Comprehensive Physiology Wiley Online Library

Invertebrate Nervous Systems

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Overview of Invertebrate Systems
1.1 Plants and Unicellular Microbes
1.2 Parazoa: Sponges
1.3 Diploblastic Metazoa: Anemones, Jellyfish, and Comb Jellies
1.4 The First Brains: Flatworms, Flukes, and Tapeworms (Platyhelminthes)
1.5 Nemertines, Pseudocoelomates, and Others
1.6 Nematodes
1.7 Annelids, Arthropods, and Molluscs
1.8 Echinoderms
1.9 Chaetognaths
1.10 Invertebrate Chordates
2 Principle‐Oriented Vignettes
2.1 Voltage‐Gated Ion Channels and Membrane Biophysics
2.2 Synaptic Transmission and Neurosecretion
2.3 Selected Neuronal Circuits
2.4 Long‐Term Plasticity of Invertebrate Neuronal Circuits
2.5 Sensory Representation and Processing
2.6 Olfaction
2.7 Vision
2.8 Mechanosensation
Figure 1. Figure 1.

Excitability in plants and unicellular microbes. A: Action potentials elicited by touch in touch‐sensitive plants, Mimosa pudica (upper) and Venus's‐flytrap, Dionaea muscipula (lower) (after 1130). B: Responses to mechanical stimulation of anterior and posterior ends of the ciliated protozoan Paramecium caudatum. Stimulation to the anterior end produces graded depolarization and a reversal of ciliary beat that results in a change in the direction of swimming. Stimulation of the posterior end causes transient hyperpolarization that results in an acceleration of the rate of ciliary beating and faster forward swimming (from 897). C: Single‐channel patch clamp recordings of Ba2+ currents in outside out patches of sugar beets (Beta vulgaris) tonoplast membranes. Patches were continuously polarized to the values shown on the left. Channel openings and closings were observed at membrane potentials more negative than 0 mV. The presence of more than one channel in the patch was indicated by multiple opening events (from 957). D: Activities of two types of ion channel reconstituted into liposomes from the bacterium Escherichia coli. The open probability of a mechanosensitive channel (upper) was increased by applying increasing suction pressures via the recording pipette. Pipette voltage was +40 mV. Voltage‐dependent channels (lower) were identified in a membrane patch held at −50 mV. Open and maximally closed levels (corresponding to the closure of seven conductance units) are indicated on the left.

from 286
Figure 2. Figure 2.

Regenerative depolarizing and hyperpolarizing action in the dinoflagellate Noctiluca in response to injection of current into the flotation vacuole in Ca2+ ‐deprived artificial seawater. Upper traces, membrane potential; lower traces, injected current. A, D: Current injected when membrane was more or less hyperpolarized after negative spike. B, C: Current injected when membrane was more or less depolarized after positive spike. A, B: Outward current. C, D: Inward current.

from 930
Figure 3. Figure 3.

Hypostomal nerve net and ring of Hydra oligactis. Whole‐mount of a head stained with an antiserum against RFamide, demonstrating the presence of a nerve ring in the hypostome. a: Side view of the head shows the hypostome and the basal parts of several tentacles. Tentacles emerge from the tentacle zone below the hypostome. The dark spot in the midst of the stained cells well above the ring is the mouth region, which is the apex of the hypostome. b: View from above the hypostome shows the dark mouth region in the center surrounded by a large number of epidermal sensory cells. Arrow shows a typical ganglion cell outside the nerve ring. Bars indicate 200 μm (a) and 100 μm (b).

From 652
Figure 4. Figure 4.

Bidirectional excitatory chemical synapse between elements of the motor nerve net in the jellyfish Cyanea capillata. All records from the same cell pair with stimuli being applied to the cell on the upper trace. A: Approximately 1 ms after the peak of the action potential in the postsynaptic cell (lower trace), a distinct notch (arrow) appears on the action potential in the presynaptic cell (upper trace). This notch is absent when only an excitatory postsynaptic potential (EPSP) appears in the postsynaptic cell (B). When a delayed spike was evoked from the postsynaptic cell, a clear EPSP (arrow) was evoked from the presynaptic cell (C).

Modified from 31
Figure 5. Figure 5.

Two sizes of action potential produced during swimming by the motor giant axon of the jellyfish Aglantha digitale. A: Scale drawing from a photograph of A. digitale, apex at the top. B: Schematic of the layout of ring giant, motor giant axons, and myoepithelium in the circumumbrellar margin of the body wall. C: Regenerative impulses recorded from isolated motor giant axon shortened to 700 μm. Axon penetrated with two micropipettes to inject current and record membrane voltage. Traces superimposed to show overshooting action potential and low‐threshold spike elicited by successive depolarizing current pulses. Current reduced by ∼0.1 nA between pulses; action potential elicited by higher current. Axon resting potential, −67 mV.

A: from 1029; B: modified from 775; C: modified from 825
Figure 6. Figure 6.

A: Spontaneous plateau potentials recorded in the cell body of an AVF‐like interneuron in Ascaris suum. Arrow marks an inflection from a depolarizing ramp to a plateau potential. B: Injection of hyperpolarizing current of sufficient magnitude suppresses the production of plateau potentials. C: Brief depolarizations superimposed upon the sustained hyperpolarization activate plateaus at a discrete threshold. D: Brief (100 ms) pulse of depolarizing current resets the rhythm of spontaneous plateaus. I, current monitor trace.

From 45
Figure 7. Figure 7.

Schematic showing synaptic connections among the motoneurons and large interneurons in the segmentally repeating arrays of Ascaris suum. The synaptic connectivities of all three types of dorsal excitatory motoneuron are similar, so they have been combined (DE), as have the putative ventral excitors (VE). Excitatory synapses are represented by open triangles and inhibitory synapses by filled triangles. No direct recording has been made from VE motoneurons, so the signs of the synapses they make and receive are predictions based on their anatomical similarities to DE motoneurons. Dorsal inhibitory motoneuron, DI; ventral inhibitory motoneuron, VI.

From 1206
Figure 8. Figure 8.

Lack of A‐current in shaker mutant muscle fibers. Voltage clamp recordings from larval muscle fibers of Drosophila. Note that the initial fast outward current in the normal, wild‐type fiber is absent in the fiber from a shaker mutant (Shks133).

Adapted from 1356
Figure 9. Figure 9.

Plasticity at the crayfish neuromuscular junction. A: Time course of long‐term facilitation (LTF) shows a pretest period during which evoked excitatory postsynaptic potentials (EPSPs) are measured during 5 Hz stimulation once every 10 min, a tetanic phase during which induction of LTF takes place, and a long‐lasting phase of LTF. B: Demonstration of LTF produced by local depolarizing pulses applied to the axon terminal by intracellular stimulation. Depolarizing pulses of 60 nA were applied (presynaptic) and the resulting EPSPs recorded in a muscle cell (postsynaptic). Arrows indicate current pulse artifacts. Stimulation of the terminal at 20 Hz for 10 min. in the presence of normal Ca2+ produced a large enhancement of the evoked EPSPs without alteration of the presynaptic response during the tetanus, and a long‐lasting phase (LLP) at 60 min following the tetanus.

From 1350
Figure 10. Figure 10.

Reciprocal control of motor neurons by a local nonspiking interneuron in a locust. Two motor neurons, the fast extensor (Ext. mn) and a fast flexor (Flex, mn) of the tibia, were recorded intracellularly, along with a nonspiking interneuron (int). A: A pulse of current injected into a neuropilar process of the interneuron evokes a sustained depolarization of the extensor and a sustained hyperpolarization of the flexor motor neuron. B–D: With more current, there is a progressive and graded increase in the amplitude of the voltage changes in the motor neurons. E: Relationship between current injected into the interneuron and the resulting voltage changes in the two motor neurons. F: Two groups of multiple sweeps at the start of a pulse of current reveal that voltage changes of opposite polarity begin at the same time in the two motor neurons. Calibration: vertical interneuron, 40 mV; fast extensor motor neuron, 4 mV; flexor, 8 mV; current, 30 nA; horizontal (A–D). 400 ms, (F) 64 ms.

From 181
Figure 11. Figure 11.

Stomatogastric ganglion activity pattern and circuit diagram. A: Diagram of stomatogastric ganglion preparation as it looks when pinned out in a sylgard‐lined chamber. Peripheral nerves (mvn, pdn, Ipn, pyn) contain the axons of motor neurons that innervate muscles of the pyloris and gastric mill. Two commissural ganglia (CG), esophageal ganglion (OG), and stomatogastric ganglion (STG) are shown, along with stomatogastric nerve (stn). Asterisk indicates the position where sucrose blocks are applied to remove descending influences on the STG. B: Burst pattern of the pyloric network. These extracellular recordings were obtained from preparations as shown in A. C: Synaptic connectivity circuit diagram of the pyloric network. Inhibitory chemical synapses are indicated by black dots and electrotonic synapses by resistor symbols. Dashed lines indicate weak synapses, solid lines strong synapses.

From 858
Figure 12. Figure 12.

Stomatogastric ganglion neurons involved in the pyloric rhythm are conditional oscillators. A: Simultaneous intracellular recordings from four pyloric neurons in an intact network. B: Same neuron types after synaptic isolation from other pyloric neurons with pharmacological and cell killing techniques. Intact input from other ganglia via the stomatogastric nerve. C: Same neurons no longer oscillate when axons within the stomatogastric nerve are blocked.

From 84
Figure 13. Figure 13.

Effects of different modulators on synaptically isolated pyloric neurons. Bath‐applied dopamine, octopamine, or serotonin produces very different effects on different neurons. (From 485.) AB, Anterior bouton; PD, pyloric dilator,; VD, ventricular dilator; LP, lateral pyloric; PY, pyloric; IC, inferior cardiac

Figure 14. Figure 14.

Both the medial protolinergic neuron (MPN) and proctolin (PROC) can activate the pyloric rhythm. A: Cancer Borealis preparation. MPN was depolarized by intracellular current injection, resulting in activation of the pyloric rhythm. Ivn, lateral ventricular nerve; pdn, pyloric dilator nerve; LP, lateral pyloric. Bars = 0.5 s, 10 mV. B: Proctolin added to the bath in another preparation activated the rhythm. Bars = 1 s, 6 mV.

From 792
Figure 15. Figure 15.

(LG) Lateral gastric neuron can move from the pyloric to the gastric rhythm. Pyloric rhythm is monitored in the bottom traces (LP, VD) of each panel; gastric rhythm is monitored on the dgn in the upper traces. LG spontaneously shows a purely pyloric rhythm (A), a hybrid pattern (B), and a strong gastric pattern (C). Bars = 5 s for A and C; 2.5 for B: 16 mV for LG, 20 mV for LP in A and B; 26 mV for LG, 18 mV for VD in C. dgn, dorsal gastric nerve.

From 795
Figure 16. Figure 16.

Crayfish tail flip flow diagram. Block diagram of major relations among components of the escape response. Horizontal, dotted rectangle encloses components of the first, giant‐mediated tail flip; vertical, dotted rectangle encloses components of the swimming central pattern generator (CPG). The three sensory processors (a, b, c) are designated by their functions and may have elements in common. Numbers on lines refer to sequence of events. Arrows indicate excitation and dots indicate inhibition. LG, lateral giant neuron.

From 1344
Figure 17. Figure 17.

Synaptic connectivity in the leech heartbeat central pattern generator. A: Schematic showing inhibitory synapses from identified premotor HN (heart) interneurons to HE (heart excitor) motoneurons. Open circles represent neurons (each numbered according to the ganglion in which it resides), lines represent their processes, and filled circles indicate inhibitory chemical synapses. B: Schematic showing all of the inhibitory synapses among the identified HN interneurons. HN cells with similar inputs, outputs, and properties are lumped together. C: Simultaneous intracellular recordings showing the normal activity of two reciprocally inhibitory HN interneurons of the timing oscillator [HN(L, 4)] and an HE motoneuron [HE(R, 5)] innervated by one of them. Dashed lines indicate a membrane potential of −50mV.

From 48
Figure 18. Figure 18.

Dendritic changes of motor neurons during insect metamorphosis. Morphology of abdominal motor neurons at different stages of life in Manduca. Camera lucida drawings of neuron injected with Co2+ in the larva, early pupa, and adult. A:MN‐1, a motor neuron that innervates different muscles in the larval and adult stages. During metamorphosis a new dendritic field develops contralateral to the axon. B:MN‐7, a motor neuron that innervates the same ventral muscle in all three stages of life. Dendritic structure is largely conserved, but there is growth of existing processes. This neuron and its target die following adult emergence. Drawing to the left shows relative positions of the two neurons in an abdominal ganglion.

From 1253
Figure 19. Figure 19.

Activity‐dependent facilitation of a monosynaptic excitatory postsynaptic potential (EPSP) in the neuronal circuit for the withdrawal reflex of Aplysia. A1, A2: Experimental arrangement and protocol. Shading indicates that spike activity in the neuron is paired with unconditioned stimulus (US; conditional stimulus, CS). Fac, facilitator interneuron. B: Examples of EPSPs produced in a common postsynaptic siphon motor neuron (M.N.) by action potentials in a paired and an unpaired sensory neuron (S.N.) before (Pre) and 1 h after (Post) training. Facilitation of the EPSP from the paired sensory neuron was greater than that of the EPSP from the unpaired sensory neuron in the same experiment. C: Comparison of average cellular data showing differential facilitation of EPSPs and behavioral data showing differential conditioning of withdrawal reflex. Postsynaptic potential data are pooled from two types of experiment: paired vs. unpaired and paired vs. US alone. Facilitation of EPSPs from paired neurons was significantly greater than that of EPSPs from control neurons. Behavioral data are from experiments on conditioning of withdrawal reflex with the same protocol and parameters as cellular experiments. Testing was carried out 15 min after five training trials in both types of experiment.

From 496
Figure 20. Figure 20.

Olfactory integration pathways. A: Distributed projections into the brain of the cockroach from the antennal lobes, vr, dr, ventral and dorsal roots of antenno‐glomerular tracts (ACT) supplied by projection neurons arising from glomeruli of the antennal lobes. (From 787.) B: Generalist and specialist interneurons in moth antennal lobe. Each pair of traces shows the intracellular response of an identified olfactory interneuron to pulses of odor. In the first trace, a phasic response is evoked by single or blended components of the female pheromone of Manduca. In the second trace, the same combinations evoke inhibition in an interneuron. In the third trace, another interneuron responds only to one component and the blend in which that component is present. In the bottom trace, a fourth type of interneuron responds to pulses of one component of the blend. (From 246.) C: Responses by a uniquely identified glomerulus output neuron to trans‐2‐hexenal and isoamyl acetate (lower four traces and graphs, upper right), some at different concentrations. This neuron, which resides in a sexually isomorphic glomerulus, failed to respond to pheromonal odors (upper two traces). The neuron, reconstructed from a Lucifer yellow fill, invades the mushroom body calyx (Ca) and part of the lateral brain (LH), as diagrammed in the outline of the moth brain. (From 614.) Other abbreviations: cb, neuron cell body; P posterior; L laterol; MGC male‐specific “macroglomerular complex; G, glomeruli.” D: Summary of known connections deduced from electron microscopy of the glomeruli of the cockroach, Periplaneta americana. Afferents (RN) terminate on GABAergic local interneurons (GABA‐ir IN), unidentified profiles, and output neurons (uPN), which also receive additional inputs from local interneurons and provide outputs onto other unidentified profiles.

From 131
Figure 21. Figure 21.

Eye types and visual pathways. A; Comparison of superposition and neural superposition eyes. In the first, light enters through many facets and is focused by the cones (CC) onto a single receptor's rhabdome (Rh), reaching it through the clear zone (CZ). In the second (left), light reaches the tips of coaxial receptors in ommatidia that are screened from each other by light‐absorbing pigments. Axons from similarly aligned receptors terminate in a single column in the neuropil beneath. Below (right) are shown (1) ray paths through a crystalline cone of the apposition eye. Two types of open rhabdomere neural superposition retinas (2) contrast the asymmetric arrangements in evolutinarily advanced brachyceran flies (upper) with the radially symmetric arrangement in more primitive nematocerans (lower; ommatidial receptor cross sections, left). Their respective spacing of similarly aligned photoreceptors (closed profiles) in the retina are compared in 3 (from 918). B: Comparison of electrical responses, dynamic ranges, and first‐order interneuron responses of a fly eye and salamander (Necturus) retina. In both insect and vertebrate, working ranges of the receptor are comparable, though one depolarizes to illumination and the other hyperpolarizes. In the lamina, the sign is reversed and the monopolar cell hyperpolarizes. In the vertebrate, the sign‐conserving synapse results in bipolar hyperpolarization. (From 710.) C: Cell organization from the deep optic neuropil in a fly. (a) Isomorphic neuronal assemblies subtend the whole visual field. In (b), (c), and (d), local assemblies subtend polarized light‐receptive zone of the retina, area of binocular overlap, and male‐specific area of high resolution (e), respectively. Heterolateral connections (f) link left and right optic lobes to provide connections for binocular perception of rotational panoramic stimuli. In (g), giant motion‐sensitive interneurons, characteristic of some flies, provide accessible elements for studying panoramic motion responses associated with visual control of flight.

From 1189
Figure 22. Figure 22.

Motion computation and behavioral consequences. A: Upper left: Retinal sampling showing preferred direction of motion (filled arrows) along the retinal axes, v, h, x, y, compared to the dorsal (d) and anterior (a) body axes. Lower left: Hypothetical elementary motion‐detecting circuits (EMDs). Each has two input channels from two neighboring sampling units. These are linked by a connection containing a low‐pass filter (F), with the connections converging at a multiplier (M). The preferred direction is indicated by a plus sign providing excitation of a deeper collector interneuron. Middle: organization of directionally selective small‐ (SF) or large (LF) field‐collector neurons that channel information about rotational motion to downstream pathways that either excite or inhibit flight motor circuits (M) via hypothesized frequency filters (F). Upper right: Hypothetical model of control pathways responsible for spatial tuning of LF and SF systems. Excitatory or inhibitory outputs of EMDs are integrated by direction‐selective neurons (DSN). These represent LF or SF elements. EMDs are thought to branch to provide inputs to directionally selective inhibitory local interneurons (INH). INH provide shunting inhibition to EMDs (S) so that in the case of the LF system (lower right 1) the output of the DSN (R) increases proportional to the number of EMDs activated or decreases (lower right 2) after a certain number of EMDs have been activated, to provide the SF system. B: Encoding of directional motion in the lobula complex (left) and medulla (right). LF collector neurons (VS, lower left) show direction‐dependent DC depolarizations or hyperpolarizations. SF inputs to these cells (T5, upper left) show similar but lower amplitude responses. The inputs to T5 (Tm 1, right) have distinct responses to motion and flicker, and motion responses are direction‐dependent (vertical arrows, lower right). Reconstructions are from intracellular staining of the recorded cells (middle, T5; far right, Tm1; L2, L1, T4, T5 refer to neuropil layers). C: Excitatory or inhibitory interactions among wide‐field heterolateral or local interneurons of the lobula plate suggested to provide descending pathways with information about rotation, roll, and pitch of the visual panorama. Letters and numbers refer to cell types. Preferred directions are given above or below each.

A and C from 495. B from 310
Figure 23. Figure 23.

Coprocessing and synergy of visual, proprioceptive, and exteroreceptive information. Intracellular recordings from a uniquely identified descending neuron show its negligible response (A) to roll deviation simulated by a tilting horizon in the frontal part of the locust's visual field. In the dark, the neuron shows weak phasic responses (B) but reacts tonically and vigorously to wind onto the front of the head (C). Oscillating roll deviation stimuli modulates the response to wind (D). Modification is synergistically enhanced by head roll with roll deviation (E) but is unaffected by head roll alone (F). (From 519.) G: Schematic of convergence of sensory inputs onto two flight motor interneurons (303 and 205) that are presynaptic onto wing elevator flight motor neurons. Inhibitory synapses are shown as filled circles; depressor interneuron is activated by convergence of some identified descending neurons and inhibited by others. When activated, 302 inhibits wing elevator motor neurons, whereas 204 excites them and is driven by a different combination of descending elements. H: Corrective steering is controlled by a variety of different pathways, each registering coincident events that occur during deviation from forward flight. Each pathway coactivates neck (NMN), flight (FMN), leg (LMN), and abdominal (AMN) motor neurons when these receive excitatory drive from oscillator circuits (OSC). Other abbreviations are DN (descending) and AN (ascending) plurisegmental interneurons and IN, local spiking interneuron receiving afferents from the proesternum and abdomen.

From 1056
Figure 24. Figure 24.

Control of posture in the locust. A: Constituent neurons: hair afferents, motor neuron, spiking, and nonspiking interneuron. Processes are shown within a thoracic ganglion. B: Double recording from hair (lower trace) and spiking interneuron (upper trace) demonstrating different amplitudes of generated excitatory postsynaptic potentials (EPSPs) in the postsynaptic interneuron. Positions of exteroreceptors from proximal to distal and dorsal to ventral are relected by EPSPs of different amplitudes in the spiking local interneuron. (From 195) C: Double recording showing that when an appropriate exteroreceptor is stimulated (arrow) the evoked spikes in the spiking local interneuron are precisely followed by inhibitory postsynaptic potentials in the nonspiking local interneuron. D: Double recording from two nonspiking interneurons showing that increasing current injected into one causes graded inhibition in another. Spikes are recorded extracellularly from a motor neuron that is presumably postsynaptic to the excitatory depolarizing nonspiking local interneuron. Nonspiking local interneurons can either inhibit or activate motor neurons. In E, current injected into nonspiking interneurons gives rise to hyperpolarization on depolarization and a concomitant graded excitation or inhibition of a motor neuron.

From 187
Figure 25. Figure 25.

Control of posture. A: Schematic showing excitatory (triangles) convergence of exteroreceptive afferents onto anteromedial and midline spiking local interneurons. The latter make inhibitory connections (filled circles) with nonspiking local interneurons which inhibit or excite motor neurons or inhibit each other. Motor neurons are also excited by anteromedial spiking local interneurons and, in rare cases, by afferents themselves (For example, proprioceptors). A second class of efferents, intersegmental interneurons, receive comparable excitatory and inhibitory inputs directly from spiking local interneurons. (From 187.) B: Circuit diagram showing control through local interneurons of excitation of synergistic, and inhibition of antagonistic motor neurons involved in tibial extension and tarsal depression.

From 195


Figure 1.

Excitability in plants and unicellular microbes. A: Action potentials elicited by touch in touch‐sensitive plants, Mimosa pudica (upper) and Venus's‐flytrap, Dionaea muscipula (lower) (after 1130). B: Responses to mechanical stimulation of anterior and posterior ends of the ciliated protozoan Paramecium caudatum. Stimulation to the anterior end produces graded depolarization and a reversal of ciliary beat that results in a change in the direction of swimming. Stimulation of the posterior end causes transient hyperpolarization that results in an acceleration of the rate of ciliary beating and faster forward swimming (from 897). C: Single‐channel patch clamp recordings of Ba2+ currents in outside out patches of sugar beets (Beta vulgaris) tonoplast membranes. Patches were continuously polarized to the values shown on the left. Channel openings and closings were observed at membrane potentials more negative than 0 mV. The presence of more than one channel in the patch was indicated by multiple opening events (from 957). D: Activities of two types of ion channel reconstituted into liposomes from the bacterium Escherichia coli. The open probability of a mechanosensitive channel (upper) was increased by applying increasing suction pressures via the recording pipette. Pipette voltage was +40 mV. Voltage‐dependent channels (lower) were identified in a membrane patch held at −50 mV. Open and maximally closed levels (corresponding to the closure of seven conductance units) are indicated on the left.

from 286


Figure 2.

Regenerative depolarizing and hyperpolarizing action in the dinoflagellate Noctiluca in response to injection of current into the flotation vacuole in Ca2+ ‐deprived artificial seawater. Upper traces, membrane potential; lower traces, injected current. A, D: Current injected when membrane was more or less hyperpolarized after negative spike. B, C: Current injected when membrane was more or less depolarized after positive spike. A, B: Outward current. C, D: Inward current.

from 930


Figure 3.

Hypostomal nerve net and ring of Hydra oligactis. Whole‐mount of a head stained with an antiserum against RFamide, demonstrating the presence of a nerve ring in the hypostome. a: Side view of the head shows the hypostome and the basal parts of several tentacles. Tentacles emerge from the tentacle zone below the hypostome. The dark spot in the midst of the stained cells well above the ring is the mouth region, which is the apex of the hypostome. b: View from above the hypostome shows the dark mouth region in the center surrounded by a large number of epidermal sensory cells. Arrow shows a typical ganglion cell outside the nerve ring. Bars indicate 200 μm (a) and 100 μm (b).

From 652


Figure 4.

Bidirectional excitatory chemical synapse between elements of the motor nerve net in the jellyfish Cyanea capillata. All records from the same cell pair with stimuli being applied to the cell on the upper trace. A: Approximately 1 ms after the peak of the action potential in the postsynaptic cell (lower trace), a distinct notch (arrow) appears on the action potential in the presynaptic cell (upper trace). This notch is absent when only an excitatory postsynaptic potential (EPSP) appears in the postsynaptic cell (B). When a delayed spike was evoked from the postsynaptic cell, a clear EPSP (arrow) was evoked from the presynaptic cell (C).

Modified from 31


Figure 5.

Two sizes of action potential produced during swimming by the motor giant axon of the jellyfish Aglantha digitale. A: Scale drawing from a photograph of A. digitale, apex at the top. B: Schematic of the layout of ring giant, motor giant axons, and myoepithelium in the circumumbrellar margin of the body wall. C: Regenerative impulses recorded from isolated motor giant axon shortened to 700 μm. Axon penetrated with two micropipettes to inject current and record membrane voltage. Traces superimposed to show overshooting action potential and low‐threshold spike elicited by successive depolarizing current pulses. Current reduced by ∼0.1 nA between pulses; action potential elicited by higher current. Axon resting potential, −67 mV.

A: from 1029; B: modified from 775; C: modified from 825


Figure 6.

A: Spontaneous plateau potentials recorded in the cell body of an AVF‐like interneuron in Ascaris suum. Arrow marks an inflection from a depolarizing ramp to a plateau potential. B: Injection of hyperpolarizing current of sufficient magnitude suppresses the production of plateau potentials. C: Brief depolarizations superimposed upon the sustained hyperpolarization activate plateaus at a discrete threshold. D: Brief (100 ms) pulse of depolarizing current resets the rhythm of spontaneous plateaus. I, current monitor trace.

From 45


Figure 7.

Schematic showing synaptic connections among the motoneurons and large interneurons in the segmentally repeating arrays of Ascaris suum. The synaptic connectivities of all three types of dorsal excitatory motoneuron are similar, so they have been combined (DE), as have the putative ventral excitors (VE). Excitatory synapses are represented by open triangles and inhibitory synapses by filled triangles. No direct recording has been made from VE motoneurons, so the signs of the synapses they make and receive are predictions based on their anatomical similarities to DE motoneurons. Dorsal inhibitory motoneuron, DI; ventral inhibitory motoneuron, VI.

From 1206


Figure 8.

Lack of A‐current in shaker mutant muscle fibers. Voltage clamp recordings from larval muscle fibers of Drosophila. Note that the initial fast outward current in the normal, wild‐type fiber is absent in the fiber from a shaker mutant (Shks133).

Adapted from 1356


Figure 9.

Plasticity at the crayfish neuromuscular junction. A: Time course of long‐term facilitation (LTF) shows a pretest period during which evoked excitatory postsynaptic potentials (EPSPs) are measured during 5 Hz stimulation once every 10 min, a tetanic phase during which induction of LTF takes place, and a long‐lasting phase of LTF. B: Demonstration of LTF produced by local depolarizing pulses applied to the axon terminal by intracellular stimulation. Depolarizing pulses of 60 nA were applied (presynaptic) and the resulting EPSPs recorded in a muscle cell (postsynaptic). Arrows indicate current pulse artifacts. Stimulation of the terminal at 20 Hz for 10 min. in the presence of normal Ca2+ produced a large enhancement of the evoked EPSPs without alteration of the presynaptic response during the tetanus, and a long‐lasting phase (LLP) at 60 min following the tetanus.

From 1350


Figure 10.

Reciprocal control of motor neurons by a local nonspiking interneuron in a locust. Two motor neurons, the fast extensor (Ext. mn) and a fast flexor (Flex, mn) of the tibia, were recorded intracellularly, along with a nonspiking interneuron (int). A: A pulse of current injected into a neuropilar process of the interneuron evokes a sustained depolarization of the extensor and a sustained hyperpolarization of the flexor motor neuron. B–D: With more current, there is a progressive and graded increase in the amplitude of the voltage changes in the motor neurons. E: Relationship between current injected into the interneuron and the resulting voltage changes in the two motor neurons. F: Two groups of multiple sweeps at the start of a pulse of current reveal that voltage changes of opposite polarity begin at the same time in the two motor neurons. Calibration: vertical interneuron, 40 mV; fast extensor motor neuron, 4 mV; flexor, 8 mV; current, 30 nA; horizontal (A–D). 400 ms, (F) 64 ms.

From 181


Figure 11.

Stomatogastric ganglion activity pattern and circuit diagram. A: Diagram of stomatogastric ganglion preparation as it looks when pinned out in a sylgard‐lined chamber. Peripheral nerves (mvn, pdn, Ipn, pyn) contain the axons of motor neurons that innervate muscles of the pyloris and gastric mill. Two commissural ganglia (CG), esophageal ganglion (OG), and stomatogastric ganglion (STG) are shown, along with stomatogastric nerve (stn). Asterisk indicates the position where sucrose blocks are applied to remove descending influences on the STG. B: Burst pattern of the pyloric network. These extracellular recordings were obtained from preparations as shown in A. C: Synaptic connectivity circuit diagram of the pyloric network. Inhibitory chemical synapses are indicated by black dots and electrotonic synapses by resistor symbols. Dashed lines indicate weak synapses, solid lines strong synapses.

From 858


Figure 12.

Stomatogastric ganglion neurons involved in the pyloric rhythm are conditional oscillators. A: Simultaneous intracellular recordings from four pyloric neurons in an intact network. B: Same neuron types after synaptic isolation from other pyloric neurons with pharmacological and cell killing techniques. Intact input from other ganglia via the stomatogastric nerve. C: Same neurons no longer oscillate when axons within the stomatogastric nerve are blocked.

From 84


Figure 13.

Effects of different modulators on synaptically isolated pyloric neurons. Bath‐applied dopamine, octopamine, or serotonin produces very different effects on different neurons. (From 485.) AB, Anterior bouton; PD, pyloric dilator,; VD, ventricular dilator; LP, lateral pyloric; PY, pyloric; IC, inferior cardiac



Figure 14.

Both the medial protolinergic neuron (MPN) and proctolin (PROC) can activate the pyloric rhythm. A: Cancer Borealis preparation. MPN was depolarized by intracellular current injection, resulting in activation of the pyloric rhythm. Ivn, lateral ventricular nerve; pdn, pyloric dilator nerve; LP, lateral pyloric. Bars = 0.5 s, 10 mV. B: Proctolin added to the bath in another preparation activated the rhythm. Bars = 1 s, 6 mV.

From 792


Figure 15.

(LG) Lateral gastric neuron can move from the pyloric to the gastric rhythm. Pyloric rhythm is monitored in the bottom traces (LP, VD) of each panel; gastric rhythm is monitored on the dgn in the upper traces. LG spontaneously shows a purely pyloric rhythm (A), a hybrid pattern (B), and a strong gastric pattern (C). Bars = 5 s for A and C; 2.5 for B: 16 mV for LG, 20 mV for LP in A and B; 26 mV for LG, 18 mV for VD in C. dgn, dorsal gastric nerve.

From 795


Figure 16.

Crayfish tail flip flow diagram. Block diagram of major relations among components of the escape response. Horizontal, dotted rectangle encloses components of the first, giant‐mediated tail flip; vertical, dotted rectangle encloses components of the swimming central pattern generator (CPG). The three sensory processors (a, b, c) are designated by their functions and may have elements in common. Numbers on lines refer to sequence of events. Arrows indicate excitation and dots indicate inhibition. LG, lateral giant neuron.

From 1344


Figure 17.

Synaptic connectivity in the leech heartbeat central pattern generator. A: Schematic showing inhibitory synapses from identified premotor HN (heart) interneurons to HE (heart excitor) motoneurons. Open circles represent neurons (each numbered according to the ganglion in which it resides), lines represent their processes, and filled circles indicate inhibitory chemical synapses. B: Schematic showing all of the inhibitory synapses among the identified HN interneurons. HN cells with similar inputs, outputs, and properties are lumped together. C: Simultaneous intracellular recordings showing the normal activity of two reciprocally inhibitory HN interneurons of the timing oscillator [HN(L, 4)] and an HE motoneuron [HE(R, 5)] innervated by one of them. Dashed lines indicate a membrane potential of −50mV.

From 48


Figure 18.

Dendritic changes of motor neurons during insect metamorphosis. Morphology of abdominal motor neurons at different stages of life in Manduca. Camera lucida drawings of neuron injected with Co2+ in the larva, early pupa, and adult. A:MN‐1, a motor neuron that innervates different muscles in the larval and adult stages. During metamorphosis a new dendritic field develops contralateral to the axon. B:MN‐7, a motor neuron that innervates the same ventral muscle in all three stages of life. Dendritic structure is largely conserved, but there is growth of existing processes. This neuron and its target die following adult emergence. Drawing to the left shows relative positions of the two neurons in an abdominal ganglion.

From 1253


Figure 19.

Activity‐dependent facilitation of a monosynaptic excitatory postsynaptic potential (EPSP) in the neuronal circuit for the withdrawal reflex of Aplysia. A1, A2: Experimental arrangement and protocol. Shading indicates that spike activity in the neuron is paired with unconditioned stimulus (US; conditional stimulus, CS). Fac, facilitator interneuron. B: Examples of EPSPs produced in a common postsynaptic siphon motor neuron (M.N.) by action potentials in a paired and an unpaired sensory neuron (S.N.) before (Pre) and 1 h after (Post) training. Facilitation of the EPSP from the paired sensory neuron was greater than that of the EPSP from the unpaired sensory neuron in the same experiment. C: Comparison of average cellular data showing differential facilitation of EPSPs and behavioral data showing differential conditioning of withdrawal reflex. Postsynaptic potential data are pooled from two types of experiment: paired vs. unpaired and paired vs. US alone. Facilitation of EPSPs from paired neurons was significantly greater than that of EPSPs from control neurons. Behavioral data are from experiments on conditioning of withdrawal reflex with the same protocol and parameters as cellular experiments. Testing was carried out 15 min after five training trials in both types of experiment.

From 496


Figure 20.

Olfactory integration pathways. A: Distributed projections into the brain of the cockroach from the antennal lobes, vr, dr, ventral and dorsal roots of antenno‐glomerular tracts (ACT) supplied by projection neurons arising from glomeruli of the antennal lobes. (From 787.) B: Generalist and specialist interneurons in moth antennal lobe. Each pair of traces shows the intracellular response of an identified olfactory interneuron to pulses of odor. In the first trace, a phasic response is evoked by single or blended components of the female pheromone of Manduca. In the second trace, the same combinations evoke inhibition in an interneuron. In the third trace, another interneuron responds only to one component and the blend in which that component is present. In the bottom trace, a fourth type of interneuron responds to pulses of one component of the blend. (From 246.) C: Responses by a uniquely identified glomerulus output neuron to trans‐2‐hexenal and isoamyl acetate (lower four traces and graphs, upper right), some at different concentrations. This neuron, which resides in a sexually isomorphic glomerulus, failed to respond to pheromonal odors (upper two traces). The neuron, reconstructed from a Lucifer yellow fill, invades the mushroom body calyx (Ca) and part of the lateral brain (LH), as diagrammed in the outline of the moth brain. (From 614.) Other abbreviations: cb, neuron cell body; P posterior; L laterol; MGC male‐specific “macroglomerular complex; G, glomeruli.” D: Summary of known connections deduced from electron microscopy of the glomeruli of the cockroach, Periplaneta americana. Afferents (RN) terminate on GABAergic local interneurons (GABA‐ir IN), unidentified profiles, and output neurons (uPN), which also receive additional inputs from local interneurons and provide outputs onto other unidentified profiles.

From 131


Figure 21.

Eye types and visual pathways. A; Comparison of superposition and neural superposition eyes. In the first, light enters through many facets and is focused by the cones (CC) onto a single receptor's rhabdome (Rh), reaching it through the clear zone (CZ). In the second (left), light reaches the tips of coaxial receptors in ommatidia that are screened from each other by light‐absorbing pigments. Axons from similarly aligned receptors terminate in a single column in the neuropil beneath. Below (right) are shown (1) ray paths through a crystalline cone of the apposition eye. Two types of open rhabdomere neural superposition retinas (2) contrast the asymmetric arrangements in evolutinarily advanced brachyceran flies (upper) with the radially symmetric arrangement in more primitive nematocerans (lower; ommatidial receptor cross sections, left). Their respective spacing of similarly aligned photoreceptors (closed profiles) in the retina are compared in 3 (from 918). B: Comparison of electrical responses, dynamic ranges, and first‐order interneuron responses of a fly eye and salamander (Necturus) retina. In both insect and vertebrate, working ranges of the receptor are comparable, though one depolarizes to illumination and the other hyperpolarizes. In the lamina, the sign is reversed and the monopolar cell hyperpolarizes. In the vertebrate, the sign‐conserving synapse results in bipolar hyperpolarization. (From 710.) C: Cell organization from the deep optic neuropil in a fly. (a) Isomorphic neuronal assemblies subtend the whole visual field. In (b), (c), and (d), local assemblies subtend polarized light‐receptive zone of the retina, area of binocular overlap, and male‐specific area of high resolution (e), respectively. Heterolateral connections (f) link left and right optic lobes to provide connections for binocular perception of rotational panoramic stimuli. In (g), giant motion‐sensitive interneurons, characteristic of some flies, provide accessible elements for studying panoramic motion responses associated with visual control of flight.

