Comprehensive Physiology Wiley Online Library

Invertebrate Circulatory Systems

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Protozoa and Parazoa
2 Cnidaria
3 Platyhelminthes
4 Nemerteans
5 Annelids
5.1 Polychaetes and Oligochaetes
5.2 Hirudinea
6 Molluscs
6.1 Heart and Vascular Performance
7 Arthropods I: Onychophorans
8 Arthropods II: Chelicerates
8.1 Limulus
8.2 Scorpions
8.3 Spiders
9 Arthropods III: Uniramia
9.1 Myriapods
9.2 Chilopods
9.3 Insects
10 Arthropods IV: Crustaceans
10.1 null
11 Echinoderms
11.1 null
12 Pogonophora
13 Vestimentifera
14 Hemichordates
15 Urochordates
16 Cephalochordates
17 Conclusion
Figure 1. Figure 1.

Path of extracellular fluid movement through simplest internal circulatory systems, digenean trematode flatworm Cotylophoron.

Modified from 195
Figure 2. Figure 2.

Range of circulatory systems seen in nemertean worms A: Cephalothrix. B: Tubulanus.

From 32
Figure 3. Figure 3.

A: Drawing of blood vascular system of a polychaete annelid worm Amphitrite. Abbreviations: abv, afferent branchial vessels; as, anterior stomach; d, diaphragm; drv, dorsal ring vessels; ds, diaphragm sac; dv, dorsal vessel; e, esophagus; elor, efferent bronchial vessel; g, gills; gs, gut sinus; h, heart; i, intestine; lm, longitudinal muscles; Iv, lateral vessel; n, nephridium; ph, pharynx; pi, posterior intestine; pr, prostomium; ps, posterior stomach; s, septa; srv, segmental ring vessel; sv, subintestinal vessels; vg, ventral glands; vrv, ventral ring vessels B: Drawing to show segmental organization of the blood system in an errant polychaete. Abbreviations; dbv, dorsal blood vessel; i, intestine; lm, longitudinal muscle; pv parapodial vessels; vnc, ventral nerve cord; vbv, ventral blood vessel. The elaborate circulatory supply in the parapodium is for gas exchange.

From 31
Figure 4. Figure 4.

A: Sections of the vascular and coelomic sinus systems of the Hirudinea (leeches). In the “primitive” leech, Placobdella costata, the dorsal and ventral coelomic sinuses (ds, dorsal sinus; vs, ventral sinus) surround the much reduced dorsal and ventral vessels (dv and vv, respectively). Other labeled structures: is, intermediate sinus; ls, lateral sinus (= LH); nc, ventral nerve cord; vs, ventral sinus. B: Coelomic sinus system of the leech Hirudo medicinalis, in which all traces of the original dorsal and ventral vessels are lost. Abbreviations: lds, laterodorsal sinus; lls, laterolateral sinus; lvs, lateroventral sinus; nc, nerve cord; sl, subepidermal lacunae; t, testis.

From 31
Figure 5. Figure 5.

Structure and innervation in lateral hearts of the leech Hirudo. A: Regional differentiation in cardiac myocytes of leech lateral heart. Structure of two muscle cells pressure injected with Lucifer yellow. The cell on left is in trans form, while one on right is in cis form. Scale bar 50 μm.

From 274.] B: Reconstruction of cis‐configuration muscle cell after cobalt staining and sectioning, showing its orientation along axis of lateral heart [From 274.] C: Location of sphincter valves in one midbody segment of a lateral vessel (posterior to region called heart) wall of the leech Hirudo with rostral end opened dorsally. Abbreviations: c, caudal; las, lateral abdominal sphincter; lav, lateral abdominal vessel; ldv, lateral dorsal vessel; llv, latero‐lateral vessel; lv, lateral vessel (heart); r, rostral; s, main sphincter; v, valve. Arrows indicate direction of flow. [From 189,190
Figure 6. Figure 6.

A: Schematic drawing of relationship between ventral nerve cord and lateral hearts of H. medicinalis.

From 274.] B: Example of entrainment of myogenic rhythm of leech lateral heart muscle by HE motor neuron bursts. The heart rhythm is normally phase‐locked with HE cell activity rhythm. When HE cell was hyperpolarized, lateral heart muscle innervated by this neuron continued to beat rhythmically, but at slightly slower rate. After about 40 s of hyperpolarization, antidromically conducted action potentials appeared in HE cell as peripheral neurogenic rhythm began to be expressed (open arrows). At the solid arrow a relatively strong neurogenic burst reset myogenic rhythm. When HE cell was released from hyperpolarization it again entrained the muscle to its own rhythm. Solid dots indicate expected time of myogenic bursts. Open dots indicate actual time bursts entrained by HE cell. CM, current monitor; HE, heat excitation motoneuron; L, 4, location of recording electrode; nA, nanno‐amps; left = 4th ganglion. [From 274
Figure 7. Figure 7.

Scheme of the circulatory system of the leech H. medicinalis. A: Six fused anterior segments. B: Scheme valid for the 21 somatic segments. C: Scheme valid for segments that contain the intestine. D: Seven fused posterior segments. Abbreviations: ci, capillary network of intestine; dbw, capillary segments of dorsal body wall; dv, dorsal vessel; HIP, direction of blood flow in high‐pressure phase; iv, lateral intestinal vessel; lav, lateral abdominal vessel; lbw, capillary network of the lateral body wall; ldv, laterodorsal vessel with valve; llv, laterolateral vessel with valve; LOP, direction of blood flow in low‐pressure phase; lv, lateral vessel (heart) with main sphincter; n, capillary network of the nephridium; nv, vessel enclosing dorsal branch of posterior segmental nerve; rbw, capillary network of right body wall; vv, ventral vessel.

