Application of thyroid and steroid hormones as anabolic agents in fish culture. Comp. Biochem. Physiol. [B] 73: 143–176, 1982.
 391. Himick, B. A., and J. G. Eales. Acute correlated changes in plasma T4 and glucose in physically disturbed cannulated rainbow trout, Oncorhynchus mykiss, Comp. Biochem. Physiol. A 97: 165–167, 1990.
 392. Himick, B. A., and J. G. Eales. The acute effects of food and glucose challenge on plasma T4 and T3 levels in previously starved rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 89: 34–41, 1990.
 393. Himick, B. A., D. A. Higgs, and J. G. Eales. The acute effects of alteration in the dietary concentrations of carbohydrate, protein, and lipid on plasma T4, T3, and glucose levels in rainbow trout. Oncorhynchus mykiss. Gen. Comp. Endocrinol. 82: 451–458, 1991.
 394. Hinds, L. A. Control of pregnancy, parturition and luteolysis in marsupials. Reprod. Fertil. Dev. 2: 535–552, 1990.
 395. Hinson, J. P. Paracrine control of adrenocortical function: new role for the medulla? J. Endocrinol. 124: 7–9, 1989.
 396. Hirano, T. Hepatic receptors for homologous growth hormone in the eel. Gen. Comp. Endocrinol. 81: 383–390, 1991.
 397. Hirano, T. Endocrine control of osmoregulation in migratory fishes. Mar. Biol. 2: 3–14, 1992.
 398. Hirano, T., S. Hasegawa, H. Yamauchi, and H. Orimo. Further studies on the absence of hypocalcemic effects of eel calcitonin in the eel, Anguilla japonica. Gen. Comp. Endocrinol. 43: 42–50, 1981.
 399. Ho, S.‐M. Endocrinology of vitellogenesis. In: Hormones and Reproduction in Fishes, Amphibians and Reptiles, edited by P. O. Norris and R. E. Jones. New York, Plenum, 1987, p. 145–159.
 400. Hobart, P., R. Crawford, L. P. Shen, R. Pictet, and W. J. Rutter. Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfish. Nature 288: 137–141, 1980.
 401. Holick, M. F., S. A. Holick, and R. L. Guillard. On the origin and metabolism of vitamin D in the sea. In: Comparative Endocrinology of Calcium Regulation, edited by C. Oguro and P. K. T. Pang. Tokyo: Japan Sci. Soc. Press, 1982, p. 85–92.
 402. Holick, M., H. K. Schnoes, H. F. de Luca, R. W. Gray, I. T. Boyle, and T. Suda. Isolation and identification of 24, 25‐dihydroxycholecalciferol, a metabolite of vitamin D3 made in the kidney. Biochemistry 11: 4251–4255, 1972.
 403. Hollenberg, S. M., C. Weinberger, E. S. Ong, G. Cerelli, A. Oro, and R. Lebo. Primary structure and expression of a functional human glucocorticoid receptor. Nature 318: 635–641, 1985.
 404. Holmes, R. L., and J. N. Ball. The Pituitary Gland: A Comparative Account. London: Cambridge University Press, 1974.
 405. Holmes, W. N. Hormones and osmoregulation in marine birds. Gen. Comp. Endocrinol. 25: 249–258, 1975.
 406. Holmes, W. N., and J. G. Phillips. The adrenal cortex of birds. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester‐Jones and I. W. Henderson. London: Academic, 1976, vol. 1, p. 293–420.
 407. Holmgre, S., C. Vaillant, and R. Dimaline. VIP‐, substance P‐, gastrin/CCK‐, bombesin‐, somatostatin‐ and glucagon‐immunoreactivities in the gut of the rainbow trout, Salmo gairdneri. Cell Tissue Res. 223: 141–153, 1982.
 408. Honma, T., M. Watanabe, S. Hirose, A. Kanai, K. Kangawa, and H Matsuo. Isolation and determination of the amino acid sequence of chicken calcitonin I from chicken ultimobranchial glands. J. Biochem. 100: 459–467, 1980.
 409. Honma, Y., and E. Tamura. Studies on Japanese chars of the genus Salvenlinus. IV The caudal neurosecretory system of the nikko‐iwana, Salvelinus leucomaenis pluvius (Hilgendorf). Gen. Comp. Endocrinol. 9: 1–9, 1967.
 410. Hooker, W. M., P. J. McMillan, and L. G. Thaete. Ultimo‐branchial gland of the trout (Salmo gairdneri). Gen. Comp. Endocrinol. 38: 275–284, 1979.
 411. Hubbard, P. C., and I. W. Henderson. Renal dopamine and the tubular handling of sodium. J. Mol. Endocrinol. 14: 139–155, 1995.
 412. Ichikawa, T., K. Lederis, and H. Kobayashi. Primary structures of multiple forms of urotensin II in the urophysis of the carp, Cyprinus carpio. Gen. Comp. Endocrinol. 55: 133–141, 1984.
 413. Ichikawa, T., D. McMaster, K. Lederis, and H. Kobayashi. Isolation and amino acid sequence of urotensin I, a vasoactive and ACTH‐releasing neuropeptide, from carp (Cyprinus carpio) urophysis. Peptides 3: 859–867, 1982.
 414. Idelman, S. The structure of the mammalian adrenal cortex. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester‐Jones and I. W. Henderson. London, Academic, 1978, vol. 2, p. 1–199.
 415. Idler, D. R., and B. Truscott. 1α‐Hydroxycorticosterone from cartilaginous fish: a new adrenal steroid in blood. J. Fish. Res. Bd. Can. 23: 615–619, 1966.
 416. Inagami, T. Renin in the testis and epididymis. In: The Renin‐Angiotensin System, edited by J. I. S. Robertson and M. G. Nicholls. London: Gower, 1993, vol. 1, p. 47.1–47.5.
 417. Ince, B. W., and A. Thorpe. Hormonal and metabolite effects on plasma free fatty acids in the northern pike, Esox lucius L. Gen. Comp. Endocrinol. 27: 144–152, 1975.
 418. Ince, B. W., and A. Thorpe. The in vivo metabolism of [114C]‐glycine in insulin‐treated northern pike (Esox lucius L. Gen. Comp. Endocrinol. 28: 481–486, 1976.
 419. Ingleton, P. M., N. Hazon, P. W. Ho, T. J. Martin, and J. A. Danks. Immunodetection of parathyroid hormone‐related protein in plasma and tissue of an elasmobranch (Scyliorhinus canicula). Gen. Comp. Endocrinol. 98: 211–218, 1995.
 420. Inui, Y., S. Miwa, M. Tagawa, and T. Hirano. Role of thyroid hormone in flounder metamorphosis. In: Proceedings of the First Congress of the Asia and Oceania Society for Comparative Endocrinology (AOSCE), edited by E. Ohnishi, Y. Nagahama, and H. Ishizaki, Nagoya: University Corporation, 1987, p. 218–219.
 421. Ishikawa, O., T. Yasuhara, T. Nakajima, and S. Tachibana. On the biological active peptides in the skin of Rana rugosa. Paper presented at the 12th Symposium on Peptide Chemistry, Kyoto, Japan, 1974.
 422. Itoh, H., K. Suzuki, and H. Kawauchi. The complete amino acid sequences of b‐subunits of two distinct chum salmon GTHs. Gen. Comp. Endocrinol. 71: 438–451, 1988.
 423. Itoh, H., K. Suzuki, and H. Kawauchi. The complete amino acid sequences of alpha subunits of chum salmon gonadotropins. Gen. Comp. Endocrinol. 78: 56–65, 1990.
 424. Jamieson, J. D., and G. E. Palade. Specific granules in atrial muscle cells. Cell Biol. 23: 151–159, 1964.
 425. Janssens, P. A. The evolution of corticosteroid function. Steroidologia 1: 308–320, 1970.
 426. Janssens, P. A., and J. A. Grigg. Hormones regulating hepatic glycogenolysis in two chelonians use cyclic AMP, and not Ca2+, as intracellular messenger. Gen. Comp. Endocrinol. 88: 117–127, 1992.
 427. Janssens, P. A., J. A. Grigg, H. Dove, and A. J. Hulbert. Thyroid hormones during development of a marsupial, the tammar wallaby, Macropus eugenii. J. Endocrinol. 127: 427–436, 1990.
 428. Janssens, P. A., G. P. Vinson, I. Chester Jones, and W. Mosley. Amphibian characteristics of the adrenal cortex of the African lungfish (Protopterus sp.). J. Endocrinol. 32: 373–382, 1965.
 429. Jarvik, E. Basic structure and evolution of vertebrates. London: Academic, 1980, 1981, 2 vols.
 430. Jensen, E. V. Overview of the nuclear receptor family. In: Nuclear Hormone Receptors, edited by M. G. Parker. London: Academic, 1991, p. 1–13.
 431. John‐Alder, H. B. Seasonal variations in activity, aerobic energetic capacities and plasma thyroid hormones (T3 and T4) in an iguanid lizard. J. Comp. Physiol [B] 154: 409–419, 1984.
 432. Johnson, O. W., and J. N. Mugaas. Some histological features of avian kidneys. Am. J. Anat. 127: 423–436, 1970.
 433. Johnston, C. I. Kallikrein system and blood pressure homeostasis. In: Hypertension: Mechanisms and Management, edited by P. S. Kincaid‐Smith and J. A. Whitworth. New York: ADIS Health Science Press, 1982, p. 52–60.
 434. Johnston, C. I., J. O. Davis, F. S. Wright, and F. S. Howards. Effects of renin and ACTH on adrenal secretion in the American bullfrog. Am. J. Physiol. 231: 393–399, 1967.
 435. Joosse, J. Neuropeptides: peripheral and central messengers of the brain. In: Comparative Endocrinology: Development and Directions edited by C. L. Ralph. New York: Alan R. Liss, 1986, p. 13–32.
 436. Jost, A. The fetal adrenal cortex. In: Handbook of Physiology. Endocrinology, edited by H. Blaschko, G. Sayers, and A. D. Smith. 107–115. Washington, DC: Am. Physiol. Soc., 1975, sect. VI, vol. 7, p. 107–115.
 437. Kameda, Y. Distribution of C‐cells in parathyroid gland IV and thymus IV of different mammals studied by immunoperoxidase method using anti‐calcitonin and anti C‐thyroglobulin antisera. Kawasaki Med. J. 7: 97–111, 1981.
 438. Kameda, Y. Ontogeny of chicken ultimobranchial glands studied by immunoperoxidase method using calcitonin, somatostatin and 19S‐thyroglobulin antisera. Anat. Embryol. 170: 139–144, 1984.
 439. Kaneko, T., S. Harvey, L. W. Kline, and P.K.T. Pang. Localization of calcium regulatory hormones in fish. Fish Physiol. Biochem. 7: 337–342, 1989.
 440. Kaneko, T., and P.K.T. Pang. Immunocytochemical detection of parathyroid‐like hormone substance in the goldfish brain and pituitary gland. Gen. Comp. Endocrinol. 68: 147–152, 1987.
 441. Kangawa, K., and H. Matsuo. Purification and complete amino acid sequence of alpha‐human atrial natriuretic polypeptide (alpha‐hANP). Biochem, Biophys, Res. Commun. 118: 131–139, 1984.
 442. Kangawa, K., N. Minamino, A. Fukuda, and H. Matsuo. Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 114: 533–540, 1983.
 443. Kastin, A. J., W. A. Banks, and J. E. Zadina. A decade of changing perceptions about neuropeptides. Ann. N. Y. Acad. Sci. 579: 1–7, 1990.
 444. Kato, Y. Cloning and DNA sequence analysis of the cDNA for the precursor of porcine follicle stimulating hormone (FSH) β subunit. Mol. Cell. Endocrinol. 55: 107–112, 1988.
 445. Kawamura, K., and S. Kikuyama. Adrenal gland. In: Atlas of Endocrine Organs. Vertebrates and Invertebrates, edited by A. Matsumoto and S. Ishii. New York: Springer‐Verlag, 1992, p. 109–122.
 446. Kawamura, K., and S. Kikuyama. Evidence that hypophysis and hypothalamus constitute a single entity from the primary stage of histogenesis. Development 115: 1–9, 1992.
 447. Kawamura, K., and S. Kikuyama. Communication between brain and pituitary during early amphibian development. In: Cellular Communication in Reproduction, edited by F. Facchinetti, I. W. Henderson, R. Pierantoni, and A. Polzonetti‐Magni. Bristol: J. Endocrinol. Ltd. 1993, p. 5–100.
 448. Kawamura, K., K. Yamamoto, and S. Kikuyama. Effects of thyroid hormone, stalk section, and transplantation of the pituitary gland on plasma prolactin levels at metamorphic climax in Rana catesbeiana. Gen. Comp. Endocrinol. 64: 129–135, 1986.
 449. Kawashima, S. Evolution of vertebrates and endocrine organs. In: Atlas of Endocrine Organs. Vertebrates and Invertebrate, edited by A. Matsumoto and S. Ishii. Berlin: Springer‐Verlag, 1992, p. 1–3.
 450. Kawauchi, H., Y. Adachi, and B. Ishizuka. Isolation and structure of another β melanotropin from salmon pituitary glands. Int. J. Pept. Protein Res. 16: 79–82, 1980.
 451. Kawauchi, H., Y. Adachi, and M. Tsubokawa. Occurrence of a new melanocyte‐stimulating hormone in the salmon pituitary gland. Biochem. Biophys. Res. Commun. 96: 1508–1517, 1980.
 452. Kawauchi, H., I. Kawazoe, M. Tsubokawa, M. Kishida, and B. I. Baker. Characterization of melanin concentrating hormone. Nature 305: 321–323, 1983.
 453. Kawauchi, H., and K. Muramoto. Isolation and primary structure of melanotropins from salmon pituitary glands. Int. J. Pept. Protein Res. 14: 373–374, 1979.
 454. Kawauchi, H., K. Muramoto, and J. Ramachandran. Isolation and primary structure of adrenocorticotropin from several species of whale. Int. J. Pept. Protein Res. 12: 318–324, 1978.
 455. Kelly, D. E. Developmental aspects of amphibian pineal systems. In: The Pineal Gland, edited by G. E. W. Wolstenholme, and J. Knight. 1971, p. 53–78.
 456. Kenyon, C. J., A. McKeever, J. A. Oliver, and I. W. Henderson. Control of renal and adrenocortical function by the renin‐angiotensin system in two euryhaline teleost fishes. Gen. Comp. Endocrinol. 58: 93–100, 1985.
 457. Kerr, T. The pituitary in polypterines and its relationship to other fish pituitaries. J. Morphol. 124: 23–36, 1968.
 458. Kerr, T., and P.G.W.J. van Oordt. The pituitary gland of the African lungfish. Gen. Comp. Endocrinol. 7: 549–558, 1966.
 459. Keutmann, H. T., P. M. Barling, G. N. Hendy, G. V. Segre, H. D. Niall, G. D. Aurbach, J. T. Potts, and J. L. H. O'Riordan. Isolation of human parathyroid hormone. Biochemistry 13: 1646–1653, 1974.
 460. Khosla, M. C., H. Nishimura, Y. Hasegawa, and F. M. Bumpus. Identification and synthesis of [1‐asparagine, 5‐valine, 9‐glycine] angiotensin I produced from plasma of American eel Anguilla rostrata. Gen. Comp. Endocrinol. 57: 223–233, 1985.
 461. Khosla, S., M. Demay, M. Pines, S. Hurwitz, J. T. Potts, and H. M. Kronenberg. Nucleotide sequence of cloned cDNAs encoding chicken preproparathyroid hormone. J. Bone Miner. Res. 3: 689–698, 1988.