From 1189


Figure 22.

Motion computation and behavioral consequences. A: Upper left: Retinal sampling showing preferred direction of motion (filled arrows) along the retinal axes, v, h, x, y, compared to the dorsal (d) and anterior (a) body axes. Lower left: Hypothetical elementary motion‐detecting circuits (EMDs). Each has two input channels from two neighboring sampling units. These are linked by a connection containing a low‐pass filter (F), with the connections converging at a multiplier (M). The preferred direction is indicated by a plus sign providing excitation of a deeper collector interneuron. Middle: organization of directionally selective small‐ (SF) or large (LF) field‐collector neurons that channel information about rotational motion to downstream pathways that either excite or inhibit flight motor circuits (M) via hypothesized frequency filters (F). Upper right: Hypothetical model of control pathways responsible for spatial tuning of LF and SF systems. Excitatory or inhibitory outputs of EMDs are integrated by direction‐selective neurons (DSN). These represent LF or SF elements. EMDs are thought to branch to provide inputs to directionally selective inhibitory local interneurons (INH). INH provide shunting inhibition to EMDs (S) so that in the case of the LF system (lower right 1) the output of the DSN (R) increases proportional to the number of EMDs activated or decreases (lower right 2) after a certain number of EMDs have been activated, to provide the SF system. B: Encoding of directional motion in the lobula complex (left) and medulla (right). LF collector neurons (VS, lower left) show direction‐dependent DC depolarizations or hyperpolarizations. SF inputs to these cells (T5, upper left) show similar but lower amplitude responses. The inputs to T5 (Tm 1, right) have distinct responses to motion and flicker, and motion responses are direction‐dependent (vertical arrows, lower right). Reconstructions are from intracellular staining of the recorded cells (middle, T5; far right, Tm1; L2, L1, T4, T5 refer to neuropil layers). C: Excitatory or inhibitory interactions among wide‐field heterolateral or local interneurons of the lobula plate suggested to provide descending pathways with information about rotation, roll, and pitch of the visual panorama. Letters and numbers refer to cell types. Preferred directions are given above or below each.

A and C from 495. B from 310


Figure 23.

Coprocessing and synergy of visual, proprioceptive, and exteroreceptive information. Intracellular recordings from a uniquely identified descending neuron show its negligible response (A) to roll deviation simulated by a tilting horizon in the frontal part of the locust's visual field. In the dark, the neuron shows weak phasic responses (B) but reacts tonically and vigorously to wind onto the front of the head (C). Oscillating roll deviation stimuli modulates the response to wind (D). Modification is synergistically enhanced by head roll with roll deviation (E) but is unaffected by head roll alone (F). (From 519.) G: Schematic of convergence of sensory inputs onto two flight motor interneurons (303 and 205) that are presynaptic onto wing elevator flight motor neurons. Inhibitory synapses are shown as filled circles; depressor interneuron is activated by convergence of some identified descending neurons and inhibited by others. When activated, 302 inhibits wing elevator motor neurons, whereas 204 excites them and is driven by a different combination of descending elements. H: Corrective steering is controlled by a variety of different pathways, each registering coincident events that occur during deviation from forward flight. Each pathway coactivates neck (NMN), flight (FMN), leg (LMN), and abdominal (AMN) motor neurons when these receive excitatory drive from oscillator circuits (OSC). Other abbreviations are DN (descending) and AN (ascending) plurisegmental interneurons and IN, local spiking interneuron receiving afferents from the proesternum and abdomen.

From 1056


Figure 24.

Control of posture in the locust. A: Constituent neurons: hair afferents, motor neuron, spiking, and nonspiking interneuron. Processes are shown within a thoracic ganglion. B: Double recording from hair (lower trace) and spiking interneuron (upper trace) demonstrating different amplitudes of generated excitatory postsynaptic potentials (EPSPs) in the postsynaptic interneuron. Positions of exteroreceptors from proximal to distal and dorsal to ventral are relected by EPSPs of different amplitudes in the spiking local interneuron. (From 195) C: Double recording showing that when an appropriate exteroreceptor is stimulated (arrow) the evoked spikes in the spiking local interneuron are precisely followed by inhibitory postsynaptic potentials in the nonspiking local interneuron. D: Double recording from two nonspiking interneurons showing that increasing current injected into one causes graded inhibition in another. Spikes are recorded extracellularly from a motor neuron that is presumably postsynaptic to the excitatory depolarizing nonspiking local interneuron. Nonspiking local interneurons can either inhibit or activate motor neurons. In E, current injected into nonspiking interneurons gives rise to hyperpolarization on depolarization and a concomitant graded excitation or inhibition of a motor neuron.

From 187


Figure 25.

Control of posture. A: Schematic showing excitatory (triangles) convergence of exteroreceptive afferents onto anteromedial and midline spiking local interneurons. The latter make inhibitory connections (filled circles) with nonspiking local interneurons which inhibit or excite motor neurons or inhibit each other. Motor neurons are also excited by anteromedial spiking local interneurons and, in rare cases, by afferents themselves (For example, proprioceptors). A second class of efferents, intersegmental interneurons, receive comparable excitatory and inhibitory inputs directly from spiking local interneurons. (From 187.) B: Circuit diagram showing control through local interneurons of excitation of synergistic, and inhibition of antagonistic motor neurons involved in tibial extension and tarsal depression.