Based on 188,189
Figure 8. Figure 8.

Diagrams showing blood vessels in the bivalve Anodonta anatina. The ventricle and funnel‐like right atrium are drawn centrally and uppermost in these illustrations. Both (a) and (b) are viewed from right side of the animal with mantle lobe removed. In (a) whole of right ctenidium (branchia) has been removed; in (b) part of the structure is retained to illustrate branchial vessels. Abbreviations: AA, anterior aorta; AB, afferent branchial vessel; AD, anterior adductor artery; EB, efferent branchial vessel; FA, pedal artery; KV, Keber's valve; LP, lateral plexus; MA, mantle artery; MVS, median ventral sinus; PA, posterior artery; PD, posterior adductor artery; PA, pedal sinus; RP, renal plexus; VA, visceral artery.

Both (a) and (b) taken from 67
Figure 9. Figure 9.

Diagram of superficial arterial and venous vessels in the prosobranch Buccinum. The animal has been removed from its shell and the vascular system injected with pigment. No further dissection is needed to reveal a complex vascular architecture. Consult 116 for descriptions of the deeper vessels. Arrows indicate direction of flow. Abbreviations: Ac, anterior aorta; Af.ct, afferent branchial vessel; Ao, aorta; A.pall, pallial artery; A.ped, pedal artery; BrV., branchial vessels; Dg.g.l, digestive gland; Eff.ct, efferent branchial vessels; Mu.g.l, mucous gland; Op, operculum; Osph, osphradium; Ov, ovary; Ren. eff., vessels of the renal organ; R. Sin., renomucous vessel; Siph, pallial siphon.

From 116
Figure 10. Figure 10.

Diagram of heart from Littorina, in sagittal section with cut surfaces white. Most of trabecular muscles are omitted. Arrows indicate direction of blood flow; a is during atrial systole, b is during ventricular systole. Abbreviations: A, anterior; aa, anterior aorta; au, atrium; av, aortic valve; avv, atrial‐ventricular valve; ba, bulbus aortae; dch, dorsal channel of atrium; ebv, efferent ctenidial vein; fc, filtration chamber; lm1, longitudinal muscles forming floor of dorsal chamber; lm2, longitudinal muscles controlling reflux of efferent ctenidial vein; nglv, nephridial gland vein; om, occlusor muscle; pa, posterior aorta; pc, pericardial cavity; vdi, distal dorsal chamber of ventricle; vpr, proximal chamber of ventricle.

Taken directly from 23
Figure 11. Figure 11.

Schematic diagram of circulatory system and systemic heart in Nautilus (lateral view). Head of the animal is located to the left, with chambered shell coiling posteriorly. Arrows show the direction of blood flow. Abbreviations: A, left atrium; ABV/EBV, afferent and efferent branchial vessel; Aod, dorsal aorta; APA, left anterior proventricular artery; APV, anterior pallial vein; BA, buccal artery; CA, cerebral artery; Cp, circulus pallialis; CSA, common septal artery; GA, genital artery; H, ventricle; HCA, hepatico‐columellar artery; MA, inferior mandibular artery; PaA, pallial artery; PeA, pedal artery; PcA, posterior columellar artery; PHA, posterior hood artery; PNA, left pallionuchal artery; PPA, posterior proventricular artery; SA, siphuncular artery; TA, tentacular artery; Vc, cephalic vein. Stippled area is the peripheral sinus, which feeds into cephalic vein.

Drawing taken from 356
Figure 12. Figure 12.

Schematic diagram of circulatory system in Sepia, viewed from the ventral surface with the mantle sac split and folded over. Head, tentacles, and buccal mass are to the top of the diagram. The general layout in Sepia is similar to other decapods and the octopods. Arrows show direction of blood flow. Abbreviations: ABV/EBV, afferent and efferent branchial vessels; ACV, anterior cephalic vein; AFIV, anterior fin vein; AFUA, anterior funnel artery; AFV, anterior funnel vein; AMA, anterior mantle artery; AMV, anterior mantle vein; AU, atrium; AV, arm vein; BH, branchial heart; BHA, branchial heart appendage; BRA, branchial arteries; CA, cephalic aorta; CV, cephalic veins; GA, gonadial artery; ISV, ink sac vein; OA, ophthalmic artery; OS, optic blood sinus; OV, ophthalmic vein; PAO, posterior aorta; PBS, peribuccal blood sinus; PFUA, posterior funnel artery; PFV, posterior funnel vein; PMV, posterior mantle vein; RVH, ring vein of head; SA, siphuncle artery; TA, tentacle artery; V, ventricle; VC, vena cava.

Drawing taken from 356
Figure 13. Figure 13.

Examples of the ventricular muscle action potential from the oyster Crassostrea gigas. Figure illustrates form of action potential (prepotential, spike, and plateau) as well as effect of a brief stretch (lower trace in both a and b). Trace 1 is the preceding control interval, trace 2 is the superimposed configuration resulting from stretch application.