 462. Kimmel, J. R., M. J. Maher, H. G. Pollock, and W. H. Vensel. Isolation and characterization of reptilian insulin: partial amino acid sequence of rattlesnake (Crotalus atrox) insulin. Gen. Comp. Endocrinol. 28: 320–333, 1976.
 463. Kimmel, J. R., E. M. Plisetskaya, H. G. Pollock, J. W. Hamilton, J. B. Rouse, K. E. Ebner, and A. B. Rawitch. Structure of a peptide from coho salmon endocrine pancreas with homology to neuropeptide Y. Biochem. Biophys. Res. Commun. 141: 1084–1091, 1986.
 464. Kimura, M., T. Sueyoshi, K. Takada, K. Tanaka, T. Morita, and T. Iwanaga. Isolation and characterization of ornithokininogen. Eur. J. Biochem. 168: 493–501, 1987.
 465. King, J. A., and R. P. Millar. Structure of chicken hypothalamic luteinizing hormone‐releasing hormone. II. Isolation and characterization. J. Biol. Chem. 257: 10729–10732, 1982.
 466. Kisch, B. Electron microscopy of the atrium of the heart. I. Guinea pig. Exp. Med. Surg. 14: 99–112, 1956.
 467. Kitoh, J. Electron microscopic studies of the ultimobranchial body of the elasmobranchs. Arch. Histol. Jpn. 31: 269–281, 1970.
 468. Klandorf, H., and S. Harvey. Food intake regulation of circulating thyroid hormones in domestic fowl. Gen. Comp. Endocrinol. 60: 162–170, 1985.
 469. Klandorf, H., P. J. Sharp, and M. G. McCleod. The relationship between heat production and concentrations of plasma thyroid hormones in the domestic hen. Gen. Comp. Endocrinol. 45: 513–520, 1982.
 470. Klinbeil, C. K. Corticosterone and aldosterone dose‐dependent responses to ACTH and angiotensin II in the duck (Anas platyrhynchos). Gen. Comp. Endocrinol. 59: 382–390, 1985.
 471. Kloas, W., and W. Hanke. Localization and quantification of atrial natriuretic factor binding sites in the kidneys of Xenopus laevis. Gen. Comp. Endocrinol. 85: 26–35, 1992.
 472. Kloas, W., and W. Hanke. Neurohypophysial hormones and steroidogenesis in the interrenals of Xenopus laevis. Gen. Comp. Endocrinol. 80: 321–330, 1990.
 473. Kobayashi, H., K. Owada, C. Yamada, and Y. Okawara. The caudal neurosecretory system in fishes. In: Vertebrate Endocrinology: Fundamental and Biomedical Implications, edited by P. K. T. Pang and M. P. Schreibman. New York: Academic, 1986, vol. 1, p. 147–174.
 474. Kobuke, L., J. L. Specker, and H. A. Bern. Thyroxine content of eggs and larvae of coho salmon, Oncorhynchus kisutch. J. Exp. Zool. 242: 89–94, 1987.
 475. Kocsis, J. F., P. J. McIlroy, and R. V. Carsia. Atrial natriuretic peptide stimulates aldosterone production by turkey (Meleagris gallopavo) adrenal steroidogenic cells. Gen. Comp. Endocrinol. 99: 364–372, 1995.
 476. Kohmoto, K., S. Tsunasawa, and F. Sakiyama. Complete amino acid sequence of mouse prolactin. Eur. J. Biochem. 138: 227–237, 1984.
 477. Kojima, M., N. Minamino, K. Kangawa, and H. Matsuo. Cloning and sequence analysis of cDNA encoding a precursor for rat brain natriuretic peptide. Biochem. Biophys. Res. Commun. 159: 1420–1426, 1989.
 478. Kojima, M., N. Minamino, K. Kangawa, and H. Matsuo. Cloning and sequence analysis of a cDNA encoding a precursor for rat C‐type natriuretic peptide (CNP). FEBS Lett. 276: 209–213, 1990.
 479. Koob, T. J., and I. P. Callard. Progesterone treatment causes early oviposition in Raja erinacea. Bull. Mt. Desert Island Biol. Lab. 25: 138–139, 1986.
 480. Koob, T. J., P. Tsang, and I. P. Callard. Plasma estradiol, testosterone and progesterone levels during the ovulatory cycle of the skate (Raja erinacea). Biol. Reprod. 35: 267–275, 1986.
 481. Korf, H.‐W., and A. Oksche. The pineal organ. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications. Morphological Considerations, edited by P. K. T. Pang and M. P. Schreibman. New York: Academic, 1986, vol. 1, p. 105–145.
 482. Koury, S. T., M. C. Bondurant, and M. J. Koury. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71: 524–527, 1988.
 483. Krebs, H. A. The August Krogh principle: “For many problems there is an animal on which it can be most conveniently studied.” J. Exp. Zool. 194: 221–226, 1975.
 484. Kreiger, D. T. Brain peptides: what, where and why? Science 222: 975–985, 1983.
 485. Kriebel, R. M., R. L. Parsons, and K. E. Miller. Innervation of caudal neurosecretory cells. In: Neurosecretion and the Biology of Neuropeptides, edited by H. Kobayashi, H. A. Bern, and A. Urano. Tokyo: Jpn. Soc. Promotion of Science, 1979, p. 205–211.
 486. Krogh, A. Progress of physiology. Am J. Physiol. 90: 243–251, 1929.
 487. Kronenberg, H. M., B. E. McDevitt, J. A. Majzoub, J. Nathans, P. A. Sharp, J. T. Potts, and A. Rich. Cloning and nucleotide sequence of DNA coding bovine parathyroid hormone. Proc. Natl. Acad. Sci. U.S.A. 76: 4981–4985, 1979.
 488. Lacanilao, F., and H. A. Bern. The urophysial hydrosmotic factor of fishes III. Survey of fish caudal spinal cord regions for hydrosmotic activity. Proc. Soc. Exp. Biol. Med. 140: 1252–1253, 1972.
 489. Lafeber, F.P.J.G., R.G.J.M. Hanssen, Y. M. Choy, G. Flik, M. P. M. Herrmann‐Erlee, P.K.T. Pang, and S. E. Wendelaar Bonga. Identification of hypocalcin (teleocalcin) isolated from trout Stannius corpuscles. Gen. Comp. Endocrinol. 69: 19–30, 1988.
 490. Lagios, M. D. Tetrapod‐like organization of the pituitary gland of the polypteriformid fishes, Calamoichthys calabaricus and Polypterus palmas. Gen. Comp. Endocrinol. 11: 300–315, 1968.
 491. Lagios, M. D. The median eminence of the bowfin, Amia calva L. Gen. Comp. Endocrinol. 15: 453–463, 1970.
 492. Lagios, M. D. The pituitary gland of the coelacanth Latimeria chalumnae Smith. Gen. Comp. Endocrinol. 25: 126–146, 1975.
 493. Lagios, M. D. Evidence for a hypothalamo‐hypophysial portal vascular system in the coelocanth, Latimeria chalumnae Smith. Gen. Comp. Endocrinol. 18: 73–82, 1972.
 494. Lam, T. J. Role of thyroid hormone on larval growth and development in fish. In: Current Trends in Comparative Endocrinology edited by B. Lofts and W. N. Holmes. Hong Kong; Hong Kong University Press, 1985, p. 480–485.
 495. Lam, T. J., J. V. Juario, and J. Banno. Effect of thyroxine on growth and development in post‐yolk‐sac larvae of milkfish, Chanos chanos. Aquaculture 46: 179–184, 1985.
 496. Lam, T. J., and G. L. Loy. Effect of l‐thyroxine on ovarian development and gestation in the viviparous guppy, Poecilia reticulata. Gen. Comp. Endocrinol. 60: 324–330, 1985.
 497. Lamers, A.P.M., W. J. van Dongen, and J.A.M. van Kemenade. An ultrastructural study of the juxtaglomerular apparatus in the toad, Bufo bufo. Cell Tissue Res. 153: 449–464, 1974.
 498. Lance, V. A., and M. H. Bogart. Disruption of ovarian development in alligator embryos treated with an aromatase inhibitor. Gen. Comp. Endocrinol. 86: 59–71, 1992.
 499. Lance, V., J. W. Hamilton, J. B. Rouse, J. R. Kimmel, and H. G. Pollock. Isolation and characterization of reptilian insulin, glucagon and pancreatic polypeptide: complete amino acid sequence of alligator (Alligator mississippiensis) insulin and pancreatic polypeptide. Gen. Comp. Endocrinol. 55: 112–124, 1984.
 500. Lange, R., and H. Brehm. On the fine structure of the parathyroid gland in the toad and frog. In: The Parathyroid Glands: Ultrastructure, Secretion and Function, edited by P. J. Gaillard, R. V. Talmage, and A. M. Budy. Chicago: University of Chicago Press, 1965, p. 19–26.
 501. Laron, Z., A. Pertzelan, and S. Mannheimer. Genetic pituitary dwarfism with high serum concentrations of growth hormone. A new inborn error of metabolism. Isr. J. Med. Sci. 2: 152–155, 1966.
 502. Larson, B. A., and H. A. Bern. The urophysis. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications, edited by P.K.T. Pang and M. P. Schriebman. London: Academic, 1987, vol. 2, p. 143–156.
 503. Larson, B. A., and Z. Madani. Increased urotensin I and II immunoreactivity in the urophysis of Gillichthys mirabilis transferred to low salinity water. Gen. Comp. Endocrinol. 83: 379–387, 1991.
 504. Larsson, A., and K. Lewander. Effects of glucagon administration to eels (Anguilla anguilla L.). Comp. Biochem. Physiol. A 43: 831–836, 1972.
 505. Laugier, C., A. Fanidi, L. Dufrene, J.‐M. Fayard, and J.‐F. Pageaux. Dissociated effects of tamoxifen on growth and on progesterone receptor induction in quail oviduct. Gen. Comp. Endocrinol. 83: 439–446, 1991.
 506. Leatherland, J. F., and J. M. Dodd. Histology and fine structure of the preoptic and hypothalamic tracts of the European eel Anguilla anguilla Philos. Trans. R. Soc. Lond. 256: 135–145, 1969.
 507. Leatherland, J. F., P. K. Reddy, A. N. Young, A. Leatherland, and T. J. Lam. Hepatic 5′‐monodeiodinase activity in teleosts in vitro: a survey of thirty‐three species. Fish Physiol. Biochem. 8: 1–10, 1990.
 508. Lederis, K., A. Letter, D. McMaster, G. Moore, and D. Schlesinger. Complete amino acid sequence of urotensin I, a hypotensive and corticotropin releasing peptide from Catostomus. Science 218: 162–164, 1982.
 509. Lee, M. R. Dopamine and the kidney. Clin. Sci. (Cole L.) 62: 439–448, 1982.
 510. Lee, P. C., M. Goodrich, M. Struve, H. I. Yoon, and D. Weber. Liver and brain glucocorticoid receptor in rainbow trout, Oncorhynchus mykiss: down‐regulation by dexamethasone. Gen. Comp. Endocrinol. 87: 222–231, 1992.
 511. Lee, T. H., A. B. Lerner, and V. Buettner‐Janusch. Melanocyte‐stimulating hormone from sheep pituitary glands. Biochem. Biophys. Acta 71: 706–709, 1963.
 512. Lee, T. H., A. B. Lerner, and V. Buettner‐Janusch. The isolation and structure of alpha‐ and β‐melanocyte‐stimulating hormone from monkey pituitary glands. J. Biol. Chem. 236: 1390–1394, 1961.
 513. Le Guellec, C., K. Lawless, Y. Valotaire, M. Kress, and M. Tenniswood. Vitellogenin gene expression in male rainbow trout (Salmo gairdneri). Gen. Comp. Endocrinol. 71: 359–371, 1988.
 514. Lehrman, S. R., H. W. Lahm, M. C. Miedel, J. D. Hulmes, and C. H. Li. Primary structure of equine pituitary prolactin. Int. J. Pept. Protein Res. 31: 544–554, 1988.
 515. Le Roith, D. C., C. T. Roberts, G. L. Wilson, G. Delahunty, and J. Roth. Evolutionary origins of intercellular communications: implications for mammalian endocrinology. In: Cell to Cell Communication in Endocrinology, edited by F. Piva, C. W. Bardin, G. Forti, and M. Motta. New York: Raven, 1988, p. 2–11.
 516. Le Roith, D., J. Shiloach, J. Roth, and M. A. Lesniak. Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 77: 6184–6188, 1980.
 517. Lewander, K., G. Dave, M.‐L. Johansson‐Sjobeck, A. Larsson, and U. Lidman. Metabolic effects of insulin in the European eel, Anguilla anguilla L. Gen. Comp. Endocrinol. 29: 455–467, 1976.
 518. Li, C. H. Adrenocorticotropin 45: revised amino acid sequences for sheep and bovine hormones. Biochem. Biophys. Res. Commun. 49: 835–839, 1972.
 519. Li, C. H. Studies on pituitary lactogenic hormone 38. The primary structure of the porcine hormone. Int. J. Pept. Protein Res. 8: 205–224, 1976.
 520. Li, C. H., D. Chung, W. Oelofsen, and R. J. Naude. Adrenocorticotropin 53: the amino acid sequence of the hormone from the ostrich pituitary gland. Biochem. Biophys. Res. Commun. 81: 900–906, 1978.
 521. Li, C. H., W. O. Danho, D. Chung, and J. Rao. Isolation, characterization, and amino acid sequence of melanotropins from camel pituitary glands. Biochemistry 14: 947–952, 1975.
 522. Li, C. H., J. S. Dixon, T. B. Lo, K. D. Schmidt, and Y. A. Pankov. Pituitary lactogenic hormone XXX: primary structure of the sheep hormone. Arch. Biochem. Biophys. 141: 705–737, 1970.
 523. Li, C. H., M.M.J. Oosthuizen, and D. Chung. Primary structure of elephant pituitary prolactin. Int. J. Pept. Protein Res. 33: 67–69, 1989.
 524. Liao, T. H., and J. G. Pierce. The presence of a common type of subunit in bovine thyroid‐stimulating and luteinizing hormones. J. Biol. Chem. 245: 3275–3281, 1970.
 525. Licht, P. Reptiles . In: Marshall's Physiology of Reproduction, edited by G. E. Lamming. London: Churchill Livingstone, 1984, vol. 1, p. 206–282.
 526. Lim, E.H.J.L. Ding, and T. J. Lam. Estradiol‐induced vitellogenin gene expression in a teleost fish, Oreochromis aureus. Gen. Comp. Endocrinol. 82: 206–214, 1991.
 527. Lipke, D. W., and K. R. Olson. Enzymes of the kallikrein‐kinin system in rainbow trout. Am. J. Physiol. 258: (Regulatory Integrative Corp. Physiol. 29) R501–R506, 1990.
 528. Lipke, D. W., S. Oparil, and K. R. Olson. Vascular effects of kinins in trout and bradykinin metabolism by perfused gill. Am. J. Physiol. 258: (Regulatory Integrative Corp. Physiol. 29) R515–R522, 1990.
 529. Lipke, D. W., R. L. Thomas, and K. R. Olson. Characterization of angiotensin‐converting enzyme in the gills of rainbow trout, Salmo gairdneri (Richardson). Fish Physiol. Biochem. 3: 91–97, 1987.
 530. Liu, C. S., F. L. Huang, Y. S. Chang, and T. B. Lo. Pike eel (Muraenesox cinereus) gonadotropin: amino acid sequences of both alpha and β subunits. Eur. J. Biochem. 186: 105–114, 1989.
 531. Liu, C. S., Y. C. Wang, J. M. Chen, C. H. Chang, S. W. Chen, F. L. Huang, and T. B. Lo. Primary structure of the pike eel (Muranesox cinereus) growth hormone. J. Chin. Chem. Soc. 38: 97–105, 1991.