From 195
References
 1. Abrams, T. W. Cellular studies of an associative mechanism for classical conditioning in Aplysia: activity‐dependent presynaptic facilitation. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, p. 213–235.
 2. Abramson, C. I., and R. D. Feinman. Classical conditioning of the eye withdrawal reflex in the green crab. J. Neurosci. 8: 2907–2912, 1988.
 3. Abramson, C. I., and R. D. Feinman. Lever‐press conditioning in the crab. Physiol Behav. 48: 267–272, 1990.
 4. Abramson, C. I., and R. D. Feinman. Operant conditioning in the crab. In: Frontiers in Crustacean Neurobiology edited by K. Wiese W. D. Krenz, J. Tautz, H. Reichert, and B. Mulloney. Basel: Birkhauser Verlag, 1990, p. 207–214.
 5. Ache, B. W. Central and peripheral basis for mixture suppression in olfaction: a crustacean model. In: Perception of Complex Smells and Taste, edited by D. G. Laing, R. L. McBride, B. W. Ache, San Diego: Academic, 1989, p. 101–113.
 6. Ache, B. W. Phylogeny of smell and taste. In: Smell and Taste in Health and Disease, edited by T. C. Getchell, New York: Raven, 1991, p. 3–18.
 7. Ache, B. W., and C. D. Derby. Functional organization of olfaction in crustaceans. Trends Nat. Sci. 8: 356–360, 1985.
 8. Adams, M. E. Synaptic ion channel toxins from spider venoms. In: Neurotox 1988: Molecular Basis of Drug and Pesticide Action, edited by G. G. Lunt, New York Elsevier, 1988, p. 49–59.
 9. Adams, M. E., and M. O'Shea. Peptide cotransmitter at a neuromuscular junction. Science 221: 286–289, 1983.
 10. Adler, J. Chemotaxes in bacteria. Annu. Rev. Biochem. 44: 341–456, 1975.
 11. Aicher, B., and J. Tautz. Vibrational communication in the fiddler crab, Uca pugilator. I. Signal transmission through the substratum. J. Comp. Physiol. (A) 166: 345–353, 1990.
 12. Aikawa, M., and A. Shimozawa. The multiple eyes of Polycelis 1. Relation between the number of eyes and body length. Hydro‐biologia 227: 257–262, 1991.
 13. Albertson, D. G., and H. N. Thomson. The pharynx of Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. [B] 275: 299–325, 1976.
 14. Aldrich, R. W., P. A. Getting, and S. H. Thompson. Inactivation of delayed outward current in molluscan neurone somata. J. Physiol. (Lond.) 291: 507–530, 1979.
 15. Ali, M. A. Photoreception and Vision in Invertebrates New York: Plenum, 1984.
 16. Ali, M. A. Nervous Systems in Invertebrates, New York: Plenum, 1987.
 17. Alkon, D. L. Voltage‐dependent calcium and potassium ion conductances: a contingency mechanism for an associative learning model. Science 205: 810–816, 1979.
 18. Alkon, D. L. Calcium‐mediated reduction of ionic currents: a biophysical memory trace. Science 226: 1037–1045, 1984.
 19. Alley, M.R.K., J. R. Maddock, and L. Shapiro. Requirements of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis. Science 259: 1754–1757, 1993.
 20. Almaas, T. J., T. A. Christensen, and H. Mustaparta. Chemical communication in heliothine moths. I. Antennal receptor neurons encode several features of intra‐ and interspecific odorants in the male cornworm moth, Helicoverpa zea. J. Comp. Physiol. [A] 169: 249–258, 1991.
 21. Altman, J. S. Sensory inputs and the generation of the locust flight motor pattern: from the past to the future. In: Biona Report 2, edited by W. Nachtigall. Stuttgart: Fisher, 1983, p. 127–136.
 22. Altner, A., and R. Loftus. Ultrastructure and function of insect thermo‐ and hygroreceptors. Annu. Rev. Entomol. 30: 273–295, 1985.
 23. Altner, H., R. Loftus, L. Schaller‐Selzer, and H. Tichy. Modality‐specificity in insect sensilla and multimodal input from body appendages. Fortschr. Tool. 26: 17–31, 1984.
 24. Alving, B. O. Spontaneous activity in isolated somata of Aplysia pacemaker neurons. J. Gen. Physiol. 51: 29, 1968.
 25. Alvizos, A., K. R. Weiss, and J. Koester. Synaptic actions of identified peptidergic neuron R15 in Aplysia. I. Activation of respiratory pumping. J. Neurosci. 11: 1263–1274, 1991.
 26. Amato, I. Animating the material world. Science 255: 284–286, 1991.
 27. Anderson, A. The ability of honey bees to generalize visual stimuli. In: Information Processing in the Visual System of Arthropods, edited by R. Wehner. Berlin: Springer, 1972, p. 207–212.
 28. Anderson, P.A.V. An electrophysiological study of mechanisms controlling polyp retraction in colonies of the scleractinian coral Goniopora lobata. J. Exp. Biol. 65: 381–393, 1976.
 29. Anderson, P.A.V. Epithelial conduction: its properties and functions. Prog. Neurobiol. 15: 161–203, 1980.
 30. Anderson, P.A.V. The electrophysiology of single smooth muscle cells isolated from the ctenophore Mnemiopsis. J. Comp. Physiol. [B] 154: 257–268, 1984.
 31. Anderson, P.A.V. Physiology of a bidirectional excitatory chemical synapse. J. Neurophysiol. 53: 821–835, 1985.
 32. Anderson, P.A.V. The comparative electrobiology of gelatinous zooplankton. Bull. Mar. Sci. 37: 460–477, 1985.
 33. Anderson, P.A.V. Evolution of the First Nervous Systems New York: Plenum, 1989.
 34. Anderson, P.A.V. Ionic currents of the Scyphozoa. In: Evolution of the First Nervous Systems, edited by P. A. V. Anderson. New York: Plenum, 1989, p. 267–280.
 35. Anderson, P.A.V., and Q. Bone. Communication between individuals in salp chairns II. Physiology. Proc. R. Soc. Lond. [B] 210: 559–574, 1980.
 36. Anderson, P.A.V., Q. Bone, G. O. Mackie, and C. L. Singla. Epithelial conduction in salps. II. The role of nervous and non‐nervous conduction system interactions in the control of locomotion. J. Exp. Biol. 80: 241–250, 1979.
 37. Anderson, P.A.V., and U. Grünert. Three dimensional structure of bidirectional, excitatory chemical synapses in the jellyfish Cyanea capillata. Synapse 2: 606–613, 1988.
 38. Anderson, P.A.V., M. A. Holman, and R. M. Greenberg. Deduced amino acid sequence of a putative sodium channel from the scyphozoan jellyfish Cyanea capillata. Proc. Natl. Acad. Sci. U.S.A. 90: 7419–7423, 1993.
 39. Anderson, P.A.V., and W. E. Schwab. The organization and structure of nerve and muscle in the jellyfish Cyanea capillata (Coelenterata; Scyphozoa). J. Morphol. 170: 383–399, 1981.
 40. Anderson, P.A.V., and W. E. Schwab. Recent advances and model systems in coelenterate neurobiology. Prog. Neurobiol. 19: 213–236, 1982.
 41. Anderson, P.A.V., and W. E. Schwab. An epithelial cell‐free preparation of the motor nerve net of Cyanea (Coelenterata; Scyphozoa). Biol. Bull. 166: 396–408, 1984.
 42. Anderson, P.A.V., and A. N. Spencer. The importance of cnid‐arian synapses for neurobiology. J. Neurobiol. 20: 435–457, 1989.
 43. Angstadt, J. D., and R. L. Calabrese. A hyperpolarization‐activated inward current in heart interneurons of the medicinal leech. J. Neurosci. 9: 2846–2857, 1989.
 44. Angstadt, J. D., and R. L. Calabrese. Calcium currents and graded synaptic transmission between heart interneurons of the leech. J. Neurosci. 11: 746–759, 1991.
 45. Angstadt, J. D., J. E. Donmoyer, and A.O.W. Stretton. Retrovesicular ganglion of the nematode Ascaris. J. Comp. Neurol. 284: 374–388, 1989.
 46. Arbas, E. A. Control of hindlimb posture by wind‐sensitive hairs and antennae during locust flight. J. Comp. Physiol. [A] 159: 849–857, 1986.
 47. Arbas, E. A., and R. L. Calabrese. Rate modification in the heartbeat central pattern generator of the leech. J. Comp. Physiol. [A] 155: 783–794, 1984.
 48. Arbas, E. A., and R. L. Calbrese. Ionic conductances underlying the activity of interneurons that control the heartbeat of the medicinal leech. J. Neurosci. 7: 3945–3952, 1987.
 49. Arbas, E. A., and R. L. Calabrese. Slow oscillations in membrane potential in interneurons that control heartbeat in the medicinal leech. J. Neurosci. 7: 3953–3960, 1987.
 50. Arbas, E. A., and R. L. Calabrese. Leydig neuron activity modulates heartbeat in the medicinal leech. J. Comp. Physiol. [A] 167: 665–671, 1990.
 51. Arbas, E. A., and J. G. Hildebrand. Wind‐sensitive head hairs: a mechanosensory pathway activating flight in the hawk moth Manduca sexta. Soc. Neurosci. Abstr. 12: 857, 1986.
 52. Arbas, E. A., C. J. Humphreys, and B. W. Ache. Morphology and physiological properties of interneurons in the olfactory midbrain of the crayfish. J. Comp. Physiol [A] 164: 231–241, 1988.
 53. Arbas, E. A., I. A. Meinertzhagen, and S. R. Shaw. Evolution in nervous systems. Annu. Rev. Neurosci. 14: 9–38, 1991.
 54. Arbas, E. A., M. A. Willis, and R. Kanzaki. Organization of goal‐oriented locomotion: pheromone modulated flight behavior of moths. In: Biological Neural Networks in Invertebrate Neuroethology and Robotics, edited by R. D. Ritzmann, and T. McKenna. Cambridge: Academic, 1993, p. 199–225.
 55. Arikawa, K., K. Inokuma, and E. Eguchi. Pentacromatic visual system in a butterfly. Naturwiss enschaften 74: 297–143, 1987.
 56. Arkett, S. A. Ciliary arrest controlled by identified central neurons in a urochordate (Ascidacea). J. Comp. Physiol. [A] 161: 837–847, 1987.
 57. Arkett, S. A. Hydromedusan photophysiology: an evolutionary perspective. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 373–388.
 58. Arkett, S. A., G. O. Mackie, and R. W. Meech. Hair cell mechanoreception in the jellyfish Aglantha digitate. J. Exp. Biol. 135: 329–342, 1988.
 59. Arkett, S. A., G. O. Mackie, and C. L. Singla. Neuronal organization of the ascidian (Urochordata) branchial basket revealed by cholinesterase activity. Cell Tissue Res. 257: 285–294, 1989.
 60. Arkett, S. A., and A. N. Spencer. Neuronal mechanisms of a hydromedusan shadow reflex. I. Identified reflex components and sequence of events. J. Comp. Physiol. [A] 159: 201–213, 1986.
 61. Arkett, S. A., and A. N. Spencer. Neuronal mechanisms of a hydromedusan shadow reflex. II. Graded response of reflex components, possible mechanisms of photic integration, and functional significance. J. Comp. Physiol. [A] 159: 215–225, 1986.
 62. Arvanitaki, A., and N. Chalazonitis. Electrical properties and temporal organization in oscillatory neurons. In: Neurobiology of Invertebrates, edited by J. Salank. New York: Plenum, 1968, p. 169–199.
 63. Atkins, G., A. Chiba, S. Atkins, and J. F. Stout. Low‐pass filtering of sound signals by a high‐frequency brain neuron and its input in the cricket Acheta domestica. J. Comp. Physiol. [A] 164: 269–276, 1988.
 64. Atkinson, N. S., G. A. Robertson, and B. Ganetzky. A component of calcium‐activated potassium channels encoded by the Drosophila slo locus. Science 253: 551–555, 1991.
 65. Atwood, H. L., and D. C. Sandeman (Eds). The Biology of Crustacea. Neurobiology: Structure and Function New York: Academic, 1982, vol. 3.
 66. Atwood, H. L., and J. M. Wojtowicz. Short‐term and long‐term plasticity and physiological differentiation of crustacean motor synapses. Int. Rev. Neurobiol. 28: 275–362, 1986.
 67. Augustine, G. J., M. P. Charlton, and S. J. Smith. Calcium entry into voltage‐clamped presynaptic terminals of squid. J. Physiol. (Lond.) 367: 143–162, 1985.
 68. Augustine, G. J., M. P. Charlton, and S. J. Smith. Calcium action in synaptic transmitter release. Annu. Rev. Neurosci. 10: 633–693, 1987.
 69. Avery, L. Motorneuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. J. Exp. Biol. 175: 283–297, 1993.
 70. Avery, L., and H. R. Horvitz. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system. Neuron 3: 473–485, 1989.
 71. Axelrod, D., D. Lerner, and P. J. Sands. Refractive index within the lens of a goldfish determined from the paths of thin laser beams. Vision Res. 28: 57–65, 1988.
 72. Baader, A. Auditory interneurons in locusts produce directional head and abdomen movements. J. Comp. Physiol. [A] 169: 87–100, 1991.
 73. Baader, A., M. Schafer, and C.H.F. Rowell. The perception of the visual flow field by flying locusts: a behavioral and neuronal analysis. J. Exp. Biol. 165: 137–160, 1992.
 74. Backhaus, W., A. Werner, and R. Menzel. Color vision in honeybees: metric, dimensions, constancy, and ecological aspects. In: Neurobiology and Behavior of the Honeybee, edited by R. Menzel and A. Mercer. New York: Springer‐Verlag, 1987, p. 83–97.
 75. Bacon, J. P., and J. M. Blagburn. Ectopic sensory neurons in mutant cockroaches compete with normal cells for central targets. Development 115: 773–784, 1992.
 76. Bacon, J. P., and B. Möhl. The tritocerebral commissure giant (TCG) wind‐sensitive interneuron in the locust. 1. Its activity in straight flight. J. Comp. Physiol. [A] 150: 439–452, 1983.
 77. Bacon, J. P., and R. K. Murphey. Receptive fields of cricket giant interneurones are related to their dendritic structure. J. Physiol. (Lond.) 352: 601–623, 1984.
 78. Bacon, J. P., and R. K. Murphey. Receptive fields of cricket (Acheta domesticus) are determined by their dendritic structure. J. Comp. Physiol. [A] 158: 529–549, 1986.
 79. Bacon, J. P., and N. J. Strausfeld. The dipteran “giant fibre” pathway: neurons and signals. J. Comp. Physiol. [A] 158: 529–548, 1986.
 80. Bailey, C. H., and M. Chen. Morphological basis of long‐term habituation and sensitization in Aplysia. Science 220: 91–93, 1983.
 81. Baker, K., and L. Salkoff. The Drosophila shaker gene codes for a distinctive potassium current in a subset of neurons. Neuron 2: 129–140, 1990.
 82. Baker, T. C. Pheromones and flight behavior. In: Insect Flight, edited by G. J. Goldsworthy and C. H. Wheeler, Boca Raton, FL: CRC, 1989, p. 231–255.
 83. Baker, T. C., M. A. Willis, K. F. Haynes, and P. L. Phelan. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10: 257–265, 1985.
 84. Bal, T., F. Nagy, and M. Moulins. The pyloric central pattern generator in Crustacea: a set of conditional neuronal oscillators. J. Comp. Physiol. [A] 163: 715–727, 1988.
 85. Ball, E. E., and K. G. Hill. Functional development of the auditory system of the cricket Teleogryllus commodus. J. Comp. Physiol. [A] 127: 131–128, 1978.
 86. Ball, E. E., B. P. Oldfield, and K. M. Rudolph. Auditory organ structure, development, and function. In: Cricket Behavior and Neurobiology, edited by F. Huber, T. E. Moore, and W. Loher. Ithaca, NY: Comstock, 1989, p. 391–422.
 87. Ballard, J.W.O., G. J. Olsen, D. P. Faith, W. A. Odgers, D. M. Rowell, and P. W. Atkinson. Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science 258: 1345–1348, 1992.
 88. Barber, V. C., E. M. Evans, and M. F. Land. The fine structure of the eye of the mollusc Pecten maximus. Z. Zellforsch. 102: 293–312, 1967.
 89. Bargmann, C. I. Genetic and cellular analysis of behavior in C. elegans. Annu. Rev. Neurosci. 16: 47–71, 1993.
 90. Bargmann, C. I., and H. R. Horvitz. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251: 1243–1246, 1991.
 91. Barnes, R. D. (Ed). Invertebrate Zoology (2nd ed) Philadelphia: Saunders, 1968.
 92. Barth, F. (Ed). Neurobiology of Arachnids Berlin: Springer‐Verlag, 1985.
 93. Barth, F. G. Neuroethology of the spider vibration sense. In: Neurobiology of the Arachnids, edited by F. G. Barth, Berlin: Springer‐Verlag, 1985, p. 204–229.
 94. Barth, F. G. Slit sensilla and the measurement of cuticular strain: In: Neurobiology of the Arachnids, edited by F. G. Barth, Berlin: Springer‐Verlag, 1985, p. 163–188.
 95. Bässler, U. Neural Basis of Elementary Behavior in Stick Insects Berlin: Springer‐Verlag, 1983.
 96. Batham, E. J., and C.F.A. Pantin. The organization of the muscular system of Metridium senile. Q. J. Microsc. Sci. 92: 27–56, 1951.
 97. Batham, E. J., C.F.A. Pantin, and E. A. Robson. The nerve‐net of the sea‐anemone Metridium senile: the mesenteries and the column. Q. J. Microsc. Sci. 101: 487–510, 1960.
 98. Bausenwein, B., A.P.M. Dittrich, and K.‐F. Fischbach. The optic lobe of Drosophila melanogaster. II. sorting of retintopic pathways in the medulla. Cell Tissue Res. 267: 17–28, 1992.
 99. Bausenwein, B., and K.‐F. Fischbach. Activity labelling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res. 270: 25–35, 1992.
 100. Bausenwein, B., and K.‐F. Fischbach. Separation of functional pathways in the fly's medulla: combination of 2‐deoxyglucose studies with anatomical fine analysis. In: Nervous Systems: Principles of Design and Function, edited by R. N. Singh, Bombay: Wiley Eastern, 1992, p. 223–240.
 101. Beer, R. D., R. E. Ritzmann, and T. McKenna (Eds). Biological Neural Networks in Invertebrate Neuroethology and Robotics San Diego: Academic, 1993.
 102. Bengtsson, M., T. Liljefors, B. S. Hansson, C. Löfstedt, and S. W. Copaja. Structure‐activity relationships of chain‐shortened analogs of (Z)‐5‐decenyl acetate, a pheromone component of the turnip moth, Rotis segetum. J. Chem. Ecol. 16: 667–684, 1990.
 103. Bennett, M.V.L., L. C. Barrio, T. A. Bargiello, D. C. Spray, E. Hertzberg, and J. C. Saez. Gap junctions: new tools, new answers, new questions. Neuron 6: 305–320, 1991.
 104. Benolken, R. M., and S. L. Jacobson. Response properties of a sensory hair excised from a Venus's flytrap. J. Gen. Physiol. 56: 64–82, 1970.
 105. Bieri, R., and E. V. Thuesen. The strange worm Bathybelos. Am. Sci. 78: 542–549, 1990.
 106. Bigger, C. H. Interspecific and intraspecific acrorhagial aggressive behavior among sea anemones: a recognition of self and non‐self. Biol. Bull. 159: 117–134, 1980.
 107. Bilbaut, A., M.‐L. Hernandez‐Nicaise, C. A. Leech, and R. W. Meech. Membrane currents that govern smooth muscle contraction in a ctenophore. Nature 331: 533–535, 1988.
 108. Bilbaut, A., M. L. Hernandez‐Nicaise, and R. W. Meech. Ionic currents in ctenophore muscle cells. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 299–314.
 109. Bindokas, V. P., and M. E. Adams. ω‐Aga‐I: a presynaptic calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta. J. Neurobiol. 20: 171–188, 1989.
 110. Bindokas, V. P., V. J. Venema, and M. E. Adams. Differential antagonism of transmitter release by subtypes of ω‐agatoxins. J. Neurophysiol. 66: 590–601, 1991.
 111. Bisgrove, B. W., and R. D. Burke. Development of serotonergic neurons in embryos of the sea urchin, Strongylocentrotus purpuratus. Dev. Growth Differ. 28: 569–574, 1986.
 112. Bisgrove, B. W., and R. D. Burke. Development of the nervous system of the pluteus larva of Strongylocentrotus drobachiensis. Cell Tissue Res. 248: 335–343, 1987.
 113. Bisgrove, B. W., and R. A. Raff. Evolutionary conservation of the larval serotonergic nervous system in a direct developing sea urchin. Dev. Growth Differ. 31: 363–370, 1989.
 114. Bishop, C. A., J. J. Wine, F. Nagy, and M. R. O'Shea. Physiological consequences of a peptide cotransmitter in a crayfish nerve‐muscle preparation. J. Neurosci. 7: 1769–1779, 1987.
 115. Blackshaw, S. E. Morphology and distribution of touch cell terminals in the skin of the leech. J. Physiol. (Lond.) 320: 219–228, 1981.
 116. Blackshaw, S. E., J. G. Nicholls, and I. Parnas. Physiological responses, receptive fields and terminal arborizations of nociceptive cells in the leech. J. Physiol. (Lond.) 326: 251–260, 1982.
 117. Blagburn, J. M., R. E. Blanco, K.S.J. Thompson, and J. P. Bacon. Positional information determines the anatomy and synaptic specificity of cockroach filiform hair afferents using independent mechanisms. J. Comp. Physiol. [A] 169: 607–614, 1991.
 118. Blair, K. L., and P.A.V. Anderson. Properties of voltage‐activated ionic currents in cells from the brains of the triclad flatworm Bdelloura Candida. J. Exp. Biol. 185: 267–286, 1993.
 119. Blair, K. L., D. A. Price, and P.A.V. Anderson. FMRFamide‐related peptides in the flatworm Bdelloura candieda. Soc. Neurosci. Abstr. 18: 470, 1992.
 120. Blest, A. D. Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implications. In: The Effects of Constant Light on Visual Processes, edited by T. P. Williams and T. N. Baker, New York: Plenum, 1980, p. 217–245.
 121. Blest, A. D. The fine structure of spider photoreception in relation to function. In: Neurobiology of Arachnids, edited by F. G. Barth, Berlin: Springer‐Verlag, 1989, p. 79–102.
 122. Blest, A. D., and M. F. Land. The physiological optics of Dinopis subrufus (L. Koch): a fish lens in a spider. Proc. R. Soc. Lond. [B] 196: 198–222, 1977.
 123. Blest, A. D., and O'Carroll. The evolution of the tiered principal retinae of jumping spiders. In: Neurobiology of Sensory Systems, edited by R. N. Singh and N. J. Strausfeld, New York: Plenum, 1989, p. 155–170.
 124. Blight, A. R., and R. Llinas. The non‐impulsive stretch‐receptor complex of a crab: a study of depolarization‐release coupling at a tonic sensorimotor synapse. Phil. Trans. R. Soc. Lond. [B] 290: 219–276, 1980.
 125. Blinkov, S. M., and I. I. Glazer. Human Brain in Figures and Tables. A Quantitative Handbook New York: Plenum, 1968.
 126. Boeckh, J. Die Reaktionen olfaktorische Neurone im Deutocerebrum von Insekten im Vergleich zu den Antwortmuster der Geruchssinneszellen. J. Comp. Physiol. [A] 90: 183–205, 1974.
 127. Boeckh, J., and B. Boeckh. Threshold and odor specificity of pheromone sensitive neurons in the deutocerebrum of Antheraea pernyi and A. polyphemus. J. Comp. Physiol. [A] 132: 235–242, 1979.
 128. Boeckh, J., and K. D. Ernst. Contribution of single unit analysis in insects to an understanding of olfactory function. J. Comp. Physiol. [A] 161: 549–565, 1987.
 129. Boeckh, J., K.‐E. Kaissling, and D. Schneider. Sensillen und Bau der Antennegeissel von Telea polyphemus. Tool. Anat. 78: 559–584, 1960.
 130. Boeckh, J., and P. Selsam. Quantitative investigation of the odour specificity of central olfactory neurones in the American cockroach. Chem. Senses 9: 369–380, 1989.
 131. Boeckh, J., and L. P. Tolbert. Synaptic organization and development of the antennal lobe in insects. Microsc. Res. Tech. 24: 260–280, 1993.
 132. Bone, Q. The central nervous system of amphioxus. J. Comp. Neurol. 115: 27–64, 1960.
 133. Bone, Q. The organization of the atrial nervous system of amphioxus (Branchiostoma lanceolatum, Pallas) Phil. Trans. R. Soc. Lond. [B] 243: 241–269, 1961.
 134. Bone, Q. Tunicates. In: Nervous Systems in Invertebrates, edited by M. A. Ali, New York: Plenum, 1987, p. 527–557.
 135. Bone, Q., and M. Duvert. Locomotion and buoyancy. In: The Biology of the Chaetognatha, edited by Q. Bone, A. Pierrot‐Bults, and H. Kapp. London: Oxford Univ. Press, 1991, p. 32–44.
 136. Bone, Q., and T. Goto. The nervous system. In: The Biology of the Chaetognatha, edited by Q. Bone, A. Pierrot‐Bults, and H. Kapp. London: Oxford Univ. Press, 1991, p. 18–31.
 137. Bone, Q., C.J.P. Grimmelikhuijzen, A. Pulsford, and K. P. Ryan. Possible transmitter functions of acetylcholine and an RFamide‐like substance in Sagitta (Chaetognatha). Proc. R. Soc. Lond. [B] 230: 1–14, 1987.
 138. Bone, Q., and G. O. Mackie. Urochordata. In: Electrical Conduction and Behavior in Simple Invertebrates, edited by G. A. Shelton, London: Oxford Scientific, 1982, p. 473–535.
 139. Bone, Q., A. Pierrot‐Bults, and H. Kapp (Eds). The Biology of the Chaetognatha London: Oxford Univ. Press, 1991.
 140. Booker, R., and J. W. Truman. Postembryonic neurogenesis in the CNS of the tobacco hornworm, Manduca sexta. I. Neuroblast arrays and the fate of their progeny during metamorphosis. J. Comp. Neurol. 255: 548–559, 1987.
 141. Borkovec, A. B., and T. J. Kelley. Insect Neurochemistry and Neurophysiology New York: Plenum, 1984.
 142. Borst, A., and M. Egelhaaf. Principles of visual motion detection. Trends Neurosci. 12: 297–306, 1989.
 143. Borst, A., and K.‐F. Fischbach. Golgi and degeneration studies of the antennal lobes of Drosophila melanogaster. J. Neurogenetics 4: 115–127, 1987.
 144. Boulis, N. M., and C. L. Sahley. A behavioral analysis of habituation and sensitization of shortening in the semi‐intact leech. J. Neurosci. 8: 4621–4627, 1988.
 145. Bowman, O. D., Jr., M. Goode, and D. B. Dusenbery. Laser microbeam studies of role of amphid receptors in chemosensory behavior of nematode Caenorhabditis elegans. J. Chem. Ecol. 12: 1339–1347, 1986.
 146. Bowring, S. A., J. P. Grotzinger, C. E. Isachsen, A. H. Knoll, S. M. Pelechaty, and P. Kolosov. Calibrating rates of early cambrian evolution. Science 261: 1293–1298, 1993.
 147. Boyan, G. S. Two‐tone suppression of an identified auditory neuron in the brain of the cricket Gryllus bimaculatus (DeGeer). J. Comp. Physiol. [A] 144: 117–125, 1981.
 148. Boyan, G. S., S. Ashman, and E. E. Ball. Initiation and modulation of flight by a single giant interneuron in the cercal system of the locust. Naturwissenschaften, 73: 272–274, 1986.
 149. Boyan, G. S., and E. E. Ball. The grasshopper, Drosophila and neuronal homology (advantages of the insect nervous system for the neuroscientist). Prog. Neurobiol. 41: 657–682, 1993.
 150. Boyan, G. S., and J.L.D. Williams. Auditory neurones in the brain of the cricket Gryllus bimaculatus (DeGeer): ascending interneurones. J. Insect Physiol. 28: 493–501, 1982.
 151. Boycott, B. B. The chromatophore system of cephalopods. Proc. Linn. Soc. (Lond.) 164: 235–240, 1953.
 152. Boyd, P., R. Kühne, S. Silver, and B. Lewis. Two‐tone suppression and song coding by ascending neurones in the cricket Gryllus campestris L. J. Comp. Physiol. [A] 154: 423–430, 1984.
 153. Braam, J. Developmental and molecular responses to touch in plants. In: Evolutionary Conservation of Developmental Mechanisms, edited by A. C. Spradling, New York: Wiley‐Liss, 1993, p. 185–198.
 154. Braitenberg, V. Patterns of projection in the visual system of the fly. I. Retina–lamina projections. Exp. Brain Res. 3: 271–298, 1967.
 155. Brehm, P. Electrophysiology and luminescence of an ophiuroid radial nerve. J. Exp. Biol. 71: 213–227, 1977.
 156. Brehm, P., Y. Okamura, and G. Mandel. Ion channel evolution. Semin. Neurosci. 3: 355–367, 1991.
 157. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77: 71–94, 1974.
 158. Bretschneider, F. Über die Gehirn des Eichenspinners und des Seidenspinners (Lasiocampra quercus und Bombyx mori). Z. Wiss. Zool. A 60: 563–578, 1924.
 159. Brodfuehrer, P. D., and W. O. Friesen. From stimulation to undulation: a neuronal pathway for the control of swimming in the leech. Science 234: 1002–1004, 1986.
 160. Brodfuehrer, P. D., and W. O. Friesen. Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. III. Sensory inputs to Tr1 and Tr2. J. Comp. Physiol. [A] 159: 511–519, 1986.
 161. Brusca, R. C., and G. J. Brusca. Invertebrates Sunderland, MA: Sinauer, 1990.
 162. Buchner, E. Elementary movement detectors in an insect visual system. Biol. Cybern. 24: 85–101, 1976.
 163. Buchner, E. Behavioral analysis of spatial vision in invertebrates. In: Photoreception and Vision in Invertebrates, edited by M.A. Ali. New York: Plenum, 1984, p. 561–621.
 164. Buchner, E., and S. Buchner. Anatomical localization of functional activity in flies using 3H‐2‐deoxy‐d‐glucose. In: Functional Neuroanatomy, edited by N. J. Stransfeld, Berlin: Springer‐Verlag, 1983, p. 225–238.
 165. Buchner, E., and S. Buchner. Neuroanatomical mapping of visually induced neuron activity in insects by 3H‐deoxyglucose. In: Photoreception and Vision in Invertebrates, edited by M. A. Ali, New York: Plenum, 1984, p. 623–634.
 166. Budelmann, B. U. Hearing in Crustacea. In: The Evolutionary Biology of Hearing, edited by B. B. Webster, R. R. Fay, and A. N. Popper, New York: Springer‐Verlag, 1992, p. 131–139.
 167. Budelmann, B. U. Hearing in nonarthropod invertebrates. In: B. B. Webster, R. R. Fay, and A. N. Popper, edited by The Evolutionary Biology of Hearing, New York: Springer‐Verlag, 1992, p. 141–155.
 168. Budelmann, B. U., and J. Z. Young. The statocyst oculomotor system of Octopus vulgaris. Eye muscles, eye muscle nerves, statocyst nerves, and the oculomotor centre in the central nervous system. Phil. Trans. R. Soc. Lond. [B] 806: 159–189, 1984.
 169. Budelmann, B. U., and J. Z. Young. The oculomotor system of decapod cephalopods: eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system. Phil. Trans. R. Soc. Lond. [B] 340: 93–125, 1993.
 170. Bulloch, A. The Cellular Basis of Neuronal Plasticity Manchester: Manchester Univ. Press, 1989.
 171. Bullock, T. H. Functional organization of the giant fiber system of Lumbricus. J. Neurophysiol. 8: 55–72, 1945.
 172. Bullock, T. H. Physiological mapping of giant nerve fiber systems in polychaete annelids. Physiol. Comp. Oecol. 1: 1–14, 1948.
 173. Bullock, T. H. Comparative aspects of superficial conduction systems in echinoids and asteroids. Am. Zool. 5: 545–562, 1965.
 174. Bullock, T. H., and S. Hagiwara. Intracellular recording from the giant synapse of the squid. J. Gen. Physiol. 40: 565–577, 1957.
 175. Bullock, T. H., and G. A. Horridge. Structure and Function in the Nervous Systems of Invertebrates Philadelphia: Freeman, 1965, vols. I, II.
 176. Burke, R. D. The structure of the nervous system of the pluteus larva of Strongylocentrotus purpuratus. Cell Tissue Res. 191: 233–347, 1978.
 177. Burke, R. D., D. G. Brand, and B. W. Bisgrove. Structure of the nervous system of the auricularia larva of Parastichopus clifonicus. Biol. Bull. 170: 450–460, 1986.
 178. Burkhardt, D. Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. Exp. Biol. 16: 86–109, 1962.
 179. Burr, A.H.J., and C.P.F. Babinszki. Scanning motion, ocellar morphology and orientation mechanisms in the phototaxis of the nematode Mermis nigrescens. J. Comp. Physiol. [A] 167: 257–268, 1990.
 180. Burr, A.H.J., C.P.F. Babinszki, and A. J. Ward. Components of phototaxis of the nematode Mermis nigrescens. J. Comp. Physiol. [A] 167: 245–255, 1990.
 181. Burrows, M. The control of sets of motoneurones by local interneurones in the locust. J. Physiol. 298: 213–233, 1980.
 182. Burrows, M. Mechanisms of integration in the nervous system. J. Exp. Biol. 112: 1–6, 1984.
 183. Burrows, M. Nonspiking and spiking local interneurons in the locust. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, p. 109–125.
 184. Burrows, M. The processing of mechanosensory information by spiking local interneurons in the locust. J. Neurophysiol. 3: 463–478, 1985.
 185. Burrows, M. Inhibitory interactions between spiking and non‐spiking local interneurons in the locust. J. Neurosci. 7: 3282–3292, 1987.
 186. Burrows, M. Parallel processing of proprioceptive signals by spiking local interneurones and motor neurones in the locust. J. Neurosci. 7: 1064–1080, 1987.
 187. Burrows, M. Reliability and effectiveness of transmission from exteroceptive sensory neurons to spiking local interneurons in the locust. J. Neurosci. 12: 1477–1489, 1992.
 188. Burrows, M., J. Boeckh, and J. Esslen. Physiological and morphological properties of interneurones in the deutocerebrum of male cockroaches which respond to female pheromone. J. Comp. Physiol. [A] 145: 447–457, 1982.
 189. Burrows, M., and G. Laurent. Reflex circuits and the control of movement. In: The Computing Neuron, edited by R. Durbin, C. Miall, and G. Mitchison, Workingham: England Addison Wesley, 1989, p. 224–261.
 190. Burrows, M., G. J. Laurent, and L. H. Field. Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. J. Neurosci. 8: 3085–3093, 1988.
 191. Burrows, M., and P. L. Newland. Correlations between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. J. Comp. Neurol. 329: 412–426, 1993.
 192. Burrows, M., and C.H.F. Rowell. Connections between descending visual interneurons and metathoracic motoneurons in the locust. J. Comp. Physiol. [A] 85: 221–234, 1973.
 193. Burrows, M., and M.V.S. Siegler. Transmission without spikes between locust interneurones and motoneurones. Nature 262: 222–224, 1976.
 194. Burrows, M., and M.V.S. Siegler. Spiking local interneurons mediate local reflexes. Science 217: 650–652, 1982.
 195. Burrows, M., and M.V.S. Siegler. The organization of receptive fields of spiking local interneurones in the locust with inputs from hair afferents. J. Neurophysiol. 53: 1147–1157, 1985.
 196. Buschbeck, E. K. and N. J. Strausfeld. Visual motion‐detection circuits in flies: small‐field retinotopic elements responding to motion are evolutionarily conserved across taxa. J. Neurosci. 16: 4563–4578, 1996.
 197. Büschges, A., R. Kittmann, and J. M. Ramirez. Octopamine effects mimic state‐dependent changes in a proprioceptive feedback system. J. Neurobiol. (in press), 1993.
 198. Byerly, L., and H. T. Leung. Ionic currents of Drosophila neurons in embryonic cultures. J. Neurosci. 8: 4379–4393, 1988.
 199. Byerly, L., and M. O. Masuda. Voltage‐clamp analysis of the potassium current that produces a negative‐going action potential in Ascaris muscle. J. Physiol. (Lond.) 288: 263–284, 1979.
 200. Byrne, J. H. Analysis of ionic conductance mechanisms in motor cells mediating inking behavior in Aplysia californica. J. Neurophysiol. 43: 630–650, 1980.
 201. Byrne, J. H. Neural and molecular mechanisms underlying information storage in Aplysia: implications for learning and memory. Trends Nat. Sci. 8: 478–482, 1985.
 202. Byrne, J. H. Cellular analysis of associative learning. Physiol. Rev. 67: 329–439, 1987.
 203. Byrne, J. H., D. A. Baxter, D. V. Buonomano, and J. L. Raymond. Neuronal and network determinants of simple and higher‐order features of associative learning: experimental and modeling approaches. Cold Spring Harbor Symp. Quant. Biol. 55: 175–186, 1990.
 204. Cajal, S. R. Recollections of My Life, translated by E. Horne Craigie and J. Cano. Cambridge, MA: 1937. M.I.T. Press.
 205. Cajal, S. R., and D. Sanchez. Contribucion al conocimiento de los centros nerviosos de los insectos. Parte I. Retina y centros opticos. Trab. Lab Invest. Biol. Univ. Madrid 13: 1–168, 1915.
 206. Calabrese, R. L. Crayfish mechanoreceptive interneurons: I. The nature of ipsilateral excitatory inputs. J. Comp. Physiol. [A] 105: 83–102, 1976.
 207. Calabrese, R. L. The roles of endogenous membrane properties and synaptic interaction in generating the heartbeat rhythm of the leech, Hirudo medicinalis. J. Exp. Biol. 82: 163–176, 1979.
 208. Calabrese, R. L., J. D. Angstadt, and E. A. Arbas. A neural oscillator based on reciprocal inhibition. In: Perspectives in Neural Systems and Behavior, edited by T. J. Carew and D. B. Kelley, New York: Liss, 1989, p. 33–50.
 209. Calabrese, R. L., and E. A. Arbas. Modulation of central and peripheral rhythmicity in the heartbeat system of the leech. In: Model Neural Networks and Behavior, edited by A. Selverston. New York: Plenum 1985, p. 69–85.
 210. Calabrese, R. L., and A. R. Maranto. Neural control of the hearts in the leech, Hirudo medicinalis. III. Regulation of myogenicity and muscle tension by heart acessory neurons. J. Comp. Physiol. [A] 154: 393–406, 1984.
 211. Calabrese, R. L., and A. R. Maranto. Cholinergic action on the heart of the leech, Hirudo medicinalis. J. Exp. Biol. 125: 205–224, 1986.
 212. Calabrese, R. L., and E. L. Peterson. Neural control of heartbeat in the leech, Hirudo medicinalis, Symp. Soc. Exp. Biol. 37: 195–221, 1983.
 213. Calvin, W. H., and K. Graubard. Evolving neural functions. Semin Neurosci. 3: 351–433, 1991.
 214. Camhi, J. M. Sensory control of abdomen posture in flying locusts. J. Exp. Biol. 52: 533–537, 1970.
 215. Camhi, J. M. Yaw‐correcting postural changes in locusts. J. Exp. Biol. 52: 519–531, 1970.
 216. Camhi, J. Neuroethology Sunderland, MA: Sinauer, 1984.
 217. Camhi, J. M. The escape system of the cockroach. Sci. Am. 243: 158–172, 1988.
 218. Campos‐Ortega, J. A., and N. J. Strausfeld. Columns and layers in the second synaptic region of the fly's visual system: the case for two superimposed neuronal architectures. In: Information Processing in the Visual Systems of Arthropods, edited by R. Wehner. Berlin: Springer‐Verlag, 1972, p. 31–36.
 219. Campos‐Ortega, J. A., and N. J. Strausfeld. The columnar organization of the second synaptic region of the visual system of Musca domestica L. I. Receptor terminals in the medulla. Z. Zellforsch. 124: 561–582, 1972.
 220. Campos‐Ortega, J. A., and N. J. Strausfeld. Synaptic connections of intrinsic cells and basket arborisations in the external plexiform layer of the fly's eye. Brain Res. 59: 119–136, 1973.
 221. Carew, T. J., R. D. Hawkins, T. W. Abrams, and E. R. Kandel. A test of Hebb's postulate at identified synapses which mediate classical conditioning in Aplysia. J. Neurosci. 4: 1217–1224, 1984.
 222. Carew, T. J., R. D. Hawkins, and E. R. Kandel. Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica. Science 219: 397–400, 1983.
 223. Carew, T. J., and D. B. Kelley. Perspectives in Neural Systems and Behavior New York: Liss, 1989.
 224. Carew, T. J., and C. Sahley. Invertebrate learning and memory: from behavior to molecules. Annu. Rev. Neurosci. 9: 435–487, 1986.
 225. Carew, T. J., E. T. Walters, and E. R. Kandel. Classical conditioning in a simple withdrawal reflex in Aplysia californica. J. Neurosci. 1: 1426–1437, 1981.
 226. Carr, W.E.S. Chemical signaling systems in lower organisms: a prelude to the evolution of chemical communication in the nervous system. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 81–94.
 227. Castellucci, V., and E. R. Kandel. A quantal analysis of the synaptic depression underlying habituation of the gill‐withdrawal reflex in Aplysia. Proc. Natl. Acad. Sci. U.S.A. 71: 5004–5008, 1974.
 228. Castellucci, V. F., H. Pinsker, I. Kupfermann, and E. R. Kandel. Neuronal mechanisms of habituation and dishabituation of the gill‐withdrawal reflex in Aplysia. Science 167: 1745–1748, 1970.
 229. Catania, K. C., R. G. Northcutt, H. Jon Kaas, and P. D. Beck. Nose stars and brain stripes. Nature 364: 493, 1993.
 230. Cazalets, J. R., F. Nagy, and M. Moulins. Suppressive control of the crustacean pyloric network by a pair of identified interneurons. I. Modulation of the motor pattern. J. Neurosci. 10: 448–457, 1990.
 231. Cazalets, J. R., F. Nagy, and M. Moulins. Suppressive control of the crustacean pyloric network by a pair of identified interneurons. II. Modulation of neuronal properties. J. Neurosci. 10: 458–468, 1990.
 232. Chalfie, M., and M. Au. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243: 1027–1033, 1989.
 233. Chalfie, M., and J. E. Sulston. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82: 358–370, 1981.