Taken directly from 439
Figure 14. Figure 14.

Diagram of circulatory system of Limulus polyphemus. Dorsal aspect.

Modified from 343
Figure 15. Figure 15.

Cardiac cycle diagrams. A: Gnathophausia. B: Limulus, C: Haliotus. D: Cancer. Pressures recorded simultaneously at equivalent gain and aligned along a standard pressure axis to show pressure relationships within cardiac cycle in each case. Abbreviations in A.: A, arterial; S, collecting sinus; P, pericardial sinus; H, intracardiac.

Modified from 40,343,66,300, respectively
Figure 16. Figure 16.

A: Circulatory system of a scorpion. Abbreviations: an, anus; ant.art, anterior aorta; bm, brain; chel, chelicerae; hep.du, hepatic duct; hrt, heart; lat.eye, lateral eye; leg 1–4, legs; mal, malpighian tubules; med. eye, median eye; mesent, mesenteron; ne. co, nerve cord; pect, pectines; pedi, pedipalp; pois.gld, poison gland; post.art, posterior aorta; proct, proctodeum; pul. 1–4, pulmonary sacs; sub.gang, suboesophageal ganglion.

From 327. B: Circulatory system of a glossiphonid spider. From 150
Figure 17. Figure 17.

Patterns of cardiac excitation recorded following emergence in Manduca sexta. A. Normoxia. B. Following 10 min normoxic hypercapnia. Top trace is record from impedance electrodes implanted lateral to heart in anterior abdomen. Second trace is impedance record from electrodes positioned 10 mm posterior to the above. Third trace is instantaneous heart rate. Bottom trace is time marked at 30 s intervals.

Previously unpublished data, reproduced with permission from A. Smits
Figure 18. Figure 18.

Heart and circulatory morphology of a range of crustaceans to demonstrate a) increases in complexity of the distribution system and b) condensation of the heart. A: Anostracan. B: Anaspides.

From 296.] C: Isopod. D: Crab. [From 296
Figure 19. Figure 19.

Lateral and dorsal views of heart of the crayfish.

From 300
Figure 20. Figure 20.

A: Changes in cardiac output (A), stroke volume (B), heart rate (C) during hypoxia in lobster and crayfish. B: Changes in arterial flow distribution as a result of hypoxic exposure in crayfish

From 346
Figure 21. Figure 21.

Effects on heart rate (fH), stroke volume (Vs), and ventricular pulse pressure (Pvent) of increasing afterload on semi‐isolated Carcinus hearts. All ligamentous attachments remained intact. All outflow was restricted to the cannulated sternal artery. Afterload was produced by raising the height of the outflow cannula. All values are normalized.

From 472
Figure 22. Figure 22.

Blood flow recorded from sternal artery of the lobster Homarus during normoxia (left) and hypoxic exposure (right). Elevated base line in hypoxic indicates that arterial flow is sustained thoughout diastole.

Figure 23. Figure 23.

Microcirculation of the cephalic ganglion in the crayfish Cherax destructor. A: Low‐power view. B: High‐power view showing capillary density. Scale bar = 50 μm.

From 300, courtesy of Renata Sandeman
Figure 24. Figure 24.

A: Schematic drawing of cardiovascular and nervous systems in Bathynomus. Right and left sides of nervous system have been reversed to facilitate illustration. AA, anterior artery; ACN, anterior cardiac nerve, AG 1–5, abdominal ganglia; AMA, anterior median artery; CA1 and CA2, first and second cardioaccelerator nerves; LA1–5, first to fifth lateral arteries; LCN, lateral cardiac nerves 1–5; r and l ALA, right and left anterior lateral arteries; TG 4–8, thoracic ganglia. B: Simultaneous records of efferent impulses in LCN 5 and swimmeret movements. Dots show end of return stroke, a: swimmerets spontaneously active. b: swimmerets activated by water jet stimulation of oral area.

From 159
Figure 25. Figure 25.

Distribution of flow in arterial systems of the lobster Homarus. A: Effects of proctolin. B: Effects of a sudden startling stimulus.

Figure 26. Figure 26.

Survey of the effects of neurotransmitters (acetylcholine and glutamic acid and hormones (5‐hydroxytryptamine, dopamine, CCAP, proctolin, F1, and F2) on arterial resistance in Homarus. Arteries were perfused at 2 ml · min−1. Concentration of each drug was the same in each graph. Concentration used for each drug is shown beneath the lower left figure (‐3 = 10−3 M, etc.) Abbreviations: AMA, anterior aorta; ALA, anterior lateral artery; HA, hepatic artery; SA, sternal artery; DAA, posterior aorta.

J. L. Wilkens, unpublished observations
Figure 27. Figure 27.

Interaction between hemal system, alimentary canal, and respiratory trees (ventilatory system) in the sea cucumber, hostichopus badionotus. A: Overall view. B and C: Details of circulatory interactions with the intestine (B) and with the respiratory trees (C). Abbreviations: e, esophagus; g, gut; s, stomach; i, intestine; il, intestinal lamellae; h, “hearts”; ibv, vessels of intestinal lamellae; dv, primary dorsal vessel; vv, primary ventral vessel; dtv, dorsal transverse vessel; pv, pulmonary vessel, rt, respiratory tree; vp, vascular plexus associated with respiratory trees; asi/dsi, ascending and descending small intestine; li, large intestine (avascular). Arrows indicate direction of flow.