 532. Liu, W. K., H. S. Nahm, C. M. Sweeny, G. N. Holcomb, and D. N. Ward. The primary structure of ovine luteinizing hormone. II. The amino acid sequence of the reduced, s‐carboxymethylated A‐subunit (LH‐β). J. Biol. Chem. 247: 4365–4381, 1972.
 533. Liu, W. K., H. S. Nahm, C. M. Sweeny, W. M. Lamkin, H. N. Baker, and D. N. Ward. The primary structure of ovine luteinizing hormone. I. The amino acid sequence of the reduced and s‐aminoethylated s‐subunit (LH‐alpha). J. Biol. Chem. 247: 4351–4364, 1972.
 534. Lofts, B. The adrenal gland in Reptilla. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester‐Jones and I. W. Henderson. London: Academic, 1978, vol. 2, p. 292–360.
 535. Lofts, B., I. P. Callard, and V. Callard. The adrenal gland in reptilia. In: General Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester Jones and I. W. Henderson. London: Academic, 1978, vol. 2, p. 291–495.
 536. Long, J. A. Zonation of the mammalian adrenal cortex . In: Handbook of Physiology Endocrinology, edited by H. Blaschko, G. Sayers, and A. D. Smith. Washington, DC: Am. Physiol. Soc., 1975, sect. VI, vol. 7, p. 13–24.
 537. Lopez, E., J. Peignoux‐Deville, F. Lallier, K. W. Colston, and I. MacIntyre. Responses of bone metabolism in the eel (Anguilla anguilla) to injections of 1,25‐(OH)2‐D3. Calcif. Tissue Res. 22 (Suppl.): 19–23, 1977.
 538. Lopez, E., E.‐M. Tisserand‐Jochem, A. Eyquen, C. Milet, C. Hillyard, F. Lallier, B. Vidal, and I. MacIntyre. Immunocytochemical detection in eel corpuscles of Stannius of a mammalian parathyroid‐like hormone. Gen. Comp. Endocrinol. 53: 28–36, 1984.
 539. Lopez, J., M. Echevarria, and J. J. Vasquez. Histological and immunocytochemical study of the endocrine pancreas of the lizard Podarcis hispanica Steindachner 1870 (Lacertidae). Gen. Comp. Endocrinol. 71: 212–228, 1988.
 540. Lopez, L. C., M. L. Frazier, C.‐J. Su, A. Kumar, and G. F. Saunders. Mammalian pancreatic proglucagon contains three glucagon‐related peptides. Proc. Natl. Acad. Sci. U.S.A. 80: 5485–5489, 1983.
 541. Louw, G. N., W. W. Sutton, and A. D. Kenny. Action of thyrocalcitonin in the teleost fish Ictalurus melas. Nature 215: 888–889, 1967.
 542. Lovejoy, D. A., W. H. Fischer, D. B. Parker, J. E. McRory, M. Park, V. Lance, P. Swanson, J. E. Rivier, and N. M. Sherwood. Primary structure of two forms of gonadotropin‐releasing hormone from brains of the American alligator (Alligator mississippiensis). Regul. Pept. 33: 105–116, 1991.
 543. Lovejoy, D. A., N. M. Sherwood, W. H. Fischer, B. C. Jackson, J. E. Rivier, and T. Lee. Primary structure of gonadotropin‐releasing hormone from the brain of a holocephalan (ratfish: Hydrolagus colliei). Gen. Comp. Endocrinol. 82: 152–161, 1991.
 544. Lowry, P. J., H.P.J. Bennet, C. McMartin, and A. P. Scott. The isolation and amino acid sequence of an adrenocorticotrophin from the pars distalis and a corticotrophin‐like intermediate‐lobe peptide from the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias. Biochem. J. 141: 427–437, 1974.
 545. Lowry, P. J., and A. Chadwick. Purification and amino acid sequence of melanocyte stimulating hormone from the dogfish Squalus acanthias. Biochem. J. 118: 713–718, 1970.
 546. Lundin, K., and S. Holmgren. The occurrence and distribution of peptide‐ or 5‐HT‐containing nerves in the swimbladder of four different species of teleost (Gadus morhua. Ctenolabrus rupestris, Anguilla anguilla, Salmo gairdneri). Cell Tissue Res. 257: 641–647, 1989.
 547. Lundin, K., and S. Holmgren. An x‐ray study of the influence of vasoactive intestinal polypeptide and substance P on the secretion of gas into the swimbladder of a teleost Gadus morhua. J. Exp. Biol. 157: 287–298, 1991.
 548. Lupo di Prisco, C. Biosintesi di ormoni steroidi nel'ovario di due specie di selaci: Scyliorhinus stellaris (oviparo) e Torpedo marmorata (ovoviviparo). Riv. Biol. 61: 113–146, 1968.
 549. MacIntyre, I., K. W. Colston, I.M.A. Evans, E. Lopez, S. J. MacAuley, J. Peignoux‐Deville, E. Spanos, and M. Szelke. Regulation of vitamin D: an evolutionary view. Clin. Endocrinol. 5: 85s–95s, 1976.
 550. MacLatchy, D. L., and J. G. Eales. Properties of T4 5′‐deiodinating systems in various tissues of the rainbow trout Oncorhynchus mykiss. Gen. Comp. Endocrinol. 86: 313–322, 1992.
 551. Maghuin‐Rogister, G., Y. Combarnous, and G. Hennen. The primary structure of the porcine luteinizing hormone alpha‐subunit. Eur. J. Biochem. 39: 255–263, 1973.
 552. Maghuin‐Rogister, G., and G. Hennen. Luteinizing hormone. The primary structures of the β‐subunit from bovine and porcine species. Eur. J. Biochem. 39: 235–253, 1973.
 553. Majno, G. Ultrastructure of the vascular membrane. In: Handbook of Physiology. The Cardiovascular System, edited by W. F. Hamilton. Washington DC: Am. Physiol. Soc. 1965, sect. 2, vol. 3, p. 2545–2581.
 554. Major, R. H. The History of Medicine. Springfield IL: Thomas, 1954.
 555. Mallette, L. E. Parathyroid hormone and parathyroid hormone‐related protein as polyhormones: evolutionary aspects and nonclassical actions. In: The Parathyroids, edited by J. P. Bilezikian, M. A. Levine, and R. Marcus. New York: Raven, 1994, p. 171–184.
 556. Malvin, R. L., and A. J. Vander. Plasma renin activity in marine teleosts and Cetacea. Am. J. Physiol. 213: 1582–1584, 1967.
 557. Manning, M. J., and G. M. Al Joari. Immunological memory and metamorphosis. In: Metamorphosis: 8th Symposium of the British Society for Developmental Biology, edited by M. Balls and M. Bownes Oxford: Clarendon, 1985, p. 420–433.
 558. Marcocci, C., H. C. Freake, J. Iwasaki, E. Lopez, and I. MacIntyre. Demonstration and organ distribution of the 1,25‐dihydroxy D3‐binding protein in fish (Anguilla anguilla). Endocrinology 110: 1347–1354, 1982.
 559. Markussen, J., E. Frandsen, L. G. Heding, and F. Sundby. Turkey glucagon: crystallization, amino acid composition and immunology. Horm. Metab. Res. 4: 360–363, 1972.
 560. Martens, G. J. M., O. Civelli, and E. Herbert. Nucleotide sequence of cloned cDNA for pro‐opiomelanocortin in the amphibian Xenopus laevis. J. Biol. Chem. 260: 13685–13689, 1985.
 561. Martin, B. Steroid‐protein interaction in nonmammalian vertebrates. I. Elasmobranch steroid‐binding protein (E SBP) in dogfish serum (Scyliorhinus canicula). Gen. Comp. Endocrinol. 25: 42–51, 1975.
 562. Martin, T. J., J. M. Moseley, and M. T. Gillespie. Parathyroid hormone‐related protein: biochemistry and molecular biology. Crit. Rev. Biochem. Mol. Biol. 26: 377–395, 1991.
 563. Masini, M. A., L. Napoli, M. Sturla, and B. Uva. The kallikrein‐kinin and renin‐angiotensin systems in the kidney of an African lungfish, Protopterus annectens. Gen. Comp. Endocrinol. 102 93–100, 1996.
 564. Masini, M. A., B. Uva, I. W. Henderson, and P. Ghiani. Renin‐angiotensin system in elasmobranchs. [Abstract] Gen. Comp. Endocrinol. 82: 31, 1991.
 565. Mathews, G. A., and A. P. Arnold. Antiestrogens fail to prevent the masculine ontogeny of the zebra finch song system. Gen. Comp. Endocrinol. 80: 48–58, 1990.
 566. Matsuda, K., C. Oguro, Y. Sasayama, and S. Kikuyama. Involvement of prolactin in the regulation of plasma calcium levels in the newt, Cynops pyrrhogaster. Gen. Comp. Endocrinol. 81: 442–446, 1991.
 567. Matsumoto, A., and Y. Arai. Hypothalamus. In: Atlas of Endocrine Organs, edited by A. Matsumoto and S. Ishii. Berlin: Springer‐Verlag, 1992, p. 25–38.
 568. Matsumoto, A. and S. Ishii (Eds).: Atlas of Endocrine Organs. Vertebrates and Invertebrates. New York: Springer‐Verlag, 1992.
 569. Mayer‐Gostan, N., G. Flik, and P.K.T. Pang. An enzyme‐linked immunosorbent assay for stanniocalcin, a major hypocalcaemic hormone in teleost. Gen. Comp. Endocrinol. 86: 10–19, 1992.
 570. Mayes, P. A. Overview of intermediary metabolism. In: Harper's Chemistry, edited by R. K. Murray, D. K. Granner, and P. A. Mayes. London: Prentice‐Hall, 1990, p. 146–154.
 571. McDonald, T., H. Jornvall, M. Ghatei, S. Bloom, and V. Mutt. Characterization of an avian gastric (proventricular) peptide having sequence homology with porcine gastrin‐releasing peptide and the amphibian peptides bombesin and alytesin. FEBS Lett. 122: 45–48, 1980.
 572. McDonald, T. J., H. Jornvall, G. Nilson, M. Vagne, M. Ghatei, S. R. Bloom, and V. Mutt. Characterization of a gastrin releasing peptide from porcine non‐antral gastric tissue. Biochem. Biophys. Res. Commun. 90: 227–233, 1979.
 573. McGuigan, J. E. Gastrointestinal hormones. Annu. Rev. Med. 29: 307–318, 1978.
 574. McMaster, D., M. A. Belenky, A. L. Polenov, and K. Lederis. Isolation and amino acid sequence of urotensin II from the sturgeon Acipenser ruthenus. Gen. Comp. Endocrinol. 87: 275–285, 1992.
 575. McMaster, D., and K. Lederis. Isolation and amino acid sequence of two urotensin II peptides from Catostomus commersoni urophysis. Peptides 4: 367–373, 1983.
 576. McMillan, P. J., U. Heidbuchel, and L. Vollrath. Anomalous occurrence of immunoreactive calcitonin cells in the thymus of the rat. Cell Tissue Res. 222: 629–634, 1982.
 577. McNabb, F.M.A. Peripheral thyroid hormone dynamics in precocial and altricial avian development. Am. Zool. 28: 758–762, 1988.
 578. McNabb, F.M.A., and T. B. Freeman. Comparative thyroid hormone deiodinase systems. In: Progress in Comparative Endocrinology, edited by A. Epple, C. G. Scanes, and M. H. Stetson. New York: Wiley‐Liss, 1990, p. 433–438.
 579. McNulty, J. A. Functional morphology of the pineal complex in cyclostomes, elasmobranchs and bony fishes. Pineal Res. Rev. 2: 1–40, 1984.
 580. Medvei, V. C. A History of Endocrinology. Lancaster: MTP, 1982.
 581. Miakami, S.‐I. Hypophysis. In: Atlas of Endocrine Organs, edited by A. Matsumoto and S. Ishii. London: Springer‐Verlag, 1992, p. 39–62.
 582. Mick, C.C.W., and C. S. Nicoll. Prolactin directly stimulates the liver in vivo to secrete a factor (synlactin) which acts synergistically with the hormone. Endocrinology 116: 2049–2053, 1985.
 583. Millar, R. P., and J. A. King. Evolution of gonadotropin‐releasing hormone: multiple usage of a peptide. News Physiol. Sci. 3: 49–52, 1988.
 584. Miller, W. L., J. P. Thirion, and J. A. Martial. Cloning of DNA complementary to bovine prolactin mRNA. Endocrinology 107: 851–854, 1980.
 585. Minamino, N., K. Kangawa, A. Fukuda, and H. Matsuo. Neuromedin L: a novel mammalian tachykinin identified in porcine spinal cord. Neuropeptides 4: 157–166, 1984.
 586. Minamino, N., K. Kangawa, and H. Matsuo. Neuromedin B: a novel bombesin‐like peptide identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 114: 541–548, 1983.
 587. Minamino, N., K. Kangawa, and H. Matsuo. Neuromedin C: a bombesin‐like peptide identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 119: 14–20, 1984.
 588. Minick, M. C., and W. Chavin. Effects of vertebrate insulins upon serum FFA and phospholipid levels in the goldfish, Carassius auratus Linnaeus. Comp. Biochem. Physiol. A 41: 791–804, 1972.
 589. Miyamoto, K. Y., Y. Hasegawa, M. Nomura, M. Igarashi, K. Kangawa, and H. Matsuo. Identification of the second gonadotropin‐releasing hormone in chicken hypothalamus: evidence that gonadotropin secretion is probably controlled by two distinct gonadotropin‐releasing hormones in avian species. Proc. Natl. Acad. Sci. U.S.A. 83: 3874–3878, 1984.
 590. Miyata, A., N. Minamino, K. Kangawa, and H. Matsuo. Identification of a 29 amino acid natriuretic peptide in chicken hearts. Biochem. Biophys. Res. Commun. 155: 1330–1337, 1988.
 591. Mizogami, S., M. Oguri, H. Sokabe, and H. Nishimura. Presence of renin in glomerular and aglomerular kidney of marine teleosts. Am. J. Physiol. 215: 991–994, 1968.
 592. Mommsen, T. P., C. J. French, and P. W. Hochachka. Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can. J. Zool. 58: 1785–1799, 1980.
 593. Monaco, F., and R. Dominici. Role of carbohydrates in the evolutionary pathways of thyroglobulin biosynthesis and secretion. In: Thyroglobulin—The Prothyroid Hormone, edited by M. C. Eggo and G. N. Burrows. New York: Raven, 1985, vol. 2, p. 115–126.
 594. Monaco, F., R. Dominici, M. Andreoli, R. DePirro, and J. Roche. Thyroid formation in thyroglobulin synthesized in the amphioxus, Branchiostoma lanceolatum. Comp. Biochem. Physiol. [B] 70: 341–342, 1981.
 595. Moncada, S., and E. A. Higgs. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 9: 1319–1330, 1995.
 596. Moncada, S., R. M. J. Palmer, and E. A. Higgs. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43: 109–142, 1991.
 597. Monsour, P. A. J., and B. J. Kruger. Morphology of the ultimobranchial body in cockrels. Aust. J. Biol. Sci. 37: 331–339, 1984.
 598. Montecucchi, P. C., and A. Henschen. Amino acid composition and sequence analysis of sauvagine, a new active peptide from the skin of Phyllomedusa sauvagei. Int. J. Pept. Protein Res. 18: 113–120, 1981.
 599. Moon, T. W., G. D. Foster, and E. M. Plisetskaya. Changes in peptide hormones and liver enzymes in the rainbow trout deprived of food for six weeks. Can. J. Zool. 67: 2189–2193, 1989.