 234. Chalfie, M., J. E. Sulston, J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5: 956–964, 1985.
 235. Chalfie, M., and J. White. The nervous system. In: The Nematode Caenorhabditis elegans, edited by J. White. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1988, p. 337–391.
 236. Charlton, M. P., S. J. Smith, and R. S. Zucker. Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse. J. Physiol. (Lond.) 323: 173–193, 1982.
 237. Chiba, A., D. Shepherd, and R. K. Murphey. Synaptic rearrangement during postembryonic development in the cricket. Science 240: 901–905, 1988.
 238. Chiba, C. M., and C. H. Rankin. A developmental analysis of spontaneous and reflexive reversals in the nematode Caenorhabditis elegans. J. Neurobiol. 21: 543–554, 1990.
 239. Chien, P., and H. Koopowitz. The ultrastructure of neuromuscular systems in Notoplana acticola, a free‐living polyclad flatworm. Z. Zelleforsch. 133: 277–288, 1972.
 240. Chittka, L., W. Beier, H. Hertel, E. Steinmann, and R. Menzel. Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J. Comp. Physiol. [A] 170: 545–563, 1992.
 241. Chittka, L., and R. Menzel. The evolutionary adaptation of flower colours and the insect pollinator's colour vision. J. Comp. Physiol. [A] 171: 171–181, 1992.
 242. Christensen, B. N., Y. Larmet, T. Shimahara, D. Beadle, and Y. Pichon. Ionic currents in neurones cultured from embryonic cockroach (Periplaneta americana) brains. J. Exp. Biol. 135: 193–214, 1988.
 243. Christensen, T. A., and J. G. Hildebrand. Male‐specific, sex pheromone‐selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp Physiol. [A] 160: 553–569, 1987.
 244. Christensen, T. A., and J. G. Hildebrand. Frequency coding by central olfactory neurons in the sphinx moth Manduca sexta. Chem. Senses 13: 123–130, 1988.
 245. Christensen, T. A., J. G. Hildebrand, J. H. Tumlinson, and R. E. Doolittle. Sex pheromone blend of Manduca sexta: responses of central olfactory interneurons to antennal stimulation in male moths. Arch. Insect Biochem. Physiol. 10: 281–291, 1989.
 246. Christensen, T. A., H. Mustaparta, and J. G. Hildebrand. Discrimination of sex pheromone blends in the olfactory system of the moth. Chem. Senses 14: 122–135, 1989.
 247. Christensen, T. A., H. Mustaparta, and J. G. Hildebrand. Chemical communication in heliothine moths. II. Central processing of intra‐and interspecific olfactory messages in the male corn earworm Helicoverpa zea. J. Comp. Physiol. [A] 169: 259–274, 1991.
 248. Christensen, T. A., B. R. Waldrop, I. D. Harrow, and J. G. Hildebrand. Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J. Comp. Physiol. [A] 173: 385–399, 1993.
 249. Chung, J., and A. N. Spencer. Dopamine acts through a D2‐like receptor on a jellyfish motor neuron. J. Comp. Physiol. [A] 169: 599–606, 1991.
 250. Chung, J., and A. N. Spencer. Dopamine as a neuroactive substance in the jellyfish Polyorchis penicillatus. J. Exp. Biol. 156: 433–451, 1991.
 251. Chung, J., A. N. Spencer, and K. H. Gahm. Dopamine in tissues of the hydrozoan jellyfish Polyorchis penicillatus as revealed by HPLC and GC/MS. J. Comp. Physiol. [B] 159: 173–181, 1989.
 252. Clarac, F., and W.J.P. Barnes. Peripheral influences on the coordination of the legs during walking in decapod crustaceans. In: Coordination of Motor Behavior, edited by B.M.H. Bush and F. Clarac. Cambridge: Cambridge Univ. Press, 1985, p. 249–269.
 253. Clark, D. L., and G. W. Uetz. Video image recognition by the jumping spider, Maevia inclemens (Aranea: Salticidae). Anim. Behav. 40: 884–890, 1990.
 254. Cobb, J.L.S. The distribution of mono‐amines in the nervous system of echinoderms. Comp. Biochem. Physiol. 28: 967–971, 1969.
 255. Cobb, J.L.S. Neurobiology of the Echinodermata. In: Nervous Systems in Invertebrates, edited by M. A. Ali, New York: Plenum 1987, p. 483–525.
 256. Cobb, J.L.S. Enigmas of echinoderm nervous systems. In: Evolution of the First Nervous Systems, P.A.V. Anderson New York: Plenum, 1989, p. 329–337.
 257. Cobb, J.L.S., and M. S. Laverack. The lantern of Echinus esculentus (L.) I. Gross anatomy and physiology. Proc. R. Soc. Lond. [B] 164: 624–640, 1966.
 258. Cobb, J.L.S., and M. S. Laverack. The lantern of Echinus esculentus (L.) II. Fine structure of hyponeural tissue and its connexions. Proc. R. Soc. Lond. [B] 164: 641–650, 1966.
 259. Cobb, J.L.S., and M. S. Laverack. The lantern of Echinus esculentus (L.) III. The fine structure of the lantern retractor muscle and its innervation. Proc. R. Soc. Lond. [B] 164: 651–658, 1966.
 260. Cobb, J.L.S., and A. Moore. Studies on the ionic basis of the action potential in the brittle‐star, Ophiura ophiura. Comp. Biochem. Physiol. [A] 91: 821–825, 1988.
 261. Cobb, J.L.S., and T. R. Stubbs. The giant neurone system in ophiuroids. I. The general morphology of the radial nerve cords and circumoral ring. Cell Tissue Res. 219: 197–207, 1981.
 262. Cohen, A. H., S. Rossignol, and S. Grillner. Neural Control of Rhythmic Movements in Vertebrates New York: Wiley, 1988.
 263. Collett, T. S. Peering—a locust behaviour pattern for obtaining motion parallax information. J. Exp. Biol. 76: 237–241, 1978.
 264. Collett, T. S. Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J. Comp. Physiol. [A] 163: 175–186, 1980.
 265. Collett, T. S., S. N. Fry, and R. Wehner. Sequence learning by honeybees. J. Comp. Physiol. [A] 172: 693–706, 1993.
 266. Collett, T. S., and M. F. Land. Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J. Comp. Physiol. [A] 99: 1–66, 1975.
 267. Comer, C. M., and J. P. Dowd. Multisensory processing for movement: antennal and cercal mediation of escape turning in the cockroach. In: Biological Neural Networks in Invertebrate Neuroethology and Robotics, edited by R. D. Beer, R. E. Ritzmann, and T. McKenna. San Diego: Academic, 1993, p. 89–112.
 268. Conn, J. P., and L. K. Kaczmarek. The bag cell neurons of Aplysia. Mol. Neurobiol. 3: 237–273, 1989.
 269. Connor, J. A., and C. F. Stevens. Voltage clamp studies of a transient outward membrane current in gastropod neural so‐mata. J. Physiol. (Lond.) 213: 21–30, 1971.
 270. Connor, J. A., and C. F. Stevens. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. (Lond.) 213: 31–53, 1971.
 271. Consi, T. R., M. B. Passani, and E. R. Macagno. Eye movements in Daphnia magna. Regions of the eye are specialized for different behaviors. J. Comp. Physiol. [A] 166: 411–420, 1990.
 272. Coombs, J. S., J. C. Eccles, and P. Fatt. The specific ionic conductances and the ionic movements across the motoneuro‐nal membrane that produce the inhibitory post‐synaptic potential. J. Physiol. (Lond.) 130: 326–373, 1955.
 273. Copenhaver, P. F., and J. W. Truman. Identification of the neurosecretory cells that contain eclosion hormone in the moth Manduca sexta. J. Neurosci. 6: 1738–1747, 1986.
 274. Cottrell, G. A., and G. S. Bewick. Novel peripheral neurotransmitters in invertebrates. Pharmacol. Ther. 41: 411–442, 1989.
 275. Davis, R. E., and A.O.W. Stretton. Passive membrane properties of motorneurons and their role in long‐distance signalling in the nematode Ascaris. J. Neurosci. 9: 403–414, 1989.
 276. Davis, R. E., and A.O.W. Stretton. Signaling properties of Ascaris motorneurons: graded active responses, graded synaptic transmission, and tonic transmitter release. J. Neurosci. 9: 415–425, 1989.
 277. Davis, R. E., and A.O.W. Stretton. Extracellular recordings from the motor nervous system of the nematode, Ascaris suum. J. Comp. Physiol. [A] 171: 17–28, 1992.
 278. Davis, W. J. Neural mechanisms of behavioral plasticity in an invertebrate model system. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, 263–282.
 279. De Bell, J. T., J. Del Castillo, and V. Sanchez. Electrophysiology of the somatic muscle cells of Ascaris lumbricoides. J. Cell Comp. Physiol. 62: 159–177, 1963.
 280. Deitmer, J. W. Ion channels and the cellular behavior of Stylonychia. In: P.A.V. Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 255–265.
 281. Delaney, K., D. W. Tank, and R. S. Zucker. Presynaptic calcium and serotonin‐mediated enhancement of transmitter release at crayfish neuromuscular junction. J. Neurosci. 11: 2631–2643, 1991.
 282. Delaney, K. R., R. S. Zucker, and D. W. Tank. Calcium in motor nerve terminals associated with posttetanic potentiation. J. Neurosci. 9: 3558–3567, 1989.
 283. Del Castillo, J., W. C. De Mello, and T. Morales. Hyperpolariz‐ing action potentials recorded from the oesophagus of Ascaris lumbricoides. Nature 203: 530–531, 1964.
 284. Del Castillo, J., W. C. De Mello, and T. Morales. The initiation of action potentials in the somatic musculature of Ascaris lumbricoides. J. Exp. Biol. 46: 263–279, 1967.
 285. Del Castillo, J., and T. Morales. The electrical and mechanical activity of the esophageal cell of Ascaris lumbricoides. J. Gen. Physiol. 50: 603–629, 1967.
 286. Delcour, A. H., B. Martinac, J. Adler, and C. Kung. A modified reconstitution method used in patch‐clamp studies of Escherichia coli ion channels. Biophys. J. 56: 631–636, 1989.
 287. Den Otter, C. J., H. A. Scheil, and A. Oosten van‐Sander. Reception of host‐plant odours and female sex‐pheromone in Adoxophyes orana (Lepidoptera: Tortricidae): electrophysiology and morphology. Entomol. Exp. Appl. 24: 570–578, 1978.
 288. Derby, C. D., and D. N. Blaustein. Morphology and physiological characterization of individual olfactory interneurons connecting the brain and eyestalk ganglia of the crayfish. J. Comp. Physiol [A] 163: 777–794, 1988.
 289. De Riemer, S. A., and E. R. Macagno. Quantitative studies of the growth of neuronal arbors. In: Perspectives in Neural Systems and Behavior, edited by T. J. Carew and D. B. Kelley, New York: Liss, 1989, p. 11–31.
 290. De Riemer, S. A., J. A. Strong, K. A. Albert, P. Greengard, and L. K. Kaczmarek. Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature 313: 313–316, 1985.
 291. Desai, C., G. Garriga, S. L. McIntire, and H. R. Horvitz. A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336: 638–646, 1988.
 292. Dethier, V. G. The Hungry Fly Cambridge, MA: Harvard Univ. Press, 1976.
 293. De Voe, R. D., W. Kaiser, J. Ohm, and L. S. Stone. Horizontal movement detectors of honeybees: directionally‐selective visual neurons in the lobula and brain. J. Comp. Physiol. [A] 147: 155–170, 1982.
 294. De Yoe, E. A., and D. van Essen. Concurrent processing streams in monkey visual cortex. Trends Nat. Sci. 11: 217–226, 1988.
 295. Diab, M., and W. F. Gilly. Mechanical properties and control of non‐muscular catch in spine ligaments of the sea urchin, Strongylocentrotus franciscanus. J. Exp. Biol. 111: 155–170, 1984.
 296. Diaz‐Miranda, L., D. A. Price, M. J. Greenberg, T. D. Lee, K. E. Doble, and J. E. Garcia‐Arraras. Characterization of two novel neuropeptides from the sea cucumber Holothuria glaberrima. Biol. Bull. 182: 241–247.
 297. Dickinson, M. H. Directional sensitivity and mechanical coupling dynamics of campaniform sensilla during chordwise deformations of the fly wing. J. Exp. Biol. 169: 221–233, 1992.
 298. Dickinson, P. Homologous neurons control movments of diverse gill types in nudibranch molluscs. J. Comp. Physiol. [A] 131: 277–283, 1979.
 299. Dickinson, P. Gill control in the notaspidean Pleaurobranchaea and possible homologies with nudibranchs. J. Comp. Physiol. [A] 139: 11–16, 1980.
 300. Dickinson, P. S., C. Mescas, and E. Marder. Neuropeptide fusion of two motor‐pattern generator circuits. Nature 334: 155–158, 1990.
 301. Dickinson, P. S. Conduction systems controlling expansion‐contraction behavior in the sea pen Ptilosarchus gurneyi. Mar. Behav. Physiol. 5: 163–183, 1978.
 302. Di Francesco, D., A. Ferroni, M. Mazzanti, and C. Tromba. Properties of the hyperpolarizing‐activated current (if) in cells isolated from the rabbit sino‐atrial node. J. Physiol. (Lond.) 337: 61–88, 1986.
 303. Distler, P. GABA‐immunohistochemistry as a label for identifying types of local interneurons and their synaptic contacts in the antennal lobes of the American cockroach. Histochemistry 93: 617–626, 1990.
 304. Dixon, D., and H. L. Atwood. Crayfish motor nerve terminal's response to serotonin examined by intracellular microelectrode. J. Neurobiol. 16: 409–424, 1985.
 305. Dixon, D., and H. L. Atwood. Adenylate cyclase system is essential for long‐term facilitation at the crayfish neuromuscular junction. J. Neurosci. 9: 4246–4252, 1989.
 306. Dixon, D., and H. L. Atwood. Phosphatidylinositol system's role in serotonin facilitation at the crayfish neuromuscular junction. J. Neurophysiol. 62: 239–246, 1989.
 307. Dominick, O. S., and J. W. Truman. The physiology of wandering behavior in Manduca sexta. II. The endocrine control of wandering behavior. J. Exp. Biol. 117: 45–68, 1985.
 308. Donaldson, S., G. O. Mackie, and A. Roberts. Preliminary observations on escape swimming and giant neurons in Aglan‐tha digitale (Hydromedusae: Trachylina). Can. J. Zool. 58: 549–552, 1980.
 309. Dorsett, D. A. Neural homologies and the control of branchial tuft movements in two species of Tritonia. J. Exp. Biol. 61: 639–654, 1974.
 310. Douglass, J. K., and N. J. Strausfeld. Visual motion detection circuits in flies: Peripheral motion computation by identified small field retinotopic neurons. J. Neurosci. 1995. 5596–5611.
 311. Douglass, J. K., and N. J. Strausfeld. Visual motion‐detection circuits in flies: parallel direction‐ and non‐direction‐sensitive pathways between the medulla and lobula plate. J. Neurosci. 16: 4551–4562, 1996
 312. Drewes, C. D. Escape reflexes in earthworms and other annelids. In: Neural Mechanisms of Startle Behavior, edited by R. C. Eaton, New York: Plenum, 1984, p. 43–91.
 313. Drewes, C. D., and C. R. Fourtner. Reorganization of escape reflexes during asexual fission in an aquatic oligochaete, Dero digitata. J. Exp. Zool. 260: 170–180, 1991.
 314. Drewes, C. D., K. B. Oanda, and J. L. McFall. Giant nerve fibre activity in intact, freely moving earthworms. J. Exp. Biol. 72: 217–227, 1978.
 315. Dubas, F., and P. R. Boyle. Chromatophore motor units in Eledone cirrhosa (Cephalopoda: Octopoda). J. Exp. Biol. 117: 415–431, 1985.
 316. Dubs, A. The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance. J. Comp. Physiol. [A] 146: 321–343, 1982.
 317. Dudel, J. Inhibition of Ca2+ inflow at nerve terminals of frog muscle blocks facilitation while phasic transmitter release is still considerable. Pflügers Arch. 415: 566–574, 1990.
 318. Dudel, J., and S. W. Kuffler. Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. (Lond.) 155: 543–562, 1961.
 319. Dumont, J.P.C., and R. M. Robertson. Neuronal circuits: an evolutionary perspective. Science 233: 849–853, 1986.
 320. Dusenbery, D. B. Responses of the nematode Caenorhabditis elegans to controlled chemical stimulation. J. Comp. Physiol. [A] 136: 327–331, 1980.
 321. Duvert, M. A very singular muscle: the secondary muscle of chaetognaths. Phil. Trans. R. Soc. Lond. [B] 332: 245–260, 1991.
 322. Duvert, M., and J. P. Savineau. Ultrastructural and physiological studies of the contraction of the trunk musculature of Sagitta setosa (Chaetognath). Tissue Cell 18: 937–952, 1986.
 323. Eakin, R. M. Structure of invertebrate receptors. In: Handbook of Sensory Physiology, edited by H. Autrum, R. Jung, W. R. Lowenstein, D. M. McKay, and L. H. Teuber, Berlin: Springer‐Verlag, 1972, vol. 11/1, p. 626–684.
 324. Eakin, R. M., and J. L. Brandenburger. Fine structure of the eyes of jumping spiders. J. Ultrastruct. Res. 37: 618–663, 1971.
 325. Eakin, R. M., and J. A. Westfall. Fine structure of photoreceptors in amphioxus. J. Ultrastruct. Res. 6: 531–539, 1962.
 326. Eaton, R. C., R. Di Domenico, and J. Nissanov. Role of the Mauthner cell in sensorimotor integration by the brain item escape network. Brain Behav. Evol. 37: 272–285, 1991.
 327. Eaton, R. C., and J. T. Hackett. The role of the Mauthner cell in fast‐starts involving escape in teleost fishes. In: Neural Mechanisms of Atartle Behavior, edited by R. C. Eaton, New York: Plenum, 1984, p. 231–266.
 328. Eccles, J. C., R. Granit, and J. Z. Young. Impulses in the giant nerve fibers of earthworms. J. Physiol. (Lond.) 77: 23–24, 1933.
 329. Eckert, R., and D. L. Tillotson. Calcium‐mediated inactivation of the calcium conductance in caesium‐loaded giant neurones of Aplysia californica. J. Physiol. (Lond.) 314: 265–280, 1981.
 330. Edwards, J. S., and J. Palka. The cerci and abdominal giant fibers of the house cricket Acheta domesticus. I. Anatomy and physiology of normal adults. Proc. R. Soc. Lond. [B] 185: 83–103, 1974.
 331. Edwards, K. L., and B. Pickard. Detection and transduction of physical stimuli in plants. In: The Cell Surface in Signal Transduction, edited by H. Greppen, B. Milet, and E. Wagner. Berlin: Springer‐Verlag, 1987, p. 41–66.
 332. Egelhaaf, M. On the neuronal basis of figure‐ground discrimination by relative motion in the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol. Cybern. 52: 123–140, 1985.
 333. Egelhaaf, M. On the neuronal basis of figure‐ground discrimination by relative motion in the fly. II. Figure detection cells, a new class of visual interneurons. Biol. Cybern. 52: 195–209, 1985.
 334. Egelhaaf, M. On the neuronal basis of figure‐ground discrimination by relative motion in the fly. III. Possible input circuitries and behavioral significance of the FD‐cells. Biol. Cybern. 52: 267–280, 1985.
 335. Egelhaaf, M., and A. Borst. Are there separate on and off channels in fly motion vision?. Vis. Neurosci. 8: 151–164, 1992.
 336. Egelhaaf, M., and A. Borst. A look into the cockpit of a fly: visual orientation, algorithms, and identified neurons. J. Neurosci. 13: 4563–4574, 1993.
 337. Egelhaaf, M., A. Borst, and A. K. Warzecha. Neural circuit tuning fly visual interneurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques. J. Neurophysiol. 69: 340–351, 1993.
 338. Egelhaaf, M., K. Hausen, W. Reichadt, and C. Wehrhahn. Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci. 8: 351–358, 1988.
 339. Ehlers, U. Comparative morphology of statocysts in the Plathelminthes and the Xenoturbellida. Hydrobiologia 227: 263–271, 1991.
 340. Ehlers, U., and B. Sopott‐Ehlers. Organization of statocysts in the Otoplanidae (Plathelminthes): an ultrastructural analysis with implications for the phylogeny of the proseriata. Zoomorphology 109: 309–318, 1990.
 341. Ehrhardt, D. W., E. M. Atkingon, and S. R. Long. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256: 998–100, 1992.
 342. Elliott, J. K., D. M. Ross, C. Pathinrana, S. Miao, R. J. Andersen, P. Singer, W. C. M. C. Kokke, and W. A. Ayer. Induction of swimming in Stomphia (Anthozoa: Actiniaria) by imbricatine, a metabolite of the asteroid Dermasterias imbricata. Biol. Bull. 176: 73–78, 1989.
 343. Ellis, V. L., D. M. Ross, and L. Sutton. The pedal disc of the swimming sea anemone Stomphia coccinea during detachment, swimming, and resettlement. Can. J. Zool. 47: 333–342, 1969.
 344. Elphick, M. R., D. A. Price, T. D. Lee, and M. C. Thorndyke. The SALMFamides: a new family of neuropeptides isolated from an echinoderm. Proc. R. Soc. Lond. [B] 243: 121–127, 1991.
 345. Erber, J., T. Masuhr, and R. Menzel. Localization of short‐term memory in the brain of the bee Apis mellifera. Physiol. Entomol. 5: 343–358, 1980.
 346. Ernst, K. D., and J. Boeckh. A neuroanatomical study on the organization of the central antennal pathways in insects. III. Neuroanatomical characterization of physiologically defined response types of deutocerebral neurons in Periplaneta americana. Cell Tissue Res. 229: 1–22, 1983.
 347. Evans, B. D., J. Pohl, N. A. Kartsonis, and R. L. Calabrese. Identification of RFamide neuropeptides in the medicinal leech. Peptides 12: 897–908, 1991.
 348. Ewer, D., and R. Van Den Berg. A note on the pharmacology of the dorsal musculature of Peripatopsis. J. Exp. Biol. 31: 497–500, 1954.
 349. Exner, S. The Physiology of the Compound Eyes of Insects and Crustaceans, translated by R. C. Hardie, Berlin: Springer‐Verlag, 1989.
 350. Fairweather, I., and D. W. Halton. Neuropeptides in platyhelminths. Parasite Neurobiol. Parasitol. 102: S77–S92, 1991.
 351. Fatt, P., and B. L. Ginsborg. The ionic requirements for the production of action potentials in crustacean muscle fibres. J. Physiol. (Lond.) 142: 516–543, 1958.
 352. Fatt, P., and B. Katz. The effect of inhibitory nerve impulses on a crustacean muscle fibre. J. Physiol. (Lond.) 121: 374–389, 1953.
 353. Fatt, P., and B. Katz. The electrical properties of crustacean muscle fibres. J. Physiol. (Lond.) 120: 171–204, 1953.
 354. Febvre‐Chevalier, C., A. Bilbaut, J. Febvre, and Q. Bone. Membrane excitability and motile responses in the Protozoa, with particular attention to the Heliozoan Actinocoryne contractilis. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 237–253.
 355. Feigenbaum, D. L. Hairfan patterns in the Chaetognatha. Can. J. Zool. 56: 536–546, 1978.
 356. Feigenbaum, D., and M. R. Reeve. Prey detection in the Chaetognatha: response to a vibrating probe and experimental determination of attack distance in large aquaria. Limnol. Oceanogr. 22: 1052–1058, 1977.
 357. Feinman, R. D., C. I. Abramson, and R. R. Forman. Classical conditioning in the crab. In: Frontiers in Crustacean Neurobiology, edited by K. Wiese, W. D. Krenz, J. Tautz, H. Reichert, and B. Mulloney. Basel: Birkhauser Verlag, 1990, p. 215–221.
 358. Feinman, R. D., R. H. Llinas, C. I. Abramson, and R. R. Forman. Electromyographic record of classical conditioning of eye withdrawal in the crab. Biol. Bull. 178: 187–194, 1990.
 359. Fischbach, K.‐F., and A.P.M. Dittrich. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild‐type structure. Cell Tissue Res. 258: 441–475, 1989.
 360. Fishelson, L. Observations on the moving colonies of the genus Tethya (Demospongia, Porifera). Zoomorphology 98: 89–99, 1981.
 361. Flammang, P., and M. Jangoux. Functional morphology of the locomotory podia of Holothuria forskali (Echinodermata, Holothuroida). Zoomorphology 111: 167–178, 1992.
 362. Flanagan, D., and A. R. Mercer. Morphology and response characteristics of neurones in the deutocerebrum of the brain in the honey bee Apis mellifera. J. Comp. Physiol. [A] 164: 483–494, 1989.
 363. Flood, P. R. A peculiar mode of muscular innervation in Amphioxus. J. Comp. Neurol. 116: 181–218, 1966.
 364. Flood, P. R. Structure of the segmental trunk muscle in amphioxus. Z. Zellforsch. 84: 389–416, 1968.
 365. Flood, P. R. Paramyosin muscle in the notochord of amphioxus. Nature 222: 87–88, 1969.
 366. Florey, E. Nervous control and spontaneous activity of the chromatophores of a cephalopod, Loligo opalescens. Comp. Biochem. Physiol. 18: 305–324, 1966.
 367. Florey, E. Cholinergic neurons in tunicates: an appraisal of the evidence. Comp. Biochem. Physiol. 22: 617–627, 1967.
 368. Florey, E., and M. A. Cahill. Cholinergic motor control of sea urchin tube feet: evidence for chemical transmission without synapses. J. Exp. Biol. 88: 281–292, 1980.
 369. Florey, E., and M. A. Cahill. Scanning electron microscopy of echinoid podia. Cell Tissue Res. 224: 543–551, 1982.
 370. Florey, E., and E. Florey. Cholinergic neurones in the Onychophora: a comparative study. Comp. Biochem. Physiol. 15: 125–136, 1965.
 371. Foelix, R. F., R. F. Stocker, and R. A. Steinbrecht. Fine structure of a sensory organ in the arista of Drosophila melanogaster and some other dipterans. Cell Tissue Res. 258: 277–287, 1989.
 372. Foreman, M. B., and R. C. Eaton. The direction change concept for reticulospinal control of goldfish escape. J. Neurosci. 13: 4101–4113, 1993.
 373. Forster, L. Target discrimination in jumping spiders. In: Neurobiology of Arachnids, edited by F. G. Barth, Berlin: Springer‐Verlag, 1989, p. 249–274.
 374. Fournier, A. Photoreceptors and photosensitivity in Platyhelminthes. In: Photoreception and Vision in Invertebrates, edited by M. A. Ali, New York: Plenum, 1984, p. 217–239.
 375. Fox, A. P., M. C. Nowycky, and R. W. Tsien. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. J. Physiol. (Lond.) 394: 149–172, 1987.
 376. Fox, A. P., M. C. Nowycky, and R. W. Tsien. Single‐channel recordings of three types of calcium channels in chick sensory neurones. J. Physiol. (Lond.) 394: 173–200, 1987.
 377. Franceschini, N. Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Photoreceptor Optics, edited by A. W. Snyder and R. Menzel. Berlin: Springer‐Verlag, 1975, p. 98–125.
 378. Franceschini, N., J. M. Pichon, and C. Blanes. From insect vision to robot vision. Phil. Trans. R. Soc. Lond [B] 337: 283–294, 1992.
 379. Franceschini, N., A. Riehle, and A. Le Nestour. Directionally selective motion detection by insect neurons. In: Facets of Vision, edited by D. G. Stavenga and R. C. Hardie, Berlin: Springer‐Verlag, 1989, p. 360–390.
 380. Franciolini, F., and A. Petris. Evolution of ionic channels of biological membranes. Mol. Biol. Evol. 6: 503–513, 1989.
 381. Francis, L. Clone specific segregation in the sea anemone An thopleura elegantissima. Biol. Bull. 144: 64–72, 1973.
 382. Francis, L. Intraspecific aggression and its effect on the distribution of Anthopleura elegantissima and some related sea anemonies. Biol. Bull. 144: 73–92, 1973.
 383. Frazier, W. T., E. R. Kandel, I. Kupfermann, R. Waziri, and R. E. Coggeshall. Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30: 1288–1351, 1967.
 384. Friesen, W. O. Physiology of water motion detection in the medicinal leech. J. Exp. Biol. 91: 255–275, 1981.
 385. Fritsch, B., and R. G. Northcutt. Cranial and spinal nerve organization in amphioxus and lampreys: evidence for an ancestral craniate pattern. Acta Anat. 148: 96–109, 1993.
 386. Fritsch, H.A.R., S. Van Noorden, and A.G.E. Pearse. Localization of somatostatin‐, substance P‐, and calcitonin‐like immunoreactivity in the neural ganglion of Ciona intestinalis (L.) (Ascidaceae). Cell Tissue Res. 202: 263–274, 1979.
 387. Fritsch, H.A.R., S. Van Noorden, and A.G.E. Pearse. Substance P‐, neurotensin‐, and bombesin‐like immunoreactivities in the gill epithelium of Ciona intestinalis L. Cell Tissue Res. 208: 467–473, 1980.
 388. Fritsch, H.A.R., S. Van Noorden, and A.G.E. Pearse. Gastrointestinal and neurohormonal peptides in the alimentary tract and cerebral complex of Ciona intestinalis (Ascidaceae). Cell Tissue Res. 113: 369–402, 1982.
 389. Fröhlich, A., and I. A. Meinertzhagen. Synaptogenesis in the first optic neuropile of the fly's visual system. J. Neurocytol. 11: 159–180, 1982.
 390. Fukushi, T. Learning and discrimination of coloured papers in the walking blowfly, Lucilia coprina. J. Comp. Physiol. [A] 166: 57–64, 1990.
 391. Fuortes, M.G.F., and P. M. O'Bryan. Generator potentials in invertebrate photoreceptors. In: Handbook of Sensory Physiology, edited by M.G.F. Fuortes. Berlin: Springer‐Verlag, 1972, vol. 11/12, p. 321–338.
 392. Furshpan, E. J., and D. D. Potter. Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.) 145: 289–325, 1959.
 393. Galtsoff, P. S. Regeneration after dissociation (an experimental study on sponges) I. Behavior of dissociated cells of Microciona prolifera under normal and altered conditions. J. Exp. Zool. 42: 183–221, 1925.
 394. Ganetzky, B., and C. F. Wu. Drosophila mutants with opposing effects on nerve excitability: genetic and spatial interactions in repetitive firing. J. Neurophysiol. 47: 501–514, 1982.
 395. Gans, C. Stages in the origin of vertebrates: analysis by means of scenarios. Biol. Rev. 64: 221–268, 1989.
 396. Gans, C., and R. G. Northcutt. Neural crest and the origin of vertebrates: a new head. Science 220: 268–274, 1983.
 397. Geduldig, D., and D. Junge. Sodium and calcium components of action potentials in the Aplysia giant neurons. J. Physiol. (Lond.) 199: 347, 1968.
 398. Gelperin, A. Neurons and networks for learning about odors. In: Perspectives in Neural Systems and Behavior, edited by T. J. Carew and D. B. Kelley, New York: Liss, 1989, p. 121–136.
 399. Gelperin, A. A taste for learning. Am. Zool. 30: 549–558, 1990.
 400. Gelperin, A., J. J. Hopfield, and D. W. Tank. The logic of Limax learning. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, p. 237–261.
 401. Gerasimov, V. D., P. G. Kostyuk, and V. A. Maiskii. The influence of divalent cations on the electrical characteristics of membranes of giant neurons. Biofizika 10: 447, 1965.
 402. Gerschenfeld, H. M., C. Hammond, and D. Paupardin‐Tritsch. Modulation of the calcium current of molluscan neurones by neurotransmitters. J. Exp. Biol. 124: 73–91, 1986.
 403. Getting, P. A. Neural control of swimming in Tritonia. In: Neural Origin of Rhythmic Movements, edited by A. Roberts and B. L. Roberts, Cambridge: Cambridge Univ. Press, 1983, p. 89–128.
 404. Getting, P. A. Comparative analysis of invertebrate central pattern generators. In: (Eds), Neural Control of Rhythmic Movements in Vertebrates, edited by A. H. Cohen, S. Rossignol, and S. Grillner. New York: Wiley, 1988, p. 101–127.
 405. Getting, P. A. Emerging principles governing the operation of neural networks. Annu. Rev. Neurosci. 12: 185–204, 1989.
 406. Getting, P. A., and M. S. Dekin. Tritonia swimming: a model system for integration within rhythmic motor systems. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, p. 3–20.
 407. Gewecke, M. Antennen und Stirn‐Scheitelhaare von Locusta migratoria L. als Luftströmungs‐Sinnesorgane bei der Flugsteuerung. J. Comp. Physiol. [A] 80: 57–94, 1972.
 408. Gewecke, M., and G. Wendler. Insect Locomotion Berlin: Verlag Paul Parey, 1985.
 409. Ghysen, A. The developmental biology of neural connectivity. Int. J. Dev. Biol. 36: 47–58, 1992.
 410. Gilbert, C., D. Penisten, and R. D. De Voe. Discrimination of visual motion from flicker by identified neurons in the medulla of the fleshfly Sarcophaga bullata. J. Comp. Physiol. [A] 168: 653–673, 1991.
 411. Gilbert, C., and N. J. Strausfeld. The functional organization of male‐specific visual neurons in flies. J. Comp. Neurol. 168: 395–412, 1991.
 412. Gilbert, C., and N. J. Strausfeld. Small‐field neurons associated with oculomotor and optomotor control in muscoid flies: functional organization. J. Comp. Neurol. 316: 72–86, 1992.
 413. Gilbert, D. L., W. J. Adelman, and J. M. Arnold (Eds). Squid as Experimental Animals New York: Plenum, 1990.
 414. Gillette, R. On the significance of neuronal giantism in gastropods. Biol. Bull. 180: 234–240, 1991.
 415. Glantz, R. M. Visual input and motor output of command interneurons of the defense reflex pathway in the crayfish. In: Identified Neurons and Behavior of Arthropods, edited by G. Hoyle. New York: Plenum, 1977, p. 259–274.
 416. Glantz, R. M., L. Wang‐Bennett, and B. Waldrop. Presynaptic inhibition in the crayfish brain. J. Comp. Physiol. [A] 156: 477–487, 1985.
 417. Glanzman, D. L., and F. B. Krasne. Serotonin and octopamine have opposite modulatory effects on the crayfish's lateral giant escape reaction. J. Neurosci. 3: 2263–2269, 1983.
 418. Glusman, S., and E. A. Kravitz. The action of serotonin on excitatory nerve terminals in lobster nerve‐muscle preparations. J. Physiol. (Lond.) 325: 223–241, 1982.
 419. Gnatzy, W., U. Grünert, and M. Bender. Campaniform sensilla of Calliphora vicina (Insecta, Diptera). I. Topography. Zoomorphology 106: 312–319, 1987.
 420. Gnatzy, W., and J. Tautz. Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus‐transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell Tissue Res. 213: 441–463, 1980.
 421. Goldman, L., and C. L. Schauf. Inactivation of the sodium current in Myxicola giant axons. Evidence for coupling to the activation process. J. Gen. Physiol. 59: 659–675, 1972.
 422. Goldman, L., and C. L. Schauf. Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons. J. Gen. Physiol. 61: 361–384, 1973.
 423. Goldsworthy, G. J., and C. H. Wheeler. Insect Flight Boca Raton, FL: CRC, 1989.
 424. Golowasch, J., and E. Marder. Proctolin activates an inward current whose voltage dependence is modified by extracellular calcium. J. Neurosci. 12: 810–817, 1992.
 425. Goltz, R., and U. Thurm. Cytoskeletal modifications of the sensorimotor interneurons of Hydra vulgaris (Cnidaria, Hydrozoa), indicating a sensory function similar to chordotonal receptors of insects. Zoomorphology 111: 113–118, 1991.
 426. Goodman, C. S. Anatomy of ocellar interneurons of acridid grasshoppers. I. The large interneurons. Cell Tissue Res. 175: 183–202, 1976.
 427. Goodman, C. S., and J.L.D. Williams. Anatomy of ocellar interneurons of acridid grasshoppers. II. The small interneurons. Cell Tissue Res. 175: 203–225, 1976.
 428. Goto, T., Y. Katayama‐Kumoi, M. Tohyama, and M. Yoshida. Distribution and development of the serotonin‐ and RFamidelike immunoreactive neurons in the arrowworm, Paraspadella gotoi (Chaetognatha). Cell Tissue Res. 267: 215–222, 1992.
 429. Goto, T., and M. Yoshida. The role of the eye and CNS components in phototaxis of the arrow worm, Sagitta crassa Tokioka. Biol. Bull. 164: 82–92, 1983.
 430. Goto, T., and M. Yoshida. Nervous system in Chaetognatha. In: Nervous System in Invertebrates, edited by M. A. Ali, New York: Plenum, 1987, p. 461–481.
 431. Götz, K. G. The optomotor equilibrium of the Drosophila navigation system. J. Comp. Physiol. [A] 99: 187–210, 1975.
 432. Gould, S. J. Wonderful Life New York: Norton,
 433. Goy, M., and E. A. Kravitz. Cyclic AMP only partially mediates the actions of serotonin at lobster neuromuscular junctions. J. Neurosci. 9: 369–379, 1989.
 434. Goy, M., T. Schwartz, and E. A. Kravitz. Serotonin‐induced protein phosphorylation in a lobster neuromuscular preparaton. J. Neurosci. 4: 611–626, 1984.
 435. Grant, A. J., R. J. O'Connell, and A. M. Hammond. A comparative study of the neurophysiological response characteristics of olfactory receptor neurons in two species of noctuid moths. Ann. N. Y. Acad. Sci. 510: 311–314, 1987.
 436. Gras, H., and M. Horner. Wind‐evoked escape running of the cricket Gryllus bimaculatus. I. Behavioral analysis. J. Exp. Biol. 171: 189–214, 1992.
 437. Graubard, K. J., and W. H. Calvin. Presynaptic dendrites: implications of spikeless synaptic transmission and dendritic geometry. In: The Neurosciences Fourth Study Program, edited by F. O. Schmitt and F. G. Worden, Cambridge, MA: MIT Press, 1979, 317–331.
 438. Graubard, K. J., J. A. Raper, and D. K. Hartline. Graded synaptic transmission between spiking neurons. Proc. Natl. Acad. Sci. U.S.A. 77: 3733–3735, 1980.
 439. Gray, E. G. The fine structure of the insect ear. Phil. Trans. R. Soc. Lond. [B] 243: 75–94, 1960.
 440. Gray, J., and H. W. Lissmann. The locomotion of nematodes. J. Exp. Biol. 41: 135–154, 1964.
 441. Green, C. R. Cnidarian gap junctions: structure, function and evolution. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 3–20.
 442. Green, C. R., and P. R. Bergquist. Cell membrane specialisations in the Porifera. In: Biologie des Spongaires. Colloques Internationaux du Centre National de la Recherche Scientifique, edited by C. Levi and N. Boury‐Esnaul. Paris: 1978, no. 291, p. 153–158.
 443. Gregory, G. E. The Bodian protargol technique. In: Neuroanatomical Techniques: Insect Nervous System, edited by N. J. Strausfeld, New York: Springer‐Verlag, 1980, p. 77–97.
 444. Gribakin, F. G. The distribution of the long wave photoreceptors in the compound eye of the honey bee as revealed by selective osmium staining. Vision Res. 12: 1225–1230, 1972.
 445. Grigoriev, N., and A. N. Spencer. Effects of FMRFamide related peptides on whole cell currents in identified motor neurons of a jellyfish. Soc. Neurosci. Abstr. 18: 471, 1992.
 446. Grillner, S., P. Wallén, L. Brodin, and A. Lansner. Neuronal network generating locomotor behavior in lamprey. Annu. Rev. Neurosci. 14: 169–200, 1991.
 447. Grimmelikhuijzen, C.J.P. Antisera to the sequence Arg‐Pheamide visualize neuronal centralization in hydroid polyps. Cell Tissue Res. 241: 171–182, 1985.
 448. Grimmelikhuijzen, C.J.P., K. Carstensen, D. Darmer, A. Moosler, H. P. Nothacker, R. K. Reinscheid, C. Schmutzler, and H. Vollert. Coelenterate neuropeptides: structure, action and biosynthesis. Am. Zool. 32: 1–12, 1992.
 449. Grimmelikhuijzen, C.J.P., D. Graff, O. Koizumi, J. A. Westfall, and I. D. McFarlane. Neurons and their peptide transmitters in coelenterates. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 95–109.
 450. Grimstone, A. V., R. W. Horne, C.F.A. Pantin, and E. A. Robson. The fine structure of the mesenteries of the sea‐anemone Metridium senile. Q. J. Microsc. Sci. 99: 523–540, 1958.
 451. Griss, C., and C.H.F. Rowell. Three descending interneurons reporting deviation from course in the locust. I. Anatomy. J. Comp. Physiol. [A] 158: 765–774, 1986.
 452. Gronenberg, W., and N. J. Strausfeld. Descending pathways connecting the male‐specific visual system of flies to the neck and flight motor. J. Comp. Physiol. [A] 168: 1991.
 453. Gronenberg, W., and N. J. Strausfeld. Premotor descending neurons responding selectively to local visual stimuli in flies. J. Comp. Neurol. 316: 87–103, 1992.
 454. Grünert, U., and B. Ache. Ultrastructure of the aesthetasc (olfactory) sensilla of the spiny lobster, Panulirus argus. Cell Tissue Res. 251: 95–103, 1988.
 455. Guastella, J., C. D. Johnson, and A.O.W. Stretton. GABA‐immunoreactive neurons in the nematode Ascaris. J. Comp. Neurol. 307: 584–597, 1991.
 456. Gustin, M. C., X. L. Zhou, B. Martinac, and C. Kung. A mechanosensitive ion channel in the yeast plasma membrane. Science 242: 762–765, 1988.
 457. Guthrie, D. M. Control of muscular contractions by spinal neurones in Amphioxus (Branchiostoma lanceolatum). Nature 216: 1224–1225, 1967.
 458. Guthrie, D. M. The physiology and structure of the nervous system of Amphioxus (the lancelet), Branchiostoma lanceolatum Pallas. Symp. Zool. Soc. (Lond.) 36: 43–80, 1975.
 459. Guthrie, D. M., and J. R. Banks. Observations on the function and physiological properties of a fast paramyosin muscle—the notochord of Amphioxus (Branchiostoma lanceolatum). J. Exp. Biol. 52: 125–138, 1970.