From 31, modified from 187
Figure 28. Figure 28.

A: Stereogram of structure of front end of the body of the pogonophoran Oligbrachia dogleili in ventral view. Abbreviations: ad, anastomosing end of the coelomoducts; cex, distal end of coelomoducts; cin, proximal canal of coelomoduct; coe, coelomic canal of tentacle; coel, protocoel; coe ll, mesocoel; cor, heart; ex, excretory portion of coelomoduct; mdv, dorso‐ventral muscles; pc, external pore of coelomoduct; pr, pericardial sac; t, tentacle; va, afferent tentacular vessel; vd, dorsal vessel; ve, efferent tentacular vessel; vl, lateral cephalic vessel; vm, median cephalic vessel; vv, ventral vessel.

From 207.] B: Diagram of the anterior circulatory system of Lamellibrachia, Arrows show direction of flow. Abbreviations: dv, dorsal vessel; h, heart; ov, obturacular vessels; rv/lv, right and left vessels of vestimental region; sv, sinus valvatus; tv, origin of tentacular vessels; vv, ventral vessel. [Modified from 32.] C: Diagrams comparing the arrangement of afferent tentacular blood supply in (i) Lamellibrachia and (ii) Riftia. Abbreviations: bdv, branching dorsal vessel; dv, dorsal vessel; tv, tentacular vessels. [Modified from 232


Figure 1.

Path of extracellular fluid movement through simplest internal circulatory systems, digenean trematode flatworm Cotylophoron.

Modified from 195


Figure 2.

Range of circulatory systems seen in nemertean worms A: Cephalothrix. B: Tubulanus.

From 32


Figure 3.

A: Drawing of blood vascular system of a polychaete annelid worm Amphitrite. Abbreviations: abv, afferent branchial vessels; as, anterior stomach; d, diaphragm; drv, dorsal ring vessels; ds, diaphragm sac; dv, dorsal vessel; e, esophagus; elor, efferent bronchial vessel; g, gills; gs, gut sinus; h, heart; i, intestine; lm, longitudinal muscles; Iv, lateral vessel; n, nephridium; ph, pharynx; pi, posterior intestine; pr, prostomium; ps, posterior stomach; s, septa; srv, segmental ring vessel; sv, subintestinal vessels; vg, ventral glands; vrv, ventral ring vessels B: Drawing to show segmental organization of the blood system in an errant polychaete. Abbreviations; dbv, dorsal blood vessel; i, intestine; lm, longitudinal muscle; pv parapodial vessels; vnc, ventral nerve cord; vbv, ventral blood vessel. The elaborate circulatory supply in the parapodium is for gas exchange.

From 31


Figure 4.

A: Sections of the vascular and coelomic sinus systems of the Hirudinea (leeches). In the “primitive” leech, Placobdella costata, the dorsal and ventral coelomic sinuses (ds, dorsal sinus; vs, ventral sinus) surround the much reduced dorsal and ventral vessels (dv and vv, respectively). Other labeled structures: is, intermediate sinus; ls, lateral sinus (= LH); nc, ventral nerve cord; vs, ventral sinus. B: Coelomic sinus system of the leech Hirudo medicinalis, in which all traces of the original dorsal and ventral vessels are lost. Abbreviations: lds, laterodorsal sinus; lls, laterolateral sinus; lvs, lateroventral sinus; nc, nerve cord; sl, subepidermal lacunae; t, testis.

From 31


Figure 5.

Structure and innervation in lateral hearts of the leech Hirudo. A: Regional differentiation in cardiac myocytes of leech lateral heart. Structure of two muscle cells pressure injected with Lucifer yellow. The cell on left is in trans form, while one on right is in cis form. Scale bar 50 μm.

From 274.] B: Reconstruction of cis‐configuration muscle cell after cobalt staining and sectioning, showing its orientation along axis of lateral heart [From 274.] C: Location of sphincter valves in one midbody segment of a lateral vessel (posterior to region called heart) wall of the leech Hirudo with rostral end opened dorsally. Abbreviations: c, caudal; las, lateral abdominal sphincter; lav, lateral abdominal vessel; ldv, lateral dorsal vessel; llv, latero‐lateral vessel; lv, lateral vessel (heart); r, rostral; s, main sphincter; v, valve. Arrows indicate direction of flow. [From 189,190


Figure 6.

A: Schematic drawing of relationship between ventral nerve cord and lateral hearts of H. medicinalis.

From 274.] B: Example of entrainment of myogenic rhythm of leech lateral heart muscle by HE motor neuron bursts. The heart rhythm is normally phase‐locked with HE cell activity rhythm. When HE cell was hyperpolarized, lateral heart muscle innervated by this neuron continued to beat rhythmically, but at slightly slower rate. After about 40 s of hyperpolarization, antidromically conducted action potentials appeared in HE cell as peripheral neurogenic rhythm began to be expressed (open arrows). At the solid arrow a relatively strong neurogenic burst reset myogenic rhythm. When HE cell was released from hyperpolarization it again entrained the muscle to its own rhythm. Solid dots indicate expected time of myogenic bursts. Open dots indicate actual time bursts entrained by HE cell. CM, current monitor; HE, heat excitation motoneuron; L, 4, location of recording electrode; nA, nanno‐amps; left = 4th ganglion. [From 274


Figure 7.