 600. Moon, T. W., and T. P. Mommsen. Vasoactive peptides and phenylephrine actions in isolated teleost hepatocytes. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E644–E649, 1990.
 601. Mori, I., T. Sakamoto, and T. Hirano. Growth hormone (GH)‐dependent hepatic GH receptors in the Japanese eel, Anguilla japonica: effects of hypophysectomy and GH injection. Gen. Comp. Endocrinol. 85: 385–391, 1992.
 602. Morild, I., R. Mowinckel, A. Bohle, and J. A. Christensen. The juxtaglomerular apparatus in the avian kidney. Cell Tissue Res. 240: 209–214, 1985.
 603. Moriyama, S., P. Swanson, H. Kawauchi, and W. W. Dickhoff. Purification and characterization of coho salmon thyroid stimulating hormone. Am. Zool. 32: 17A, 1992.
 604. Mueller, G. L., C. S. Anast, and R. P. Brietenbach. Dietary calcium and ultimobranchial body and parathyroid gland in the chicken. Am. J. Physiol. 218: 1718–1722, 1970.
 605. Murat, J. C., C. Carpene, N. Y. S. Woo, M. Berland, M. Lafontan, and M. Fraisse. Comparative study on isolated adipocytes: specific differences in the responsiveness to hormones. In: Current Trends in Comparative Endocrinology, edited by B. Lofts and W. N. Holmes. Hong Kong: University of Hong Kong Press, 1985, vol. 2, p. 1099.
 606. Mutt, V. E., J. E. Jorpes, and S. Magnusson. Structure of porcine secretin. The amino acid sequence. Eur. J. Biochem. 15: 513–519, 1970.
 607. Nag, A. C. Functional morphology of the caudal region of certain clupeiform and perciform fishes with reference to taxonomy. J. Morphol. 123: 529–558, 1967.
 608. Nagahama, Y. Testis. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications, edited by P. K. T. Pang and M. P. Schriebman. Toronto: Academic, 1986, vol. 1, p. 399–437.
 609. Nagahama, Y. Gonadotropin action on gametogenesis and steroidogenesis in teleost gonads. Zool. Sci. 4: 209–222, 1987.
 610. Nagahama, Y. The functional morphology of teleost gonads. In: Fish Physiology, edited by W. S. Hoar, D. J. Randall, and E. M. Donaldson, London: Academic, 1983, vol. 9, p. A, p. 223–275.
 611. Nahm, T. H., S. W. Lee, A. Fausto, Y. Sonn, and L. V. Avioli. 25‐OH‐D3, a circulating vitamin D metabolite in fish. Biochem. Biophys. Res. Commun. 89: 396–402, 1979.
 612. Nakajima, T. Occurrence of a new active peptide on smooth muscle, and bradykinin in the skin of Rana nigromaculata Hallowell. Chem. Pharm. Bull. (Tokyo) 16: 760–763, 1968.
 613. Nakajima, T. On the third active peptide on smooth muscle in the skin of Rana nigromaculata Hallowell. Chem. Pharm. Bull. (Tokyo) 16: 2088–2091, 1968.
 614. Nakajima, T., T. Tanimura, and J. J. Pisano. Isolation and structure of a new vasoactive polypeptide. Federation Proc. 29: 282, 1970.
 615. Nakamura, Y., H. Nishimura, and M. C. Khosla. Vasodepressor action of angiotensin in conscious chickens. Am. J. Physiol. 243 (Heart Circ. Physiol. 14): H456–H462, 1982.
 616. Nakayama, T., T. Nakajima, and H. Sokabe. Comparative studies on angiotensins. III. Structure of fowl angiotensin and its identification by DNS‐method. Chem. Pharm. Bull. (Tokyo) 21: 2085–2087, 1973.
 617. Nakayama, T., T. Nakajima, and H. Sokabe. Comparative studies of angiotensins. IV. Structure of the snake (Elaphe climocophora) angiotensin. Chem. Pharm. Bull. (Tokyo) 25: 3255–3260, 1977.
 618. Nandi, J. The structure of the interrenal gland in teleost fishes. Univ. California Publ. Zool. 65: 129–212, 1962.
 619. Napoli, J. L., R. T. Okita, S. B. Masters, and R. L. Horst. Identification of 25,26‐dihydroxyvitamin D3 as a rat renal 25‐hydroxyvitamin D3 metabolite. Biochemistry 20: 5865–5871, 1981.
 620. Nation, J. L., F. Presse, J. C. Bittencourt, P. E. Sawchenko, and W. Vale. The rat melanin‐concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology 125: 2056–2065, 1989.
 621. Navarro, I., J. Gutierrez, J. Caixach, J. Rivera, and J. Planas. Isolation and primary structure of glucagon from the endocrine pancreas of Thunnus obesus. Gen. Comp. Endocrinol. 83: 227–232, 1991.
 622. Neher, R., B. Riniker, R. Maier, P. G. H. Byfield, T. V. Gudmeendsson, and I. MacIntyre. Human calcitonin. Nature 220: 984–986, 1968.
 623. Netchitailo, P., M. Feuilloley, G. Pelletier, M. Cantin, A. de Lean, F. Leboulanger, and H. Vaudry. Localization and characterization of atrial natriuretic factor (ANF)‐like peptide in the frog atrium. Peptides 7: 573–579, 1986.
 624. Nevalainen, T. Fine structure of the parathyroid gland of the laying hen. Gen. Comp. Endocrinol. 12: 253–258, 1969.
 625. Niall, H. D. The evolution of peptide hormones. Annu. Rev. Physiol. 44: 615–624, 1982.
 626. Niall, H. D., H. T. Keutmann, D. H. Copp, and J. T. Potts. Amino acid sequence of salmon ultimobranchial calcitonin. Proc. Natl. Acad. Sci. U.S.A. 64: 771–778, 1969.
 627. Nichols, R., T. D. Lee, and P. C. Andrews. Pancreatic proglucagon processing: isolation and structures of glucagon and glucagon‐like peptide from gene I. Endocrinology 123: 2639–2645, 1988.
 628. Nicoll, C. S., and R. A. Baldocchi. Evolutionary origins of prolactins, growth hormones and placental lactogens. In: Progress in Endocrinology 1988, edited by H. Imura, K. Shizumi, and S. Yoshida. Amsterdam: Excerpta Medica, 1988, ICS 799, vol. 2, p. 1379–1384.
 629. Nicoll, C. S., N. J. Herbert, B. C. Delidow, D. E. English, and S. M. Russell. Prolactin and synlactin: comparative aspects. Prog. Comp. Endocrinol. 211–218, 1990.
 630. Nicoll, C. S., S. S. Steiny, D. S. King, R. S. Nishioka, G. L. Mayer, N. L. Eberhardt, J. D. Baxter, M. K. Yamanaka, J. A. Miller, J. J. Seilhamer, J. W. Schilling, and L. K. Johnson. The primary structure of coho salmon growth hormone and its cDNA. Gen. Comp. Endocrinol. 68: 387–399, 1987.
 631. Nielsen, H. V., U. Gether, and T. W. Schwartz. Cat pancreatic eicosapeptide and its biosynthetic intermediate. Conservation of a monobasic processing site. Biochem. J. 240: 69–74, 1986.
 632. Niinuma, K., M. Tagawa, T. Hirano, and S. Kikuyama. Changes in tissue concentrations of thyroid hormones in metamorphosing toad larvae. Zool. Sci. 8: 345–350, 1991.
 633. Niinuma, K., K. Yamamoto, and S. Kikuyama. Changes in plasma and pituitary prolactin levels in toad (Bufo japonicus) larvae during metamorphosis. Zool. Sci. 8: 97–101, 1991.
 634. Nilsson, A. Structure of the vasoactive intestinal octacosapeptide from chicken intestine. The amino acid sequence. FEBS Lett. 60: 322–327, 1975.
 635. Nilsson, A., M. Carlquist, H. Jornvall, and V. Mutt. Isolation and characterization of chicken secretin. Eur. J. Biochem. 112: 383–388, 1980.
 636. Nishimura, H. Physiological evolution of the renin‐angiotensin system. Jpn. Heart J. 19: 806–822, 1978.
 637. Nishimura, H. Evolution of the renin‐angiotensin system. In: Evolution of Vertebrate Endocrine Systems, edited by P.K.T. Pang and A. Epple. Lubbock Texas Tech Univ., 1980, vol. 21, p. 373–404.
 638. Nishimura, H. Role of the renin‐angiotensin system in osmoregulation. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications, edited by P.K.T. Pang and M. P. Schreibman. New York: Academic, 1987, p. 157–189.
 639. Nishimura, H., Y. Nakamura, R. P. Sumner, and M. C. Khosla. Vasopressor and depressor actions of angiotensin in the anesthetized fowl. Am. J. Physiol. 242 (Heart Circ. Physiol. 13): H314–H324, 1982.
 640. Nishimura, H., and M. Ogawa. The renin‐angiotensin system in fishes. Am. Zool. 13: 823–838, 1973.
 641. Nishimura, H., M. Ogawa, and W. H. Sawyer. Renin‐angiotensin system in primitive bony fishes and a holocephalan. Am. J. Physiol. 224: 950–956, 1973.
 642. Nishimura, H., W. H. Sawyer, and R. F. Nigrelli. Renin, cortisol and plasma volume in marine teleost fishes adapted to dilute media. J. Endocrinol. 70: 47–59, 1976.
 643. Nishizuka, Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9: 484–496, 1995.
 644. Noe, B. D., J. Spiess, J. Rivier, and W. Vale. Isolation and characterization of somatostatin from anglerfish pancreatic islet. Endocrinology 105: 1410–1415, 1979.
 645. Noguchi, T., and S. Kikuyama. Inhibition of thyroxine‐induced metamorphosis by prolactin in tadpoles, Rana catesbeiana, Endocrinol. Jpn. 26: 617–621, 1979.
 646. Nolly, H. L., and J. C. Fasciolo. Renin‐angiotensin system and homeostasis in Bufo arenarum. Comp. Biochem. Physiol. A 39: 833–841, 1971.
 647. Norberg, B., B. Th. Björnsson, C. L. Brown, U.‐P. Wichardt, L. J. Deftos, and C. Haux. Changes in plasma vitellogenin, sex steroids, calcitonin, and thyroid hormones related to sexual maturation in female brown trout (Salmo trutta). Gen. Comp. Endocrinol. 75: 316–326, 1989.
 648. Norman, A. W., J. Roth, and L. Orci. The vitamin D endocrine system: steroid metabolism, hormone receptors and biological response (calcium binding proteins). Endocr. Rev. 3: 331–366, 1982.
 649. Norris, D. O. Vertebrate Endocrinology. Philadelphia. Lea and Febiger, 1980.
 650. Norris, D. O. Evolution of endocrine regulation of metamorphosis in lower vertebrates. Am. Zool. 23: 709–718, 1983.
 651. Noso, T., C. S. Nicoll, A. L. Polenov, and H. Kawauchi. Lungfish prolactin exhibits close tetrapod relationships. Gen. Comp. Endocrinol. 91: 90–95, 1993.
 652. Noso, T., C. S. Nicoll, A. L. Polenov, and H. Kawauchi. The primary structure of sturgeon prolactin: phylogenetic implication. Gen. Comp. Endocrinol. 91: 90–95, 1993.
 653. Noso, T., P. Swanson, V. A. Lance, and H. Kawauchi. Isolation and characterization of glycosylated and nonglycosylated prolactins from alligator and crocodile. Int. J. Pept. Protein Res. 39: 250–257, 1992.
 654. Nothstine, S. A., J. O. Davis, and R. M. de Roos. Kidney extracts and ACTH on adrenal secretion in a turtle and a crocodilian. Am. J. Physiol. 221: 726–732, 1971.
 655. Nunez, E. A., and Gershorn. Cytophysiology of thyroid parafollicular cells. Int. Rev. Cytol. 52: 1–80, 1980.
 656. Ogawa, M. Comparative study of the external shape of the teleostean kidney with relation to phylogeny. Sci. Rep. Tokyo Kyoiku Univ. 10: 61–88, 1961.
 657. Ogawa, M. Corpuscles of Stannius. In: Atlas of Endocrine Organs, edited by A. Matsumoto and S. Ishii. Budapest: Springer‐Verlag, 1992, p. 181–183.
 658. Ogawa, M., M. Oguri, H. Sokabe, and H. Nishimura. Juxtaglomerular apparatus in the vertebrates. Gen. Comp. Endocrinol. 3: 374–381, 1972.
 659. Ogawa, M., and H. Sokabe. The macula densa site of avian kidney. Z. Zellforsch. Mikrosk. Anat. 120: 29–36, 1971.
 660. Oguro, C. Parathyroid glands of the newt, Cynops pyrrhogaster, with reference to parathyroidectomy. Annot. Zool. Jpn. 42: 21–29, 1969.
 661. Oguro, C. Parathyroid gland and serum calcium concentrations in the giant salamander, Megalobatrachus davidianus. Gen. Comp. Endocrinol. 21: 565–568, 1973.
 662. Oguro, C., and Y. Sasayama. Morphology and function of the parathyroid gland of the caiman, Caiman crocodilus. Gen. Comp. Endocrinol. 29: 161–169, 1976.
 663. Oguro, C., and Y. Sasayama. Parathyroid gland. In: Atlas of Endocrine Organs. edited by A. Matsumoto and S. Ishii. Berlin: Springer‐Verlag, 1992, p. 73–81.
 664. Okamoto, H., and L. M. Greenbaum. Isolation and structure of T‐kinin. Biochem. Biophys. Res. Commun. 112: 701–708, 1983.
 665. Oksche, A. Aspects of evolution of the pineal organ. In: The Pineal Gland and Its Endocrine Role, edited by J. Axelrod, F. Fraschini, and P. Velo. New York: Plenum, p. 15–35, 1983.
 666. Oksche, A., and D. S. Farner. Neurohistological studies of the hypophsyeal system of Zonotrichia leucophrys gambelli. Adv. Anat. Embryol. Cell Biol. 48: 1–136, 1974.
 667. Olson, K. R., D. Lipke, J. S. Datta Munshi, A. Moitra, T. K. Ghosh, G. Kunwar, M. Ahmad, P. K. Roy, O. N. Singh, S. S. T. Nasar, A. Pandey, S. O. Oduleye, and D. Kullman. Angiotensin‐converting enzyme in organs of air‐breathing fish. Gen. Comp. Endocrinol. 68: 486–491, 1987.
 668. O'Malley, B. Did eucaryotic steroid receptors evolve from intracrine gene regulators? Endocrinology 125: 1119–1120, 1989.
 669. Ono, M., Y. Takayama, M. Rand‐Weaver, S. Sakata, T. Yasunga, T. Noso, and H. Kawauchi. cDNA cloning of somatolactin, a pituitary protein related to growth hormone and prolactin. Proc. Natl. Acad. Sci. U.S.A. 87: 4330–4334, 1990.
 670. Onstott, D., and R. Elde. Immunohistochemical localization of urotensin I/corticotropin releasing factor immunoreactivity in neurosecretory neurons in the spinal cord of fish. Neuroendocrinology 39: 503–509, 1984.
 671. Orci, L., and R. H. Unger. Functional subdivision of the islets of Langerhans and possible role of D cells. Lancet ii: 1243–1244, 1975.
 672. Orimo, H., T. Fujita, M. Yoshikawa, S. Wantanabe, M. Otini, and J. Abe. Ultimobranchial calcitonin of the eel, Anguilla japonica. Endocrinol. Jpn. 19: 299–302, 1972.
 673. Otani, M., H. Yamauchi, T. Meguro, S. Kitazawa, S. Wantanabe, and H. Orimo. Isolation and characterization of calcitonin from pericardium and esophagus of eel. J. Biochem. 79: 345–352, 1976.