 460. Gwilliam, G. F. The mechanism of the shadow reflex in Cirripedia. Biol. Bull. 125: 470–465, 1963.
 461. Gwilliam, G. F. Neurobiology of barnacles. In: Barnacle Biology, edited by A. J. Southward, Rotterdam: Balkema, 1987, p. 191–211.
 462. Gynther, I. C., and K. G. Pearson. Intracellular recordings from interneurones and motoneurones during bilateral kicks in the locust: implications for mechanisms controlling the jump. J. Exp. Biol. 122: 323–343, 1986.
 463. Gynther, I. C., and K. G. Pearson. An evaluation of the role of identified interneurons in triggering kicks and jumps in the locust. J. Neurophysiol. 61: 45–57, 1989.
 464. Haberly, L. B. Neural circuitry in olfactory cortex: anatomy and functional implications. Chem. Senses 10: 219–238, 1985.
 465. Haberly, L. B., and J. L. Price. The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res. 129: 152–157, 1977.
 466. Hagiwara, S., and L. Byerly. Calcium channel. Annu. Rev. Neurosci. 4: 69–125, 1981.
 467. Hagiwara, S., K. Kusano, and N. Saito. Membrane changes of Onchidium nerve cell in potassium‐rich media. J. Physiol. (Lond.) 155: 470–489, 1961.
 468. Hagiwara, S., and K. I. Naka. The initiation of spike potential in barnacle muscle fibers under low intracellular calcium. J. Gen. Physiol. 48: 141–161, 1964.
 469. Hagiwara, S., and S. Nakajima. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine and manganese ions. J. Gen. Physiol. 49: 793–806, 1966.
 470. Hagiwara, S., and N. Saito. Voltage‐current relations in nerve cell membrane of Onchidium verruculatum. J. Physiol. (Lond.) 148: 161–179, 1959.
 471. Hajduk, S. L. Ultrastructure of the tube‐foot of an ophiuroid echinoderm, Hemipholis elongata. Tissue Cell 24: 111–120, 1992.
 472. Halex, H., W. Kaiser, and K. Kalmring. Projection areas and branching patterns of the tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria. Cell Tissue Res. 253: 517–528, 1988.
 473. Halton, D. W. (Ed). Parasite neurobiology. Parasitology 1991; 102 (Suppl):
 474. Hamdorf, K., P. Hoschstrate, G. Höglund, M. Moser, and S. Sperber. Ultra‐violet sensitizing pigment in blowfly photoreceptors R1–R6; probable nature and binding sites. J. Comp. Physiol. [A] 171: 601–615, 1992.
 475. Hamilton, K. A., and J. S. Kauer. Responses of mitral/tufted cells to orthodromic and antidromic electrical stimulation in the olfactory bulb of the tiger salamander. J. Neurophysiol. 59: 1736–1755, 1988.
 476. Hansson, B. S., T. A. Christensen, and J. G. Hildebrand. Functionally distinct subdivisions of the macroglomerular complex in the antennal lobe of the male sphinx moth Manduca sexta. J. Comp. Neurol. 312: 264–278, 1991.
 477. Hansson, B. S., H. Ljunberg, E. Hallberg, and C. Löfstedt. Functional specialization of olfactory glomeruli in a moth. Science 256: 1313–1315, 1992.
 478. Hansson, B. S., J.N.C. Van derPers, and J. Löfqvist. Comparisons of male and female olfactory cell response to pheromone compounds and plant volatiles in the turnip moth, Agrotis segetum. Physiol. Entomol. 14: 147–155, 1989.
 479. Hanström, B. Das Nervensystem der Wirbellosen Tiere Berlin: Springer‐Verlag, 1928.
 480. Hardie, R. C. Projection and connectivity of sex‐specific photoreceptors in the compound eye of the male housefly (Musca domestica). Cell Tissue Res. 233: 1–21, 1982.
 481. Hardie, R. C. Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J. Comp. Physiol. [A] 154: 157–165, 1984.
 482. Hardie, R. C. The photoreceptor array of the dipteran retina. Trends Neurosci. 9: 419–423, 1986.
 483. Hardie, R. C., A. Peretz, E. Suss‐Toby, A. Rom‐Glas, S. A. Bishop, and B. Minke. Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature 363: 634–637, 1993.
 484. Hardie, R. C., and Weckstrom, M. Three classes of potassium channels in large monopolar cells in the blowfly. Callifora vicina. J. Comp. Physiol. [A] 167: 723–736, 1990.
 485. Harris‐Warrick, M. Chemical modulation of central pattern generators. In: Neural Control of Rhythmic Movements, edited by A. H. Cohen, S. Rossignol, and S. Grillner. New York: Wiley, 1988, p. 285–331.
 486. Harris‐Warrick, R., and R. E. Flamm. Multiple mechanisms of bursting in a conditional bursting neuron. J. Neurosci. 7: 2113–2128, 1987.
 487. Harris‐Warrick, R., and E. Marder. Modulation of neural networks for behavior. Annu. Rev. Neurosci. 14: 39–57, 1991.
 488. Harris Warrick, R. M., E. Marder, A. I. Selverston, and M. Moulins (Eds). Dynamic Biological Networks. The Stomatogastric Ganglion Cambridge MA: MIT Press, 1992.
 489. Hassenstein, B., and W. Reichardt. Systemtheoretische Analyse der Zeit‐, Reihenfolgen‐ und Vorzeichenauswertung bei der Bewegungsperzeption des Russelkafers Chlorophanus. Z. Naturforsch. [C] 11b: 513–524, 1956.
 490. Hateren, van J. H. Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation. J. Comp. Physiol. [A] 171: 157–170, 1992.
 491. Hausen, K. Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 74: 49–70, 1981.
 492. Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern. 45: 143–156, 1982.
 493. Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern. 46: 67–79, 1982.
 494. Hausen, K. The lobula complex of the fly: structure, function, and significance in visual behavior. In: Photoreception and Vision in Invertebrates, edited by M. A. Ali, New York: Plenum, 1984, p. 523–599.
 495. Hausen, K., and M. Egelhaaf. Neural mechanisms of visual course control in insects. In: Facets of Vision, edited by G. G. Stavenga and R. C. Hardie, Heidelberg: Springer‐Verlag, 1989, p. 391–424.
 496. Hawkins, R. D. A cellular mechanism of classical conditioning in Aplysia. J. Exp. Biol. 112: 113–128, 1984.
 497. Hawkins, R. D., T. W. Abrams, T. J. Carew, and E. R. Kandel. A cellular mechanism of classical conditioning in Aplysia: activity‐dependent amplification of presynaptic facilitation. Science 219: 400–405, 1983.
 498. Hayashi, J. H., and J. G. Hildebrand. Insect olfactory neurons in vitro: morphological and physiological characterization of cells from the developing antennal lobes of Manduca sexta. J. Neurosci. 10: 848–859, 1990.
 499. Hayashi, J. H., and R. B. Levine. Calcium and potassium currents in leg motoneurons during postembryonic development in the hawkmoth, Manduca sexta. J. Exp. Biol. 171: 15–42, 1992.
 500. Hayashi, Y., and T. Motokawa. Effects of ionic environment on viscosity of catch connective tissue in holothurian body wall. J. Exp. Biol. 125: 71–84, 1986.
 501. Heathcote, D. R. Physiological development of a monosynaptic connection involved in an adult insect behavior. J. Comp. Neurol. 191: 155–166, 1980.
 502. Hedrick, R., and J. I. Schroeder. The physiology of ion channels and electrogenic pumps in higher plants. Annu. Rev. Plant Physiol. 40: 539–569, 1989.
 503. Heinzel, H. G. Gastric mill activity in the lobster. I. Spontaneous modes of chewing. J. Neurophysiol. 59: 528–550, 1988.
 504. Heinzel, H. G., J. M. Weimann, and E. Marder. The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: an in situ endoscopic and electrophysiological examination. J. Neurosci. 13: 1793–1803, 1993.
 505. Heisenberg, M., A. Borst, S. Wagner, and D. Byers. Drosophila mushroom body mutants are deficient in olfactory learning. Neurogenetics 2: 1–30, 1985.
 506. Heisenberg, M., and R. Wolf. On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. J. Comp. Physiol. [A] 163: 373–388, 1979.
 507. Heitler, W. J. The locust jump. Specializations of the metathoracic femoral–tibial joint. J. Comp. Physiol. [A] 89: 93–104, 1974.
 508. Heitler, W. J., and M. Burrows. The locust jump. II. Neural circuits of the motor programme. J. Exp. Biol. 66: 221–241, 1977.
 509. Heitler, W. J., and K. G. Pearson. Non‐spiking interactions and local interneurons in the central pattern generator of the crayfish swimmeret system. Brain Res. 187: 206–211, 1980.
 510. Helversen, O. Zur spekralen Unterschiedsempfindlichkeit der Honigbiene. J. Comp. Physiol. [A] 80: 439–472, 1972.
 511. Hengstenberg, R. Spike response of a non‐spiking visual interneurone. Nature 170: 338–340, 1977.
 512. Hengstenberg, R. Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora erythrocephala. J. Comp. Physiol. [A] 149: 179–193, 1982.
 513. Hengstenberg, R. Roll‐stabilization during flight of the blowfly's head and body by mechanical and visual cues. In: Localization and Orientation in Biology and Engineering, edited by D. Varju and V. Schnitzler. New York: Springer‐Verlag, 1984, p. 121–134.
 514. Hengstenberg, R. Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. J. Comp. Physiol. [A] 163: 151–165, 1988.
 515. Hengstenberg, R. Multisensory control in insect oculomotor systems. Rev. Oculomot. Res. 5: 285–298, 1993.
 516. Hennessey, T. M. Ion currents of Paramecium: effects of mutations and drugs. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 215–235.
 517. Hensler, K. The pars intercerebralis neurone P1(2)5 of locusts: convergent processing of inputs reporting head movements and deviations from straight flight. J. Exp. Biol. 140: 279–301, 1988.
 518. Hensler, K. Corrective flight steering in locusts: convergence of extero‐ and proprioceptive inputs in descending deviation detectors. In: Neurobiology of Sensory Systems, edited by N. Singh and N. J. Strausfeld, New York: Plenum, 1989, p. 531–554.
 519. Hensler, K. Neuronal coprocessing of course deviations and head movements in locusts. I. Descending deviation detectors. J. Comp. Physiol. [A] 171: 257–272, 1992.
 520. Hensler, K., and C.H.F. Rowell. Control of optomotor responses by descending deviation detectors in intact fying locusts. J. Exp. Biol. 149: 191–205, 1990.
 521. Hernandez‐Nicaise, M. L. Le systéme nerveux des cténaires. I. Structure et ultrastructure des réseaux epithélaiux. Z. Zellforsch. 137: 223–250, 1973.
 522. Hernandez‐Nicaise, M. L. Ultrastructural evidence for a sensory‐motor neuron in Ctenophora. Tissue Cell 6: 43–47, 1974.
 523. Hernandez‐Nicaise, M. L., G. O. Mackie, and R. W. Meech. Giant smooth muscle cells of Beroe. Ultrastructure, innervation, and electrical properties. J. Gen. Physiol. 75: 79–105, 1980.
 524. Hernandez‐Nicaise, M. L., G. Nicaise, and L. Malaval. Giant smooth muscle fibers of the ctenophore Mnemiopsis leydii: ultrastructural study of in situ and isolated cells. Biol. Bull. 167: 210–288, 1984.
 525. Hernandez‐Nicaise, M. L., G. Nicaise, and T. S. Reese. Intercellular junctions in Ctenophore integument. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 21–32.
 526. Hertel, H. Chromatic properties of identified interneurons in the optic lobes of the bee. J. Comp. Physiol. [A] 137: 215–232, 1980.
 527. Hertel, H., and U. Maronde. U. Processing of visual information in the honey brain. In: Neurobiology and Behavior of the Honeybee, edited by R. Menzel and A. Mercer. Heidelberg: Springer‐Verlag, 1987, p. 141–151.
 528. Hewes, R. S., and J. W. Truman. The roles of central and peripheral eclosion hormone release in the control of ecdysis behavior in Manduca sexta. J. Comp. Physiol. 168: 697–707, 1991.
 529. Hidaka, M. Effects of certain physico‐chemical agents on the mechanical properties of the catch apparatus of the sea urchin spine. J. Exp. Biol. 103: 15–29, 1983.
 530. Hille, B. Ionic channels: evolutionary origins and modern roles. Q. J. Exp. Physiol. 74: 785–804, 1989.
 531. Hille, B. Ionic Channels of Excitable Membranes (2nd ed.). Sunderland MA: Sinauer, 1992.
 532. Hinrichsen, R. D., and J. E. Schultz. Paramecium: a model system for the study of excitable cells. Trends Neurosci. 1: 27–32, 1988.
 533. Hisada, M., M. Takahata, and T. Nagayama. Local non‐spiking interneurons in the arthropod motor control system: characterization and their functional significance. Zool. Sci. 1: 681–700, 1984.
 534. Hochner, B., H. Parnas, and I. Parnas. Membrane depolarization evokes neurotransmitter release in the absence of calcium entry. Nature 342: 433–435, 1989.
 535. Hodgkin, A. L. The subthreshold potentials in a crustacean nerve fibre. Proc. R. Soc. Lond. [B] 126: 87–121, 1938.
 536. Hodgkin, A. L., and A. F. Huxley. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116: 449–472, 1952.
 537. Hodgkin, A. L., and A. F. Huxley. The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116: 473–496, 1952.
 538. Hodgkin, A. L., and A. F. Huxley. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116: 497–506, 1952.
 539. Hodgkin, A. L., and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117: 500–544, 1952.
 540. Hodgkin, A. L., and W.A.H. Rushton. The electrical constants of a crustacean nerve fibre. Proc. R. Soc. Lond. [B] 133: 444–479, 1946.
 541. Hodick, D., and A. Sievers. On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179: 32–42, 1989.
 542. Holland, N. D., and L. Z. Holland. Serotonin‐containing cells in the nervous system and other tissues during ontogeny of a lancelet Branchiostoma floridae. Acta Zool. 74: 195–204, 1993.
 543. Hölldöbler, B., and E. O. Wilson. The Ants Boston: Belknap, 1990.
 544. Holley, M. C., and J. F. Ashmore. A cytoskeletal spring in cochlear outer hair cells. Nature 335: 635–637, 1988.
 545. Holmgren, N. Zur vergleichenden anatomie des gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden, und Insecten. K. Svenska Vetensk Akad. Handl. 56: 1–303, 1916.
 546. Holmqvist, M. H., and M. V. Srinivasan. A visually evoked response of the husefly. J. Comp. Physiol. [A] 169: 451–459, 1991.
 547. Homberg, U. Processing of antennal information in extrinsic mushroom body neurons of the bee brain. J. Comp. Physiol. [A] 154: 825–836, 1984.
 548. Homberg, U. Immunocytochemical demonstration of transmitter candidates in the central olfactory pathway in the sphinx moth Manduca sexta. In: Olfaction and Taste X, edited by K. Doving. Oslo: Oslo Univ. Press, 1990, p. 151–158.
 549. Homberg, U., T. A. Christensen, and J. G. Hildebrand. Structure and function of the deutocerebrum in insects. Annu. Rev. Entomol. 34: 477–501, 1989.
 550. Homberg, U., R. A. Montague, and J. G. Hildebrand. Anatomy of antenno‐cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res. 254: 255–281, 1989.
 551. Hooper, S. L., and E. Marder. Modulation of a central pattern generator by two neuropeptides, proctolin and FMRFamide. Brain Res. 305: 186–191, 1984.
 552. Hooper, S. L., and E. Marder. Modulation of a central pattern generator by the peptide, proctolin. J. Neurosci. 7: 2097–2112, 1987.
 553. Horner, M. Wind‐evoked escape running of the cricket Gryllus bimaculatus. II. Neurophysiological analysis. J. Exp. Biol. 171: 215–245, 1992.
 554. Horridge, G. A. The co‐ordination of the protective retraction of coral polyps. Phil. Trans. R. Soc. Lond. [B] 240: 495–528, 1975.
 555. Horridge, G. A., and P. S. Boulton. Prey detection by Chaetognatha via a vibration sense. Proc. R. Soc. Lond. [B] 168: 413–419, 1967.
 556. Horridge, G. A., and B. McKay. Neurociliary synapses in Pleurobrachia (Ctenophora). Q. J. Microsc. Sci. 105: 163–174, 1964.
 557. Horridge, G. A., S. W. Zhang, and M. Lehrer. Bees can combine range and visual angle to estimate absolute size. Phil. Trans. R. Soc. Lond. [B] 337: 49–57, 1992.
 558. Horridge, G. A., S. W. Zhang, and D. O'Carroll. Insect perception of illusory contours. Phil. Trans. R. Soc. Lond. [B] 337: 59–64, 1992.
 559. Horvitz, H. R., M. Chalfie, C. Trent, J. E. Sulston, and P. D. Evans. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216: 1012–1014, 1982.
 560. Hoshi, T., W. N. Zagotta, and R. W. Aldrich. Two types of inactivation in shaker channels: effects of alterations in the carboxyl terminal region. Neuron 7: 547–556, 1991.
 561. Hoskins, S. G., U. Homberg, T. G. Kingan, T. A. Christensen, and J. G. Hildebrand. Immunocytochemistry of GABA in the antennal lobes of He sphinx moth Manduca sexta. Cell Tissue Res. 244: 243–252, 1986.
 562. Hösl, M. Pheromone‐sensitive neurons in the deutocerebrum of Periplaneta americana: receptive fields on the antenna. J. Comp. Physiol. [A] 161: 321–327, 1990.
 563. Howe, N. R., and Y. M. Sheikh. Anthopleurine: a sea anemone alarm pheromone. Science 189: 386–388, 1975.
 564. Hoy, R. R. Degeneration and regeneration in abdominal flexor motoneurons in the crayfish. J. Exp. Zool. 172: 219–232, 1969.
 565. Hoy, R. R., F. D. Bittner, and D. Kennedy. Regeneration in crustacean motorneurones: evidence for axonal fusion. Science 156: 251–252, 1967.
 566. Hoyle, G. Identified Neurons and Behavior of Arthropods New York: Plenum, 1977.
 567. Hoyle, G. Muscles and Their Neural Control New York: Wiley, 1983.
 568. Hoyle, G. The giant muscle cells of barnacles. In: Barnacle Biology, edited by A. J. Southward, Rotterdam: Balkema, 1987, p. 213–225.
 569. Hoyle, G., and J. del Castillo. Neuromuscular transmission in Peripatus. J. Exp. Biol. 83: 13–29, 1979.
 570. Hoyle, G., and T. Smyth. Neuromuscular physiology of giant muscle fibers of a barnacle, Balanus nubilus Darwin. Comp. Biochem. Physiol. 10: 291–314, 1963.
 571. Hoyle, G., and M. Williams. The musculature of Peripatus and its innervation. Phil. Trans. R. Soc. Lond. [B] 288: 481–510, 1980.
 572. Hubel, D. H., and M. S. Livingston. Segregation of form, color, and stereopsis in primate area 18. J. Neurosci. 7: 3378–3415, 1987.
 573. Huber, F., and H. Markl. Neuroethology and Behavioral Physiology Berlin: Springer‐Verlag, 1983.
 574. Huber, I., E. P. Masler, and B. R. Rao (Eds). Cockroaches as Models for Neurobiology: Applications in Biomedical Research Boca Raton, FL: CRC, 1990, vols. I, II.
 575. Hudspeth, A. J., M. M. Poo, and A. E. Stuart. Passive signal propogation and membrane properties in median photoreceptors of the giant barnacle. J. Physiol. (Lond.) 272: 25–43, 1976.
 576. Hudspeth, A. J., and A. E. Stuart. Morphology and responses to light of the somata, axons, and terminal regions of individual photoreceotors of the giant barnacle. J. Physiol. (Lond.) 277: 1–23, 1977.
 577. Hughes, B. M., and C.A.G. Wiersma. Neuronal pathways and synaptic connexions in the abdominal cord of the crayfish. J. Exp. Biol. 37: 291–307, 1960.
 578. Humphreys, T. Species specific aggregation of dissociated sponge cells. Nature 228: 685–686, 1970.
 579. Jacklett, J. W. Neuronal and Cellular Oscillators New York: Dekker, 1989.
 580. Jacobs, G. A., J. P. Miller, and R. K. Murphey. Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron. J. Neurosci. 6: 2298–2311, 1986.
 581. Jacobs, G. A., and J. C. Weeks. Postsynaptic changes at a sensory‐to‐motoneuron synapse contribute to the developmental loss of a reflex behavior during insect metamorphosis. J. Neurosci. 10: 1341–1356, 1990.
 582. Jaffe, L. A., R. T. Cado, and D. Kline. A calcium‐activated sodium conductance produces a long‐duration action potential in the egg of a nemertine worm. J. Physiol. (Lond.) 381: 263–278, 1986.
 583. Jan, Y. N., L. Y. Jan, and M. J. Dennis. Two mutations of synaptic transmission in Drosophila. Proc. R. Soc. Lond. [B] 198: 87–107, 1977.
 584. Joffe, B. I. On the number and spatial distribution of the catecholamine‐containing (GA‐positive) neurons in higher and lower turbellarians—a comparison. Hydrobiologia 227: 201–208, 1991.
 585. Joffe, B. I., and E. A. Kotikova. Distribution of catecholamines in turbellarians (with a discussion of neuronal homologues in the Platyhelminthes). In: Simpler Nervous Systems, edited by D. A. Sacharov and W. Winlow. Manchester: Manchester Univ. Press, 1991, p. 77–112.
 586. Johansen, J., J. Yang, and A. L. Kleinhaus. Voltage‐clamp analysis of the ionic conductances in a leech neuron with a purely calcium‐dependent action potential. J. Neurophysiol. 58: 1468–1484, 1987.
 587. Johnson, B. R., and R. M. Harris‐Warrick. Aminergic modulation of graded synaptic transmission in the lobster stomatogastric ganglion. J. Neurosci. 10: 2066–2076, 1990.
 588. Johnson, C. D., and A.O.W. Stretton. Localization of choline‐acetyltransferase within identified motoneurons of the nematode Ascaris. J. Neurosci. 5: 1984–1992, 1985.
 589. Johnson, C. D., and A.O.W. Stretton. GABA‐immunoreactivity in inhibitory neurons of the nematode Ascaris. J. Neurosci. 7: 223–235, 1987.
 590. Johnson, E. C., P. R. Robinson, and J. E. Lismann. Cyclic GMP is involved in the excitation of invertebrate photoreceptors. Nature 324: 468–470, 1986.
 591. Jones, W. C. Is there a nervous system in sponges?. Biol. Rev. 37: 1–50, 1962.
 592. Josephson, R. K., and S. C. March. The swimming performance of the sea‐anemone Boloceroides. J. Exp. Biol. 44: 493–506, 1966.
 593. Jourdan, F. Spatial dimensions in olfactory coding: a representation of the 2‐deoxyglucose patterns of glomerular labeling in the olfactory bulb. Brain Res. 240: 341–344, 1982.
 594. Kabotyanski, E. A., L. P. Nezlin, and D. A. Sacharov. In: Simpler Nervous Systems, edited by D. A. Sacharov and W. Winlow. Manchester: Manchester Univ. Press, 1991, p. 138–152.
 595. Kaczmarek, L. K., and I. B. Levitan. Neuromodulation New York: Oxford Univ. Press, 1987.
 596. Kaib, M. Die Fleisch‐ und Blumenduftrezeptoren auf der Antenne der Schmeissfliege Calliphora vicina. J. Comp. Physiol. [A] 95: 105–121, 1974.
 597. Kaiser, W. The relationship between visual movement detection and colour vision in insects. In The Compound Eye and Vision in Insects, edited by G. A. Horridge, Oxford: Clarendon, 1975, p. 359–371.
 598. Kaiser, W., and E. Liske. Die optomotorischen Reaktionen von fixierte fliegenden bienen bei reizung mit spektrallichtern. J. Comp. Physiol. [A] 89: 391–408, 1974.
 599. Kaiser, W., R. Seidl, and J. Vollmar. The participation of all three colour receptors in the phototactic behavior of fixed walking honeybees. J. Comp. Physiol. [A] 122: 27–44, 1977.
 600. Kaissling, K. E. Insect olfaction. In: Handbook of Sensory Physiology IV, edited by L. M. Beidler, Berlin: Springer‐Verlag, 1971, p. 351–431.
 601. Kaissling, K.‐E. Sensory transduction in insect olfactory receptors. In: Biochemistry of Sensory Functions, edited by L. Jaenicke. Berlin: Springer‐Verlag, 1974, p. 243–273.
 602. Kaissling, K.‐E. R. H. Wright lectures on insect olfaction. Burnaby, Canada: Simon Fraser Univ. Press, 1987.
 603. Kaissling, K.‐E., J. G. Hildebrand, and J. H. Tumlinson. Pheromone receptor cells in the male moth Manduca sexta. Arch. Insect Biochem. Physiol. 10: 273–279, 1989.
 604. Kaissling, K.‐E., G. Kasang, H. J. Bestmann, W. Stransky, and O. Vostrowsky. A new pheromone of the silk worm moth Bombyx mori. Sensory pathway and behavioral effect. Naturwissenschaften 65: 382–384, 1978.
 605. Kaissling, K.‐E., and J. Thorson. Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Receptors for Neurotransmitter, Hormones and Pheromones in Insects, edited by D. B. Sattelle, L. M. Hall, and J. G. Hildebrand, Amsterdam: Elsevier, 1980, p. 261–282.
 606. Kamb, A., L. E. Iverson, and M. A. Tanouye. Molecular characterization of shaker, a Drosophila gene that encodes a potassium channel. Cell 50: 405–413, 1987.
 607. Kamb, A., J. Tseng‐Crank, and M. A. Tanouye. Multiple products of the Drosophila shaker gene may contribute to potassium channel diversity. Neuron 1: 421–430, 1988.
 608. Kämper, G., and R. K. Murphey. Synapse formation by sensory neurons after cross‐species transplantation in crickets: the role of positional information. Dev. Biol. 122: 492–502, 1987.
 609. Kanaujia, S., and K‐E. Kaissling. Interactions of pheromone with moth antennae: adsorption, desorption and transport. J. Insect Physiol. 31: 71–81, 1985.
 610. Kandel, E. R. Cellular Basis of Behavior San Francisco: Freeman, 1976.
 611. Kandel, E. R. Behavioral Biology of Aplysia San Francisco: Freeman, 1979.
 612. Kanzaki, R., E. A. Arbas, and J. G. Hildebrand. Physiology and morphology of protocerebral olfactory neurons in the male moth Manduca sexta. J. Comp. Physiol. [A] 168: 281–298, 1991.
 613. Kanzaki, R., E. A. Arbas, and J. G. Hildebrand. Physiology and morphology of descending neurons in pheromone‐processing olfactory pathways in the male moth Manduca sexta. J. Comp. Physiol. [A] 169: 1–14, 1991.
 614. Kanzaki, R., E. A. Arbas, N. J. Strausfeld, and J. G. Hildebrand. Physiology and morphology of projection neurons in the antennal lobe of the male moth Manduca sexta. J. Comp. Physiol. [A] 165: 427–453, 1989.
 615. Kao, C. Y. Postsynaptic electrogenesis in septate giant axons. II. Comparison of medial and lateral giant axons of crayfish. J. Neurophysiol. 23: 618–635, 1960.
 616. Kao, C. Y., and H. Grundfest. Postsynaptic electrogenesis in septate giant axons I. Earthworm median giant axon. J. Neurophys. 20: 553–573, 1957.
 617. Kass‐Simon, G., and L. A. Hufnagel. Suspected chemoreceptors in coelenterates and ctenophores. Microsc. Res. Tech. 22: 265–284, 1992.
 618. Katz, B., and R. Miledi. A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (Lond.) 192: 407–436, 1967.
 619. Katz, P. S., P. A. Getting, and W. N. Frost. Dynamic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. Nature 367: 729–731, 1994.
 620. Katz, P. S., and R. M. Harris‐Warrick. Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. J. Neurosci. 10: 1495–1512, 1990.
 621. Kauer, J. S., and K. A. Hamilton. Odor information processing in the olfactory bulb. Evidence from extracellular and intracellular electrodes and from 2‐deoxyglucose mapping. Ann. N. Y. Acad. Sci. 510: 400–402, 1987.
 622. Kauer, J. S., and D. G. Moulton. Responses of olfactory bulb neurones to odour stimulation of small nasal areas in the salamander. J. Physiol. (Lond.) 243: 717–737, 1974.
 623. Keenan, C. L., R. Coss, and H. Koopowitz. Cytoarchitecture of primitive brains: Golgi studies in flatworms. J. Comp. Neurol. 195: 697–716, 1981.
 624. Keenan, L., and H. Koopowitz. Tetrodotoxin‐sensitive action potentials from the brain of the polyclad flatworm Notoplana acticola. J. Exp. Zool. 215: 209–213, 1981.
 625. Keenan, L., and H. Koopowitz. Ionic bases of action potentials in identified flatworm neurones. J. Comp. Physiol. [A] 155: 197–208, 1984.
 626. Keil, T. A. Contacts of pore tubules and sensory dendrites in antennal chemosensilla of a silkmoth: demonstration of a possible pathway for olfactory molecules. Tissue Cell 14: 451–462, 1982.
 627. Keil, T. A. Reconstruction and morphometry of silkmoth olfactory hairs: a comparative study of sensilla trichoidea on the antennae of male Antheraea polyphemus and Antheraea pemyi (Insecta, Lepidoptera). Zoomorphology 104: 147–156, 1984.
 628. Keil, T. A. Fine structure of the pheromone‐sensitive sensilla on the antenna of the hawkmoth, Manduca sexta, Tissue Cell 21: 139–151, 1989.
 629. Kennedy, D. Connections among neurons of different types in crustacean nervous systems. In: The Neurosciences, edited by F. O. Schmitt and F. B. Worden, Cambridge, MA: MIT Press, 1974, p. 379–388.
 630. Kennedy, D., R. Calabrese, and J. J. Wine. Presynaptic inhibition: primary afferent depolarization in crayfish neurons. Science 186: 451–454, 1974.
 631. Kent, K. S., I. D. Harrow, P. Quartararo, and J. G. Hildebrand. An accessory olfactory acessory pathway in Lepidoptera: the labial pit organ and its central projections in Manduca sexta and certain other sphinx moths and silk moths. Cell Tissue Res. 245: 237–245, 1986.
 632. Kent, K. S., S. G. Hoskins, and J. G. Hildebrand. A novel serotonin‐immunoreactive neuron in the antennal lobe of the sphinx moth Manduca sexta persists throughout postembryonic life. J. Neurobiol. 18: 451–465, 1987.
 633. Kent, K. S., and R. B. Levine. Neural control of leg movements in a metamorphic insect: persistence of the larval leg motor neurons to innervate the adult legs of Manduca sexta. J. Comp. Neurol. 276: 30–43, 1988.
 634. Kent, K. S., and R. B. Levine. Neural control of leg movements in a metamorphic insect: sensory and motor elements of the larval thoracic legs in Manduca sexta. J. Comp. Neurol. 271: 559–576, 1988.
 635. Kent, K. S., and R. B. Levine. Dendritic reorganization of an identified neuron during metamorphosis of the moth, Manduca sexta: the influence of interactions with the periphery. J. Neurobiol. 24: 1–22, 1993.
 636. Kenyon, F. C. The brain of the bee. J. Comp. Neurol. 6: 133–210, 1896.
 637. Kerkut, G. A., and L. I. Gilbert (Eds). Comprehensive Insect Physiology Biochemistry and Pharmacology. Nervous System: Structure and Motor Function New York: Pergamon, 1985, vol. 5.
 638. Kerstitch, A. Sea of Cortez Marine Invertebrates Monterey, CA: Sea Challengers, 1989.
 639. Kien, J., and R. Menzel. Chromatic properties of interneurons in the optic lobes of the bee. 1. Broad band neurons. J. Comp. Physiol. [A] 113: 17–34, 1977.
 640. Kilmann, F., and F. W. Schürmann. Both electrical and chemical transmission between “lobula giant movement detectors” and the “descending contralateral movement detector” of locusts are supported by electron microscopy. J. Neurocytol. 14: 637–652, 1985.
 641. Kimmel, C. B., S. L. Powell, and W. K. Metcalfe. Brain neurons which project to the spinal cord of young larvae of the zebrafish. J. Comp. Neurol. 205: 112–127, 1982.
 642. King, D. G., and K. L. Valentino. On neuronal homology: a comparison of similar axons in Musca, Sarcophaga and Drosophila (Diptera: Schizophora). J. Comp. Neurol. 219: 1–9, 1983.
 643. King, D. G., and R. J. Wyman. Anatomy of the giant fibre pathway in Drosophila. I. Three thoracic components of the pathway. J. Neurocytol. 9: 753–770, 1980.
 644. Kirk, M. D. Presynaptic inhibition in the crayfish CNS: pathways and synaptic mechanisms. J. Neurophysiol. 54: 1305–1325, 1985.
 645. Kirschfeld, K. Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3: 248–270, 1967.
 646. Kirschfeld, K. The resolution of lens and compound eyes. In: Neural Principles in Vision, edited by F. Zetler and R. Weiler. Berlin: Springer‐Verlag, 1976, p. 354–370.
 647. Kirschfeld, K. Activation of visual pigment: chromophore structure and function. In: The Molecular Mechanism of Photoreception. Dahlem Konferenzen Life Science Research Report, edited by H. Steive. Heidelberg: Springer‐Verlag, 1984, p. 31–49.
 648. Kirschner, W. H., and M. V. Srinivasan. Freely flying honeybees use image motion to estimate object distance. Naturwissenschaften 76: 282–282, 1989.
 649. Klein, M., and E. R. Kandel. Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. U.S.A. 77: 6912–6916, 1980.
 650. Klein, M., E. Shapiro, and E. R. Kandel. Synaptic plasticity and the modulation of the Ca2+ current. J. Exp. Biol. 89: 117–157, 1980.
 651. Koester, J., and J. H. Byrne. Molluscan Nerve Cells: From Biophysics to Behavior Cold Spring Harbor, NY Cold Spring Harbor Laboratory, 1980.
 652. Koizumi, O., M. Itazawa, H. Mizumoto, S. Minobe, L. C. Javois, C.J.P. Grimmelikhuijzen, and H. R. Bode. Nerve ring of the hypostome in Hydra. I. Its structure, development, and maintenance. J. Comp. Neurol. 326: 7–21, 1992.
 653. Kolberg, R. Finding sustainable ways to prevent parasitic diseases. Science 264: 1859–1861, 1994.
 654. Komatsu, M., F. S. Chia, and R. Koss. Sensory neurons of the bipinnaria larva of the sea star, Luidia senegalensis. Invert. Reprod. Dev. 19: 203–211, 1991.
 655. Koopowitz, H. Feeding behaviour and the role of the brain in the polyclad flatworm, Planocera gilchristi. Anirn. Behav. 18: 31–35, 1970.
 656. Koopowitz, H. Some aspects of the physiology and organization of the nerve plexus in polyclad flatworms. In: Biology of the Turbellaria, edited by N. W. Riser and M. P. Morse, New York: McGraw‐Hill, 1974, p. 198–212.
 657. Koopowitz, H. Polyclad neurobiology and the evolution of central nervous systems. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 315–328.
 658. Koopowitz, H., and P. Chien. Ultrastructure of the nerve plexus in flatworms. I. Peripheral organization. Cell Tissue Res. 155: 337–351, 1974.
 659. Koopowitz, H., and P. Chien. Ultrastructure of the nerve plexus in flatworms. II. Sites of synaptic interactions. Cell Tissue Res. 157: 207–216, 1975.
 660. Koshland, D. E. Biochemistry of sensing and adaptation in a simple bacterial system. Annu. Rev. Biochem. 50: 765–782, 1981.
 661. Koto, M. L., M. A. Tanouye, A. Ferris, J. B. Thomas, and R. J. Wyman. The morphology of the cervical giant neuron of Drosophila. Brain Res. 221: 213–217, 1981.
 662. Krasne, F. B. Excitation and habituation of the crayfish escape reflex: the depolarizing response in lateral giant fibres of the isolated abdomen. J. Exp. Biol. 50: 29–46, 1969.
 663. Krasne, F. B., and J. S. Bryant. Habituation: regulation through presynaptic inhibition. Science 182: 590–592, 1973.
 664. Kravitz, E. A. Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. Science 241: 1775–1781, 1988.
 665. Kravitz, E. A., B. Beltz, S. Glusman, M. Goy, R. Harris‐Warrick, M. Johnston, M. Livingstone, T. Schwarz, and K. King‐Siwicki. The well‐modulated lobster: the roles of serotonin, octopamine, and proctolin in the lobster nervous system. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, p. 339–360.
 666. Kravitz, E. A., S. Glusman, M. S. Livingstone, and R. M. Harris‐Warrick. Serotonin and octopamine in the lobster nervous system: mechanism of action at neuromuscular junctions and preliminary behavioral studies. In: Serotonin, Neurotransmission, and Behavior, edited by B. Jacobs and A. Gelperin. Cambridge, MA: MIT Press, 1981, p. 189–210.
 667. Kristan, W. B. Sensory and motor neurones responsible for the local bending response in leeches. J. Exp. Biol. 96: 161–180, 1982.
 668. Kristan, W. B. The neurobiology of swimming in the leech. Trends Neurosci. p. 84–88, 1983.
 669. Kristan, W. B., S. J. McGirr, and G. V. Simpson. Behavioural and mechanosensory neurone responses to skin stimulation in leeches. J. Exp. Biol. 96: 143–160, 1982.
 670. Kuchiiwa, T., S. Kuchiiwa, and W. Teshirogi. Comparative morphological studies on the visual systems in a binocular and a multi‐ocular species of freshwater planarian. Hydrobiologia 227: 241–249, 1991.
 671. Kuffler, D. P. Neuromuscular transmission in the longitudinal muscle of the leech, Hirudo medicinalis. J. Comp. Physiol. [A] 124: 333–338, 1978.
 672. Kuffler, S. W., and J. G. Nicholls. The physiology of neuroglial cells. Ergreb. Physiol. 57: 1–90, 1966.
 673. Kuhlman, J. R., C. Li, and R. L. Calabrese. FMRF‐amide‐like substances in the leech. I. Immunocytochemical localization. J. Neurosci. 5: 2301–2309, 1985.
 674. Kuhlman, J. R., C. Li, and R. L. Calabrese. FMRF‐amide‐like substances in the leech II. Bioactivity on the heartbeat system. J. Neurosci. 5: 2310–2317, 1985.
 675. Kukalova‐Peck, J. The “Uniramia” do not exist: the ground plan of the Pterygota as revealed by permina Diaphonapterodea from Russia (Insecta: Paleodictyopteroidea). Can. J. Tool. 70: 236–255, 1992.
 676. Kume, M., and K. Dan. Invertebrate Embryology Belgrade: Nolit, 1968.
 677. Kunes, S., and H. Steller. Topography in the Drosophila visual system. Curr. Opin. Neurobiol. 3: 53–59, 1993.
 678. Kunes, S., C. Wilson, and H. Steller. Independent guidance of retinal axons in the developing visual system of Drosophila. Neuroscience 13: 752–767, 1993.
 679. Kung, C. Ion channels of unicellular microbes. In: Evolution of the First Nervous Systems, edited by P. A. V. Anderson. New York: Plenum, 1989, p. 203–214.
 680. Kunze, P. Apposition and superposition eyes. In: Handbook of Sensory Physiology, edited by H. Autrum. Berlin: Springer‐Verlag, 1979, vol. II/6A, p. 441–502.
 681. Kupfermann, I., T. J. Carew, and E. R. Kandel. Local, reflex, and central commands controlling gill and siphon movements in Aplysia. J. Neurophysiol. 37: 996–1019, 1974.
 682. Kupferman, I., and K. R. Weiss. The command neuron concept. Behav. Brain. Sci. 1: 3–39, 1978.
 683. Labhart, T. Polarization‐opponent interneurons in the insect visual system. Nature 331: 435–437, 1988.
 684. Lacalli, T. C., and T.H.J. Gilmour. Ciliary reversal and locomotory control in the pluteus larva of Lytechinus pictus. Phil. Trans. R. Soc. Lond. [B] 330: 391–396, 1990.
 685. Lacalli, T. C., T.H.J. Gilmour, and J. E. West. Ciliary band innervation in the bipinnaria larva of Pisaster ochraceus. Phil. Trans. R. Soc. Lond. [B] 330: 371–390, 1990.
 686. Lacalli, T. C., N. D. Holland, and J. E. West. Landmarks in the anterior central nervous system of amphioxus larvae. Phil. Trans. R. Soc. Lond. [B] 344: 165–185, 1994.
 687. Lakes, R., K. Kalmring, and K.‐H. Engelhard. Changes in the auditory system of locusts (Locusta migratoria and Schistocerca gregaria) after deafferentiation. J. Comp. Physiol. [A] 256: 412–429, 1990.
 688. Lancet, D., C. A. Greer, J. S. Kauer, and G. M. Shepherd. Mapping of odor related activity in the olfactory bulb by high resolution 2‐deoxyglucose autoradiography. Proc. Natl. Acad. Sci. U.S.A. 79: 670–674, 1982.
 689. Land, M. F. Image formation by a concave reflector in the eye of the scallop, Pecten maximus. J. Physiol. (Lond.) 179: 138–153, 1965.
 690. Land, M. F. Mechanisms of orientation and pattern recognition in jumping spiders (Salticidae). In: Information Processing in the Visual System of Arthropods, edited by R. Wehner. Berlin: Springer‐Verlag, 1972, p. 231–247.
 691. Land, M. F. Superposition images are formed by reflection in the eyes of some oceanic decapod Crustacea. Nature 263: 764–765, 1976.
 692. Land, M. F. The optical mechanism of the eye of Limulus. Nature 280: 396–397, 1979.
 693. Land, M. F. Optics and vision in invertebrates. In: Handbook of Sensory Physiology, edited by H. Autrum. Berlin: Springer‐Verlag, 1981, vol. VII/6B, p. 471–592.
 694. Land, M. F. Crustacea. In: Photoreception and Vision in Invertebates, edited by M. A. Ali, New York: Plenum, 1984, p. 401–438.
 695. Land, M. F. Molluscs. In: Photoreception and Vision in Invertebates, edited by M. A. Ali, New York: Plenum, 1984, p. 699–725.
 696. Land, M. F. The morphology and optics of spider eyes. In: Neurobiology of Arachnids, edited by F. G. Barth, Berlin: Springer‐Verlag, 1985, p. 53–78.
 697. Land, M. F. Screening pigment migration in a sphingid moth is triggered by light near the cornea. J. Comp. Physiol. [A] 160: 355–357, 1987.