Scheme of the circulatory system of the leech H. medicinalis. A: Six fused anterior segments. B: Scheme valid for the 21 somatic segments. C: Scheme valid for segments that contain the intestine. D: Seven fused posterior segments. Abbreviations: ci, capillary network of intestine; dbw, capillary segments of dorsal body wall; dv, dorsal vessel; HIP, direction of blood flow in high‐pressure phase; iv, lateral intestinal vessel; lav, lateral abdominal vessel; lbw, capillary network of the lateral body wall; ldv, laterodorsal vessel with valve; llv, laterolateral vessel with valve; LOP, direction of blood flow in low‐pressure phase; lv, lateral vessel (heart) with main sphincter; n, capillary network of the nephridium; nv, vessel enclosing dorsal branch of posterior segmental nerve; rbw, capillary network of right body wall; vv, ventral vessel.

Based on 188,189


Figure 8.

Diagrams showing blood vessels in the bivalve Anodonta anatina. The ventricle and funnel‐like right atrium are drawn centrally and uppermost in these illustrations. Both (a) and (b) are viewed from right side of the animal with mantle lobe removed. In (a) whole of right ctenidium (branchia) has been removed; in (b) part of the structure is retained to illustrate branchial vessels. Abbreviations: AA, anterior aorta; AB, afferent branchial vessel; AD, anterior adductor artery; EB, efferent branchial vessel; FA, pedal artery; KV, Keber's valve; LP, lateral plexus; MA, mantle artery; MVS, median ventral sinus; PA, posterior artery; PD, posterior adductor artery; PA, pedal sinus; RP, renal plexus; VA, visceral artery.

Both (a) and (b) taken from 67


Figure 9.

Diagram of superficial arterial and venous vessels in the prosobranch Buccinum. The animal has been removed from its shell and the vascular system injected with pigment. No further dissection is needed to reveal a complex vascular architecture. Consult 116 for descriptions of the deeper vessels. Arrows indicate direction of flow. Abbreviations: Ac, anterior aorta; Af.ct, afferent branchial vessel; Ao, aorta; A.pall, pallial artery; A.ped, pedal artery; BrV., branchial vessels; Dg.g.l, digestive gland; Eff.ct, efferent branchial vessels; Mu.g.l, mucous gland; Op, operculum; Osph, osphradium; Ov, ovary; Ren. eff., vessels of the renal organ; R. Sin., renomucous vessel; Siph, pallial siphon.

From 116


Figure 10.

Diagram of heart from Littorina, in sagittal section with cut surfaces white. Most of trabecular muscles are omitted. Arrows indicate direction of blood flow; a is during atrial systole, b is during ventricular systole. Abbreviations: A, anterior; aa, anterior aorta; au, atrium; av, aortic valve; avv, atrial‐ventricular valve; ba, bulbus aortae; dch, dorsal channel of atrium; ebv, efferent ctenidial vein; fc, filtration chamber; lm1, longitudinal muscles forming floor of dorsal chamber; lm2, longitudinal muscles controlling reflux of efferent ctenidial vein; nglv, nephridial gland vein; om, occlusor muscle; pa, posterior aorta; pc, pericardial cavity; vdi, distal dorsal chamber of ventricle; vpr, proximal chamber of ventricle.

Taken directly from 23


Figure 11.

Schematic diagram of circulatory system and systemic heart in Nautilus (lateral view). Head of the animal is located to the left, with chambered shell coiling posteriorly. Arrows show the direction of blood flow. Abbreviations: A, left atrium; ABV/EBV, afferent and efferent branchial vessel; Aod, dorsal aorta; APA, left anterior proventricular artery; APV, anterior pallial vein; BA, buccal artery; CA, cerebral artery; Cp, circulus pallialis; CSA, common septal artery; GA, genital artery; H, ventricle; HCA, hepatico‐columellar artery; MA, inferior mandibular artery; PaA, pallial artery; PeA, pedal artery; PcA, posterior columellar artery; PHA, posterior hood artery; PNA, left pallionuchal artery; PPA, posterior proventricular artery; SA, siphuncular artery; TA, tentacular artery; Vc, cephalic vein. Stippled area is the peripheral sinus, which feeds into cephalic vein.

Drawing taken from 356


Figure 12.

Schematic diagram of circulatory system in Sepia, viewed from the ventral surface with the mantle sac split and folded over. Head, tentacles, and buccal mass are to the top of the diagram. The general layout in Sepia is similar to other decapods and the octopods. Arrows show direction of blood flow. Abbreviations: ABV/EBV, afferent and efferent branchial vessels; ACV, anterior cephalic vein; AFIV, anterior fin vein; AFUA, anterior funnel artery; AFV, anterior funnel vein; AMA, anterior mantle artery; AMV, anterior mantle vein; AU, atrium; AV, arm vein; BH, branchial heart; BHA, branchial heart appendage; BRA, branchial arteries; CA, cephalic aorta; CV, cephalic veins; GA, gonadial artery; ISV, ink sac vein; OA, ophthalmic artery; OS, optic blood sinus; OV, ophthalmic vein; PAO, posterior aorta; PBS, peribuccal blood sinus; PFUA, posterior funnel artery; PFV, posterior funnel vein; PMV, posterior mantle vein; RVH, ring vein of head; SA, siphuncle artery; TA, tentacle artery; V, ventricle; VC, vena cava.