 674. O'Toole, L. B., K. J. Armour, C. Decourt, N. Hazon, B. Lahlou, and I. W. Henderson. Secretory patterns of 1α‐hydroxycorticosterone in the isolated perfused interrenal gland of the dogfish, Scyliorhinus canicula. J. Mol. Endocrinol. 5: 55–60, 1990.
 675. Owada, K., M. Kawata, K. Akaji, A. Takagi, M. Moriga, and H. Kobayashi. Urotensin II‐immunoreactive neurons in the caudal neurosecretory system of freshwater and seawater fish. Cell Tissue Res. 239: 349–354, 1985.
 676. Owada, K., C. Yamada, and H. Kobayashi. Immunoreactivity to antisera of urotensin II and corticotropin‐releasing factor in the caudal neurosecretory system of the elasmobranchs and the dorsal cells of the lamprey. Cell Tissue Res. 242: 527–530, 1985.
 677. Packard, M. J. Use of slow‐release pellets to administer calcitriol to avian embryos: effects on plasma calcium, magnesium, and phosphorus. Gen. Comp. Endocrinol. 85: 8–16, 1992.
 678. Packard, M. J. Variation during development in the response of chicken embryos to calcitrol administered via slow‐release pellets. Gen. Comp. Endocrinol. 85: 17–25, 1992.
 679. Padgaonkar, A. S., M. V. Kagwade, and A. P. Warbhuwan. Parathyroid and ultimobranchial glands of the estuarine snake, Cerberus rhynchops (Schneider). Gen. Comp. Endocrinol. 86: 395–397, 1992.
 680. Pan, F. M., and W. S. Chang. Cloning and sequencing of bullfrog growth hormone complementary DNA. Biochim. Biophys. Acta 950: 238–242, 1988.
 681. Pang, P.K.T., S. Harvey, R. A. Fraser, and T. Kaneko. Parathyroid hormone‐like immunoreactivity in brains of tetrapod vertebrates. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 26): R635–R642, 1988.
 682. Pang, P.K.T., S. Harvey, R. A. Fraser, and T. Kaneko. Immuno‐cytochemical distribution of PTH‐immunoreactivity in vertebrate brains. Am. J. Physiol. (Regulatory Integrative Comp. Physiol. 16): R643–R647, 254, 1988.
 683. Pang, P.K.T., and R. K. Pang. Hormones and calcium regulation in Fundulus heteroclitus. Am. Zool. 26: 225–234, 1986.
 684. Pang, P.K.T., M. Yang, C. Oguro, J. G. Phillips, and J. A. Yee. Hypotensive actions of parathyroid hormone preparations in vertebrates. Gen. Comp. Endocrinol. 41: 135–138, 1980.
 685. Pang, P.K.T., and J. A. Yee. Endocrine control of hypocalcemic regulation. In: Comparative Endocrinology of Calcium Regulation, edited by C. Oguro and P.K.T. Pang. Tokyo: Japanese Sci. Soc. Press, 1982, p. 103–111.
 686. Pankov, Y. A., and V. S. Karasyov. Primary structure of sperm whale luteinizing hormone. Int. J. Pept. Protein Res. 28: 124–129, 1986.
 687. Parker, M. G., and O. Akker. Nuclear hormone receptors: concluding remarks. In: Nuclear Hormone Receptors, edited by M. G. Parker. London: Academic 1991, p. 377–395.
 688. Parsons, J. A., D. Gray, B. Rafferty, and J. M. Zanelli. Evidence for a hypercalcemic factor in the fish pituitary immunologically related to mammalian parathyroid hormone. In: Endocrinology of Calcium Metabolism, edited by D. H. Copp and R. V. Talmage. Amsterdam: Excerpta Medica, 1978, p. 111–114.
 689. Parvinen, M. Regulation of the seminiferous epithelium. Endocr. Rev. 3: 404–417, 1982.
 690. Peaker, M., J. G. Phillips, and S. J. Peaker. A relationship between the medulla and the X zone of the mouse adrenal. Proc. Asia Oceania Congr. Endocrinol. 3: 317–321, 1967.
 691. Pearce, R. B., J. Cronshaw, and W. N. Holmes. Evidence for zonation of the interrenal tissue in the adrenal gland of the duck (Anas platyrhynchos). Cell Tissue Res. 192: 363–379, 1978.
 692. Pearse, A.G.E. The cytochemistry and ultrastructure of polypeptide hormone‐producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J. Histochem. Cytochem. 17: 303–313, 1969.
 693. Pearse, A.G.E. Neurotransmission and the APUD concept. In: Chromaffin, Enterochromaffin and Related Cells, edited by R. E. Coupland and T. Fujita. Amsterdam: Elsevier, 1976, p. 147–154.
 694. Pearse, A.G.E. The diffuse neuroendocrine system: falsification and verification of a concept. In: Cellular Basis of Chemical Messengers in the Digestive System, edited by M. I. Grossman, M. B. Brazier, and J. Lechago. New York: Raven, 1981, p. 13–19.
 695. Pearse, A.G.E. The diffuse neuroendocrine system: historical review. Front. Horm. Res. 12: 1–7, 1984.
 696. Pearse, A.G.E., and T. Takor. Embryology of the diffuse neuroendocrine system and its relationship to the common peptides. Federation Proc. 38: 2288–2294, 1979.
 697. Pearson, D., J. E. Shively, B. R. Clark, I. I. Geschwind, M. Barkley, R. S. Nishioka, and H. A. Bern. Urotensin II: a somatostatin‐like peptide in the caudal neurosecretory system of fishes. Proc. Natl. Acad. Sci. U.S.A. 77: 5021–5024, 1980.
 698. Perez‐Tomas, R., J. Ballesta, L. M. Pastor, J. F. Madrid, and J. M. Polak. Comparative immunohistochemical study of the gastroenteropancreatic endocrine system of three reptiles. Gen. Comp. Endocrinol. 76: 171–191, 1989.
 699. Perrott, M. N., and R. J. Balment. The renin‐angiotensin system and the regulation of plasma cortisol in the flounder, Platichthys flesus. Gen. Comp. Endocrinol. 78: 414–420, 1990.
 700. Peter, R. E. Structure‐activity studies on gonadotropin‐releasing hormone in teleosts, amphibians, reptiles and mammals. In: Comparative Endocrinology: Developments and Directions. edited by C. L. Ralph. New York: Alan R. Liss, 1986, p. 75–93.
 701. Peter, R. E. Vertebrate neurohormonal systems. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications, edited by P.K.T. Pang and M. P. Schriebman. London: Academic, 1986, vol. 1, p. 57–104.
 702. Peter, R. E., and J. M. Fryer. Endocrine functions of hypothalamus of actinopterygians. In: Fish Neurobiology, edited by R. E. Davis and R. G. Northcutt. Ann Arbor: Michigan University Press, 1983, vol. 2, p. 165–291.
 703. Peterson, J. D., D. F. Steiner, S. O. Emdin, and S. Falkmer. The amino acid sequence of the insulin from a primitive vertebrate, the Atlantic hagfish (Myxine glutinosa). J. Biol. Chem. 250: 5183–5191, 1974.
 704. Pickford, G. E., and J. W. Atz. The Physiology of the Pituitary Gland of Fishes. New York: New York Zool. Soc. 1957.
 705. Pierce, J. V., and M. E. Webster. Human plasma kallidins: isolation and chemical studies. Biochem. Biophys. Res. Commun. 5: 353–357, 1961.
 706. Piezzi, R. S., and L. S. Gutierrezu. Electron microscope studies on the pineal organ of the antarctic penguin, Pygoscelis papua. Cell Tissue Res. 164: 559–570, 1975.
 707. Piferrer, F., I. J. Baker, and E. M. Donaldson. Effects of natural, synthetic, aromatizable and non‐aromatizable androgens in inducing male sex differentiation in genotypic female chinook salmon (Oncorhnychus tshawytscha). Gen. Comp. Endocrinol. 91: 59–65, 1993.
 708. Plisetskaya, E., H. G. Pollock, W. M. Elliot, J. H. Youson, and P. C. Andrews. Isolation and structure of lamprey (Petromyzon marinus) insulin. Gen. Comp. Endocrinol. 69: 46–55, 1988.
 709. Plisetskaya, E. M., H. G. Pollock, J. B. Rouse, J. W. Hamilton, J. R. Kimmel, P. C. Andrews, and A. Gorbmann. Characterization of coho salmon (Oncorhynchus kisutch) islet somatostatins. Gen. Comp. Endocrinol. 63: 252–263, 1986.
 710. Plisetskaya, E., H. G. Pollock, J. B. Rouse, J. W. Hamilton, J. R. Kimmel, and A. Gorbman. Characterization of coho salmon (Oncorhynchus kisutch) insulin. Regul. Pept. 11: 105–116, 1985.
 711. Plisetskaya, E., H. G. Pollock, J. B. Rouse, J. W. Hamilton, J. R. Kimmel, and A. Gorbman. Isolation and structures of coho salmon (Oncorhynchus kisutch) glucagon and glucagon‐like peptide. Regul. Pept. 14: 57–67, 1986.
 712. Plisetskaya, E. M., M. A. Sheridan, and T. P. Mommsen. Metabolic changes in coho and chinook salmon resulting from acute insufficiency in pancreatic hormones. J. Exp. Zool. 249: 158–164, 1989.
 713. Polanco, M. J., M. I. Mata, M. T. Agapito, and J. M. Recio. Angiotensin‐converting enzyme distribution and hypoxia response in mammal, bird and fish. Gen. Comp. Endocrinol. 79: 240–245, 1990.
 714. Pollock, H. G., J. W. Hamilton, J. B. Rouse, K. E. Ebner, and A. B. Rawitch. Isolation of peptide hormones from the pancreas of the bull frog (Rana catesbeiana). Amino acid sequences of a pancreatic polypeptide, oxyntomodulin, and two glucagon‐like peptides. J. Biol. Chem. 263: 9746–9751, 1988.
 715. Pollock, H. G., and J. R. Kimmel. Chicken glucagon: isolation and amino acid sequence studies. J. Biol. Chem. 250: 9377–9380, 1975.
 716. Pollock, H. G., J. R. Kimmel, K. E. Ebner, J. W. Hamilton, J. B. Rouse, V. Lance, and A. B. Rawitch. Isolation of alligator gar (Lepisosteus spatula) glucagon, oxyntomodulin, and glucagon‐like peptide: amino acid sequences of oxyntomodulin and glucagon‐like peptide. Gen. Comp. Endocrinol. 69: 133–140, 1988.
 717. Pollock, H. G., J. R. Kimmel, J. W. Hamilton, J. B. Rouse, K. E. Ebner, V. Lance, and A. B. Rawitch. Isolation and structures of alligator gar (Lepistoseus spatula) insulin and pancreatic polypeptide. Gen. Comp. Endocrinol. 67: 375–382, 1987.
 718. Ponchon, G., and H. F. de Luca. The role of the liver in the metabolism of vitamin D. J. Clin. Invest. 48: 1273–1279, 1969.
 719. Porthe‐Nibelle, J., and B. Lahlou. Uptake and binding of glucocorticoids in fish tissues. J. Endocrinol. 78: 407–416, 1978.
 720. Pottinger, T. G. The effect of stress and exogenous control on receptor‐like binding of cortisol in the liver of rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 78: 194–203, 1990.
 721. Potts, J. T., Jr., H. D. Niall, H. T. Keutmann, H. B. Brewer, Jr., and L. J. Deftos. The amino acid sequence of porcine thyrocalcitonin. Proc. Natl. Acad. Sci. U.S.A. 59: 1321–1328, 1968.
 722. Potts, J. T., Jr., H. D. Niall, H. T. Keutmann, and R. M. Lequin. Chemistry of the calcitonins: species variation plus structure‐activity relations, and pharmacologic implications. In: Calcium Parathyroid Hormone and Calcitonin, edited by R. V. Talmange and P. Munson. Amsterdam: Excerpta Medica, 1972, p. 121–127.
 723. Power, D. M. Immunocytochemical identification of growth hormone, prolactin, and gonadotropin cells in the pituitary of male plaice (Pleuronectes platessa) during gonadal maturation. Gen. Comp. Endocrinol. 85: 358–366, 1992.
 724. Pradayrol, L., H. Jornvall, V. Mutt, and A. Ribet. N‐terminally extended somatostatin: the primary structure of somatostatin‐28. FEBS Lett. 109: 55–58, 1980.
 725. Price, D. A., K. E. Doble, T. D. Lee, J. M. Galli, B. M. Dunn, B. Parten, and D. H. Evans. The sequencing, synthesis, and biological actions of an ANP‐like peptide isolated from the brain of the killifish Fundulus heteroclitus. Biol. Bull. 178: 279–285, 1990.
 726. Putti, R., A. D. Rossa, L. Varano, V. Laforgia, and A. Cavagnuolo. An immunocytochemical study of the endocrine pancreas in three genera of lacertids. Gen. Comp. Endocrinol. 87: 249–259, 1992.
 727. Querat, B., K. Nahoul, A. Hardy, Y. A. Fontaine, and J. Leloup‐Hatey. Plasma concentrations of ovarian steroids in freshwater European eel (Anguilla anguilla L.): effects of hypophysectomy and transfer in seawater. J. Endocrinol. 114: 289–294, 1987.
 728. Radke, W. J., C. M. Albasi, and S. Harvey. Dietary sodium and adrenocorticol activity in ducks (Anas platyrhynchos) and chickens (Gallus domesticus). Gen. Comp. Endocrinol. 56: 121–129, 1984.
 729. Radke, W. J., C. M. Albasi, and S. Harvey. Haemorrhage and adrenocortical activity in the fowl (Gallus domesticus). Gen. Comp. Endocrinol. 56: 121–129, 1984.
 730. Rand‐Weaver, M., B. I. Baker, and H. Kawauchi. Cellular localization of somatolactin in the pars intermedia of some teleost fishes. Cell Tissue Res. 263: 207–215, 1991.
 731. Rand‐Weaver, M., T. Noso, K. Muramoto, and H. Kawauchi. Isolation and characterization of somatolactin, a new protein related to growth hormone and prolactin from Atlantic cod (Gadus morhua) pituitary glands. Biochemistry 30: 1509–1515, 1991.
 732. Rathnam, P., Y. Fujiki, T. D. Landefeld, and B. B. Saxena. Isolation and amino acid sequence of the alpha‐subunit of follicle‐stimulating hormone from equine pituitary glands. J. Biol. Chem. 253: 5355–5362, 1978.
 733. Rathnam, P., and B. B. Saxena. Primary amino acid sequence of follicle‐stimulating hormone from human pituitary glands. I. Alpha subunit. J. Biol. Chem. 250: 6735–6746, 1975.
 734. Raulais, D., J. Hagaman, D. S. Ontjes, R. L. Lundblad, and H. S. Kingdon. The complete amino acid sequence of rat thyrocalcitonin. Eur. J. Biochem. 64: 607–611, 1976.
 735. Raynaud, A., and C. Pieau. Embryonic development of the genital system. In: Biology of the Reptilia, edited by C. Gans. New York: Wiley, 1989, vol. 15, p. 149–300.
 736. Reddy, P. K., and T. J. Lam. Effect of thyroid hormones on hatching in the tilapia, Oreochromis mossambicus. Gen Comp. Endocrinol. 81: 484–491, 1991.
 737. Reddy, P. K., and T. J. Lam. Effects of salinity and thyroxine on larval survival and growth in the dwarf gourami, Colisa lalia. J. Aqua. Trop. 2: 79–87, 1987.