 698. Land, M. F. Variations in the structure and design of compound eyes. In: Facets of Vision, edited by D. G. Stavenga and R. C. Hardie, Berlin: Springer‐Verlag, 1989, p. 90–111.
 699. Land, M. F. The quality of vision in the ctenid spider Cupiennius salei. J. Exp. Biol. 164: 227–242, 1992.
 700. Land, M. F. Visual tracking and pursuit: humans and arthropods compared. J. Insect. Physiol. 38: 939–951, 1992.
 701. Land, M. F. Chasing and pursuit in the Doliochopodid fly Poecilobothrus nobilitatus. J. Comp. Physiol. [A] 173: 605–613, 1993.
 702. Land, M. F. The visual control of courtship behavior in the fly Poecilobothrus nobilitatus. J. Comp. Physiol. [A] 173: 595–603, 1993.
 703. Land, M. F., and F. A. Burton. The refractive index gradient in the crystalline cones of the eyes of an euphausiid crustacean. J. Exp. Biol. 82: 395–398, 1979.
 704. Land, M. F., and T. S. Collett. Chasing behaviour of houseflies (Fannia canicularis). A description and analysis. J. Comp. Physiol. [A] 89: 331–357, 1974.
 705. Land, M. F., and H. E. Eckert. Maps of the acute ones of fly eyes. J. Comp. Physiol. [A] 156: 525–538, 1985.
 706. Land, M. F., and R. D. Fernald. The evolution of eyes. Annu. Rev. Neurosci. 15: 1–29, 1992.
 707. Land, M. F., N. J. Marshall, D. Brownless, and T. W. Cronin. The eye‐movements of the mantis shrimp Odontodactylis scyllarus (Crustacea: Stomatopoda). J. Comp. Physiol. [A] 167: 155–166, 1990.
 708. Lanfranchi, A. Ultrastructure of the photoreceptors of Allostoma sp. (plathelminthes, Prolecithophora). Hydrobiologia 227: 251–256, 1991.
 709. Lauder, J. M. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 16: 233–240, 1993.
 710. Laughlin, S. B. Neural principles in the peripheral visual systems of invertebrates. In: Handbook of Sensory Physiology, edited by H. Autrum. Heidelberg: Springer‐Verlag, 1981, vol. VII/6B p 133–280.
 711. Laughlin, S. B. The roles of parallel channels in early visual processing by the arthropod compound eye. In: Photoreception and Vision in Invertebrates, edited by M. A. Ali, New York: Plenum, 1984, p. 457–481.
 712. Laughlin, S. B. Form and function in retinal processing. Trends Neurosci. 10: 478–483, 1987.
 713. Laughlin, S. B. Coding efficiency and design in visual processing. In: Facets of Vision, edited by D. G. Stavenga and R. C. Hardie, Berlin: Springer‐Verlag, 1989, p. 213–234.
 714. Laurent, G. The morphology of a population of thoracic intersegmental interneurones in the locust. J. Comp. Physiol. [A] 256: 412–429, 1987.
 715. Laurent, G. Voltage‐dependent nonlinearities in the membrane of locust nonspiking local interneurons, and their significance for synaptic integration. J. Neurosci. 10: 2268–2280, 1990.
 716. Laurent, G. Evidence for voltage‐activated outward currents in the neuropilar membrane of locust nonspiking local interneurons. J. Neurosci. 11: 1713–1726, 1991.
 717. Laurent, G. Integration by spiking and nonspiking local interneurons in locust central nervous system. In: Biological Neural Networks in Invertebrate Neuroethology and Robotics, edited by R. D. Beer, R. Ritzmann, and T. McKenna. Cambridge: Academic, 1993, p. 69–85.
 718. Laurent, G., and M. Burrows. A population of ascending intersegmental interneurones in the locust with mechanosensory inputs from a hind leg. J. Comp. Physiol. [A] 275: 1–12, 1988.
 719. Laurent, G., and M. Burrows. Direct excitation of nonspiking local interneurones by exteroceptors underlies tactile reflexes in the locust. J. Comp. Physiol. [A] 162: 563–572, 1988.
 720. Laurent, G., and M. Burrows. Distribution of intersegmental inputs to nonspiking local interneurones and motor neurones in the locust. J. Neurosci. 9: 3019–3029, 1989.
 721. Laurent, G., K. J. Seymour‐Laurent, and K. Johnson. Dendritic excitability and a voltage‐gated calcium current in locust nonspiking local interneurons. J. Neurophysiol. 69: 1484–1498, 1993.
 722. Laurent, G., and A. Sivaramakrishnan. Single local interneurons in the locust make central synapses with different properties of transmitter release on distinct postsynaptic neurons. J. Neurosci. 12: 2370–2380, 1992.
 723. Lawn, I. D., G. O. Mackie, and G. Silver. Conduction system in a sponge. Science 211: 1169–1171, 1981.
 724. Lee, J.‐K., and H. Altner. Primary sensory projections of the labial palp‐pit organ of the butterfly Pieris rapae L. (Insecta. Lepidoptera.) Int. J. Insect Morphol. Embryol. 15: 439–448, 1986.
 725. Lee, J.‐K., and N. J. Strausfeld. Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male moth Manduca sexta. J. Neurocytol. 19: 519–538, 1990.
 726. Lehrer, M., M. V. Srinivasan, S. W. Zhang, and G. A. Horridge. Motion cues provide the bee's visual world with a third dimension. Nature 332: 356–357, 1988.
 727. Leslie, F. M. Neurotransmitters as neurotrophic factors. In: Neurotrophic Factors, edited by S. E. Loughlin and J. H. Fallon, San Diego: Academic, 1993, p. 565–598.
 728. Lethias, C., R. Garrone, and M. Mazzanorana. Fine structure of sponge cell membranes: comparative study with freeze‐fracture and conventional thin section methods. Tissue Cell. 15: 523–525, 1983.
 729. Leung, H. T., W. D. Branton, H. S. Phillips, L. Jan, and L. Byerly. Spider toxins selectively block calcium currents in Drosophila. Neuron 3: 767–772, 1989.
 730. Leung, H. T., and L. Byerly. Characterization of single calcium channels in Drosophila embryonic nerve and muscle cells. J. Neurosci. 11: 3047–3059, 1991.
 731. Levine, R. B., and J. W. Truman. Peptide activation of a simple neural circuit. Brain Res. 279: 335–338, 1983.
 732. Levine, R. B., and J. W. Truman. Dendritic reorganization of abdominal motoneurons during metamorphosis of the moth, Manduca sexta. J. Neurosci. 5: 2424–2431, 1985.
 733. Levine, R. B., and J. C. Weeks. Hormonally mediated changes in simple reflex circuits during metamorphosis in Manduca. J. Neurobiol. 21: 1022–1036, 1990.
 734. Levinton, J. S. The big bang of animal evolution. Sci. Am. 267: 84–91, 1992.
 735. Li, C., and M. Chalfie. Organogenesis in C. elegans: positioning of neurons and muscles in the egg‐laying system. Neuron 4: 681–695, 1990.
 736. Ling, E. A. The proboscis apparatus of the nemertine Lineus ruber. Phil. Trans. R. Soc. Lond. [B] 262: 1–22, 1971.
 737. Lingle, C., and A. Auerbach. Comparison of excitatory currents activated by different transmitters on crustacean muscle. I. Acetylcholine‐activated channels. J. Gen. Physiol. 81: 547–569, 1983.
 738. Lingle, C., and A. Auerbach. Comparison of excitatory currents activated by different transmitters on crustacean muscle. II. Glutamate‐activated currents and comparison with acetylcholine currents present on the same muscle. J. Gen. Physiol. 81: 571–588, 1983.
 739. Livingstone, M., and D. Hubel. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7: 3416–3468, 1987.
 740. Livingstone, M., and D. Hubel. Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240: 740–749, 1988.
 741. Llinas, R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242: 1654–1664, 1988.
 742. Llinas, R., T. L. McGuinness, C. S. Leonard, M. Sugimori, and P. Greengard. Intraterminal injection of synapsin I or calcium‐calmodulin‐dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc. Natl. Acad. Sci. U.S.A. 82: 3035–3039, 1985.
 743. Llinas, R., and C. Nicholson. Calcium role in depolarization‐secretion coupling: an aequorin study in squid giant synapse. Proc. Natl. Acad. Sci. U.S.A. 72: 187–190, 1975.
 744. Llinas, R., I. Z. Steinberg, and K. Walton. Presynaptic calcium current in squid giant synapse. Biophys. J. 33: 289–322, 1981.
 745. Llinas, R., I. Z. Steinberg, and K. Walton. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J. 33: 323–352, 1981.
 746. Llinas, R., M. Sugimori, D. E. Hillman, and B. Chersky. Distribution and functional significance of the P‐type voltage‐dependent Ca2+ channels in the mammalian central nervous system. Trends Neurosci. 15: 351–355, 1992.
 747. Lnenicka, G. A., and H. L. Atwood. Impulse activity of a crayfish motoneuron regulates its neuromuscular synaptic properties. J. Neurophysiol. 61: 91–96, 1989.
 748. Lnenicka, G. A., H. L. Atwood, and L. Marin. Morphological transformation of synaptic terminals of a phasic motoneuron by long‐term tonic stimulation. J. Neurosci. 6: 2252–2258, 1986.
 749. Lnenicka, G. A., S. J. Hong, M. Combatti, and S. Le Page. Activity‐dependent development of synaptic varicosities at crayfish motor terminals. J. Neurosci. 11: 1040–1048, 1991.
 750. Lockery, S. R., and W. B. Kristan. Distributed processing of sensory information in the leech. I. Input—output relations of the local bending reflex. J. Neurosci. 10: 1811–1815, 1990.
 751. Lockery, S. R., and W. B. Kristan. Distributed processing of sensory information in the leech. II. Identification of interneurons contributing to the local bending reflex. J. Neurosci. 10: 1816–1829, 1990.
 752. Lockery, S. R., and T. J. Sejnowski. Distributed processing of sensory information in the leech. III. A dynamical neural network model of the local bending reflex. J. Neurosci. 12: 3877–3895, 1992.
 753. Lockery, S. R., and T. J. Sejnowski. The computational leech. Trends Neurosci. 16: 283–290, 1993.
 754. Loewenstein, W. R. On the genesis of cellular communication. Dev. Biol. 15: 503–520, 1967.
 755. Lohmann, K. J., and A.O.D. Willows. Lunar‐modulated geomagnetic orientation by a marine mollusk. Science 235: 331–334, 1987.
 756. Lohmann, K. J., A.O.D. Willows, and R. B. Pinter. An identifiable molluscan neuron responds to changes in earth‐strength magnetic fields. J. Exp. Biol. 161: 1–24, 1991.
 757. Lotshaw, D. P., E. S. Levitan, and I. B. Levitan. Fine tuning of neuronal electrical activity: modulation of several ion channels by intracellular messengers in a single identified nerve cell. J. Exp. Biol. 124: 307–322, 1986.
 758. Lubbock, R., and G.A.B. Shelton. Electrical activity following cellular recognition of self and non‐self in a sea anemone. Nature 289: 59–60, 1981.
 759. Lumsden, R. D., and R. Specian. The morphology, histology and fine structure of the adult stage of the cyclophyllidean tapeworm Hymenolepis diminuta. In: Biology of the Tapeworm Hymenolepis diminuta, edited by H. P. Arai, New York: Academic, 1980, p. 157–280.
 760. Macagno, E. R. Mechanism for the formation of synaptic projections in the arthropod visual system. Nature 275: 318–320, 1978.
 761. Macagno, E. R. Number and distribution of neurons in leech segmental ganglia. J. Comp. Neurol. 190: 283–302, 1980.
 762. Macagno, E. R. Cellular interaction and pattern formation in the development of the visual system of Daphnia magna (Crustacea, Brachipoda). II. Induced retardation of optic axon ingrowth results in a delay in laminar neuron differentiation. J. Neurosci. 1: 945–955, 1981.
 763. Mackie, G. O. Neuroid conduction and the evolution of conducting tissues. Q. Rev. Biol. 45: 319–332, 1970.
 764. Mackie, G. O. Is there a conduction system in sponges? In: Biologie des Spongaires Colloques International du Centre National de la Recherche Scientifique, edited by C. Levi and N. Boury‐Esnauld. Paris: 1978, no. 291, p. 145–151.
 765. Mackie, G. O. Jellyfish neurobiology since Romanes. Trends. Neurosci. 13–16, 1980.
 766. Mackie, G. O. Slow swimming and cyclical “fishing” behavior in Aglantha digitate (Hydromedusae: Trachylina). Can. J. Fish. Aquat. Sci. 37: 1550–1556, 1980.
 767. Mackie, G. O. From aggregates to integrates: physiological aspects of modularity in colonial animals. Phil. Trans. R. Soc. Lond. [B] 313: 175–196, 1986.
 768. Mackie, G. O. Evolution of cnidarian giant axons. In: Evolution of the First Nervous Systems, Edited by P. A. V. Anderson. New York: Plenum, 1989, p. 395–407.
 769. Mackie, G. O. The elementary nervous system revisited. Am. Zool. 30: 907–920, 1990.
 770. Mackie, G. O., P.A.V. Anderson, and C. L. Singla. Apparent absence of gap junctions in two classes of cnidaria. Biol. Bull. 167: 120–123, 1984.
 771. Mackie, G. O., and Q. Bone. Skin impulses and locomotion in an ascidian tadpole. J. Mar. Biol. Assoc. U.K. 56: 751–768, 1976.
 772. Mackie, G. O., and Q. Bone. Locomotion and propagated skin impulses in salps (Tunicata: Thaliacea). Biol. Bull. 153: 180–197, 1977.
 773. Mackie, G. O., and Q. Bone. Luminescence and associated effector activity in Pyrosoma (Tunicata: pyrosomida). Proc. R. Soc. Lond. [B] 202: 483–495, 1978.
 774. Mackie, G. O., I. D. Lawn, and M. Pavans de Ceccatty. Studies on Hexactinellid sponges. II. Excitability, conduction and coordination of responses in Rhabdocalyptus dawsoni (Lambe 1873). Phil. Trans. R. Soc. Lond. [B] 301: 401–418, 1983.
 775. Mackie, G. O., and R. W. Meech. Separate sodium and calcium spikes in the same axon. Nature 313: 791–793, 1985.
 776. Mackie, G. O., C. E. Mills, and C. L. Singla. Giant axons and escape swimming in Euplokamis dunlapae (Ctenophora: Cydippida). Biol. Bull. 182: 248–256, 1992.
 777. Mackie, G. O., and L. M. Passano. Epithelial conduction in hydromedusae. J. Gen. Physiol. 52: 600–621, 1968.
 778. Mackie, G. O., D. H. Paul, C. M. Singla, M. A. Sleigh, and D. E. Williams. Branchial innervation and ciliary control in the ascidian Corella. Proc. R. Soc. Lond. [B] 187: 1–35, 1974.
 779. Mackie, G. O., and C. L. Singla. Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Phil. Trans. R. Soc. Lond. [B] 301: 365–400, 1983.
 780. Macrides, F., and S. P. Schneider. Laminar organization of mitral and tufted cells in the main olfactory bulb of the adult hamster. J. Comp. Neurol. 208: 419–430, 1982.
 781. Macrides, F., T. A. Schoënfeld, J. E. Marchland, and A. N. Clancy. Evidence for morphologically, neurochemically, and functionally heterogenous classes of mitral cells in the olfactory bulb. Chem. Senses 10: 175–202, 1985.
 782. Maddock, J. R., and L. Shapiro. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259: 1717–1723, 1993.
 783. Mafra‐Neto, A., and R. T. Cardé Fine scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369: 142–144, 1994.
 784. Maldonado, H. and J. C. Barros‐Pita. A fovea in the praying mantis eye. I. Estimation of the catching distance. Z. Vergl. Physiol. 67: 58–78, 1970.
 785. Malun, D. Inventory and distribution of synapses of identified uniglomerular projection neurons in the antennal lobe of Periplaneta americana. J. Comp. Neurol. 305: 348–360, 1991.
 786. Malun, D. Synaptic relationships betwen GABA‐immunoreactive neurons and an identified uniglomerular projection neuron in the antennal lobe of Periplaneta americana: a double‐electron microscope study. Histochemistry 96: 197–207, 1991.
 787. Malun, D., U. Waldow, D. Kraus, and J. Boeckh. Connections between deutocerebrum and the protocerebrum, and neuroanatomy of several classes of deutocerebral projection neurons in the brain of male Periplaneta americana. J. Comp. Neurol. 329: 143–162, 1993.
 788. Manton, S. M. Arthropod phylogeny—a modern synthesis. J. Zool. Soc. 171: 111–130, 1973.
 789. Manzey, K. P., C. Birkeland, and P. Dayton. Feeding behavior of asteroids and escape responses of their prey in the Puget Sound region. Ecology 49: 603–619, 1968.
 790. Maranto, A. R., and R. L. Calabrese. Neural control of the hearts in the leech Hirudo medicinalis II. Myogenic activity and its control by heart motor neurons. J. Comp. Physiol. [A] 154: 381–391, 1984.
 791. Marder, E., and S. L. Hooper. Neurotransmitter modulation of the stomatogastric ganglion of decapod crustaceans. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, p. 319–337.
 792. Marder, E., and M. P. Nusbaum. Peptidergic modulation of the motor pattern generators in the stomatogastric ganglion. In: Perspectives in Neural Systems and Behavior, edited by T. J. Carew and D. B. Kelley, New York: Liss, 1989, p. 73–91.
 793. Marder, E., and D. Paupardin‐Tritsch. The pharmacological profile of the acetylcholine response of a crustacean muscle. J. Exp. Biol. 88: 147–159, 1980.
 794. Marder, E., and A. I. Selverston. Modeling the stomatogastric nervous system. In: Dynamic Biological Networks, edited by R. M. Harris‐Warrick, E. Marder, and A. I. Selverston. Cambridge, MA: MIT Press, 1992, p. 161–196.
 795. Marder, E., and J. M. Weimann. Modulatory control of multiple task processing in the stomatogastric nervous system. In: Neurobiology of Motor Programme Selection New Approaches to Mechanisms of Behavioral Choice, J. Kien, C. McCrohan, and B. Winlow. Manchester: Manchester Univ. Press, 1991, p. 3–19.
 796. Marion‐Poll, F., and T. R. Tobin. Temporal coding of pheromone pulses and trains in Manduca sexta. J. Comp. Physiol [A] 171: 505–512, 1992.
 797. Märkel, K., U. Mackenstedt, and U. Röser. The sphaeridia of sea urchins: ultrastructure and supposed function (Echinodermata, Echinoida). Zoomorphology 112: 1–10.
 798. Marks, P. S. Nervous control of light responses in the sea anemone, Calamactis praelongus. J. Exp. Biol. 65: 85–96, 1976.
 799. Marshall, N. J., M. F. Land, C. A. King, and T. W. Cronin. The compound eye of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). Compound eye structure: the detection of polarized light. Phil. Trans. R. Soc. Land. [B] 334: 33–56, 1991.
 800. Marshall, N. J., M. F. Land, C. A. King, and T. W. Cronin. The compound eye of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). II. Color pigments in the eyes of stomatopod crustaceans: polychromatic vision by serial and lateral filtering. Phil. Trans. R. Soc. Lond. [B] 334: 57–84, 1991.
 801. Marten, I., G. Lohse, and R. Hedrich. Plant growth hormones control voltage‐dependent activity of anion channels in plasma membrane of guard cells. Nature 353: 758–762, 1991.
 802. Martin, R. J., A. J. Pennington, A. H. Duittoz, S. Robertson, and J. R. Kusel. The physiology and pharmacology of neuromuscular transmission in the nematode parasite, Ascaris suum. Parasitology 102: S41–S58, 1991.
 803. Martin, R. J., P. Thorn, K.A.F. Gration, and I. D. Harrow. Voltage activated currents in somatic muscle of the nematode parasite Ascaris suum. J. Exp. Biol. 173: 75–90, 1992.
 804. Martin, V. J. Characterization of a RFamide‐positive subset of ganglionic cells in the hydrozoan planular nerve net. Cell Tissue Res. 269: 431–438, 1992.
 805. Martinac, B., J. Adler, and C. Kung. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348: 261–263, 1990.
 806. Martinac, B., M. Buechner, A. H. Delcour, J. Adler, and C. Kung. Proc. Natl. Acad. Sci. U.S.A. 84: 2297–2301, 1987.
 807. Martinac, B., Y. Saimi, M. Gustin, and C. Kung. Ion channels of three microbes: Paramecium, yeast, and Escherichia coli In: Calcium and Ion Channel Modulation, edited by A. D. Grinnel, D. Armstrong, and M. B. Jackson, New York: Plenum, 1988, p. 415–430.
 808. Masland, R. H., and M. Tauchi. The cholinergic amacrine cell. Trends Neurosci. 9: 218–223, 1986.
 809. Mates, J.W.B. Eye movements of African chameleons: spontaneous saccade timing. Science 199: 1087–1089, 1978.
 810. Matsumoto, S. G., and J. G. Hildebrand. Olfactory mechanisms in the moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc. R. Soc. Lond. [B] 213: 249–277, 1981.
 811. Matsuno, A., and T. Motokawa. Evidence for calcium translocation in catch connective tissue of the sea cucumber Stichopus chloronotus. Cell Tissue Res. 267: 307–312, 1992.
 812. Matsuo, E. S., and T. Tanaka. Patterns in shrinking gels. Nature 358: 482–485, 1992.
 813. Matthiesen, L. Uber den physikalisch‐optischen bau des auges der cetaceen und der fische. Pflugers Arch. 38: 521–528, 1886.
 814. Mauelshagen, J. Neural correlates of olfactory learning paradigms in an identified neuron in the honey bee brain. J. Neurophysiol. 69: 609–625, 1993.
 815. Mayeri, E., and B. S. Rothman. Neuropeptides and the control of egg‐laying behavior in Aplysia. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, p. 285–301.
 816. Maynard, D. M. Simpler networks. Ann. N. Y. Acad. Sci. 193: 59–72, 1972.
 817. Maynard, D. M., and A. I. Selverston. Organization of the stomatogastric ganglion of the spiny lobster. IV. The pyloric system. J. Comp. Physiol. [A] 100: 161–182, 1975.
 818. McFarlane, I. D. Multiple conducting systems and the control of behaviour in the brain coral Meandrina meandrites (L.) Proc. R. Soc. Lond. [B] 200: 193–216, 1978.
 819. McFarlane, I. D., D. Graf, and C.J.P. Grimmelikhuijzen. Evolution of conducting systems and neurotransmitters in the Anthozoa. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 111–127.
 820. McIntire, S., L.E. Jorgensen, J. Kaplan, and H. R. Horvitz. The GABAergic nervous system of Caenorhabditis elegans. Science 364: 337–341, 1993.
 821. McReynolds, J. S., and A.L.F. Gorman. Photoreceptor potentials of opposite polarity in the eye of the scallop Pecten irradians. J. Gen. Physiol. 56: 376–391, 1970.
 822. McReynolds, J. S., and A.L.F. Gorman. Ionic basis of hyperpolarizing receptor potential in scallop eye: increase in permeability to potassium ions. Science 182: 658–659, 1974.
 823. Meech, R. W. The sensitivity of Helix aspersa neurons to injected calcium ions. J. Physiol. (Lond.) 237: 259–277, 1974.
 824. Meech, R. W. The electrophysiology of swimming in the jellyfish Aglantha digitale. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, p. 281–298.
 825. Meech, R. W., and G. O. Mackie. Ionic currents in giant motor axons of the jellyfish, Aglantha digitale. J. Neurophysiol. 69: 884–893, 1993.
 826. Meech, R. W., and G. O. Mackie. Potassium channel family in giant motor axons of Aglantha digitale. J Neurophysiol. 69: 894–901, 1993.
 827. Meinertzhagen, I. A. The organization of perpendicular fibre pathways in the insect optic lobe. Phil. Trans. R. Soc. Lond. [B] 274: 555–596, 1976.
 828. Meinertzhagen, I. A. Fly photoreceptor synapses: their development, evolution and plasticity. J. Neurobiol. 20: 276–294, 1989.
 829. Meinertzhagen, I. A., and S. D. O'Neil. Synaptic organization of columnar elements in the lamina of the wild type Drosophila melanogaster. J. Comp. Neurol. 305: 232–263, 1991.
 830. Mellon, De F., V. Alones, and M. D. Lawrence. Anatomy and fine structure of neurons in the deutocerebral projection pathway of the crayfish olfactory system. J. Comp. Neurol. 321: 93–111, 1992.
 831. Mendelson, M. Oscillator neurons in crustacean ganglia. Science 171: 1170–1173, 1971.
 832. Menzel, R. Untersuchungen zum erlernen von Spektralfarben durch die Honigbiene (Apis mellifera). Z. vergl. Physiol. 56: 22–62, 1967.
 833. Menzel, R. Beehavior and the neural systems and behavior course. In: Perspectives in Neural Systems and Behavior, edited by T. J. Carew and D. B. Kelley, New York: Liss, 1989, p. 249–266.
 834. Menzel, R., and W. Backhaus. Color vision in honey bees: phenomena and physiological mechanisms. In: Facets of Vision, edited by D. G. Stavenga and R. C. Hardie, Berlin: Springer‐Verlag, 1989, p. 281–297.
 835. Menzel, R., and W. Backhaus. Color vision in insects. In: Vision and Visual Dysfunction. The Perception of Color, edited by P. Gouras. London: McMillan, 1991, vol. VI, p. 262–293.
 836. Menzel, R., and U. Greggers. Natural phototaxis and its relationship to color vision in honeybees. J. Comp. Physiol. [A] 157: 311–321, 1985.
 837. Menzel, R., and A. Snyder. Introduction to photoreceptor optics—an overview. In: Photoreceptor Optics, edited by A. W. Snyder and R. Menzel. Berlin: Springer‐Verlag, 1975, p. 21–13.
 838. Menzel, R., D. F. Ventura, H. Hertel, J. de Souza, and U. Greggers. Spectral sensitivity of photoreceptors in insect compound eyes: comparisons of species and methods. J. Comp. Physiol. [A] 158: 165–177, 1986.
 839. Merrier, A. J., and H. L. Atwood. Long‐term adaptation of a phasic extensor motoneurone in crayfish. J. Exp. Biol. 145: 9–22, 1989.
 840. Merritt, D. J., and R. K. Murphey. Projections of leg proprioceptors within the CNS of the fly Phormia in relation to the generalized insect ganglion. J. Comp. Neurol. 322: 16–34, 1992.
 841. Mesce, K. A., and J. W. Truman. Metamorphosis of the ecdysis motor pattern in the hawkmoth Manduca sexta. J. Comp. Physiol. [A] 163: 287–299, 1988.
 842. Meyer, E. C. Manute, P. Streit, and D. Nassel. Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84: 207–216, 1986.
 843. Meyer, J. A., and S. W. Wilson. From Animals to Animals. Proceedings of the First International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, 1991.
 844. Meyrand, P., J. Simmers, and M. Moulins. Construction of a pattern‐generating circuit with neurons of different networks. Nature 351: 60–63, 1991.
 845. Meyrand, P., J. M. Weimann, and E. Marder. Multiple axonal spike initiation zones in a motor neuron: serotonin activation. J. Neurosci. 12: 2803–2812, 1992.
 846. Michel, K. Das tympanalorgan von Gryllus bimaculatus DeGeer (Saltatoria, Gryllidae). Z. Morphol. Tiere. 77: 285–315, 1974.
 847. Miklos, G.L.G. Molecules and cognition: the latterday lessons of levels, language, and lac. J. Neurobiol. 24: 842–890, 1993.
 848. Milde, J. J. Characteristics of interneurons in the ocellar system of the honeybee. J. Exp. Biol. 46: 1–9, 1986.
 849. Milde, J. J., H. S. Seyan, and N. J. Strausfeld. The neck motor system of the fly Calliphora erythrocephala. II. Sensory organization. J. Comp. Physiol. [A] 160: 225–238, 1987.
 850. Milde, J. J., and N. J. Strausfeld. Cluster organization and response characteristics of the giant fibre pathway of the blowfly Calliphora erythrocephala. J. Comp. Neurol. 294: 59–75, 1990.
 851. Miledi, R., and I. Parker. Calcium transients recorded with arsenazo III in the presynaptic terminal of the squid giant synapse. Proc. R. Soc. Lond. [B] 212: 197–211, 1981.
 852. Millechia, R., and F. Gwilliam. Photoreception in a barnacle: electrophysiology of the shadow reflex pathway in Balanus cariosus. Science 177: 438–440, 1972.
 853. Miller, B. A., and P.N.R. Usherwood. Characteristics of five types of K+ channel in cultured locust muscle. J. Exp. Biol. 154: 45–65, 1990.
 854. Miller, J. P., and G. A. Jacobs. Relationships between neuronal structure and function. J. Exp. Biol. 112: 129–145, 1984.
 855. Miller, J. P., and A. I. Selverston. Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206: 702–704, 1979.
 856. Miller, J. P., and A. I. Selverston. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons, II. Oscillatory properties of pyloric neurons. J. Neurophysiol 48: 1378–1391, 1982.
 857. Miller, J. P., and A. I. Selverston. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. J. Neurophysiol 48: 1416–1432, 1982.
 858. Miller, J. P., and A. I. Selverston. Neural mechanisms for the production of the lobster pyloric motor pattern. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, p. 37–48.
 859. Mintz, I. M., V. J. Venema, K. M. Swiderek, T. D. Lee, B. P. Bean, and M. E. Adams. P‐type calcium channels blocked by the spider toxin ω‐Aga‐IVA. Nature 355: 827–829, 1992.
 860. Mizunami, M., J. M. Weibrecht, and N. J. Strausfeld. A new role for the insect mushroom bodies: place memory and motor control. In: Biological Neural Networks in Invertebrate Neuroethology and Robotics, edited by R. D. Beer, R. Ritzmann, and T. McKenna. Cambridge: Academic, 1993, p. 199–225.
 861. Mobbs, P. G. The brain of the honeybee, Apis mellifera I. The connections and spatial organization of the mushroom bodies. Phil. Trans. R. Soc. Lond. [B] 298: 309–354, 1982.
 862. Mobbs, P. G. Neural networks in the mushroom bodies. J. Insect Physiol. 30: 43–58, 1985.
 863. Mobbs, P. G. Brain structure. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology. Nervous Systems, Structure and Motor Function, edited by G. A. Kerkut, and L. I. Gilbert, Oxford: Pergamon, 1987, vol. 5, p. 299–370.
 864. Möhl, B., and J. P. Bacon. The tritocerebral commissure giant (TCG) wind‐sensitive interneuron in the locust. II: Directional sensitivity and role in flight stabilization. J. Comp. Physiol. [A] 150: 453–465, 1983.
 865. Möhl, B., and W. Zarnack. Activity of the direct downstroke flight muscles of Locusta migratoria (L.) during steering behavior in flight II. Dynamics of the time shift and changes in the burst length. J. Comp. Physiol. [A] 118: 235–247, 1977.
 866. Mori, K. Membrane and synaptic properties of identified neurons in the olfactory bulb. Prog. Neurobiol. 29: 275–320, 1987.
 867. Mori, K., K. Kishi, and H. Ojima. Distribution of dendrites of mitral, displaced mitral, tufted and granule cells in the isolated turtle olfactory bulb. J. Neurosci. 2: 497–592, 1983.
 868. Morton, D. B., and J. W. Truman. Steroid regulation of the peptide‐mediated increase in cyclic GMP in the nervous system of the hawkmoth, Manduca sexta. J. Comp. Physiol. [A] 157: 423–432, 1985.
 869. Morton, D. B., and J. W. Truman. The EGPs—the eclosion hormone and cyclic GMP regulated phosphoproteins. I. Appearance and partial characterization in the CNS of Manduca sexta. J. Neurosci. 8: 1326–1337, 1988.
 870. Morton, D. B., and J. W. Truman. The EGPs—the eclosion hormone and cyclic GMP regulated phosphoproteins. II. Regulation of appearance by the steroid hormone 20–hydroxyecdysone in Manduca sexta. J. Neurosci. 8: 1138–1345, 1988.
 871. Moss, A. G., and S. L. Tamm. Electrophysiological control of ciliary motor responses in the ctenophore Pleurobrachia. J. Comp. Physiol. [A] 158: 311–330, 1986.
 872. Motokawa, T. Connective tissue catch in echinoderms. Biol. Rev. 59: 255–270, 1984.
 873. Motakawa, T., and S. A. Wainwright. Stiffness of starfish arm and involvement of catch connective tissue in the stiffness change. Comp. Biochem. Physiol. [A] 100: 393–397, 1991.
 874. Moulins, M., and I. Cournil. All‐or‐none control of the bursting properties of the pacemaker neurons of the lobster pyloric pattern generator. J. Neurobiol. 13: 447–458, 1982.
 875. Mulkey, R. M., and R. S. Zucker. Action potentials must admit calcium to evoke transmitter release. Nature 350: 153–155, 1991.
 876. Mulkey, R. M., and R. S. Zucker. Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation. J. Neurosci. 12: 4327–4336, 1992.
 877. Müller, J. Zur Vergleichenden Physiologie des Gesichtsinnes des Menschen und der Thiere rebst einem Versucb über die Bewegungungen der Augen und über den menschlichen Blick Leipzig: Cnobloch, 1826.
 878. Muller, K. J., and U. J. McMahan. The shapes of sensory and motor neurones and the distribution of their synapses in ganglia of the leech: a study using intracellular injection of horseradish peroxidase. Proc. R. Soc. Lond. [B] 194: 481–491, 1976.
 879. Muller, K. J., and J. G. Nicholls. Different properties of synapses between a single sensory neurone and two different motor cells in the leech CNS. J. Physiol. (Lond.) 238: 357–369, 1974.
 880. Muller, K. J., J. G. Nicholls, and G. S. Stent (Eds). Neurobiology of the Leech Cold Spring Harbor, NY Spring Harbor Laboratory, 1981.
 881. Mulloney, B., L. D. Acevedo, and A. G. Bradbury. Modulation of the crayfish swimmeret rhythm by octopamine and the neuropeptide proctolin. J. Neurophysiol. 58: 584–597, 1987.
 882. Murata, M., K. Miyagawa‐Kohshima, K. Nakanishi, and Y. Naya. Characterization of compounds that induce symbiosis between sea anemone and anemone fish. Science 234: 585–587, 1986.
 883. Murlis, J., J. S. Elkinton, and R. T. Cardé. Odor plumes and how insects use them. Annu. Rev. Entomol. 37: 505–532, 1992.
 884. Murlis, J., and C. D. Jones. Fine‐scale structure of odor plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6: 71–86, 1981.
 885. Murphey, R. K. The structure and development of a somatotopic map in crickets: the cercal afferent projection. Dev. Biol. 88: 236–246, 1981.
 886. Murphey, R. Maps in the insect nervous system: their implications for synaptic connectivity and target location in the real world. In: Neuroethology and Behavioral Physiology, edited by F. Huner and H. Markl. Heidelberg: Springer‐verlag, 1983, p. 176–188.
 887. Murphey, R. K. A second cricket cercal sensory system: bristle hairs and the interneurons they activate. J. Comp. Physiol. [A] 156: 381–389, 1985.
 888. Murphey, R. K. Competition and dynamics of arbor growth in the cricket. J. Comp. Neurol. 251: 100–110, 1986.
 889. Murphey, R. K., D. Possidente, G. Pollack, and D. J. Merritt. Modality‐specific axonal projections in the CNS of the flies Phormia and Drosophila. J. Comp. Neurol. 290: 185–200, 1989.
 890. Murphey, R. K., W. W. Walthall, and G. A. Jacobs. Neurospecificity in the cricket cereal system. J. Exp. Biol. 112: 7–25, 1984.
 891. Murray, J. A., R. S. Hewes, and A.O.D. Willows. Water‐flow sensitive pedal neurons in Tritonia: role in rheotaxis. J. Comp. Physiol. [A] 171: 373–385, 1992.
 892. Nagayama, T. Morphology of a new population of spiking local interneurones in the locust metathoracic ganglion. J. Comp. Neurol. 283: 189–211, 1989.
 893. Nagayama, T. The organisation of receptive fields of an anteromedial group of spiking local interneurones in the locust with exteroceptive inputs from the legs. J. Comp. Physiol. [A] 166: 471–476, 1990.
 894. Nagayama, T., and M. Burrows. Input and output connections of an anteromedial group of spiking local interneurones in the metathoracic ganglion of the locust. J. Neurosci. 10: 785–794, 1990.
 895. Nagy, R., P. S. Dickinson, and M. Moulins. Modulatory effects of a single neuron on the activity of the pyloric pattern generator in Crustacea. Neurosci. Lett. 23: 167–173, 1981.
 896. Nagy, R., P. S. Dickinson, and M. Moulins. Control by an identified modulatory neuron of the sequential expression of plateau properties of, and synaptic inputs to, a neuron in a central pattern generator. J. Neurosci. 8: 2875–2886, 1988.
 897. Naitoh, Y., and R. Eckert. Ionic mechanism controlling behavioral responses of Paramecium to mechanical stimulation. Science 164: 963–965, 1969.
 898. Nakajima, Y. Serotonergic nerve cells of starfish larvae. In: Echinoderm Biology, edited by R. D. Burke, P. V. Mladenov, P. Lambert, and R. L. Parsley, Rotterdam: Balkema, 1988, p. 235–239.
 899. Nakaoka, Y., and K. Iwatsuki. Hyperpolarization‐activated inward current associated with the frequency increase in ciliary beating of Paramecium. J. Comp. Physiol. [A] 170: 723–727, 1992.
 900. Nässel, D. R., O. Hogmo, and E. Hallberg. Antennal receptors in the blowfly Calliphora erythrocephala. I. The gigantic central projection of the pedicellar campaniform sensillum. J. Morphol. 180: 159–169, 1984.
 901. Nässel, D. R., and N. J. Strausfeld. A pair of descending neurons with dendrites in the optic lobes projecting directly to thoracic ganglia of dipterous insects. Cell Tissue Res. 226: 355–362, 1982.
 902. Neder, R. Allometrisches Wachstum von Hirnteilen bei drei verschiedenen größen Schabenarten. Zool. Jahrb. Anat. 4: 411–464, 1959.
 903. Neigel, J. E., and G. P. Schmahl. Phenotypic variation within histocompatibility‐defined clones of marine sponges. Science 224: 413–415, 1984.
 904. Newland, P. Physiological properties of afferents from tactile hairs on the hindlegs of the locust. J. Exp. Biol. 155: 487–503, 1991.
 905. Newland, P. L. Morphology and somatotopic organisation of the central projections of afferents from tactile hairs on the hind leg of the locust. J. Comp. Neurol. 312: 493–508, 1991.
 906. Nguyen, P. V., and H. L. Atwood. Maintenance of long‐term adaptation of synaptic transmission requires axonal transport following induction in an identified crayfish motoneuron. Exp. Neurol. 115: 414–422, 1992.
 907. Nicholls, J. G., and D. A. Baylor. Specific modalities and receptive fields of sensory neurons in CNS of the leech. J. Neurophysiol 5: 740–756, 1968.
 908. Nicholls, J. G., and D. Purves. Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech. J. Physiol. (Lond.) 209: 647–667, 1970.
 909. Nicholls, J. G., and D. Purves. A comparison of chemical and electrical synaptic transmission between single sensory cells and a motoneurone in the central nervous system of the leech. J. Physiol. (Lond.) 225: 637–656, 1972.
 910. Nicholls, J., and B. G. Wallace. Modulation of transmission at an inhibitory synapse in the central nervous system of the leech. J. Physiol. (Lond.) 281: 157–170, 1978.
 911. Nicol, D., and I. A. Meinertzhagen. Development of the central nervous system of the larva of the Ascidian, Ciona intestinalis L. I. The early lineages of the neural plate. Dev. Biol. 130: 721–736, 1988.
 912. Nicol, D., and I. A. Meinertzhagen. Development of the central nervous system of the larva of the Ascidian, Ciona intestinalis L. II. Neural plate morphogenesis and cell lineages during neurulation. Dev. Biol. 130: 737–766, 1988.
 913. Nicol, D., and I. A. Meinertzhagen. Cell counts and maps in the larval central nervous system of the Ascidian Ciona intestinalis (L.). J. Comp. Neurol. 309: 415–429, 1991.
 914. Nicoll, J.A.C. The giant nerve fibres in the central nervous system of Myxicola (Polychaeta, Sabellidae). Q. J. Microsc. Sci. 89: 1–45, 1948.
 915. Niebur, E., and P. Erdos. Theory of the locomotion of nematodes. Biophys. J. 60: 1132–1146, 1991.
 916. Nighorn, A., M. J. Healy, and R. L. Davis. The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron 6: 455–467, 1991.
 917. Nightingale, W. D., and R. M. Pitman. Ionic currents in the soma of an identified cockroach motoneurone recorded under voltage clamp. Comp. Biochem. Physiol. A 93: 85–93, 1989.
 918. Nilsson, D.‐E. Optics and evolution of the compound eye. In: Facets of Vision, edited by D. G. Stavenga and R. C. Hardie, Berlin: Springer‐verlag, 1989, p. 30–73.
 919. Nilsson, D.‐E., K. Hamdorf, and G. Höglund. Localization of the pupil trigger in insect superposition eyes. J. Comp. Physiol. [A] 170: 217–226, 1992.
 920. Nilsson, D.‐E., I. Henrekson, and A.‐C. Järemo. Pupil control in compound eyes: more than one mechanism in moths. In: Neurobiology of Sensory Systems, edited by R. N. Singh and N. J. Strausfeld, New York: Plenum, 1989, p. 17–22.
 921. Nilsson, D. E., T. Labhart, and E. Meyer. Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets. J. Comp. Physiol. [A] 161: 645–658, 1987.
 922. Norris, B. J., and R. L. Calabrese. Identification of motor neurons that contain a FMRFamide like peptide and the effects of FMRFamide on longitudinal muscle in the medicinal leech, Hirudo medicinalis. J. Comp. Neurol. 266: 95–111, 1987.