Drawing taken from 356


Figure 13.

Examples of the ventricular muscle action potential from the oyster Crassostrea gigas. Figure illustrates form of action potential (prepotential, spike, and plateau) as well as effect of a brief stretch (lower trace in both a and b). Trace 1 is the preceding control interval, trace 2 is the superimposed configuration resulting from stretch application.

Taken directly from 439


Figure 14.

Diagram of circulatory system of Limulus polyphemus. Dorsal aspect.

Modified from 343


Figure 15.

Cardiac cycle diagrams. A: Gnathophausia. B: Limulus, C: Haliotus. D: Cancer. Pressures recorded simultaneously at equivalent gain and aligned along a standard pressure axis to show pressure relationships within cardiac cycle in each case. Abbreviations in A.: A, arterial; S, collecting sinus; P, pericardial sinus; H, intracardiac.

Modified from 40,343,66,300, respectively


Figure 16.

A: Circulatory system of a scorpion. Abbreviations: an, anus; ant.art, anterior aorta; bm, brain; chel, chelicerae; hep.du, hepatic duct; hrt, heart; lat.eye, lateral eye; leg 1–4, legs; mal, malpighian tubules; med. eye, median eye; mesent, mesenteron; ne. co, nerve cord; pect, pectines; pedi, pedipalp; pois.gld, poison gland; post.art, posterior aorta; proct, proctodeum; pul. 1–4, pulmonary sacs; sub.gang, suboesophageal ganglion.

From 327. B: Circulatory system of a glossiphonid spider. From 150


Figure 17.

Patterns of cardiac excitation recorded following emergence in Manduca sexta. A. Normoxia. B. Following 10 min normoxic hypercapnia. Top trace is record from impedance electrodes implanted lateral to heart in anterior abdomen. Second trace is impedance record from electrodes positioned 10 mm posterior to the above. Third trace is instantaneous heart rate. Bottom trace is time marked at 30 s intervals.

Previously unpublished data, reproduced with permission from A. Smits


Figure 18.

Heart and circulatory morphology of a range of crustaceans to demonstrate a) increases in complexity of the distribution system and b) condensation of the heart. A: Anostracan. B: Anaspides.

From 296.] C: Isopod. D: Crab. [From 296


Figure 19.

Lateral and dorsal views of heart of the crayfish.

From 300


Figure 20.

A: Changes in cardiac output (A), stroke volume (B), heart rate (C) during hypoxia in lobster and crayfish. B: Changes in arterial flow distribution as a result of hypoxic exposure in crayfish

From 346


Figure 21.

Effects on heart rate (fH), stroke volume (Vs), and ventricular pulse pressure (Pvent) of increasing afterload on semi‐isolated Carcinus hearts. All ligamentous attachments remained intact. All outflow was restricted to the cannulated sternal artery. Afterload was produced by raising the height of the outflow cannula. All values are normalized.

From 472


Figure 22.

Blood flow recorded from sternal artery of the lobster Homarus during normoxia (left) and hypoxic exposure (right). Elevated base line in hypoxic indicates that arterial flow is sustained thoughout diastole.



Figure 23.

Microcirculation of the cephalic ganglion in the crayfish Cherax destructor. A: Low‐power view. B: High‐power view showing capillary density. Scale bar = 50 μm.

From 300, courtesy of Renata Sandeman


Figure 24.

A: Schematic drawing of cardiovascular and nervous systems in Bathynomus. Right and left sides of nervous system have been reversed to facilitate illustration. AA, anterior artery; ACN, anterior cardiac nerve, AG 1–5, abdominal ganglia; AMA, anterior median artery; CA1 and CA2, first and second cardioaccelerator nerves; LA1–5, first to fifth lateral arteries; LCN, lateral cardiac nerves 1–5; r and l ALA, right and left anterior lateral arteries; TG 4–8, thoracic ganglia. B: Simultaneous records of efferent impulses in LCN 5 and swimmeret movements. Dots show end of return stroke, a: swimmerets spontaneously active. b: swimmerets activated by water jet stimulation of oral area.

From 159


Figure 25.

Distribution of flow in arterial systems of the lobster Homarus. A: Effects of proctolin. B: Effects of a sudden startling stimulus.



Figure 26.

Survey of the effects of neurotransmitters (acetylcholine and glutamic acid and hormones (5‐hydroxytryptamine, dopamine, CCAP, proctolin, F1, and F2) on arterial resistance in Homarus. Arteries were perfused at 2 ml · min−1. Concentration of each drug was the same in each graph. Concentration used for each drug is shown beneath the lower left figure (‐3 = 10−3 M, etc.) Abbreviations: AMA, anterior aorta; ALA, anterior lateral artery; HA, hepatic artery; SA, sternal artery; DAA, posterior aorta.

J. L. Wilkens, unpublished observations


Figure 27.

Interaction between hemal system, alimentary canal, and respiratory trees (ventilatory system) in the sea cucumber, hostichopus badionotus. A: Overall view. B and C: Details of circulatory interactions with the intestine (B) and with the respiratory trees (C). Abbreviations: e, esophagus; g, gut; s, stomach; i, intestine; il, intestinal lamellae; h, “hearts”; ibv, vessels of intestinal lamellae; dv, primary dorsal vessel; vv, primary ventral vessel; dtv, dorsal transverse vessel; pv, pulmonary vessel, rt, respiratory tree; vp, vascular plexus associated with respiratory trees; asi/dsi, ascending and descending small intestine; li, large intestine (avascular). Arrows indicate direction of flow.