 738. Reeve, J. R., J. H. Walsh, P. Chew, B. Clark, D. Hawke, and J. E. Shively. Amino acid sequences of three bombesin like peptides from canine intestinal extracts. J. Biol. Chem. 258: 5582–5588, 1983.
 739. Reid, I. A. Renin secretion in a monotreme (Tachyglossus aculeatus). Comp. Biochem. Physiol. A 40: 249–255, 1971.
 740. Reiter, R. J. The pineal and its hormones in the control of reproduction in mammals. Endocr. Rev. 1: 109–131, 1980.
 741. Rentier‐Delrue, F., D. Swennen, J. C. Philippart, C. l'Hoir, M. Lion, O. Benrubi, and J. A. Martial. Tilapia growth hormone: molecular cloning of cDNA and expression in Escherichia coli. DNA 8: 271–278, 1989.
 742. Rieman, J. D., and F.M.A. McNabb. Assay validation and characterization of hepatic 5′‐deiodinase activity in ring doves using reverse‐T3 as substrate. Gen. Comp. Endocrinol. 82: 53–59, 1991.
 743. Riniker, B., P. Sieber, W. Rittel, and H. Zuber. Revised amino acid sequences for porcine and human adrenocorticotrophic hormone. Nature New Biol. 235: 114–115, 1972.
 744. Robertson, D. R. The ultimobranchial body of Rana pipiens. III Sympathetic innervation of the secretory parenchyma. Z. Zellforsch. Mikrosk. Anat. 78: 328–340, 1967.
 745. Robertson, D. R. The ultimobranchial body of Rana pipiens. IV Hypercalcemia and glandular hypertrophy. Z. Zellforsch. Mikrosk. Anat. 85: 441–452, 1968.
 746. Robertson, D. R. Some morphological observations of the ultimobranchial gland in the rainbow trout, Salmo gairdneri. J. Anat. 105: 115–127, 1969.
 747. Robertson, D. R. The ultimobranchial body. In: Vertebrate Endocrinology: Fundamental and Biomedical Implications, edited by P.K.T. Pang and M. P. Schreibman. London: Academic, 1986, vol. 1, p. 235–259.
 748. Rolleston, H. D. The Endocrine Organs in Health and Disease with an Historical Review. London: Oxford University Press, 1936.
 749. Romer, A. S. The Vertebrate Body. Philadelphia: Saunders, 1962.
 750. Rosenberg, J., M. Pines, and S. Hurwitz. Regulation of aldosterone by avian adrenocortical cells. J. Endocrinol. 118: 447–453, 1988.
 751. Roth, J. J., and R. E. Jones. A single ovary of Anolis carolinensis responds more to exogenous gonadotropin if the contralateral ovary is absent. Gen. Comp. Endocrinol. 85: 486–492, 1992.
 752. Sage, M., and H. A. Bern. Cytophysiology of the teleost pituitary. Int. Rev. Cytol. 31: 339–376, 1971.
 753. Saida, K., Y. Mitsui, and Y. Nishida. A novel peptide vasoactive intestinal constrictor of a new (endothelin) peptide family. J. Biol. Chem. 264: 14613–14616, 1989.
 754. Sairam, M. R., and C. H. Li. Human pituitary thyrotropin: isolation and chemical characterization of its subunits. Biochem. Biophys. Res. Commun. 51: 336–342, 1973.
 755. Sairam, M. R., N. G. Seidah, and M. Chretien. Primary structure of the ovine pituitary follitropin β‐subunit. Biochem. J. 197: 541–552, 1981.
 756. Salhanick, A. I., and C. Terner. Androgen synthesis in absence of Leydig and Sertoli cells in a germ cell fraction from rat seminiferous tubules. Biol. Reprod. 21: 293–300, 1979.
 757. Sandor, T., J. A. Dibattista, and A. Z. Mehdi. Glucocorticoid receptors in the gill tissue of fish. Gen. Comp. Endocrinol. 53: 353–364, 1984.
 758. Sandor, T., A. G. Fazekas, and B. H. Robinson. The biosynthesis of corticosteroids throughout the vertebrates . In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester‐Jones and I. W. Henderson. London: Academic, 1976, vol. 1, p. 25–142.
 759. Sanford, B., and G. A. Stephens. The effects of adrenocorticotropin hormone and angiotensin II on adrenal corticosteroid secretions in the freshwater turtle, Pseudemys scripta. Gen. Comp. Endocrinol. 72: 107–114, 1988.
 760. Sara, V. R., and K. Hall. Insulin‐like growth factors and their binding proteins. Physiol. Rev. 70: 591–614, 1990.
 761. Sasayama, Y., and C. Oguro. Ultimobranchial gland. In: Atlas of Endocrine Organs, edited by A. Matsumoto and S. Ishii. Berlin: Springer‐Verlag, 1992, p. 83–92.
 762. Sasayama, Y., C. Oguro, T. Ogasawara, T. Hirano, T. Harumi, and S. Wisessang. The crab‐eating frog Rana cancrivora: serum mineral concentrations and histology of the ultimobranchial gland and the parathyroid gland. Gen. Comp. Endocrinol. 8: 399–406, 1990.
 763. Sasayama, Y., K. Okawa, H. Kai‐Ya, C. Oguro, Y. Takei, T. X. Watanabe, K. Nakajima, and S. Sakakibara. Goldfish calcitonin: purification, characterization, and hypocalcaemic potency. Gen. Comp. Endocrinol. 89: 189–194, 1993.
 764. Sasayama, Y., N. Suzuki, C. Oguro, Y. Takei, A. Takahashi, T. X. Watanabe, K. Nakajima, and S. Sakakibara. Calcitonin of the stingray: comparison of the hypocalcemic activity with other calcitonins. Gen. Comp. Endocrinol. 86: 269–274, 1992.
 765. Sato, N., K. Watanabe, K. Murata, M. Sakaguchi, Y. Kariya, S. Kimura, M. Nonaka, and A. Kimura. Molecular cloning and nucleotide sequence of tuna growth hormone cDNA. Biochim. Biophys. Acta 949: 35–42, 1988.
 766. Sato, T., and K. Wake. The pineal organ. In: Atlas of Endocrine Organs, edited by A. Matsumoto and S. Ishii. Berlin: Springer‐Verlag, 1992, p. 11–23.
 767. Sauer, R. T., H. D. Niall, M. L. Hogan, H. T. Keutmann, J. L.H. O'Riordan, and J. T. Potts. The amino acid sequence of porcine parathyroid hormone. Biochemistry 13: 1994–2000, 1974.
 768. Saxena, B. B., and P. Rathnam. Amino acid sequence of the β subunit of follicle‐stimulating hormone from human pituitary glands. J. Biol. Chem. 251: 993–1005, 1976.
 769. Schally, A. V., A. Dupont, A. Arimura, T. W. Redding, G. Nishi, L. Lithicum, and D. H. Schlesinger. Isolation and structure of somatostatin from porcine hypothalamus. Biochemistry 15: 509–514, 1976.
 770. Scharrer, B. The neuropeptide saga. Am. Zool. 30: 887–895, 1990.
 771. Scharrer, E., and B. Scharrer. Über Drüusen‐Nervenzellen und neurosekretorische Organe bei Wirbellose und Wirbeltieren. Biol. Rev. 12: 185–216, 1937.
 772. Scharrer, E., and B. Scharrer. Neurosecretion. Physiol. Rev. 25: 171–181, 1945.
 773. Scharrer, E., and B. Scharrer. Neuroendocrinology. New York: Columbia University Press, 1963.
 774. Schofield, J. P., D. Stephen, C. Jones, and J. N. Forrest. Identification of C‐type natriuretic peptide in heart of spiny dogfish shark (Squalus acanthias). Am. J. Physiol. 261: (Renal Fluid Electrolyte Physiol. 32) F734–F739, 1991.
 775. Schreibman, M. P. Pituitary gland. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications, edited by P.K.T. Pang and M. P. Schreibman. London: Academic, 1986, vol. 1, p. 11–55.
 776. Schrek, C. B., C. S. Bradford, M. S. Fitzpatrick, and R. Patĩno. Regulation of the interrenal of fishes: non‐classical control mechanisms. Fish Physiol. Biochem. 7: 259–265, 1989.
 777. Schwartz, T. W., and H. S. Tager. Isolation and biogenesis of a new peptide from pancreatic islets. Nature 294: 589–591, 1981.
 778. Schweitz, H., P. Vigne, D. Moinier, C. Fremlin, and M. Lazdunski. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroapsis angusticeps). J. Biol. Chem. 267: 13928–13932, 1992.
 779. Scott, A. P., and A.V.M. Canario. 17α,20β‐Dihydroxy‐4‐pregnen‐3‐one 20‐sulphate: a major new metabolite of the teleost oocyte maturation‐inducing steroid. Gen. Comp. Endocrinol. 85: 91–100, 1992.
 780. Sealey, J. E., S. A. Atlas, and J. H. Laragh. Linking kallikrein and renin systems via activation of inactive renin. New data and a hypothesis. Am. J. Med. 65: 994–1000, 1980.
 781. Sehe, T. Comparative studies on the ultimobranchial body in reptiles and birds. Gen. Comp. Endocrinol. 5: 45–59, 1965.
 782. Seki, T., Miwa, I., Nakajima, T., and E. R. Erdös. Plasma kallikrein‐kinin system in non‐mammalian blood: evolutionary aspects. Am. J. Physiol. 224: 1225–1430, 1973.
 783. Share, L., and J. T. Crofton. The role of vasopressin in hypertension. Federation Proc. 43: 103–106, 1984.
 784. Shaw, C., D. M. McKay, D. W. Halton, L. Thim, and K. D. Buchanan. Isolation and primary structure of an amphibian neurotensin. Regul. Pept. 38: 23–31, 1992.
 785. Shaw, C., R. Murphy, L. Thim, J. B. Furness, and K. D. Buchanan. Marsupial possum neurotensin: a unique mammalian regulatory peptide exhibiting structural homology to the avian analogue. Regul. Pept. 35: 49–57, 1991.
 786. Shaw, C., L. Thim, and J. M. Conlon. [Ser]7‐neurotensin: isolation from guinea pig intestine. FEBS Lett. 202: 187–192, 1986.
 787. Shaw, C., L. Thim, and J. M. Conlon. Primary structure and tissue distribution of guinea pig gastrin releasing peptide. J. Neurochem. 49: 1348–1354, 1987.
 788. Sheridan, M. A., and T. P. Mommsen. Effects of nutritional state of in vivo lipid and carbohydrate metabolism of coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 81: 473–483, 1991.
 789. Sherwood, N., L. Eiden, M. Brownstein, J. Spiess, J. Rivier, and W. W. Vale. Characterization of a teleost gonadotrophin‐releasing hormone. Proc. Natl. Acad. Sci. U.S.A. 80: 2794–2798, 1983.
 790. Sherwood, N. M., S. A. Sawer, D. R. Marshall, B. A. Fraser, and M. J. Brownstein. Primary structure of gonadotropin‐releasing hormone from lamprey brain. J. Biol. Chem. 261: 4812–4819, 1986.
 791. Shibahara, S., Y. Morimoto, Y. Furutani, M. Notake, H. Takahashi, S. Shimizu, S. Horikawa, and S. Numa. Isolation and sequence analysis of the human corticotropin‐releasing factor precursor gene. EMBO J. 2: 775–779, 1983.
 792. Shields, C. A., and J. G. Eales. Thyroxine 5′‐monodeiodinase activity in hepatocytes of rainbow trout Salmo gairdneri: distribution, effects of starvation, and exogenous inhibitors. Gen. Comp. Endocrinol. 63: 334–343, 1986.
 793. Shinomura, Y., J. Eng, and R. S. Yalow. Dog secretin: sequence and biologic activity. Life Sci. 41: 1243–1248, 1987.
 794. Shire, J.G.M., and W. G. Beamer. Adrenal changes in genetically hypothyroid mice. J. Endocrinol. 102: 277–280, 1984.
 795. Shuttleworth, T. J., and M. C. Thorndyke. An endogenous peptide stimulates secretory activity in the elasmobranch rectal gland. Science 225: 319–321, 1984.
 796. Simpson, P. A., and J. R. Blair‐West. Renin levels in the kangaroo, the wombat and other marsupial species. J. Endocrinol. 51: 70–9, 1971.
 797. Singh, R., and I. Kar. Parathyroid and ultimobranchial glands of the sand boa, Eryx johnii Daudin. Gen. Comp. Endocrinol. 51: 71–76, 1983.
 798. Singh, R., and I. Kar. Parathyroid gland of the fresh water snake Natrix piscator. Gen. Comp. Endocrinol. 51: 66–70, 1983.
 799. Skene, D. J., B. Vivien‐Roels, and P. Pevet. Day and night‐time concentrations of 5‐methoxytryptophol and melatonin in the retina and pineal gland from different classes of vertebrates. Gen. Comp. Endocrinol. 84: 405–411, 1991.
 800. Skene, D. J., B. Vivien‐Roels, P. Pevet, and J. Arendt. Pineal 5‐methoxytryptophol rhythms in the box turtle: effect of photoperiod and environmental temperature. Neurosci. Lett. 98: 69–73, 1989.
 801. Skinner, D. C., G. Moodley, and R. Buffenstein. Is vitamin D3 essential for mineral metabolism in the damara mole‐rat (Cryptomys damarensis)?. Gen. Comp. Endocrinol. 81: 500–505, 1991.
 802. Smith, L. F. Species variation in the amino acid sequence of insulin. Am. J. Med. 40: 662–666, 1966.
 803. Soecjerm, H. K., and C. B. Schreck. Influence of ambient salts on plasma thyroxine concentration in juvenile coho salmon. Am. Fish. Soc. 113: 90–94, 1984.
 804. Sokabe, H., H. Nishimura, M. Ogawa, and M. Oguri. Determination of renin in the corpuscles of Stannius of the teleost. Gen. Comp. Endocrinol. 14: 510–516, 1970.
 805. Sokabe, H., and M. Ogawa. Comparative studies of the juxtaglomerular apparatus. Int. Rev. Cytol. 37: 271–327, 1975.
 806. Sokabe, H., M. Ogawa, M. Oguri, and H. Nishimura. Evolution of the juxtaglomerular apparatus in the vertebrate kidneys. Tex. Rep. Biol. Med. 27: 867–885, 1969.
 807. Soma, G., N. Kitahara, T. Nishizawa, H. Nanami, C. Kotake, H. Okazaki, and T. Andoh. Nucleotide sequence of a cloned cDNA for proopiomelanocortin precursor of chum salmon, Oncorhynchus keta. Nucleic Acids Res. 12: 8029–8041, 1984.
 808. Sourdaine, P., D. H. Garnier, and B. Jegou. The adult dogfish (Scyliorhinus canicula L.) testis: a model to study stage‐dependent changes in steroid levels during spermatogenesis. J. Endocrinol. 127: 451–460, 1990.
 809. Souza, L. M., T. C. Boone, D. Murdock, K. Langley, J. Wypych, D. Fenton, S. Johnson, P. H. Lai, R. Evertt, R. Y. Hsu, and B. Bosselman. The application of recombinant DNA techniques to studies on chicken growth hormone. J. Exp. Zool. 232: 465–473, 1984.
 810. Sower, S. A., K. H. Karlson, and R. S. Fawcett. Changes in plasma thyroxine, estradiol‐17β, and 17α, 20β‐dihydroxy‐4‐pregnen‐3‐one during smoltification of coho salmon. Gen. Comp. Endocrinol. 85: 278–285, 1992.
 811. Specker, J. L., C. J. Brown, and H. A. Bern. Asynchrony of changes in tissue and plasma thyroid hormones during parrsmolt transformation of coho salmon. Gen. Comp. Endocrinol. 88: 397–405, 1992.