 923. Novicki, A., and J. C. Weeks. Organization of the larval pre‐ecdysis motor pattern in the tobacco hornworm, Manduca sexta. J. Comp. Physiol. [A] 173: 151–162, 1993.
 924. Nowycky, M. C., A. P. Fox, and R. W. Tsien. Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature 316: 440–443, 1985.
 925. Nowycky, M. C., K. Mori, and G. M. Shepherd. GABAergic mechanisms of dendrodendritic synapses in isolated turtle olfactory bulb. J. Neurophysiol. 46: 639–648, 1981.
 926. Nowycky, M. C., K. Mori, and G. M. Shepherd. Blockade of synaptic inhibition reveals long‐lasting synaptic excitation in isolated turtle olfactory bulb. J. Neurophysiol. 46: 649–658, 1981.
 927. Nusbaum, M. P., and E. Marder. A modulatory proctolin‐containing neuron (MPN) I. Identification and characterization. J. Neurosci. 9: 1591–1599, 1989.
 928. Nusbaum, M. P., and E. Marder. A modulatory proctolin‐containing neuron (MPN) II. State‐dependent modulation of rhythmic motor activity. J. Neurosci. 9: 1600–1607, 1989.
 929. Nusbaum, M. P., J. M. Weimann, J. Golowasch, and E. Marder. Presynaptic control of modulatory fibers by their neural network targets. J. Neurosci. 12: 2706–2714, 1992.
 930. Oami, K., and Y. Naitoh. Bioelectric control of effector responses in the marine dinoflagellate, Noctiluca miliaris. Zool. Sci. 6: 833–850, 1989.
 931. Oami, K., T. Sibaoka, and Y. Naitoh. Tentacle regulating potentials in Noctiluca miliaris: their generation sites and ionic mechanisms. J. Comp. Physiol. [A] 162: 179–185, 1988.
 932. O'Carroll, D. Feature‐detecting neurons in dragonflies. Nature 362: 541–542, 1993.
 933. O'Carroll, D. C., D. Osorio, A. C. James, and T. Bush. Local feedback mediated via amacrine cells in the insect optic lobe. J. Comp. Physiol. [A] 171: 447–455, 1992.
 934. O'Dowd, D. K., and R. W. Aldrich. Voltage‐clamp analysis of sodium channels in wild‐type and mutant Drosophila neurons. J. Neurosci. 8: 3633–3643, 1988.
 935. O'Dowd, D. K., A. B. Ribera, and N. C. Spitzer. Development of voltage dependent calcium, sodium, and potassium currents in Xenopus spinal neurons. J. Neurosci. 8: 792–805, 1988.
 936. Oland, L. A., and A. E. Stuart. Pattern of convergence of the receptors of the barnacles three ocelli onto second‐order cells. J. Neurophysiol. 55: 882–895, 1986.
 937. Oland, L. A., A. E. Stuart, J. H. Hayashi, and J. C. Callaway. Voltage spread in an identified interneuron of the barnacle visual system. J. Neurophysiol. 58: 1420–1430, 1987.
 938. Oland, L. A., and L. P. Tolbert. Effects of hydroxyurea parallel the effects of radiation in developing olfactory glomeruli in insects. J. Comp. Neurol. 278: 377–387, 1988.
 939. Oland, L. A., and L. P. Tolbert. Patterns of glial proliferation during formation of olfactory glomeruli in an insect. Glia 2: 10–24, 1989.
 940. Oland, L. A., L. P. Tolbert, and K. L. Mossman. Radiation‐induced reduction of the glial population during development disrupts the formation of olfactory glomeruli in an insect. J. Neurosci. 8: 353–367, 1988.
 941. Olberg, R. M. Object and self‐movement detectors in the ventral nerve cord of the dragonfly. J. Comp. Physiol. [A] 141: 327–334, 1981.
 942. Olberg, R. M. Identified target‐selective visual interneurons descending from the dragonfly brain. J. Comp. Physiol. [A] 159: 827–840, 1986.
 943. Oldfield, B. P. Tonotopic organisation of auditory receptors in Tettigonidae (Orthoptera: Ensifera). J. Comp. Physiol. [A] 147: 461–469, 1982.
 944. Oldfield, B. P. Central projections of primary auditory fibres in Tettigonidae (Orthoptera: Ensifera). J. Comp. Physiol. [A] 151: 389–395, 1983.
 945. Oldfield, B. P. The tuning of auditory receptors in bushcrickets. Hear. Res. 17: 27–35, 1985.
 946. Oldfield, B. P. Tonotopic organization of the insect auditory pathway. Trends Neurosci. 11: 267–270, 1988.
 947. Oldfield, B. P., H.‐U. Kleindienst, and F. Huber. Physiology and tonotopic organization of auditory receptors in the cricket Grullys bimaculatus DeGeer. J. Comp. Physiol. [A] 159: 457–464, 1986.
 948. Olsson, R. Reissner's fiber mechanisms: some common denominators. In: The Subcommissural Organ, edited by A. Oksche, E. M. Rodriguez, and P. Fernandez Liebrez. 1993, p. 33–39.
 949. Osada, Y., H. Okuzaki, amd H. Hori. A polymer gel with electrically driven motility. Nature 355: 242–244, 1992.
 950. O'Shea, M., and C.H.R. Rowell. A spike‐transmitting electrical synapse between visual interneurons in the locust movement detector system. J. Comp. Physiol. [A] 97: 143–158, 1975.
 951. O'Shea, M., and C.H.F. Rowell. Neuronal basis of a sensory analyser, the acridid movement detector system. II. Response decrement, convergence, and the nature of the excitatory afferents to the LGMD. J. Exp. Biol. 65: 189–308, 1976.
 952. O'Shea, M., and J.L.D. Williams. The anatomy and output connection of a locust visual interneurone; the lobula giant movement detector (LGMD) neurone. J. Comp. Physiol. [A] 91: 257–266, 1974.
 953. Osorio, D. Directionally selective cells in the locust medulla. J. Comp. Physiol. [A] 159: 841–847, 1986.
 954. Osorio, D. The temporal properties of non‐linear, transient cells in the locust medulla. J. Comp. Physiol. [A] 161: 431–440, 1987.
 955. Osorio, D. Temporal and spectral properties of sustaining cells in the medulla of the locust. J. Comp. Physiol. [A] 161: 441–448, 1987.
 956. Pallas, S. L., and C. D. Drewes. The rapid tail flattening component of MGF‐mediated escape behavior in the earthworm, Lumbricus terrestris. Comp. Biochem. Physiol. A 70: 57–64, 1981.
 957. Pantoja, O., A. Gelli, and E. Blumwald. Voltage‐dependent calcium channels in plant vacuoles. Science 255: 1567–1570, 1992.
 958. Papazian, D. M., T. L. Schwarz, B. L. Tempel, Y. N. Jan, and L. Y. Jan. Cloning of genomic and complementary DNA from shaker, a putative potassium channel gene from Drosophila. Science 237: 749–753, 1987.
 959. Papazian, D. M., L. C. Timpe, Y. N. Jan, and L. Y. Jan. Alteration of votage‐dependence of shaker potassium channel by mutations in the S4 sequence. Nature 349: 305–310, 1991.
 960. Parnas, I., J. Dudel, and H. L. Atwood. Synaptic transmission in decentralized axons of rock lobster. J. Neurosci. 11: 1309–1315, 1991.
 961. Paul, D. H. Pedigrees of neurobehavioral circuits: tracing the evolution of novel behaviors by comparing motor patterns, muscles, and neurons in members of related taxa. Brain. Behav. Evol. 38: 226–239, 1991.
 962. Paulus, H. F. Eye structure and the monophyly of the Arthropoda. In: Comparative Insect Morphology and Arthropod Phytogeny, edited by A. P. Gupta, New York: van Nostrand Reinhold, 1979, p. 299–383.
 963. Pavans de Ceccatty, M. Demonstration of actin filaments in sponge cells. Cell Biol. Int. Rep. 5: 945–952, 1981.
 964. Pavans de Ceccatty, M. Cytoskeletal organization and tissue patterns of epithelia in the sponge Ephydatia mülleri. J. Morphol. 189: 45–65, 1986.
 965. Pax, R. A., and J. L. Bennett. Neurobiology of parasitic platyhelminths: possible solutions to the problems of correlating structure with function. Parasitology 102: S31–S39, 1991.
 966. Payne, T. L., M. C. Birch, and C.E.J. Kennedy. Mechanisms of Insect Olfaction Oxford: Clarendon, 1986.
 967. Pearson, K. G. Neural circuits for jumping in the locust. J. Physiol. Paris 78: 765–771, 1983.
 968. Pearson, K. G. Common principles of motor control in vertebrates and invertebrates. Annu. Rev. Neurosci. 16: 265–297, 1993.
 969. Pearson, K. G., and C. R. Fourtner. Nonspiking interneurons in walking system of the cockroach. J. Neurophysiol. 38: 33–52, 1975.
 970. Pearson, K. G., and C. S. Goodman. Correlation of variability in structure with variability in synaptic connections of an identified interneuron in locusts. J. Comp. Neurol. 184: 141–166, 1979.
 971. Pearson, K. G., and J. M. Ramirez. Parallels with other invertebrate and vertebrate motor systems. In: Dynamic Biological Networks. The Stomatogastric Ganglion, edited by R. M. Harris‐Warwick, E. Marder, A. I. Selverston, and M. Moulins. Cambridge, MA: MIT Press, 1992, p. 263–281.
 972. Pearson, K. G., and R. M. Robertson. Interneurons coactivating hindleg flexor and extensor motoneurons in the locust. J. Comp. Physiol. [A] 144: 391–400, 1981.
 973. Pentreath, V. W., and G. A. Cottrell. Acetylcholine and cholinesterase in the radial nerve of Asterias rubens. Comp. Biochem. Physiol. 27: 775–785, 1968.
 974. Perkins, L. A., E. M. Hedgecock, J. N. Thomson, and J. G. Culotti. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117: 456–487, 1986.
 975. Peters, B. H., and G.A.B. Shelton. Electrical activity during a simple behaviour: spine pointing in a sea‐urchin. Comp. Biochem. Physiol. [A] 70: 397–403, 1981.
 976. Pfeiffer‐Linn, C., and R. M. Glantz. GABA‐mediated inhibition of visual interneurons in the crayfish medulla. J. Comp. Physiol. [A] 168: 373–381, 1991.
 977. Pflüger, H.‐J., P. Bräunig, and R. Hustert. The organization of mechanosensory neuropiles in locust thoracic ganglia. Phil. Trans. R. Soc. Lond. [B] 321: 1–26, 1988.
 978. Pflüger, H.‐J., and J. Tautz. Air movement sensitive hairs and interneurons in Locusta migratoria. J. Comp. Physiol. [A] 145: 369–380, 1982.
 979. Piatigorsky, J., J. Horwitz, T. Kuwabara, and C. E. Cutress. The cellular eye lens and crystallins of cubomedusan jellyfish. J. Comp. Physiol. [A] 164: 577–587, 1989.
 980. Pickard, B. G. Action potentials resulting from mechanical stimulation of pea epicotyls. Planta 97: 106–115, 1971.
 981. Pickard, B. G. Voltage transients elicited by a sudden step‐up of auxin. Plant Cell Environ. 7: 679–682, 1984.
 982. Pinching, A. J., and T.P.S. Powell. The neuron types of the glomerular layer of the olfactory bulb. J. Cell. Sci. 9: 347–377, 1971.
 983. Pinching, A. J., and T.P.S. Powell. The neuropil of the perig‐lomerular region of the olfactory bulb. J. Cell Sci. 9: 379–409, 1971.
 984. Pinsker, H. M., W. A. Hening, T. J. Carew, and E. R. Kandel. Long‐term sensitization of a defensive withdrawal reflex in Aplysia. Science 182: 1039–1042, 1973.
 985. Pitman, R. M., C. D. Tweedle, and M. J. Cohen. Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science 176: 412–414, 1972.
 986. Pongs, D., N. Kecskemethy, R. Mueller, I. Krah‐Jentgens, A. Gaumann, H. Kiltz, I. Canal, S. Llamazares, and A. Ferrus. Shaker encodes a family of putative potassium c channel proteins in the nervous system of Drosophila. EMBO J. 7: 1087–1096, 1988.
 987. Powell, J. A., G. R. Schniztler, J. H. Hadwiger, P. Howard, R. K. Esch, A. B. Cubitt, K. Okaichi, C. Gaskins, S.K.O. Mann, and R. A. Firtel. Spatial and temporal regulation of Dictyostelium development through signal transduction pathways. In: Evolutionary Conservation of Developmental Mechanisms, edited by A. C. Spradling, New York: Wiley‐Liss, 1993, p. 159–184.
 988. Preiss, R. Separation of translation and rotation by means of eye‐region specialization in flying gypsy moths (Lepidoptera, Lymantriidae). J. Insect Behav. 4: 209–219, 1991.
 989. Preiss, R. Set point of retinal velocity of ground images in the control of swarming flight of desert locusts. J. Comp. Physiol. [A] 171: 251–256, 1992.
 990. Preiss, R., and P. Spork. Flight‐phase and visual‐field related optomotor yaw responses in gregarious desert locusts during tethered flight. J. Comp. Physiol. [A] 172: 733–740, 1993.
 991. Preston, R. R., and Y. Saimi. A hyperpolarization‐activated calcium current that is inhibited by barium in Paramecium tetraurelia. Biopbys. J. 57: 519a, 1990.
 992. Preuss, T., and R. Hengstenberg. Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala. J. Comp. Physiol. [A] 171: 483–494, 1992.
 993. Price, J. L., and T.P.S. Powell. The synaptology of the granule cells in the olfactory bulb. J. Cell Sci. 7: 125–155, 1970.
 994. Prosser, C. L. Two pathways of evolution of neurotransmitters–modulators. In: Evolution of the First Nervous Systems, edited by P.A.V. Anderson. New York: Plenum, 1989, 177–193.
 995. Prugh, J., K. Delia Croce, and R. B. Levine. Effects of the steroid hormone, 20‐hydroxyecdysone, on the growth of neu‐rites by identified insect motoneurons in vitro. Dev. Biol. 154: 331–347, 1992.
 996. Purcell, J. E., and C. L. Kitting. Intraspecific aggression and population distributions of the sea anemone Metridium senile. Biol. Bull. 162: 345–359, 1982.
 997. Raikova, O. I. Fine structural organisation in the nervous system and ciliary receptors of acoelan turbellarians. In: Simpler Nervous Systems, edited by D. A. Sacharov and W. Winlow. Manchester, Manchester Univ. Press, 1991, p. 37–49.
 998. Ramirez, J. M., and K. G. Pearson. Octopaminergic modulation in the flight system of the locust. J. Neurophysiol. 66: 1522–1537, 1991.
 999. Ramirez, J. M., and K. G. Pearson. Alteration of bursting properties in interneurons during locust flight. J. Neurophysiol. 1993, 70: 2148–2160.
 1000. Ramsköld, L., and H. Xianguang. New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature 351: 225–228, 1991.
 1001. Rankin, C. H., C.D.O. Beck, and C. M. Chiba. Caenorhabditis elegans: a new model system for the study of learning and memory. Behav. Brain Res. 37: 89–92, 1990.
 1002. Rankin, C. H., and B. S. Broster. Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behav. Neurosci. 106: 239–249, 1992.
 1003. Ready, D. F. A multifaceted approach to neuronal development. Trends Neurosci. 12: 102–110, 1989.
 1004. Reese, T. S., and G. M. Shepherd. Dendro‐dendritic synapses in the central nervous system. In: Structure and function of Synapses, edited by G. D. Pappas and D. P. Purpura, New York: Raven, 1972, p. 121–136.
 1005. Reichardt, W. Autocorrelation: a principle for evaluation of sensory information by the central nervous system. In: Principles of Sensory Communications, edited by W. A. Rosenblith, New York: Wiley, 1961, p. 303–317.
 1006. Reichardt, W., and T. Poggio. Visual control of orientation behaviour in the fly. I. A quantitative analysis of neural interactions. Q. Rev. Biophys. 9: 311–375, 1976.
 1007. Reichert, H. Control of sequences of movements in crayfish escape behavior. Experientia 44: 395–401, 1988.
 1008. Reichert, H., M. R. Plummer, B. Hagiwara, R. L. Roth, and J. J. Wine. Local interneurons in the terminal abdominal ganglion of the crayfish. J. Comp. Physiol. [A] 149: 145–162, 1982.
 1009. Reichert, H., and C.H.F. Rowell. Neuronal circuits controlling flight in the locust: how sensory information is processed for motor control. Trends Neurosci. 9: 281–283, 1986.
 1010. Reichert, H., and J. J. Wine. Neural mechanisms for serial order in a stereotyped behaviour sequence. Nature 296: 86–87, 1982.
 1011. Reichert, H., and J. J. Wine. Coordination of lateral giant and non‐giant systems in crayfish escape behavior. J. Comp. Physiol. [A] 153: 3–15, 1983.
 1012. Reichert, H., J. J. Wine, and G. Hagiwara. Crayfish escape behavior: neurobehavioral analysis of phasic extension reveals dual systems for motor control. J. Comp. Physiol. [A] 142: 281–294, 1981.
 1013. Reissland, A., and P. Görner. Trichobothria. In: Neurobiology of the Arachnids, edited by F. G. Barth, Berlin: Springer‐Verlag, 1985, p. 138–161.
 1014. Renaud, F. L., R. Chiesa, J. M. De Jesus, A. Lopez, J. Miranda, and N. Topmassini. Hormones and signal transduction in protozoa. Comp. Biochem. Physiol. A 100: 41–45, 1991.
 1015. Restifo, L. L., and K. White. Molecular and genetic approaches to neurotransmitter and neuromodulator systems in Drosophila. Adv. Insect Physiol. 22: 115–219, 1990.
 1016. Reuter, M., and K. Eriksson. Catecholamines demonstrated by glyoxylic‐acid‐induced fluorescence and HPLC in some microturbellarians. Hydrobiologia 227: 209–219, 1991.
 1017. Ribi, W. A. The neurons of the first optic ganglion of the bee Apis mellifera. Adv. Anat. Embryol. Cell Biol. 50: 1–43, 1975.
 1018. Ribi, W. A. The first optic ganglion of the bee. IV. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurons. Cell Tissue Res. 215: 443–464, 1981.
 1019. Ricci, N. The behaviour of ciliated protozoa. Anim. Behav. 40: 1048–1069, 1990.
 1020. Riddiford, L. M. Hormone action at the cellular level. In: Comprehensive Insect Physiology, Biochemistry, and Pharmacology, edited by G. A. Kerkut and L. I. Gilbert, New York: Pergamon, 1985, vol. 8, p. 37–84.
 1021. Rieger, M. R., S. Tyler, J.P.S. Smith, and G. E. Rieger. Platyhelminthes: Turbellaria. In: Microscopic Anatomy of Invertebrates, edited by F. W. Harrison and B. J. Bogitsh, New York: Wiley‐Liss, 1991, p. 7–104.
 1022. Riehle, A. Color opponent neurons of the honeybee in a heterochomatic flicker test. J. Comp. Physiol. [A] 142: 81–88, 1981.
 1023. Riehle, A., and N. Franceschini. Motion detection in flies: a parametric control over on–off pathways. Exp. Brain Res. 54: 390–394, 1984.
 1024. Rind, F. C. Functional significance of the receptive field organisation of the locust DCMDs. Looming detectors? In: Neural Mechanisms of Behavior. Proc. 2nd. Int. Congr. Neuroethology, edited by J. Erber, R. Menzel, H.‐J. Pflüger, and D. Todt. Stuttgart: Georg Thieme, 1989, p 177.
 1025. Ritzmann, R. E. The neural organization of cockroach escape and its role in context‐dependent orientation. In: Biological Neural Networks in Invertebrate Neuroethology and Robotics, edited by R. D. Beer, R. E. Ritzmann, and T. McKenna. New York Academic, 1993, p. 113–137.
 1026. Ritzmann, R. E., and A. J. Pollack. Wind activated thoracic interneurons of the cockroach. II. Patterns of connections from ventral giant interneurons. J. Neurobiol. 19: 589–611, 1988.
 1027. Robert, D., and C.H.F. Rowell. Locust flight steering. I. Head movements and the organisation of correctional manoeuvres. J. Comp. Physiol. [A] 171: 41–51, 1992.
 1028. Robert, D., and C.H.F. Rowell. Locust flight steering. II. Acoustic avoidance manoeuvres and associated head movements, compared with correctional steering. J. Comp. Physiol. [A] 171: 53–62, 1992.
 1029. Roberts, A., and G. O. Mackie. The giant axon escape system of a hydrozoan medusa, Aglantha digitate. J. Exp. Biol. 84: 303–318, 1980.
 1030. Robertson, R. M., and K. G. Pearson. Interneurons in the flight system of the locust: distribution, connections, and resetting properties. J. Comp. Neurol. 215: 33–50, 1983.
 1031. Robertson, R. M., and K. G. Pearson. Neural circuits in the flight system of the locust. J. Neuropbysiol 53: 110–128, 1985.
 1032. Robertson, R. M., and K. G. Pearson. Neural networks controlling locomotion in locusts. In: Model Neural Networks and Behavior, edited by A. I. Selverston, New York: Plenum, 1985, p. 21–35.
 1033. Robson, E. A. The behaviour and neuromuscular system of Gonactinia prolifera, a swimming sea‐anemone. J. Exp. Biol. 55: 611–640, 1971.
 1034. Robson, E. A., and R. K. Josephson. Neuromuscular properties of mesenteries from the sea‐anemone Metridium senile. J. Exp. Biol. 50: 151–168, 1969.
 1035. Rodriguez, V. Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Brain Res. 45: 299–307, 1988.
 1036. Rodriguez, V., and E. Buchner. 2‐Deoxyglucose mapping of odor‐induced neuronal activity in the antennal lobes of Drosophila melanogaster. Brain Res. 324: 374–378, 1984.
 1037. Rodriguez, V., and L. Pinto. The antennal glomerulus as a functional unit of odor coding in Drosophila melanogaster. In: Neurobiology of Sensory Systems, edited by R. N. Singh and N. J. Strausfeld, New York: Plenum, 1989, p. 387–396.
 1038. Römer, H. Tonotopic organization of the auditory neuropil in the bushcriket Tetogonia viridissima. Nature 306: 60–62, 1983.
 1039. Römer, H. Representation of auditory distance within a central neuropile of the bushcricket Mygalopsis marki. J. Comp. Physiol. [A] 161: 33–62, 1987.
 1040. Römer, H., and J. Tautz. Invertebrate auditory reception. In: Comparative Aspects of Mechanoreceptive Systems, edited by F. Ito. New York: Springer‐Verlag, 1991, p. 75–98.
 1041. Rosenbluth, J. Ultrastructural organization of obliquely striated muscle fibers in Ascaris lumbricoides. J. Cell Biol. 25: 495–515, 1965.
 1042. Rosenbluth, J. Ultrastructure of somatic muscle cells in Ascaris lumbricoides: II. Intermuscular junctions, neuromuscular junctions, and glycogen stores. J. Cell Biol. 26: 579–591, 1965.
 1043. Rosenbluth, J. Obliquely striated muscle III. Contraction mechanism of Ascaris body muscle. J. Cell Biol. 34: 15–33, 1967.
 1044. Rospars, J. P. Invariance and sex‐specific variations of the glomerular organization in the antennal lobes of a moth, Mamestra brassicae, and a butterfly, Pieris brassicae. J. Comp. Neurol. 220: 80–96, 1983.
 1045. Rospars, J. P. Structure and development of the insect antennodeutocerebral system. Int. J. Insect Morphol. Embryol. 17: 243–294, 1988.
 1046. Rospars, J. P., and J. G. Hildebrand. Anatomical identification of glomeruli in the antennal lobes of the male sphinx moth Manduca sexta. Cell Tissue Res. 270: 205–227, 1992.
 1047. Ross, D. M. Behavioural and ecological relationships between sea anemones and other invertebrates. Oceanogr. Mar. Biol. Annu. Rev. 5: 291–316, 1967.
 1048. Ross, D. M. Behavior patterns in associations and interactions with other animals. In: Coelenterate Biology, Reviews and New Perspectives, edited by L. Muscatine and H. M. Lenhoff, London: Academic, 1974, p. 281–312.
 1049. Ross, D. M. A third species of swimming actinostolid (Anthozoa: Actinaria) on the Pacific coast of North America?. Can. J. Zool. 57: 943–945, 1979.
 1050. Ross, D. M., and L. Sutton. The swimming response of the sea anemone Stomphia coccinea to electrical stimulation. J. Exp. Biol. 41: 735–749, 1964.
 1051. Ross, D. M., and L. Sutton. Swimming sea anemones of Puget Sound: swimming of Actinostola new species in response to Stomphia coccinea. Science 155: 1419–1421, 1967.
 1052. Rossel, S. Foveal fixation and tracking in the praying mantis. J. Comp. Physiol. [A] 139: 307–331, 1980.
 1053. Rossel, S. Binocular stereopsis in an insect. Nature 302: 821–822, 1983.
 1054. Rossel, S., and R. Wehner. The bee's e‐vector compass. In: Honeybee Neurobiology, edited by R. Menzel. Heidelberg: Springer‐Verlag, 1987, p. 76–93.
 1055. Rowell, C.H.F. Mechanisms of steering in flight by locusts. Experentia 44: 389–395, 1988.
 1056. Rowell, C.H.F. Intersegmental coordination of flight steering in locusts. Semin. Neurosci. 5: 59–66, 1993.
 1057. Rowell, C.H.F., and M. O'Shea. The neuronal basis of a sensory analyser, the acridid movement detector system. I. Effects of simple incremental and decremental stimuli in light and dark adapted animals. J. Exp. Biol. 65: 173–188, 1976.
 1058. Rowell, C.H.F., and M. O'Shea. The neuronal basis of a sensory analyser, the acridid movement detector system. III. Control of response amplitude by tonic lateral inhibition. J. Exp. Biol. 65: 617–625, 1976.
 1059. Rowell, C.H.F., and H. Reichert. Three descending interneurons reporting deviation from course in the locust. II. Physiology. J. Comp. Physiol. [A] 158: 775–794, 1986.
 1060. Rowell, C.H.F., and H. Reichert. Mesothoracic interneurons involved in flight steering in locusts. Tissue Cell. 23: 75–139, 1991.
 1061. Rumbo, E. R., and K.‐E. Kaissling. Temporal resolution of odour pulses by three types of pheromone receptor cells in Antheraea polyphemus. J. Comp. Physiol. [A] 165: 281–291, 1989.
 1062. Rushton, W.A.H. Action potentials from the isolated nerve cord of the earthworm. Proc. R. Soc. Lond. [B] 132: 423–427, 1945.
 1063. Rushton, W.A.H. Reflex conduction in the giant fibers of the earthworm. Proc. R. Soc. Lond. [B] 133: 109–120, 1946.
 1064. Russell, D. F., and D. K. Hartline. Bursting neural networks: a reexamination. Science 200: 453–456, 1978.
 1065. Ryckebush, S., and G. Laurent. Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J. Neuropbysiol. 69: 1583–1595, 1993.
 1066. Sahley, C. L., and D. F. Ready. Associative learning modifies two behaviors in the leech, Hirudo medicinalis. J. Neurosci. 8: 4612–4620, 1988.
 1067. Saimi, Y., and C. Kung. Behavioral genetics of Paramecium. Annu. Rev. Genet. 21: 47–65, 1987.
 1068. Saito, M., and C. F. Wu. Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell division‐arrested embryonic neuroblasts. J. Neurosci. 11: 2135–2150, 1991.
 1069. Salanki, J. Neurobiology of Invertebrates New York: Plenum, 1986.
 1070. Salecker, I., and P. Distler. Serotonin‐immunoreactive neurons in the antennal lobes of the American cockroach Periplaneta americana: light and electron‐microscopic observations. Histochemistry 94: 463–473, 1990.
 1071. Salkoff, L., and R. Wyman. Genetic modification of potassium channels in Drosophila shaker mutants. Nature 293: 228–230, 1981.
 1072. Salkoff, L., and R. Wyman. Outward currents in developing Drosophila flight muscle. Science 212: 461–463, 1981.
 1073. Salkoff, L., and R. Wyman. Ion currents in Drosophila flight muscles. J. Physiol. (Lond.) 337: 687–709, 1983.
 1074. Sandeman, D. C., and H. L. Atwood (Eds). The Biology of Crustacea Neural Integration and Behavior New York: Academic, 1982, vol. 4.
 1075. Sandeman, D. C., and J. Denberg. The central projections of chemoreceptor axons in the crayfish revealed by axoplasmic transport. Brain Res. 115: 492–496, 1974.
 1076. Sandeman, D. C., and L. A. Wilkens. Sound production by abdominal stridulation in the Australiian Murray‐river crayfish, Euastacus armatus. J. Exp. Biol. 99: 469–472, 1982.
 1077. Sanes, J. R., and J. G. Hildebrand. Structure and development of antennae in a moth, Manduca sexta. Dev. Biol. 51: 282–299, 1976.
 1078. Sargent, P. B. Synthesis of acetylcholine by excitatory motoneurons in the central nervous system of the leech. J. Neurophysiol. 40: 453–460, 1977.
 1079. Sarnat, H. B., and M. G. Netsky. The brain of the planarian as the ancestor of the human brain. Can. J. Neurol. Sci. 12: 296–302, 1985.
 1080. Satterlie, R. A. Central control of swimming in the cubomedusan jellyfish Carybdea rastonii. J. Comp. Physiol. [A] 133: 357–367, 1979.
 1081. Satterlie, R. A., and J. F. Case. Neurobiology of the Gorgonian coelenterates, Muricea californica and Lophogorgia chilensis. Morphology. Cell Tissue Res. 187: 379–396, 1978.
 1082. Satterlie, R. A., and J. F. Case. Development of bioluminescence and other effector responses in the pennatulid coelenterate Renilla kollikeri. Biol. Bull. 157: 506–523, 1979.
 1083. Satterlie, R. A., and J. F. Case. Neurobiology of the Gorgonian coelenterates, Muricea californica and Lophogorgia chilensis. II Behavioural physiology. J. Exp. Biol. 79: 191–204, 1979.
 1084. Satterlie, R. A., and A. N. Spencer. Swimming control in a cubomedusan jellyfish. Nature 281: 141–142, 1979.
 1085. Satterlie, R. A., and A. N. Spencer. Organization of conducting systems in simple invertebrates: Porifera, Cnidaria and Ctenophora. In: Nervous Systems in Invertebrates, edited by M. A. Ali, New York: Plenum, 1987, p. 213–264.
 1086. Sawyer, R. T. Leech Biology and Behavior Oxford: Clarendon, 1986, vol. I, II.
 1087. Schachter, S., D. Glanzman, A. Barzilai, P. Dash, S.G.N. Grant, F. Keller, M. Mayford, and E. R. Kandel. Long‐term facilitation in Aplysia: persistent phosphorylation and structural changes. Cold Spring Harb. Symp. Quant. Biol. 55: 187–202, 1990.
 1088. Schachtman, D. P., J. I. Schroeder, W. J. Lucas, J. A. Anderson, and R. F. Gaber. Expression of an inward‐rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258: 1654–1658, 1992.
 1089. Schildberger, K. Multimodal interneurons in the cricket brain: properties of indentified extrinsic mushroom body cells. J. Comp. Physiol. [A] 154: 71–79, 1984.
 1090. Schildberger, K. Recognition of temporal patterns by identified auditory neurons in the cricket brain. In: Acoustic and Vibrational Communication in Insects, edited by K. Kalmring and N. Eisner. Hamburg: Paul Parey, 1985, p. 41–49.
 1091. Schildberger, K., F. Huber, and D. W. Wohlers. Central auditory pathway: neuronal correlates of phonotactic behavior. In: Cricket Behavior and Neurobiology, edited by F. Huber, T. E. Moore, and W. Loher. Ithaca, NY: Comstock, 1989, p. 423–458.
 1092. Schmidt, J., and R. L. Calabrese. Evidence that acetylcholine is an inhibitory transmitter of heart interneurons in the leech. J. Exp. Biol. 171: 329–347, 1992.
 1093. Schmidt, M., L. Van Ekeris, and B. W. Ache. Antennular projections to the midbrain of the spiny lobster. I. Sensory innervation of the lateral and medial antennular neuropils. J. Comp. Physiol. [A] 318: 277–290, 1992.
 1094. Schmiedel‐Jakob, I., W. C. Michel, P.A.V. Anderson, and B. W. Ache. Whole cell recording from lobster olfactory receptor cells: multiple ionic bases for the receptor potential. Chem. Senses 15: 397–405, 1990.
 1095. Schmutzler, C., D. Darmer, D. Diekhoff, and C.J.P. Grimmelikjuijzen. Identification of a novel type of processing site in the precursor for the sea anemone neuropeptide Antho‐RFamide (Glu‐Gly‐Arg‐Phe‐NH2) from Anthopleura elegantissima. J. Biol. Chem. 267: 22534–22541, 1992.
 1096. Schneider, D. Insect olfaction: deciphering system for chemical messages. Science 163: 1031–1037, 1969.
 1097. Schneider, S. P., and F. Macrides. Laminar distribution of interneurons in the main olfactory bulb of the adult hamster. Brain Res. Bull. 3: 73–82, 1978.
 1098. Schneiderman, A. M., J. G. Hilderbrand, M. M. Brennan, and J. H. Tumlinson. Trans‐sexually grafted antennae alter pheromone‐directed behavior in a moth. Nature 323: 801–803, 1986.
 1099. Schneiderman, A. M., S. G. Matsumoto, and J. G. Hildebrand. Trans‐sexually grafted antennae influence development of sexually dimorphic neurones in moth brain. Nature 298: 844–846, 1982.
 1100. Scholes, J. The electrical responses of the retinal receptors and the lamina in the visual system of the fly Musca. Kybernetik 6: 149–162, 1969.
 1101. Schuppe, H., and R. Hengstenberg. Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response. J. Comp. Physiol. [A] 173: 143–149, 1993.
 1102. Schürmann, F. W. The architecture of the mushroom bodies and related neuropils in the insect brain. In Arthropod Brain. Its Evolution, Development, Structure, and Functions, edited by A. P. Gupta, New York: Wiley, 1987, p. 231–264.
 1103. Schwartz, L. The role of cell death genes during development. Bioessays 13: 389–395, 1991.
 1104. Schwartz, L. M., L. Kosz, and B. K. Kay. Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron 5: 411–419, 1990.
 1105. Schwartz, L. M., and H. Stumer. Voltage dependent sodium channels in an invertebrate striated muscle. Science 225: 523–525, 1984.
 1106. Schwartz, L. M., and J. W. Truman. Peptide and steroid regulation of muscle degeneration in an insect. Science 215: 1420–1421, 1982.
 1107. Schwartz, T. L., B. L. Tempel, D. M. Papazian, Y. N. Jan, and L. Y. Jan. Multiple potassium channel components are produced by alternative splicing at the shaker locus of Drosophila. Nature 331: 137–142, 1988.
 1108. Schwemer, J. Visual pigments of compound eyes. Structure, photochemistry, and regeneration. In: Facets of Vision, edited by D. G. Stavenga and R. C. Hardie, Berlin: Springer‐Verlag, 1989, p. 112–133.
 1109. Scott, J. W., R. L. McBride, and S. P. Schneider. The organization of projections from the olfactory bulb to the piriform cortex and olfactory tubercle in the rat. J. Comp. Neurol. 194: 519–534, 1980.
 1110. Sebens, K. P. Agonistic behavior in the intertidal sea anemone Anthopleura xanthogrammica. Biol. Bull. 166: 457–472, 1984.
 1111. Segerberg, M. A., and A.O.W. Stretton. Actions of cholinergic drugs in the nematode Ascaris suum. J. Gen. Physiol. 101: 271–296, 1993.
 1112. Seitz, G. Untersuchungen am dioptrischen apparat des leuchtkäferauges, Z. Vergl. Physiol. 62: 61–74, 1969.
 1113. Selverston, A. I. (Ed). Model Neural Networks and Behavior New York: Plenum, 1985.
 1114. Selverston, A. I. Modeling of neural circuits: what have we learned?. Annu. Rev. Neurosci. 16: 531–546, 1993.
 1115. Selverston, A. I., and J. P. Miller. Mechanisms underlying pattern generation in the lobster stomatogastric ganglion as determined by selective inactivation of identified neurons I. The pyloric system. J. Neurophysiol. 44: 1102–1121, 1980.
 1116. Selverston, A. I., and M. Moulins. The Crustacean Stomatogastric Ganglion Berlin: Springer‐Verlag, 1985.
 1117. Sentenac, H., N. Bonneaud, M. Minet, F. Lacroute, J. M. Salmon, F. Gaymard, and C. Grignon. Cloning and expression in yeast of a plant potassium ion transport system. Science 256: 663–665, 1992.
 1118. Sharp, A. A., L. F. Abbott, and E. Marder. Artificial electrical synapses in oscillatory networks. J. Neurophysiol. 67: 1691–1694, 1992.
 1119. Sharp, A. A., M. B. O'Neill, L. F. Abbott, and E. Marder. The dynamic clamp: artificial conductances in biological neurons. Trends Nat. Sci. 16: 389–394, 1993.
 1120. Shaw, C., and C. F. Johnston. Role of regulatory peptides in parasitic platyhelminths and their vertebrate hosts: possible novel factors in host‐parasite interactions. Parasite Neurobiol. Parasitol. 102: S93–S105, 1991.
 1121. Shaw, S. R. Retinal resistance barriers and electrical lateral inhibition. Nature 255: 480–483, 1975.
 1122. Shaw, S. R. Early visual processing in insects. J. Exp. Biol. 112: 225–251, 1984.
 1123. Shaw, S. R. The retina–lamina pathway in insects, particulary Diptera, viewed from an evolutionary perspective. In: Facets of Vision, edited by D. G. Stavenga and R. C. Hardie, Berlin: Springer‐Verlag, 1989, p. 186–212.
 1124. Shaw, S. R., and I. A. Meinertzhagen. Evolutionary progression at synaptic connections made by identified homologous neurons. Proc. Natl. Acad. Sci. U.S.A. 83: 7961–7965, 1989.
 1125. Shaw, S. R., and S. Stowe. Photoreception. In: The Biology of Crustacea, edited by D. C. Sandeman and H. L. Atwood, New York: Academic, 1982, vol. 3, p. 291–367.
 1126. Shelton, G.A.B. Anthozoa. In: Electrical Conduction and Behaviour in Simple Invertebrates, edited by G.A.B. Shelton. 1982, p. 203–242.
 1127. Shepherd, G. M. Modules for molecules. Nature 358: 457–456, 1992.
 1128. Shepherd, G. M., and C. A. Greer. Olfactory bulb. In: The Synaptic Organization of the Brain, edited by G. M. Shepherd, Oxford: Oxford Univ. Press, 1990, p. 133–189.
 1129. Shishov, B. A. Aminergic elements in the nervous system of helminths. In: Simpler Nervous Systems, edited by D. A. Sacharov and W. Winlow. Manchester: Manchester Univ. Press, 1991, p. 113–137.
 1130. Sibaoka, T. Action potentials in plant organs. Symp. Soc. Exp. Biol. 20: 49–73, 1966.
 1131. Sibaoka, T. Physiology of rapid movements in higher plants. Annu. Rev. Plant Physiol. 20: 165–184, 1969.
 1132. Siddiqi, O., P. Babu, L. M. Hall, and J. C. Hall. Development and Neurobiology of Drosophila New York: Plenum, 1980.
 1133. Siegelbaum, S. A., J. S. Camardo, and E. R. Kandel. Serotonin and cyclic AMP close single potassium channels in Aplysia sensory neurones. Nature 299: 413–417, 1982.
 1134. Siegler, M.V.S. Local interneurones and local interactions in arthropods. J. Exp. Biol. 112: 253–281, 1984.
 1135. Siegler, M.V.S., and M. Burrows. Spiking local interneurons as primary integrators of mechanosensory information in the locust. J. Neurophysiol. 50: 1281–1295, 1983.
 1136. Siegler, M.V.S., and M. Burrows. Receptive fields of motor neurones underlying local tactile reflexes in the locust. J. Neurosci. 6: 507–513, 1986.
 1137. Sillar, K. T. Synaptic specificity development of locomotor rhythmicity. Curr. Opin. Neurobiol. 4: 101–107, 1994.
 1138. Simmers, A. J., and B.M.H. Bush. Non‐spiking neurones controlling ventilation in crabs. Brain Res. 197: 247–252, 1980.
 1139. Simmons, P. J. Synaptic transmission between second‐ and third‐order neurons of a locust ocellus. J. Comp. Physiol. [A] 145: 265–276, 1981.
 1140. Simon, T. W., C. A. Opdyke, and R. L. Calabrese. Modulatory effects of FMRF‐NH2 on outward currents and oscillatory activity in heart interneurons of the medicinal leech. J. Neurosci. 12: 525–537, 1992.
 1141. Singh, N. Nervous Systems New Delhi: Wiley Eastern.
 1142. Singh, R. N., and N. J. Strausfeld. Neurobiology of Sensory Systems New York: Plenum, 1989.
 1143. Singh, S., and C. F. Wu. Complete separation of four potassium currents in Drosophila. Neuron 2: 1325–1329, 1989.
 1144. Singla, C. L. Ocelli of hydromedusae. Cell Tissue Res. 149: 413–429, 1974.
 1145. Singla, C. L. Fine structure of the neuromuscular system of Polyorchis penicillatus (Hydromedusae, Cnidaria). Cell Tissue Res. 193: 163–174, 1978.
 1146. Singla, C. L. Fine structure of the sensory receptors of Aglantha digitate (Hydromedusae: Trachylina). Cell Tissue Res. 231: 415–425, 1983.
 1147. Sirianni, P. A., and L. P. Tolbert. Induction and stabilization of olfactory glomeruli in the developing insect brain. Soc. Neurosci. Abstr. 14: 423, 1988.
 1148. Sithigorngul, P., C. Cowden, Guastella, and A.O.W. Stretton. Generation of monoclonal antibodies against a nematode peptide extract: another approach for identifying unknown neuropeptides. J. Comp. Neurol. 284: 389–397, 1989.
 1149. Smith, B. H. The olfactory memory of the honeybee Apis mellifera I. Odorant modulation of short‐ and intermediate‐term memory after single‐trial conditioning. J. Exp. Biol. 161: 367–382, 1991.
 1150. Smith, B. H., and R. Menzel. An analysis of variability in the feeding motor program of the honey bee; the role of learning in releasing a modal action pattern. Ethology 82: 68–81, 1989.
 1151. Smith, D.P.B., and T. H. Bullock. Model nerve net can produce rectilinear, non‐diffuse propagation as seen in the skin plexus of sea urchins. J. Theor. Biol. 143: 15–40, 1990.
 1152. Smith, S. J., and S. H. Thompson. Slow membrane currents in bursting pacemaker neurones of Tritonia. J. Physiol. (Lond.) 382: 425–448, 1987.
 1153. Snyder, A. W., R. Menzel, and S. B. Laughlin. Structure and function of the fused rhabdom. J. Comp. Physiol. [A] 87: 99–135, 1973.
 1154. Solc, C. K., and R. W. Aldrich. Voltage‐gated potassium channels in larval CNS neurons of Drosophila. J. Neurosci. 8: 2556–2570, 1988.