From 31, modified from 187


Figure 28.

A: Stereogram of structure of front end of the body of the pogonophoran Oligbrachia dogleili in ventral view. Abbreviations: ad, anastomosing end of the coelomoducts; cex, distal end of coelomoducts; cin, proximal canal of coelomoduct; coe, coelomic canal of tentacle; coel, protocoel; coe ll, mesocoel; cor, heart; ex, excretory portion of coelomoduct; mdv, dorso‐ventral muscles; pc, external pore of coelomoduct; pr, pericardial sac; t, tentacle; va, afferent tentacular vessel; vd, dorsal vessel; ve, efferent tentacular vessel; vl, lateral cephalic vessel; vm, median cephalic vessel; vv, ventral vessel.

From 207.] B: Diagram of the anterior circulatory system of Lamellibrachia, Arrows show direction of flow. Abbreviations: dv, dorsal vessel; h, heart; ov, obturacular vessels; rv/lv, right and left vessels of vestimental region; sv, sinus valvatus; tv, origin of tentacular vessels; vv, ventral vessel. [Modified from 32.] C: Diagrams comparing the arrangement of afferent tentacular blood supply in (i) Lamellibrachia and (ii) Riftia. Abbreviations: bdv, branching dorsal vessel; dv, dorsal vessel; tv, tentacular vessels. [Modified from 232
References
 1. Abbott, N. J., and M. Bundgaard. Microvessel surface area, density and dimensions in brain and muscle of the cephalopod Sepia officinalis. Proc. R. Soc. Land. B230: 459–482, 1987.
 2. Agnisola, C. Functional morphology of the coronary supply of the systemic heart of Octopus vulgaris. Physiol. Zool. 63: 3–11, 1990.
 3. Agnisola, C., L. Cariello, A. De Santis, A. Miralto, and B. Tota. Chronotropic and inotropic effects of atrial peptides on the isolated systemic heart of Octopus vulgaris. J. Comp. Physiol. [B] 158: 637–641, 1989.
 4. Agnisola, C., W. R. Driedzic, A. R. Foster, D. F. Houlihan, and J. M. Stewart. Oxygen consumption, carbon dioxide production and enzyme activities of the isolated working Octopus heart. J. Exp. Biol. 157: 543–549, 1991.
 5. Agnisola, C., and D. F. Houlihan. Oxygen supply in vitro performance of the systemic heart of Octopus vulgaris: effects of haemodynamics. J. Exp. Biol. 157: 523–541, 1991.
 6. Agnisola, C., G. Zummo, and B. Tota. Coronary drainage in the Octopus vulgaris systemic heart. J. Exp. Zool. 253: 1–6, 1990.
 7. Airriess, C. N., and B. R. McMahon. Aminergic modulation of circulatory performance in the crab, Cancer magister. Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System, edited by R. B. Hill, K. Kuwasawa, B. R. McMahon, and T. Kuramoto. Comp. Physiol Basel: Karger, 1992. Vol. 11 p. 123–131.
 8. Airriess, C. N., and B. R. McMahon. Cardiovascular adaptations enhance tolerance of environmental hypoxia in the crab Cancer magister. J. Exp. Biol 190: 23–41, 1994.
 9. Alevizos, A., D. Karagogeos, K. R. Weiss, L. Buck, and Koester, J. R15alpha1 and R15alpha2 peptides from Aplysia: comparison of bioactivity, distribution, and function of two peptides generated by alternative splicing. J. Neurobiol. 22: 405–417, 1991.
 10. Alevizos, A., K. R. Weiss, and J. Koester. Myomodulin: a possible cotransmitter of the cholinergic neuron L10 of Aplysia. Soc. Neurosci. Abstr. 13: 1072, 1987.
 11. Alexandrowicz, J. S. The innervation of the heart of the cockroach (Periplaneta orientalis). J. Comp. Neurol. 41: 291–310, 1926. In Miller 1985 (313).
 12. Alexandrowicz, J. S. The innervation of the heart of the Crustacea. I. Decapoda. Q.J. Microsc. Sci. 75: 181–249, 1932.
 13. Alexandrowicz, J. S. Nervous organs in the pericardial cavity of the decapod Crustacea. J. Mar. Biol. Assoc. U.K. 31: 563–580, 1953.
 14. Alexandrowicz, J. S. Innervation of the hearts of Sepia officinalis. Acta Zool., Stockh. 41: 65–100, 1960.
 15. Alexandrowicz, J. S. An accessory organ of the circulatory system in Sepia and Loligo. J. Mar Biol. Assoc. U.K. 42: 405–418, 1962.
 16. Alexandrowicz, J. S. A pulsating ganglion in the Octopoda. Proc. R. Soc. 157B: 562–573, 1963.
 17. Alexandrowicz, J. S. The neurosecretory system of the vena cava in the Cephalopoda. I. Eledone cirrhosa. J. Mar. Biol. Ass. U.K. 44: 111–132, 1964.
 18. Alexandrowicz, J. S. The neurosecretory system of the vena cava in the Cephalopoda. II. Sepia officinalis and Octopus vulgaris. J. Mar. Biol. Ass. U.K. 45: 209–228, 1965.