 812. Specker, J. L., J. J. Distefano III, E. G. Grau, R. S. Nishioka, and H. A. Bern. Development‐associated changes in thyroxine kinetics in juvenile salmon. Endocrinology 115: 399–406, 1984.
 813. Specker, J. L., and L. Kobuke. Seawater‐acclimation and the thyroidal response to thyrotropin in juvenile coho salmon (Oncorhynchus kisutch). J. Exp. Zool. 241: 327–332, 1987.
 814. Specker, J. L., and N. H. Richman III. Environmental salinity and the thyroidal response to thyrotropin in juvenile coho salmon (Onchorhynchus kisutch). J. Exp. Zool. 230: 329–333, 1984.
 815. Specker, J. L., and C. B. Schreck. Changes in plasma corticosteroids during smoltification of coho salmon (Oncorhynchus kisutch). Gen. Comp. Endocrinol. 46: 55–58, 1982.
 816. Speidel, C. C. Glands of internal secretion in the spinal cord of skates. Papers of the Department of Marine Biology, Carnegie Institute Washington 13: 1–31, 1919.
 817. Speidel, C. C. Further comparative studies in other fishes of cells that are homologous to the large irregular glandular cells in the spinal cord of the skates. J. Comp. Neurol. 34: 303–317, 1922.
 818. Spiess, J., J. E. Rivier, J. A. Rook, C. D. Bennet, and W. Vale. Isolation and characterization of somatostatin from pigeon pancreas. Proc. Natl. Acad. Sci. U.S.A. 76: 2974–2978, 1979.
 819. Spindel, E. R., W. W. Chin, J. Price, L. H. Rees, G. M. Besser, and J. F. Habener. Cloning and characterization of cDNAs encoding human gastrin releasing peptide. Proc. Natl. Acad. Sci. U.S.A. 81: 5699–5703, 1984.
 820. Spivak, J. L. Erythropoeitin: a brief review. Nephron 52: 289–294, 1989.
 821. Srivastav, A. K., and S. Singh. Effect of vitamin D3 administration on the serum calcium and inorganic phosphate levels of the freshwater catfish, Heteropneustes fossilis, maintained in artificial fresh water, calcium‐rich fresh water, and calcium‐deficient fresh water. Gen. Comp. Endocrinol. 87: 63–70, 1992.
 822. Stamper, D. L., R. J. Denver, and P. Licht. Effects of thyroidal status on metabolism and growth of juvenile turtles, Pseudemys scripta elegans. Comp. Biochem. Physiol. A 96: 67–73, 1990.
 823. Stoll, R., N. Faucounau, and R. Maraud. Action of estradiol on Müllerian duct regression induced by treatment with norethindrone of female chick embryos. Gen. Comp. Endocrinol. 80: 101–106, 1990.
 824. Sudoh, T., K. Kangawa, N. Minamino, and H. Matsuo. A new natriuretic peptide in the porcine brain. Nature 332: 78–81, 1988.
 825. Sudoh, T., K. Maekawa, M. Kojima, N. Minamino, K. Kangawa, and H. Matsuo. Cloning and sequence analysis of cDNA encoding a precursor for human brain natriuretic peptide. Biochem. Biophys. Res. Commun. 159: 1427–1434, 1989.
 826. Sudoh, T., N. Minamino, K. Kangawa, and H. Matsuo. C‐type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem. Biophys. Res. Commun. 168: 863–870, 1990.
 827. Sundby, F. Species variations in the primary structure of glucagon. Metab. Clin. Exp. 25 (Suppl. I): 1319–1321, 1976.
 828. Sundby, F., E. K. Frandsen, J. Thomsen, K. Kristiansen, and K. Brunfeldt. Crystallization and amino acid sequence of duck glucagon. FEBS Lett. 26: 289–293, 1972.
 829. Sundell, K., and B. Th. Björnsson. Effects of vitamin, 25(OH) vitamin D3, 24,25(OH)2 vitamin D3, and 1,25(OH)2 vitamin D3 on the in vitro intestinal calcium absorption in the marine teleost, Atlantic cod (Gadus morhua). Gen. Comp. Endocrinol. 78: 74–79, 1990.
 830. Susuki, M., S. Hyodo, M. Kobayashi, K. Aida, and A. Urano. Characterization and localization of mRNA encoding salmon‐type gonadotrophin‐releasing hormone precursor of the masu salmon. J. Mol. Endocrinol. 9: 73–82, 1992.
 831. Suzuki, K., K. Asahina, C. S. Tamaru, C.‐S. Lee, and H. Inano. Biosynthesis of 17α,20β‐dihydroxy‐4‐pregnen‐3‐one in the ovaries of grey mullet (Mugil cephalaus) during induced ovulation by carp pituitary homogenates and an LHRH analogue. Gen. Comp. Endocrinol. 84: 215–221, 1991.
 832. Suzuki, M. R., and S. Kikuyama. Corticoids augment nuclear binding capacity for triiodothyronine in bullfrog tadpole tails. Gen. Comp. Endocrinol. 84: 215–221, 1991.
 833. Suzuki, R., A. Takahashi, N. Hazon, and Y. Takei. Isolation of high‐molecular‐weight C‐type natriuretic peptide from the heart of a cartilaginous fish (European dogfish, Scyliorhinus canicula). FEBS Lett. 282: 321–325, 1991.
 834. Suzuki, S., A. Gorbman, M. Rolland, M. F. Montfort, and S. Lissitzky. Thyroglobulins of cyclostomes and an elasmobranch. Gen. Comp. Endocrinol. 26: 59–69, 1975.
 835. Tagawa, M., and T. Hirano. Effects of thyroid hormone deficiency in eggs on early development of the medaka, Oryzias latipes. J. Exp. Zool. 257: 360–366, 1991.
 836. Tagawa, M., Miwa, S., Y. Inui, E. G. de Jesus, and T. Hirano. Changes in thyroid hormone concentrations during early development and metamorphosis of the flounder, Paralichthys olivaceus. Zool. Sci. 7: 93–96, 1990.
 837. Tagawa, M., M. Tanaka, S. Matsumoto, and T. Hirano. Thyroid hormones in eggs of various freshwater, marine and diadromous teleosts and their changes during egg development. Fish Physiol. Biochem. 8: 515–520, 1990.
 838. Takagi, I., and K. Yamada. An electron microscope study of the ultimobranchial body of the crucian carp (Carassius carassius). Okajimas Folia Anat. Jpn. 54: 205–228, 1977.
 839. Takayama, Y., M. Rand‐Weaver, H. Kawauchi, and M. Ono. Gene structure of chum salmon somatolactin, a presumed pituitary hormone of the growth hormone/prolactin family. Mol. Endocrinol. 5: 778–786, 1991.
 840. Takei, Y., Y. Hasegawa, T. X. Watanabe, K. Nakajima, and N. Hazon. A novel angiotensin I isolated from an elasmobranch. J. Endocrinol. 139: 281–285, 1993.
 841. Takei, Y., E. P. Silldorff, Y. Hasegawa, T. X. Watanabe, K. Nakajima, G. A. Stephens, and S. Sakakibara. New angiotensin I isolated from a reptile, Alligator mississippiensis. Gen. Comp. Endocrinol. 90: 214–219, 1993.
 842. Takei, Y., A. Takahashi, T. X. Watanabe, K. Nakajima, and S. Sakakibara. Amino acid sequence and relative biological activity of eel atrial natriuretic peptide. Biochem. Biophys. Res. Commun. 164: 537–545, 1989.
 843. Takei, Y., A. Takahashi, T. X. Watanabe, K. Nakajima, S. Sakakibara, Y. Sasayama, N. Suzuki, and C. Oguro. New calcitonin isolated from a cartilaginous fish. Biol. Bull. 180: 485–488, 1991.
 844. Takei, Y., A. Takahashi, T. X. Watanabe, K. Nakajima, S. Sakakibara, T. Takao, and Y. Shimonishi. Amino acid sequence and relative biological activity of a natriuretic peptide isolated from eel brain. Biochem. Biophys. Res. Commun. 170: 883–891, 1990.
 845. Takeuchi, A., T. Okano, and T. Kobayashi. The existence of 25‐hydroxyvitamin D3 1 alpha‐hydroxylase in the liver of carp and bastrad halibut. Life Sci. 48: 275–282, 1991.
 846. Takeuchi, A., T. Okano, M. Torii, Y. Hatanaka, and T. Kobayashi. Comparative studies on the contents of vitamin D3, 25‐hydroxy vitamin D3 and 7‐dehydrocholesterol in fish liver. Comp. Biochem. Physiol. [B] 88: 569–573, 1987.
 847. Talmagda, K., N. C. Vamakopoulos, and J. C. Fiddes. Evolution of genes for the β subunits of human chorionic gonadotropin and luteinizing hormone. Nature 307: 37–40, 1984.
 848. Tatemoto, K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine excretion. Proc. Natl. Acad. Sci. U.S.A. 79: 2514–2518, 1982.
 849. Tatemoto, K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc. Natl. Acad. Sci. U.S.A. 79: 5485–5489, 1982.
 850. Tatemoto, Y., T. Nakajima, Y. Hasegawa, T. X. Watanabe, H. Sokabe, S.‐I. Kumagae, and S. Sakakibara. Chemical structures of angiotensins formed by incubating plasma with the kidney and the corpuscles of Stannius in the chum salmon, Oncorhynchus keta. Gen. Comp. Endocrinol. 51: 219–227, 1983.
 851. Taugner, R., and E. Hackenthal. The Juxtaglomerular Apparatus. Berlin: Springer‐Verlag, 1989.
 852. Taylor, A. A. Comparative physiology of the renin‐angiotensin system. Federation Proc. 36: 1776–1780, 1977.
 853. Taylor, A. A., and J. O. Davis. Effects of carp kidney extracts and angiotensin II on adrenal steroid secretion. Am. J. Physiol. 221: 652–657, 1971.
 854. Taylor, A. A., J. O. Davis, R. P. Breitenbach, and P. M. Hartcroft. Adrenal steroid secretion and a renal pressor system in the chicken Gallus domesticus. Gen. Comp. Endocrinol. 14: 321–333, 1970.
 855. Taylor, J. D., K. V. Honn, and W. Chavin. Adrenocortical ultrastructure in the squaliform elasmobranch (Ginglymostomata cirratum Bonnaterre): cell death, a postulate for holocrine secretion. Gen. Comp. Endocrinol. 27: 358–370, 1975.
 856. Thim, L., A. J. Moody, and I. Valverde. Structure determination of glicentin isolated from a single human intestine. Dig. Dis. Sci. 29: A‐88, 1984.
 857. Thorndyke, M. C., and L. Probert. Calcitonin‐like cells in the pharynx of the asicidian, Styela clava. Cell Tissue Res. 203: 301–309, 1979.
 858. Timson, C. M., J. M. Polak, J. Wharton, M. A. Ghatei, S. R. Bloom, L. Usellini, C. Capella, E. Solcia, M. R. Brown, and A. G. E. Pearse. Bombesin‐like immunoreactivities in the avian gut and its localization to a distinct cell type. Histochemistry 61: 312–321, 1979.
 859. Tong, W. P., Kerkof, and I. L. Chiakoff. Identification of labelled thyroxine and triiodothyronine in amphioxus treated with 1311. Biochmim. Biophys. Acta 561: 326–331, 1962.
 860. Toubeau, G., A. Poilve, E. Baras, D. Nonclercq, S. de Moor, J. F. Beckers, C. Dessy‐Doize, and J. A. Heuson‐Stiennon. Immunocytochemical study of cell type distribution in the pituitary of Barbus barbus (Teleostei, Cyprinidae). Gen. Comp. Endocrinol. 83: 35–47, 1991.
 861. Treilhou‐Lahille, F., A. Jullienne, M. Aziz, A. Beaumont, and G. Milhaud. Ultrastructural localization of immunoreactive calcitonin in the two cell types of the ultimobranchial gland of the common toad (Bufo bufo L). Gen. Comp. Endocrinol. 53: 241–251, 1984.
 862. Treilhou‐Lahille, F., F. Lasmoles, J. Taboulet, J. P. Barlet, G. Milhaud, and M. Mouktar. Ultimobranchial gland of the domestic fowl. Cell Tissue Res. 235: 439–448, 1984.
 863. Truscott, B., and D. R. Idler. Corticosteroids in plasma of elasmobranchs. Comp. Biochem. Physiol. A 42: 41–50, 1972.
 864. Tsubokawa, M., K. Muramoto, and K. Kawauchi. Primary structure of fin whale prolactin. Int. J. Pept. Protein Res. 25: 442–448, 1985.
 865. Turner, C. D., and J. T. Bagnara. General Endocrinology. Philadelphia: Saunders, 1976.
 866. Tyler, C. R., J. P. Sumpter, and N. R. Bromage. In vivo ovarian uptake and processing of vitellogenin in the rainbow trout, Salmo gairdneri. J. Exp. Zool. 246: 171–179, 1988.
 867. Tyler, C. R., J. P. Sumpter, and P. M. Campbell. Uptake of vitellogenin into oocytes during early vitellogenic development in the rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Biol. 38: 681–689, 1991.
 868. Tyndale‐Biscoe, C. H. The adaptiveness of reproductive processes. In: Kangaroos, Wallabies and Rat Kangaroos, edited by G. Grigg, P. Jarman, and I. Hume. New South Wales: Aurrey Beatty, 1989, p. 277–285.
 869. Ueda, H., A. Kambega, and Y. Nagahama. In vitro 11‐ketotesterone and 17α,20β‐dihydroxy‐4‐pregen‐3‐one production by testicular fragments and isolated sperm of rainbow trout, Salmo gairdneri. J. Exp. Zool. 231: 435–439, 1984.
 870. Ulick, S., and E. Feinholz. Metabolism and rate of secretion of aldosterone in the bullfrog. J. Clin. Invest. 47: 2523–2529, 1968.
 871. Uva, B., I. W. Henderson, M. A. Masini, N. Hazon, and P. Ghiani. Renin and angiotensin converting enzyme in elasmobranchs. Gen. Comp. Endocrinol. 80: 407–412, 1992.
 872. Vale, W., J. Spiess, C. Rivier, and J. Rivier. Characterization of a 41‐residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β‐endorphin. Science 213: 1394–1397, 1981.
 873. Valotaire, Y., M. Tenniswood, C. le Guellec, and J. R. Tata. The preparation and characterization of vitellogenin messenger RNA from rainbow trout (Salmo gairdneri). Biochem. J. 217: 73–77, 1975.
 874. Van Dongen, W. J., and C. A. Van der Jeijden. The demonstration of renal juxtaglomerular granules and the evaluation of the index of granulation in the toad, Bufo bufo, Z. Zellforsch. Mikrosk. Anat. 94: 40–45, 1969.
 875. Vanhoutte, P. M., C. M. Boulanger, M. Vidal, and J.‐V. Mombouli. Endothelium‐derived mediators and the renin‐angiotensin system. In: The Renin‐Angiotensin System, edited by J.I.S. Robertson, and M. G. Nicholls. London: 1993, vol. 1, pp. 29.1–29.15.
 876. Van Oordt, P.W.J. Cytology of the adenohypophysis. In: Physiology of the Amphibia, edited by B. Lofts. 1974, vol. 2, p. 53–106.
 877. Varma, M. M. Ultrastructural evidence for aldosterone‐ and corticosterone cells in the adrenocortical tissue of the American bullfrog (Rana catesbeiana). Gen. Comp. Endocrinol. 33: 61–75, 1977.
 878. Vesely, D. L., and A. T. Giordano. The most primitive heart in the animal kingdom contains the atrial natriuretic peptide hormonal system. Comp. Biochem. Physiol. [C] 101: 325–329, 1992.