 1155. Solc, C. K., W. N. Zagotta, and R. W. Aldrich. Single‐channel and genetic analysis reveal two distinct A‐type potassium channels in Drosophila. Science 236: 1094–1098, 1987.
 1156. Solessio, E., and G. A. Engbretson. Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature 364: 442–445, 1993.
 1157. Solon, M. H., and H. Koopowitz. Multimodal interneurones in the polyclad flatworm, Alloeoplana californica. J. Comp. Physiol. [A] 147: 171–178, 1982.
 1158. Sopott‐Ehlers, B. Comparative morphology of photoreceptors in free‐living plathelminths—a survey. Hydrobiologia 227: 231–239, 1991.
 1159. Sopott‐Ehlers, B. Photoreceptors with mitochondrial lenses in Pogaina suecica (Plathelminthes, Rhabdocoela). Zoomorphology 112: 11–15, 1992.
 1160. Spencer, A. N. Nonnervous conduction in invertebrates and embryos. Am. Zool. 14: 917–929, 1974.
 1161. Spencer, A. N., and S. A. Arkett. Radial symmetry and the organization of central neurones in a hydrozoan jellyfish. J. Exp. Biol. 110: 69–90, 1984.
 1162. Spencer, M. The innervation and chemical sensitivity of single aesthetasc hairs. J. Comp. Physiol. [A] 158: 59–68, 1986.
 1163. Srinivasan, M. V., and M. Lehrer. Temporal acuity of honeybee vision: behavioral studies using flickering stimuli. Physiol. Entomol. 9: 447–457, 1984.
 1164. Srinivasan, M. V., M. Lehrer, S. W. Zhang, and G. A. Horridge. How honeybees measure their distance from objects of unknown size. J. Comp. Physiol. [A] 165: 605–613, 1989.
 1165. Stavenga, D. G., and R. C. Hardie (Eds). Facets of Vision Berlin: Springer‐Verlag, 1989.
 1166. Stavenga, D. G., and J. Schwemer. Visual pigments of invertebrates. In: Photoreception and Vision in Invertebrates, edited by M. A. Ali, New York: Plenum, 1984, p. 11–61.
 1167. Steeves, J. D., and K. G. Pearson. Proprioceptive gating of inhibitory pathways to hind leg flexor motoneurons in the locust. J. Comp. Physiol. [A] 146: 507–515, 1982.
 1168. Stefano, G. B. Neurobiology of Mytilus edulis. Manchester: Manchester Univ. Press, 1990.
 1169. Stein, P. G., and P.A.V. Anderson. Maintenance of isolated smooth muscle cells of the ctenophore Mnemiopsis. J. Exp. Biol. 110: 329–334, 1984.
 1170. Steinbrecht, R. A., and W. Gnatzy. Pheromone receptors of Bombyx mori and Anteraea pernyi. 1. Reconstruction of the cellular organization of the sensilla trichoidea. Cell Tissue Res. 235: 25–34, 1984.
 1171. Stengl, M., H. Hart, and H. Breer. Peripheral processes in insect olfaction, Annu. Rev. Physiol. 54: 665–681, 1992.
 1172. Stengl, M., F. Zufall, H. Hatt, and J. G. Hildebrand. Olfactory receptor neurons from antennae of developing male Manduca sexta respond to components of the species‐specific sex pheromone in vitro. J. Neurosci. 12: 2523–2531, 1992.
 1173. Stent, B. S., W. B. Kristan, W. O. Friesen, C. A. Ort, M. Poon, and R. L. Calabrese. Neuronal generation of the leech swimming movement. Science 200: 1348–1357, 1978.
 1174. Stevenson, P. A., and W. Kutsch. A reconsideration of the central pattern generator concept for locust flight. J. Comp. Physiol. [A] 161: 115–129, 1987.
 1175. Stewart, B. A., and H. L. Atwood. Synaptic plasticity in a regenerated crayfish phasic motoneuron. J. Neurobiol. 23: 881–889, 1992.
 1176. Stewart, W. B., J. S. Kauer, and G. M. Shepherd. Functional organization of the rat olfactory bulb, analyzed by the 2‐deoxyglucose method. J. Comp. Neurol. 185: 715–734, 1979.
 1177. Stewart, W. W. Lucifer dyes: highly fluorescent dyes for biological tracing. Nature 292: 17–21, 1981.
 1178. Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: A review. Cell Tissue Res. 275: 3–26, 1994.
 1179. Stocker, R. F., J. S. Edwards, J. Palka, and G. Schubiger. Projection of sensory neurons from a homeotic mutant appendage, Antennapedia, in Drosophila melanogaster. Dev. Biol. 52: 210–217, 1976.
 1180. Stocker, R. F., and N. Gendre. Peripheral and central nervous effects of lozenge3, a Drosophila mutant lacking basiconic antennal sensilla. Dev. Biol. 127: 12–27, 1988.
 1181. Stocker, R. F., M. C. Leinhard, A. Borst, and K.‐F. Fischbach. Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res. 262: 9–34, 1990.
 1182. Stocker, R. F., and R. N. Singh. Different types of antennal sensilla in Drosophila project into different glomeruli of the brain. Experientia 39: 674, 1983.
 1183. Stocker, R. F., R. N. Singh, M. Schorderet, and O. Siddiqi. Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res. 232: 237–248, 1983.
 1184. Stone, G., and H. Koopowitz. Primitive nervous systems: electrophysiology of the pharynx of the polyclad flatworm, Enchiridium punctatum. J. Exp. Biol. 65: 627–642, 1976.
 1185. Störtkuhl, K. F., A. Hofbauer, V. Keller, N. Gendre, and R. F. Stocker. Analysis of immunocytochemical staining patterns in the antennal system of Drosophila melanogaster. Cell Tissue Res. 275: 27–38, 1994.
 1186. Stout, J. F., G. Atkins, and F. Burghardt. The characterization and possible importance for phonotaxis of L‐shaped ascending acoustic interneurons in the cricket Acheta domesticus. In: Acoustic and Vibrational Communication in Insects, edited by K. Kalmring and N. Eisner. Hamburg. Paul Parey, 1985, p. 89–100.
 1187. Stout, J. F., C. H. De Haan, J. C. Hall, and M. Rhodes. Processing of calling songs by an L‐shaped neuron in the prothoracic ganglion of the female cricket, Acheta domesticus. Physiol. Entomol. 13: 89–101, 1988.
 1188. Strausfeld, N. J. Atlas of an Insect Brain Heidelberg: Springer‐Verlag, 1976.
 1189. Strausfeld, N. J. Cellular organization in male‐specific olfactory neuropil in the moth Manduca sexta, In: Dynamics and Plasticity in Neuronal Systems, edited by N. Eisner and W. Singer. New York: Thieme, 1989, p. 79.
 1190. Strausfeld, N. J. Structural organization of male‐specific visual neurons in Caliphorid optic lobes. J. Comp. Physiol. [A] 169: 379–393, 1992.
 1191. Strausfeld, N. J., and J. P. Bacon. Multimodal convergence in the central nervous system of insects. In: Multimodal Convergence in Sensory Systems, edited by E. Horn. Stuttgart: Fischer, 1983, p. 47–76.
 1192. Strausfeld, N. J., and F. G. Barth. Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J. Comp. Neurol. 328: 43–62, 1993.
 1193. Strausfeld, N. J., and U. K. Bassemir. Cobalt‐coupled neurons of a giant fibre system in Diptera. J. Neurocytol. 12: 971–991, 1983.
 1194. Strausfeld, N. J., and U. K. Bassemir. Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg neuropil in Calliphora erythrocephala. Cell Tissue Res. 240: 617–640, 1985.
 1195. Strausfeld, N. J., and U. K. Bassemir. The organisation of giant horizontal‐motion‐sensitive neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora erythrocephala and Musca domestica. Cell Tissue Res. 242: 531–550, 1985.
 1196. Strausfeld, N. J., and A. D. Blest. Golgi studies on insects. I. The optic lobes of Lepidoptera. Phil. Trans. R. Soc. Lond. [B] 258: 81–134, 1970.
 1197. Strausfeld, N. J., E. K. Buschbeck, and R. S. Gomez. The arthropod mushroom body: its functional roles, evolutionary enigmas and mistaken identities. In: The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach, edited by O. Breidbach and W. Kutsch. Basel: Birkhauser‐Verlag, 349–381, 1995.
 1198. Strausfeld, N. J., and J. A. Campos‐Ortega. Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. Science 195: 894–897, 1977.
 1199. Strausfeld, N. J., and C. Gilbert. Small‐field neurons associated with oculomotor and optomotor control in muscoid flies: cellular organization. J. Comp. Neurol. 302: 954–972, 1992.
 1200. Strausfeld, N. J., and J. K. Lee. Neuronal basis for parallel visual processing in the fly. Vis. Neurosci. 7: 13–33, 1991.
 1201. Strausfeld, N. J., and D. R. Nässel. Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Handbook of Sensory Physiology, edited by H. Autrum. Berlin: Springer‐Verlag, 1980, vol. VII, pt. 6B, p. 1–132.
 1202. Strausfeld, N. J., H. S. Seyan, and J. J. Milde. The neck motor system of the fly Calliphora erythrocephala. I. Muscles and motor neurons. J. Comp. Physiol. [A] 160: 205–224, 1987.
 1203. Strausfeld, N. J., P. Weltzien, and F. G. Barth. Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J. Comp. Neurol. 328: 63–75, 1993.
 1204. Strausfeld, N. J., and H. Wunderer. Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light. Cell Tissue Res. 242: 163–178, 1985.
 1205. Stretton, A.O.W., C. Cowden, P. Sithigorngul, and R. E. Davis. Neuropeptides in the nematode Ascaris suum. Parasite Neurobiol. Parasitol. 102: S107–S116, 1991.
 1206. Stretton, A., J. Donmoyer, R. Davis, J. Meade, C. Cowden, and P. Sithigorngul. Motor behavior and motor nervous system function in the nematode Ascaris suum. J. Parasitol. 78: 206–214, 1992.
 1207. Stretton, A.O.W., R. M. Fishpool, E. Southgate, J. E. Donmoyer, J. P. Walrond, J.E.R. Moses, and I. S. Kass. Structure and physiological activity of the motorneurons of the nematode Ascaris. Proc. Natl. Acad. Sci. U.S.A. 75: 3493–3497, 1978.
 1208. Stretton, A.O.W., and E. A. Kravitz. Neuronal geometry: determination with a technique of intracellular dye injection. Science 162: 132–134, 1968.
 1209. Stubbs, T., and J.L.S. Cobb. The giant neurone system in ophiuroids, II. the hyponeural motor tracts. Cell Tissue Res. 220: 373–385, 1981.
 1210. Sukharev, S. I., P. Blount, B. Martinac, F. R. Blattner, and C. Kung. A large‐conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368: 265–268, 1994.
 1211. Sukhdeo, M. The behavior of parasitic flatworms in vivo: what is the role of the brain?. J. Parasitol. 78: 231–242, 1992.
 1212. Sukhdeo, M.V.K., and D. F. Mettrick. Intestinal migration by Hymenolepis diminuta: 5‐HT, vagal stimulation and intestinal secretions. Can. J. Zool. 63: 1716–1719, 1985.
 1213. Sukhdeo, S. C., and M.V.K. Sukhdeo. Ontogenetic development of the cerebral ganglia of the parasitic flatworm, Fasciola hepatica. Tissue Cell 22: 39–50, 1990.
 1214. Sukhdeo, S., C.M.V.K. Sukhdeo, and D. F. Mettrick. Neurocytology of the cerebral ganglia of Fasciola hepatica (Platyhelminthes). J. Comp. Neurol. 278: 337–343, 1988.
 1215. Sulston, J. E. Post‐embryonic development in the ventral cord of Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. [B] 275: 287–298, 1976.
 1216. Sulston, J. E., D. G. Albertson, and J. N. Thomson. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev. Biol. 78: 542–576, 1980.
 1217. Sulston, J. E., and H. R. Horvitz. Post‐embryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56: 110–156, 1977.
 1218. Sulston, J. E., E. Schierenberg, J. G. White, and J. N. Thomson. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100: 64–119, 1983.
 1219. Sund, P. N. A study of the muscular anatomy and swimming behavior of the sea anemone, Stomphia coccinea. J. Microsc. Sci. 99: 401–420, 1958.
 1220. Swanberg, N. The feeding behavior of Beröe ovata. Mar. Biol. 24: 69–76, 1974.
 1221. Takahata, M., T. Nagayama, and M. Hisada. Physiological and morphological characterization of anaxonic non‐spiking interneurons in the crayfish motor control system. Brain Res. 226: 309–314, 1981.
 1222. Takeda, N., and C. N. Svendsen. Monoamine concentrations in Hydra magnipapillata. Hydrobiologia 216/217: 549–554, 1991.
 1223. Tamm, S., and S. Tamm. Actin spikes and ultrastructure of presumed sensory receptors of Beroe (Ctenophora). Cell Tissue Res. 264: 151–159, 1991.
 1224. Tamm, S. L. Ctenophores. In: Electrical Conduction and Behavior in Simple Invertebrates, edited by G.A.B. Shelton. Oxford: Oxford Univ. Press, 1982, p. 119–136.
 1225. Tanouye, M. A., A. Ferrus, and S. C. Fujita. Abnormal action potential associated with the shaker complex locus of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 78: 6548–6552, 1981.
 1226. Tanouye, M. A., and R. J. Wyman. Motor outputs of the giant nerve fibre in Drosophila. J. Neurophysiol 44: 405–421, 1980.
 1227. Tardent, P., and V. Schmid. Ultrastructure of mechanoreceptors of Coryne pintneri (Hydrozoa, Athecata). Exp. Cell Res. 72: 265–275, 1972.
 1228. Taylor, C. P. Contribution of compound eyes and ocelli to steering of locusts in flight. I. Behavioral analysis. J. Exp. Biol. 93: 1–18, 1981.
 1229. Taylor, C. P. Contribution of compound eyes and ocelli to steering of locusts in flight. II. Timing changes in flight motor units. J. Exp. Biol. 93: 19–31, 1981.
 1230. Tazaki, K., and I. M. Cooke. Characterization of Ca currents underlying burst formation in lobster cardiac ganglion motoneurons. J. Neurophysiol. 63: 370–384, 1990.
 1231. Terenina, N. B. Biogenic amines in helminths. In: Simpler Nervous Systems, edited by D. A. Sacharov and W. Winlow. Manchester: Manchester Univ. Press, 1991, p. 153–172.
 1232. Tester, M. Tansley Review No. 21. Plant ion channels: whole‐cell and single‐channel studies. New Phytol. 114: 305–340, 1990.
 1233. Thomas, M. V. Voltage‐clamp analysis of a calcium‐mediated potassium conductance in cockroach (Periplaneta american) central neurones. J. Physiol. (Lond.) 350: 159–178, 1984.
 1234. Thompson, K. J., and R. L. Calabrese. FMRFamide effects on membrane properties of heart cells isolated from the leech, Hirudo medicinalis. J. Neurophysiol. 67: 280–291, 1992.
 1235. Thompson, S. H. Three pharmacologically distinct potassium channels in molluscan neurones. J. Physiol. (Lond.) 265: 465–488, 1977.
 1236. Thompson, W. J., and G. Stent. Neuronal control of heartbeat in the medicinal leech. I. Generation of the vascular constriction rhythm by heart motor neurons. J. Comp. Physiol. [A] 111: 261–279, 1976.
 1237. Thompson, W. J., and G. Stent. Neuronal control of heartbeat in the medicinal leech. II. Intersegmental coordination of heart motor neuron activity by heart interneurons. J. Comp. Physiol. [A] 111: 281–307, 1976.
 1238. Thompson, W. J., and G. Stent. Neuronal control of heartbeat in the medicinal leech. III. Synaptic relations of the heart interneurons. J. Comp. Physiol. [A] 111: 309–333, 1976.
 1239. Thuesen, E. V. The tetrodotoxin venom of chaetognaths. In: The Biology of the Chaetognatha, edited by Q. Bone, A. Pierrot‐Bults, and H. Kapp. London: Oxford Univ. Press, 1991, p. 55–60.
 1240. Thuesen, E. V., and K. Kogure. Bacterial production of tetrodotoxin in four species of Chaetognatha. Biol. Bull. 176: 191–194, 1989.
 1241. Thüring, D. A. Variability of motor output during flight steering in locusts. J. Comp. Physiol. [A] 158: 653–664, 1986.
 1242. Timpe, L. C., and L. Y. Jan. Gene dosage and complementation analysis of the shaker locus in Drosophila. J. Neurosci. 7: 1307–1317, 1987.
 1243. Tobias, M., and R. K. Murphey. The response of cercal receptors and identified interneurons in the cricket (Acheta domesticus) to air streams. J. Comp. Physiol. [A] 129: 51–59, 1979.
 1244. Tolbert, L. P. Afferent axons from the antenna influence the number and placement of intrinsic synapses in the antennal lobe of Manduca sexta. Synapse 3: 83–95, 1989.
 1245. Tolbert, L. P., and J. G. Hildebrand. Organization and synaptic ultrastructure of glomeruli in the antennal lobes of the moth Manduca sexta: a study using thin sections and freeze‐fracture. Proc. R. Soc. Lond. [B] 213: 279–301, 1981.
 1246. Torre, V., and T. Poggio. A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. Lond. [B] 202: 409–416, 1978.
 1247. Trimble, W. S., M. Linial, and R. H. Scheller. Cellular and molecular biology of the presynaptic nerve terminal. Annu. Rev. Neurosci. 14: 93–122, 1991.
 1248. Trudeau, L. E., and V. F. Castellucci. Contribution of polysynaptic pathways in the mediation and plasticity of Aplysia gill and siphon withdrawal reflex: evidence for differential modulation. J. Neurosci. 12: 3838–3848, 1992.
 1249. Trujillo‐Cenoz, O., and J. Melamed. Compound eye of dipterans: anatomical basis for integration. An electron microscopical study. J. Ultrastruct. Res. 16: 395–398, 1966.
 1250. Truman, J. W. Programmed cell death in the nervous system of an adult insect. J. Comp. Neurol. 216: 445–452, 1983.
 1251. Truman, J. W. Hormonal control of ecdysis. In: Comprehensive Insect Physiology, Biochemistry, and Pharmacology, edited by G. A. Kerkut and L. I. Gilbert, New York: Pergamon, 1985, vol. 8, p. 413–440.
 1252. Truman, J. W., and M. Bate. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 125: 145–157, 1988.
 1253. Truman, J. W., and R. B. Levine. Cellular events in the nervous system during metamorphosis in the moth Manduca sexta. In: Current Methods in Cellular Neurobiology, edited by J. L. Barker, New York: Wiley, 1983, vol. 4, p. 16–48.
 1254. Truman, J. W., and S. E. Reiss. Hormonal regulation of the shape of identified motoneurons in Manduca sexta. J. Neurosci. 8: 765–775, 1988.
 1255. Truman, J. W., and L. M. Schwartz. Steroid regulation of neuronal death in the moth nervous system. J. Neurosci. 4: 274–280, 1984.
 1256. Tse, F. W., L. Marin, S. S. Jahromi, and H. L. Atwood. Variation in terminal morphology and presynaptic inhibition at crustacean neuromuscular junctions. J. Comp. Neurol. 304: 135–146, 1991.
 1257. Tublitz, N. J., and A. W. Sylwester. Postembryonic alteration of neurotransmitter phenotype in individually identified peptidergic neurons. J. Neurosci. 10: 161–168, 1990.
 1258. Tumlinson, J. H., M. M. Brennan, R. E. Doolittle, E. R. Mitchell, A. Brabham, B. E. Mazomenos, A. H. Baumhover, and D. M. Jackson. Identification of a pheromone blend attractive to Manduca sexta (L). males in a wind tunnel. Arch. Insect Biochem. Physiol. 10: 255–271, 1989.
 1259. Turner, T. J., M. E. Adams, and K. Dunlap. Calcium channels coupled to glutamate release identified by ω‐Aga‐IVA. Science 258: 310–313, 1992.
 1260. Umeda, K., and H. Tateda. Visual interneurons in the lobula complex of the fleshfly, Boettcherisca peregrina. J. Comp. Physiol. [A] 157: 831–836, 1985.
 1261. Valverde, F. Studies on the Piriform Lobe Cambridge, MA: Harvard Univ. Press, 1965.
 1262. Van Haastert, P.J.M., P.M.W. Janssens, and C. Erneux. Sensory transduction in eukaryotes. A comparison between Dictyostelium and vertebrate cells. Eur. J. Biochem. 195: 289–303, 1991.
 1263. Venter, J. C., U. Di Porzio, D. A. Robinson, S. M. Shreeve, J. Lai, A. R. Kerlavage, S. P. Fracek, Jr., K‐U. Lentes, and C. M. Fraser. Evolution of neurotransmitter receptor systems. Prog. Neurobiol. 30: 105–169, 1988.
 1264. Vickers, N. J., and T. C. Baker. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Nat. Acad. Sci. U.S.A. 91: 5756–5760, 1994.
 1265. Vigier, P. Mecanisme de la synthese des impressions lumineuses recueillies par les yeux composes des Dipteres. C. R. Acad. Sci. (Paris) 6: 122–124, 1907.
 1266. Vigier, P. Sur les terminations photoreceptrices dans les yeux composes des Muscides. C. R. Acad. Sci. III 145: 532–536, 1907.
 1267. Vigier, P. Sur l'existence reelle et le role des neurones. La neurone perioptique des Dipteres. C. R. Services Soc. Biol. Fil. 64: 959–961, 1908.
 1268. Vogt, K. Ray paths and reflection mechanisms in crayfish eyes. Z. Naturforsch. 32: 466–468, 1977.
 1269. Wachtmann, D. K., K. Brix, W. Stockem, and N. Weissenfels. Cytoskeletal organization and cytoplasmic movement activity in sponge basal epithelial cells. Eur. J. Cell Biol. 46 (Suppl. 22): 1988.
 1270. Wagner, H. Flow‐field variables trigger landing in flies. Nature 297: 147–148, 1982.
 1271. Wagner, H. Fligh performance and visual control of flight of the free‐flying housefly (Musca domestica). II. Pursuit of targets. Phil. Trans. R. Soc. Lond. [B] 312: 527–551, 1986.
 1272. Waldrop, B., T. A. Christensen, and J. G. Hildebrand. GABA‐mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta. J. Comp. Physiol [A] 161: 23–32, 1987.
 1273. Walker, R. J., and L. Holden‐Dye. Evolutionary aspects of transmitter molecules, their receptors and channels. In: Parasite Neurobiol. Parasitol. 102: S7–S29, 1991.
 1274. Wallace, B. G. Neurotransmitter chemistry. In: Neurobiology of the Leech, edited by K. J. Muller, J. G. Nicholls, and G. S. Stent, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1981, p. 147–172.
 1275. Wallace, B. G., and J. W. Gillon. Characterization of acetylcholinesterase in individual neurons in the leech central nervous system. J. Neurosci. 2: 1108–1118, 1982.
 1276. Walrond, J. P., I. S. Kass, A.O.W. Stretton, and J. E. Donmoyer. Identification of excitatory and inhibitory motoneurons in the nematode Ascaris by electrophysiological techniques. J. Neurosci. 5: 1–8, 1985.
 1277. Walrond, J. P., and A.O.W. Stretton. Reciprocal inhibition in the motor nervous system of the nematode Ascaris: direct control of ventral inhibitory motoneurons by dorsal excitatory motoneurons. J. Neurosci. 5: 9–15, 1985.
 1278. Walrond, J. P., and A.O.W. Stretton. Excitatory and inhibitory activity in the dorsal musculature of the nematode Ascaris evoked by single dorsal excitatory motorneurons. J. Neurosci. 5: 16–22, 1985.
 1279. Walters, E. T., and J. H. Byrne. Associative conditioning of single sensory neurons suggests a cellular mechanism for learning. Science 219: 405–408, 1983.
 1280. Walthall, W. W., and R. K. Murphey. Positional information, compartments and the cercal system of crickets. Dev. Biol. 113: 182–200, 1986.
 1281. Warburton, F. E. The behaviour of sponge larvae. Ecology 47: 672–674, 1966.
 1282. Ward, S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc. Natl. Acad. Sci. U.S.A. 70: 817–821, 1973.
 1283. Ward, S., J. N. Thomson, J. C. White, and S. Brenner. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 160: 313–337, 1975.
 1284. Ware, R. W., D. Clark, K. Crossland, and R. L. Russel. The nerve ring of the nematode Caenorhabditis elegans: sensory input and motor output. J. Comp. Neurol. 162: 71–110, 1975.
 1285. Warzecha, A. K., M. Egelhaaf, and A. Borst. Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. J. Neurophysiol. 69: 329–339, 1993.
 1286. Watanabe, A., and H. Grundfest. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J. Gen. Physiol. 45: 267–308, 1961.
 1287. Waterman, T. Polarization sensitivity. In: Handbook of Sensory Physiology. Vision in Invertebrates, edited by H. Autrum. Berlin: Springer‐verlag, 1981, vol. VII, pt. 6B, p. 281–470.
 1288. Waterman, T. H. The bridge between visual input and central programming in crustaceans. In: Identified Neurons and Behavior of Arthropods, edited by G. Hoyle. New York: Plenum, 1977, p. 371–386.
 1289. Waterston, R. H. Muscle. In: The Nematode Caenorhabditis elegans, edited by W. B. Wood, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1988, p. 281–335.
 1290. Watson, A. H. D., and M. Burrows. Input and output synapses on identified motor neurones of a locust revealed by the intracellular injection of horseradish peroxidase. Cell Tissue Res. 215: 325–332, 1981.
 1291. Watson, A. H. D., and M. Burrows. The ultrastructure of identified locust motor neurones and their synaptic relationships. J. Comp. Neurol. 205: 383–397, 1982.
 1292. Watson, A. H. D., and M. Burrows. The distribution of synapses on the two fields of neurites of spiking local in‐terneurones in the locust. J. Comp. Neurol. 240: 219–232, 1985.
 1293. Watson, A. H. D., and M. Burrows. The distribution and morphology of synapses on nonspiking local interneurons in the thoracic nervous system of the locust. J. Comp. Neurol. 272: 605–616, 1988.
 1294. Watson, G. M., and D. A. Hessinger. Cnidocyte mechanore‐ceptors are tuned to the movements of swimming prey by chemoreceptors. Science 243: 1589–1591, 1989.
 1295. Watson, G. M., and D. A. Hessinger. Chemoreceptor‐mediated elongation of stereocilium bundles tunes vibration‐sensitive mechanoreceptors on cnidocyte/supporting cell complexes to lower frequencies. J. Cell Sci. 99: 307–316, 1991.
 1296. Wayne, R. Excitability in plant cells. Am. Sci. 81: 140–151, 1993.
 1297. Weber, T., and J. Thorson. Phonotactic behavior in walking crickets. In: Cricket Behavior and Neurobiology, edited by F. Huber, T. E. Moore, and W. Loher. Ithaca, NY: Comstock, 1989, p. 310–339.
 1298. Webster, D. B., R. R. Fay, and A. N. Poper. The Evolutionary Biology of Hearing Berlin: Springer‐verlag, 1992.
 1299. Weeks, J. C., and K. Ernst‐Utzschneider. Respecification of larval proleg motoneurons during metamorphosis of the tobacco hornworm, Manduca sexta: segmental dependence and hormonal regulation. J. Neurobiol. 20: 569–592, 1989.
 1300. Weeks, J. C., and R. B. Levine. Postembryonic neuronal plasticity and its hormonal control during insect metamorphosis. Annu. Rev. Neurosci. 13: 183–194, 1990.
 1301. Weeks, J. C., and J. W. Truman. Neural organization of peptide‐activated ecdysis during the metamorphosis of Manduca sexta I. Conservation of the peristalsis motor pattern at the larval–pupal transformation. J. Comp. Physiol. [A] 155: 407–422, 1984.
 1302. Weeks, J. C., and J. W. Truman. Neural organization of peptide‐activated ecdysis during the metamorphosis of Manduca sexta II. Retention of the proleg motor pattern despite loss of the prolegs at pupation. J. Comp. Physiol. [A] 155: 423–433, 1984.
 1303. Weeks, J. C., and J. W. Truman. Independent steroid control of the fates of motoneurons and their muscles during insect metamorphosis. J. Neurosci. 5: 2290–2300, 1985.
 1304. Wehner, R. Neurobiology of polarization vision. Trends Neurosci. 12: 353–359, 1989.
 1305. Wehner, R. Spatial vision in athropods. In: Handbook of Sensory Physiology. Vision in Invertebrates, edited by H. Autrum. Berlin: Springer‐verlag, 1991, vol. VII, pt. 6C, p. 287–617.
 1306. Wei, A. W., M. Covarrubias, A. Butler, K. Baker, M. Pak, and L. Salkoff. K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248: 599–603, 1990.
 1307. Weisblat, D. A., and R. L. Russell. Propagation of electrical activity in the nerve cord and muscle syncytium of the nematode Ascaris lumbricoides. J. Comp. Physiol. [A] 107: 293–307, 1976.
 1308. Weisblat, D. A., L. Byerly, and R. L. Russell. Ionic mechanisms of electrical activity in somatic muscle of the nematode Ascaris lumbricoides. J. Comp. Physiol. [A] 111: 93–113, 1976.
 1309. Weis‐Fogh, T. An aerodynamic sense organ stimulating and regulating flight in locusts. Nature 163: 873–874, 1949.
 1310. Weiss, M. R. Floral color changes as cues for pollinators. Nature 354: 227–229, 1991.
 1311. Weissenfels, N. Bau und funktion des süsswasserschwamms Ephydatia fluviatilits (Porifera). Zoomorphology 103: 15–23, 1983.
 1312. Weissenfels, N. Condensation rhythm of fresh‐water sponges (Spongillidae, Porifera). Eur. J. Cell Biol. 53: 373–383, 1990.
 1313. Wells, M. J. Brain and Behavior in Cephalopods London: Heinemann, 1962.
 1314. Westfall, J. A. Ultrastructural evidence for a granule‐containing sensory‐motor‐interneuron in Hydra littoralis. J. Ultrastruct. Res. 42: 268–282, 1973.
 1315. Westfall, J. A., and J. C. Kinnamon. A second sensory‐motor‐interneuron with neurosecretory granules in Hydra. J. Neurocytol. 7: 365–379, 1978.
 1316. Westfall, J. A., C. Z. Yu, K. Sayyar, and C. J. P. Grimmelikhuijzen. Antho‐RF amide like immunoreactivity is present at a two‐way synapse in the sea anemone. Soc. Neurosci. Abstr. 18: 267, 1992.
 1317. Wheeler, W. C., P. Cartwright, and C. Y. Hayashi. Arthropod phylogeny: a combined approach. Cladistics 9: 1–39, 1993.
 1318. White, J. G., E. Southgate, and J. N. Thomson. Mutations in the Caenorhabditis elegans unc‐4 gene alter the synaptic input to ventral cord motor neurons. Nature 355: 838–841, 1992.
 1319. White, J. G., E. Southgate, J. N. Thomson, and S. Brenner. The structure of the ventral nerve cord of Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. [B] 275: 298–327, 1976.
 1320. White, J. G., E. Southgate, J. N. Thomson, and S. Brenner. The structure of the nervous system of Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. [B] 314: 1–340, 1986.
 1321. Whittington, H. B. The Burgess Shale New Haven, CT: Yale Univ. Press, 1985.
 1322. Wiersma, C.A.G. Giant nerve fiber system of the crayfish: a contribution to comparative physiology of synapse. J. Neurophysiol. 10: 23–38, 1947.
 1323. Wiersma, C.A.G. On the functional connections of single units in the central nervous system of the crayfish Procambarus clarkii Girard. J. Comp. Neurol. 110: 421–472, 1958.
 1324. Wiersma, C.A.G. The neuromuscular system. In: The Physiology of Crustacea, edited by T. H. Waterman, New York: Academic, 1961, vol. 2, p. 191–240.
 1325. Wiersma, C.A.G. Central processing of proprioceptive information. In: Structure and Function of Proprioceptors in the Invertebrates, edited by P. J. Mill, London: Chapman and Hall, 1976, p. 641–663.
 1326. Wiersma, C.A.G., and K. Ikeda. Interneurons commanding swimmeret movements in the crayfish Procambarus clarkii. Comp. Biochem. Physiol. 12: 509–525, 1964.
 1327. Wiersma, C.A.G., and J. Roach. Principles in the organization of invertebrate sensory systems. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle, Am. Physiol. Soc., Washington, DC: 1976, sect. 1, p. 1089–1135.
 1328. Wiese, K. Mechanoreceptors for near‐field water displacements in crayfish. J. Neurophysiol. 39: 816–833, 1976.
 1329. Wiese, K., F. G. Gribakin, A. V. Popov, and G. Renninger. Sensory Systems of Arthropods Basel: Birkhauser‐Verlag, 1993.
 1330. Wiese, K., W. D. Krenz, J. Tautz, H. Reichert, and B. Mulloney (Eds). Frontiers in Crustacean Neurobiology Basel: Birkhauser‐Verlag, 1990.
 1331. Wilkie, I. C. Variable tensility in echinoderm collagenous tissues: a review. Mar. Behav. Physiol. 11: 1–34, 1984.
 1332. Wilkie, I. C., M. D. Candiea Carnevali, and F. Bonasoro. The compass depressors of Paracentrotus lividus (Echinodermata, Echinoida): ultrastructural and mechanical aspects of their variable tensility and contractility. Zoomorphology 112: 143–153, 1992.
 1333. Williams, D. S., and P. McIntyre. The principal eyes of a jumping spider have a telephoto component. Nature 288: 578–580, 1980.
 1334. Willis, M. A., and E. A. Arbas. Locomotory performance of moths flying upwind in a pheromone plume I: individual variability in pheromone‐modulated flight. J. Comp. Physiol. [A] submitted.
 1335. Willis, M. A., and T. C. Baker. Effects of intermittent and continuous pheromone stimulation on the flight behaviour of the oriental fruit moth Grapholita molesta. Physiol. Entomol. 9: 341–358, 1984.
 1336. Willows, A.O.D. Giant brain cells in mollusks. Sci. Am. 224: 69–75, 1971.
 1337. Willows, A.O.D., D. A. Dorsett, and G. Hoyle. The neuronal basis of behavior in Tritonia III. Neuronal mechanism of a fixed action pattern. J. Neurobiol. 4: 255–285, 1973.
 1338. Willows, A.O.D., and G. Hoyle. Neuronal network triggering a fixed action pattern, Science 166: 1549–1551, 1969.
 1339. Wilson, D. M. The central nervous control of locust flight. J. Exp. Biol. 38: 471–490, 1961.
 1340. Wilson, E. O. Sociobiology Cambridge, MA: Harvard Univ. Press, 1975.
 1341. Wilson, M. The functional organization of locust ocelli. J. Comp. Physiol. [A] 124: 297–316, 1978.
 1342. Wilson, M. Generation of graded potential signals in the second order cells of the insect ocellus. J. Comp. Physiol. [A] 124: 317–331, 1978.
 1343. Windhoffer, R., and W. Westheide. The nervous system of the male Dinophilus gyrociliatus (Polychaeta, Dinophilidae): II. Electron microscopical reconstruction of nervous system anatomy and effector cells. J. Comp. Neurol. 272: 475–488, 1988.
 1344. Wine, J. J. The structural basis of an innate behavioral pattern. J. Exp. Biol. 112: 283–319, 1984.
 1345. Wine, J. J., and R. B. Krasne. The cellular organization of crayfish escape behavior. In: The Biology of Crustacea, edited by D. E. Bliss, New York: Academic, 1982, vol. 4, p. 241–292.
 1346. Witthöft, W. Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z. Morph. Tiere. 61: 160–184, 1967.
 1347. Wohlers, D. W., and F. Huber. Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., Gryllus bimaculatus DeGeer). J. Comp. Physiol. [A] 127: 11–28, 1978.
 1348. Wohlers, D. W., and F. Huber. Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket Gryllus campestris L.J. Comp. Physiol. [A] 146: 161–173, 1982.
 1349. Wohlers, D. W., and F. Huber. Topographical organization of the auditory pathway within the prothoracic ganglion of the cricket Gryllus campestric L. Cell Tissue Res. 239: 555–565, 1985.
 1350. Wojtowicz, J. M., and H. L. Atwood. Presynaptic long‐term facilitation at the crayfish neuromuscular junction: voltage‐dependent and ion‐dependent phases. J. Neurosci. 8: 4667–4674, 1988.
 1351. Wolf, H., and K. G. Pearson. Proprioceptive input patterns elevator activity in the locust flight system. J. Neurophysiol. 59: 1831–1853, 1988.
 1352. Wolff, T., and D. F. Ready. Cell death in normal and rough eye mutants of Drosophila. Development 113: 825–839, 1991.
 1353. Wood, W. B. (Ed). The Nematode Caenorhabditis elegans. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1988.
 1354. Woolacott, R. M. Structure and swimming behavior of the larva of Haliclona tubifera (Porifera: Demospongiae). J. Morphol. 218: 301–321, 1993.
 1355. Wu, C. F., B. Ganetzky, F. Haugland, and A. X. Liu. Potassium currents in Drosophila: different components affected by mutations of two genes. Science 220: 1076–1078, 1983.
 1356. Wu, C. F., and F. N. Haugland. Voltage clamp analysis of membrane currents in larval muscle fibers of Drosophila: alteration of potassium currents in shaker mutants. J. Neurosci. 10: 2626–2640, 1985.
 1357. Wunderer, H., and U. Smola. Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera: Calliphoridae): an eye region specialised for the detection of polarized light. Int. J. Insect Morphol. Embryol. 11: 25–38, 1982.
 1358. Yamashita, S. Photoreceptor cells in the spider eye: spectral sensitivity and efferent control. In: Neurobiology of Arachnids, edited by F. G. Barth, Berlin: Springer‐verlag 1985, p. 103–117.
 1359. Yang, G., and R. H. Masland. Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J. Neurosci. 14: 5267–5280, 1994.
 1360. Yau, K. W. Receptive fields, geometry and conduction block of sensory neurones in the CNS of the leech. J. Physiol. (Lond.) 263: 513–538, 1976.
 1361. Yau, K. W., and D. A. Baylor. Cyclic GMP‐activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 289–327, 1989.
 1362. Yool, A. J., and T. L. Schwartz. Alteration of ionic selectivity of a potassium channel by mutation of the H5 region. Nature 349: 700–704, 1991.
 1363. York, B., and C.A.G. Wiersma. Visual processing in the rock lobster (Crustacea). Prog. Neurobiol. 5: 127–166, 1975.
 1364. Yoshida, M., N. Takasu, and S. Tamotsu. Photoreception in echinoderms. In: Photoreception and Vision in Invertebates, edited by M. A. Ali, New York: Plenum, 1984, p. 743–772.
 1365. Young, J. Z. The giant nerve fibre and epistellar body of cephalopods. Q.J. Microsc. Sci. 78: 367–386, 1936.
 1366. Young, J. Z. The structure of nerve fibres in cephalopods and Crustacea. Proc. R. Soc. Lond. [B] 121: 319–337, 1936.
 1367. Young, J. Z. Fused neurons and synaptic contacts in the giant nerve fibres of cephalopods. Phil. Trans. R. Soc. Lond. [B] 229: 465–503, 1939.
 1368. Young, J. Z. The Anatomy of the Nervous System of Octopus vulgaris Oxford: Clarendon, 1971.
 1369. Young, S. R., R. D. Dedwyler II, and W. O. Friesen. Responses of the medicinal leech to water waves. J. Comp. Physiol. [A] 144: 111–116, 1981.
 1370. Zagotta, W. N., M. S. Brainard, and R. W. Aldrich. Single‐channel analysis of four distinct classes of potassium channels in Drosophila muscle. J. Neurosci. 8: 4765–4779, 1988.
 1371. Zarnack, W., and B. Möhl. Activity of the direct down‐stroke flight muscles of Locusta migratoria (L) during steering behavior in flight. I. Patterns of time shift. J. Comp. Physiol. [A] 118: 215–233, 1977.
 1372. Zawarzin, A. A. Der Parallelismus der Strukturen als ein Grundprinzip der Morphologic Z. Wiss. Zool. 124: 118–212, 1925.
 1373. Zawarzin, A. A. Contributions to the Evolutionist Histology of the Nervous System Moscow: Akad. Nauk. 1950.
 1374. Zeil, J. A new kind of superposition eye: the compound eye of male Bibionidae. Nature 278: 249–250, 1979.
 1375. Zeil, J., G. Nalbach, and H. O. Nalbach. Spatial vision in a flat world: optical and neural adapatations in arthropods. In: Neurobiology of Sensory Systems, edited by R. N. Singh and N. J. Strausfeld, New York: Plenum, 1989, p. 123–137.
 1376. Zeil, J., and D. Wittmann. Visually controlled station keeping by hovering guard bees of Trigona (tetragonisca) angustula (Apidae, Melliponinae). J. Comp. Physiol. [A] 165: 711–718, 1989.
 1377. Zettler, F., and M. Järvilheto. Decrement‐free conduction of graded potentials along the axon of a monopolar neuron. Z. Vergl. Physiol. 75: 402–421, 1971.
 1378. Zhang, S. W., and G. A. Horridge. Pattern recognition in bees: size of regions in spatial layout. Phil. Trans. R. Soc. Lond. [B] 337: 65–71, 1992.
 1379. Zhang, S. W., M. V. Srinivasan, and G. A. Horridge. Pattern recognition in honeybees: local and global analysis. Phil. Trans. R. Soc. Lond. [B] 248: 55–61, 1992.
 1380. Zhou, X. L., M. A. Stumpf, H. C. Hoch, and C. Kung. A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science 253: 1415–1417, 1991.
 1381. Zoran, M. J., and C. D. Drewes. Rapid escape reflexes in aquatic oligochaetes: variations in design and function of evolutionarily conserved giant fiber systems. J. Comp. Physiol. [A] 161: 729–738, 1987.
 1382. Zoran, M. J., C. D. Drewes, C. R. Fourtner, and A. J. Siegel. The lateral giant fibers of the rubificid worm, Branchiura sowerbyi: structural and functional asymmetry in a paired interneuronal system. J. Comp. Neurol. 275: 76–86, 1988.
 1383. Zucker, R. S. Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation. J. Neurophysiol. 35: 621–634, 1972.
 1384. Zucker, R. S. Short‐term synaptic plasticity. Annu. Rev. Neurosci. 12: 13–31, 1989.
 1385. Zufall, F., M. Stengl, C. Franke, J. G. Hildebrand, and H. Hatt. Ionic currents of cultured olfactory receptor neurons from antennae of male Manduca sexta. J. Neurosci. 11: 956–965, 1991.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

E. A. Arbas, R. B. Levine, N. J. Strausfeld. Invertebrate Nervous Systems. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 751-852. First published in print 1997. doi: 10.1002/cphy.cp130211