 879. Vesely, D. L., W. R. Gower, and A. T. Giordano. Atrial natriuretic peptides throughout the plant kingdom: enhancement of solute flow by peptides from the N‐terminus of the atrial natriuretic factor prohormone. Am. J. Physiol. 265: (Endocrinol. Metab. Gastrointest. Physiol. 28) E465–E477, 1993.
 880. Vigna, S. R. Gastrointestinal tract. In: Vertebrate Endocrinology: Fundamentals and Biomedical Implications. Morphological Considerations edited by P. K. T. Pang and M. P. Schreibman. London: Academic, 1986, vol. 1, p. 261–278.
 881. Vinson, G. P., and C. J. Kenyon. Steroidogenesis in the zones of the mammalian adrenal cortex. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester‐Jones and I. W. Henderson. London: Academic, 1978, vol. 2, p. 201–290.
 882. Visser, T. J. Mechanism of action of iodothyronine‐5′‐deiodinase. Biochim. Biophys. Acta 569: 302–308, 1979.
 883. Vivien‐Roels, B. Interactions between photoperiod, temperature, pineal and seasonal reproduction in non‐mammalian vertebrates. In: The Pineal Gland, Current State of Pineal Research, edited by B. Mess, C. Ruzsas, L. Tima, and P. Pévet. Budapest: Akademia Kiado, 1985, p. 187–210.
 884. Vollrath, L. The pineal organ. In: Handbuch der Mikroskopischen des Mensche, edited by A. Oksche and L. Vollrath. Berlin: Springer‐Verlag, 1981, vol. IV, pt. 10, p. 1–65.
 885. Wagner, G. F., J. C. Fenwick, C. M. Park, C. Milliken, D. H. Copp, and H. G. Friesen. Comparative biochemistry and physiology of teleocalcin from sockeye and coho salmon. Gen. Comp. Endocrinol. 72: 237–246, 1988.
 886. Wagner, G. F., and H. G. Friesen. Studies on the structure and physiology of salmon teleocalcin. Fish Physiol. Biochem. 7: 367–374, 1989.
 887. Wagner, G. F., M. Hampong, and D. H. Copp. A cycle for 45Ca uptake in the rainbow trout (Salmo gairdneri). Can. J. Zool. 63: 2778–2779, 1985.
 888. Wagner, G. F., M. Hampong, C. M. Park, and D. H. Copp. Purification, characterization and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen. Comp. Endocrinol. 63: 481–491, 1986.
 889. Wahli, W., I. B. Dawid, G. U. Ryffei, and R. Weber. Vitellogenins and the vitellogenin gene family. Science 212: 298–304, 1981.
 890. Walf, D. L., V. L. Appleby, K. Hjerrild, A. R. Baker, and K. Talmadge. Nucleic acid and amino acid sequences of dog β LH: comparison to rat, cow and human βLH. Nucleic Acids Res. 15: 10–12, 1987.
 891. Wallis, M. The molecular evolution of pituitary hormones. Biol. Rev. 50: 35–98, 1975.
 892. Wang, Y., F. O'Harte, and J. M. Conlon. Structural characterization of tachykinins (neuropeptide gamma, neurokinin A, and substance P) from a reptile, Alligator mississippiensis. Gen. Comp. Endocrinol. 88: 277–286, 1992.
 893. Watahiki, M., M. Tanaka, N. Masuda, K. Sugishita, M. Yamamoto, M. Yamakawa, J. Nagai, and K. Nakashima. Primary structure of chicken pituitary prolactin deducted from the cDNA sequence. J. Biol. Chem. 264: 5535–5539, 1989.
 894. Wathes, D. C., and R. W. Swann. Is oxytocin an ovarian hormone? Nature 297: 225–227.
 895. Weisbart, M., and D. R. Idler. Re‐examination of the presence of corticosteroids in two cyclostomes, the Atlantic hagfish (Myxine glutinosa L.) and the sea lamprey (Petromyzon marinus L.) J. Endocrinol. 46: 29–43 (1970).
 896. Welsch, U., and C. Schubert. Observations on the fine structure, enzyme histochemistry and of parathyroid gland and ultimobanchial body of Chthonerpeton indistinctum (Gymanophiona, Amphibia). Cell Tissue Res. 164: 105–119, 1975.
 897. Wendelaar Bonga, S. E., P. I. Lammers, and J.C.A. Van der Meij. Effects of 1,25 and 24,25 dihydroxyvitamin D3 on bone formation in the cichlid teleost, Sarotherodon mossambicus. Cell Tissue Res. 228: 117–126, 1983.
 898. Wendelaar Bonga, S. E., and P.K.T. Pang. Stannius corpuscles. In: Vertebrate Endocrinology: Fundamentals and Biomedical Applications. Morphological Considerations, edited by P.K.T. Pang and M. Schreibman. London: Academic, 1986, vol. 1, p. 439–464.
 899. Wendelaar Bonga, S. E. and P.K.T. Pang. Pituitary hormones. In: Vertebrate Endocrinology: Fundamental and Biomedical Implications, edited by P.K.T. Pang and M. P. Schriebman. London: Academic, 1989, vol. 2, p. 207–234.
 900. Wendelaar Bonga, S. E., and P.K.T. Pang. Control of calcium regulating hormones in the vertebrates: parathyroid hormone, prolactin and stanniocalcin. Int. Rev. Cytol. 128: 139–214, 1991.
 901. Wendelaar Bonga, S. E., R. K. Pang, and P.K.T. Pang. Hypocalcemic effects of bovine parathyroid hormone and Stannius corpuscle homogenates in teleost fish adated to low‐calcium water. J. Exp. Zool. 240: 363–367, 1986.
 902. Wendelaar Bonga, S. E., J.C.A. Van der Meij, and P.K.T. Pang. Evidence for two secretory cell types in the Stannius bodies of the teleosts Fundulus heteroclitus and Carassius auratus. Cell. Tissue Res. 212: 295–306, 1980.
 903. Wennstrom, K. L., and D. Crews. Making males from females: the effects of aromatase inhibitors on a parthenogenetic species of whiptail lizard. Gen. Comp. Endocrinol. 99: 316–322, 1995.
 904. Wideman, R. F. Innervation of the parathyroid in the European starling (Sturnus vulgaris). J. Morphol. 166: 65–80, 1980.
 905. Williams, B. C. Dopamine in the kidney. In: The Neurobiology of Dopamine Systems, edited by W. Winlow and R. Markstein Manchester: Manchester University Press, 1987, p. 385–401.
 906. Wilson, D. M., and R. L. Hintz. Inter‐species comparison of somatomedin structure using immunological probes. J. Endocrinol. 95: 59–64, 1982.
 907. Wilson, J. A. Principles of Animal Physiology. New York: Collier Macmillan, 1979.
 908. Wilson, J. X. The renin‐angiotensin system in nonmammalian vertebrates. Endocr. Rev. 5: 45–61, 1984.
 909. Wilson, J. X. Coevolution of the renin‐angiotensin system and the nervous control of blood circulation. Can. J. Zool. 62: 137–147, 1985.
 910. Wingstrand, K. G. Comparative anatomy and evolution of the hypophysis. In: The Pituitary Gland, edited by G. W. Harris and B. T. Donovan. Berkeley: University of California Press, 1966, vol. 1, p. 58–126.
 911. Wittle, L. W., R. S. Augostini, and W. S. Chizmar. The occurrence of chronic hypocalcemia following parathyroidectomy in the green frog, Rana clamitans. Gen. Comp. Endocrinol. 80: 419–426, 1990.
 912. Wright, G. M., and J. H. Youson. Transformation of the endostyle of the anadromous sea lamprey, Petromyzon marinus L. during metamorphosis. Light microscopy and autoradiography with 1251. Gen. Comp. Endocrinol. 30: 243–257, 1976.
 913. Yamada, C., K. Owada, T. Ichikawa, T. Inanaga, and H. Kobayashi. Immunohistochemical localization of urotensin I and II in the caudal neurosecretory neurons of the carp, Cyprinus carpio, and the sharks, Heterodontus japonicus and Cephaloscyllium umbratile. Arch. Histol. Jpn. 49: 39–44, 1986.
 914. Yamada, C., K. Owada, and H. Kobayashi. Co‐localization of corticotropin‐releasing factor/urotensin I and urotensin II in the caudal neurosecretory neurons in the carp, Cyprinus carpio. Zool. Sci. 2: 813–816, 1985.
 915. Yamaguchi, K., J. L. Specker, D. S. King, Y. Yokoo, R. S. Nishioka, T. Hirano, and H. A. Bern. Complete amino acid sequences of a pair of fish (tilapia) prolactins. J. Biol. Chem. 263: 9113–9121, 1988.
 916. Yamaguchi, K., A. Yasuda, U. J. Lewis, Y. Yokoo, and H. Kawauchi. The complete amino acid sequence of growth hormone of an elasmobranch, the blue shark (Prionace glauca). Gen. Comp. Endocrinol. 73: 252–259, 1989.
 917. Yamamoto, K., and S. Kikuyama. Effect of prolactin antiserum on growth and resorption of tadpole tail. Endocrinol. Jpn. 29: 18–85, 1982.
 918. Yamamoto, K., S. Kikuyama, and I. Yasumasu. Inhibition of thyroxine‐induced resorption of tadpole tail by adenosin 3′, 5′‐cyclic monophosphate. Dev. Growth Differ. 21: 255–261, 1979.
 919. Yamamoto, K., T. Kobayashi, and S. Kikuyama. Purification and characterization of toad prolactin. Gen. Comp. Endocrinol. 63: 104–109, 1986.
 920. Yamamoto, K., K. Niinuma, and S. Kikuyama. Synthesis and storage of prolactin in the pituitary gland of bullfrog tadpoles during metamorphosis. Gen. Comp. Endocrinol. 62: 247–253, 1986.
 921. Yamamoto, K., N. Suzuki, N. Takahashi, Y. Sasayama, and S. Kikuyama. Estrogen receptors in the stingray (Dasyatis akajei) ultimobranchial gland. Gen. Comp. Endocrinol. 101: 107–114, 1996.
 922. Yamano, K., S. Miwa, T. Obinata, and Y. Inui. Thyroid hormone regulates developmental changes in muscle during flounder metamorphosis. Gen. Comp. Endocrinol. 81: 464–472, 1991.
 923. Yan, H. Y., and P. Thomas. Histochemical and immunocytochemical identification of the pituitary cell types in three Sciaenid fishes: Atlantic croaker (Micropogonias undulatus), spotted seatrout (Cynoscion nebulosus), and red drum (Sciaenops ocellatus). Gen. Comp. Endocrinol. 84: 389–400, 1991.
 924. Yanda, D. M., and J. G. Ghazarian. Vitamin D and 25‐hydroxyvitamin D in rainbow trout (Salmo gairdneri): cytochrome P‐450 and biotransformations of the vitamins. Comp Biochem. Physiol. [B] 69: 183–188, 1981.
 925. Yang, C. M., and P.K.T. Pang. Vascular action of parathyroid hormone. In: Comparative Endocrinology of Calcium Regulation, edited by C. Oguro and P.K.T. Pang. Tokyo: Japanese Sci. Soc. Press, 1982, p. 195–199.
 926. Yao, K., P. D. Niu, F. L. le Gac, and P. Y. le Bail. Presence of specific growth hormone binding sites in rainbow trout (Oncorhynchus mykiss) tissues: characterization of the hepatic receptor. Gen. Comp. Endocrinol. 81: 72–82, 1991.
 927. Yashuhara, T., M. Hira, T. Nakajima, N. Yanaihara, C. Yanaihara, T. Hashimoto, N. Sakura, S. Tachibana, K. Araki, M. Bessho, and T. Yamanaka. Active peptides on smooth muscle in the skin of Bombina orientalis Boulenger and characterization of a new bradykinin analogue. Chem. Pharm. Bull. (Tokyo) 21: 1388–1392, 1973.
 928. Yasuda, A., H. Itoh, and H. Kawauchi. Primary structure of chum salmon prolactins: occurrence of highly conserved regions. Arch. Biochem. Biophys. 244: 528–541, 1986.
 929. Yasuda, A., H. Kawauchi, and H. Papkoff. The complete amino acid sequence of prolactin from the sea turtle (Chelonia mydas). Gen. Comp. Endocrinol. 80: 363–371, 1990.
 930. Yasuda, A., K. Miyajima, H. Kawauchi, R. E. Peter, H. R. Lin, K. Yamaguchi, and H. Sano. Primary structure of common carp prolactins. Gen. Comp. Endocrinol. 66: 280–290, 1987.
 931. Yasuda, A., K. Yamaguchi, T. Kobayashi, K. Yamamoto, S. Kikuyama, and H. Kawauchi. The complete amino acid sequence of prolactin from the bullfrog (Rana catesbeiana). Gen. Comp. Endocrinol. 83: 218–226, 1991.
 932. Yasuda, A., K. Yamaguchi, H. Papkoff, Y. Yokoo, and H. Kawauchi. The complete amino acid sequence of growth hormone from the sea turtle (Chelonia mydas). Gen. Comp. Endocrinol. 73: 242–251, 1989.
 933. Yeghiayan, E., J. M. Rojo‐Ortega, and J. Genest. Parathyroid vessel innervation: an ultrastructural study. J. Anat. 112: 137–142, 1972.
 934. Yoshihara, A., H. Kozawa, N. Minamino, K. Kangawa, and H. Matsuo. Isolation and sequence determination of frog C‐type natriuretic peptide. Biochem. Biophys. Res. Commun. 173: 591–598, 1990.
 935. Young, G., B.T.H. Björnsson, P. Prunet, R. J. Lin, and H. A. Bern. Smoltification and seawater adaptation in coho salmon (Oncorhynchus kisutch): plasma prolactin, growth hormone, thyroid hormones, and cortisol. Gen. Comp. Endocrinol. 74: 335–345, 1989.
 936. Young, J. Z. Life of Vertebrates. Oxford: Oxford University Press, 1980.
 937. Youson, J. H., D. G. Butler, and A.T.C. Chan. Identification and distribution of the adrenocortical homolog, chromaffin tissue and corpuscles of Stannius in Amia calva L. Gen. Comp. Endocrinol. 29: 198–211, 1976.
 938. Yui, R., Y. Nagata, and T. Fujita. Gastro‐entero‐pancreatic (GEP) endocrine system. In: Atlas of Endocrine Organs, edited by A. Matsumoto and S. Ishii. Berlin: Springer‐Verlag, 1992, p. 93–107.
 939. Yunge, L., M. Ballak, J. Beuzeron, J. Lacasse, and M. Cantin. Ultrastructural cytochemistry of atrial and ventricular cardiocytes of the bullfrog (Rana catesbeiana). Relationship of specific granules with renin‐like activity of the myocardium. Can. J. Physiol. Pharmacol. 58: 1463–1472, 1980.
 940. Zaime, A., M. Laraki, J.‐Y. Gautier, and D. H. Garnier. Seasonal variations of androgens and of several sexual parameters in male Meriones shawi in southern Morocco. Gen. Comp. Endocrinol. 86: 289–296, 1992.
 941. Zambrano, D., and F. C. Iturriza. Hypothalamo‐hypophysial relationships in the South American lungfish, Lepidosiren paradoxa. Gen. Comp. Endocrinol. 20: 256–273, 1973.
 942. Zerani, M., C. Vellano, F. Amabili, O. Carnevali, G. E. Andreoletti, and A. Polzonetti‐Magni. Sex steroid profile and plasma vitellogenin during the annual reproductive cycle of the crested newt (Triturus carnifex Laur.). Gen. Comp. Endocrinol. 82: 337–344, 1991.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Ian W. Henderson. Endocrinology of the Vertebrates. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 623-749. First published in print 1997. doi: 10.1002/cphy.cp130110