 19. Alexandrowicz, J. S., and D. B. Carlisle. Some experiments on the function of the pericardial organs in Crustacea. J. Mar. Biol. Ass. U.K. 32: 175–192, 1953.
 20. Anderson, D. T. Embryology and Phytogeny in Annelids and Arthropods Oxford: Pergamon Press, 1973.
 21. Anderson, M., and I. M. Cooke. Neural activation of the heart of the lobster Homarus americanus. J. Exp. Biol. 55: 449–468, 1971.
 22. Anderson, M. E., and D. S. Smith. Electrophysiological and structural studies of the heart muscle of the lobster Homarus americanus. Tissue Cell 3: 191–205, 1971.
 23. Andrews, E. B., and P. M. Taylor. Fine structure, mechanism of heart function and haemodynamics in the prosobranch gastropod mollusc Littorina littorea (L.). J. Comp. Physiol. 158B: 247–262, 1988.
 24. Arbas, E. A., and R. L. Calabrese. Rate modification in the heartbeat central pattern generator of the medicinal leech. J. Comp. Physiol. A 155: 783–794, 1984.
 25. Arbas, E. A., and R. L. Calabrese. Leydig neuron activity modulates heartbeat in the medicinal leech. J. Comp. Physiol. [A] 167: 665–671, 1990.
 26. Aristotle. De Partibus Animalium, III, 4 665b Translated by A. E. Peck. London: Heineman, 1937.
 27. Armstrong, J., and P.J.S. Smith. Dynamic responses of cardiac output. In: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System, edited by R. B. Hill, K. Kuwasawa, B. R. McMahon, and T. Kuramoto. Comp. Physiol Basel: Karger, vol. 11, pp. 15–21, 1992.
 28. Arnold, J. W. The hemocytes of insects. In: The Physiology of Insecta, edited by M. Rockstein. New York: Academic Press, 1974, vol V pp. 202–255.
 29. Arshavsky, Y. I., T. G. Deliagina, I. M. Gelfand, G. N. Orlovsky, Y. V. Panchin, G. A. Pavlova, and L. B. Popova. Neural control of heart beat in the pteropod mollusc, Clione limacina: coordination of circulatory and locomotor systems: J. Exp. Biol. 148: 461–475, 1990.
 30. Ballard, J.W.O., G. J. Olsen, D. P. Faith, W. A. Odgers, D. M. Rowell, and P. W. Atkinson. Evidence from 12S ribosomal RNA sequences that onycophorans are modified arthropods. Science 258: 1345–1348, 1992.
 31. Barnes, R. D. Invertebrate Zoology 4th edition. Philadelphia: Saunders, 1980.
 32. Barnes, R. D. Invertebrate Zoology 5th edition. Philadelphia: Saunders, 1987.
 33. Barnes, R.S.K., P. Calow, and P.J.W. Oliver. The Invertebrates: A New Synthesis Oxford: Blackwell Scientific Publications, 1988.
 34. Battelle, B. A., and E. A. Kravitz. Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J. Pharmacol. Exp. Ther. 205: 438–448, 1978.
 35. Bayakly, N. A., and L. E. Deaton. The effects of FMRFamide, 5‐hydroxytryptamine and phorbol esters on the heart of the mussel Geukensia demissa. J. Comp. Physiol. [B] 162: 463–468, 1992.
 36. Bayer, R. Untersuchungen am Kreislaufsystem der Wanderheuschreke (hocusta migratoria migratoroides Ret F, Orthopteroidea) met besonderen Berucksichtigung des Blutruckes. Z. Vergl. Physiol 58: 76–135, 1968.
 37. Belanger, J. H., and I. Orchard. Release of octopamine by Leydig cells in the central nervous system of the leech Macrobdella decora, and its possible neurohormonal role. J. Comp. Physiol. [A] 162: 405–412, 1988.
 38. Belman, B. W. Some aspects of the circulatory physiology of the spiny lobster Panulirus interruptus. Mar. Biol. 29: 295–305, 1975.
 39. Belman, B. W. New observations on blood pressure in marine Crustacea. J. Exp. Zool. 196: 71–78, 1976.
 40. Belman, B. W., and J. J. Childress. Circulatory adaptation to the oxygen minimum layer in the bathypelagic mysid Gnathophausia ingens. Biol. Bull. 150: 15–37, 1976.
 41. Belmarich, F. A. and R. C. Terwilliger. Isolation and identification of cardio‐excitor hormone from the pericardial/organs of Cancer borealis. Zoology 6: 101–106, 1966.
 42. Beltz, B. S., and E. A. Kravitz. Aminergic and peptidergic neuromodulation in Crustacea. J. Exp. Biol. 124: 115–141, 1986.
 43. Benson, J. A. Burst reset and frequency control of the neuronal oscillators in the cardiac ganglion of the crab, Portunus sanguinolentus. J. Exp. Biol. 87: 285–313, 1980.
 44. Benson, J. A. Synaptic and regenerative responses of cardiac muscle fibres in the crab, Portunus sanguinolentus. J. Comp. Physiol. 143: 349–356, 1981.
 45. Benson, J. A. Octopamine alters rhythmic activity in the isolated cardiac ganglion of the crab, Portunus sanguinolentus. Neurosci. Lett. 44: 59–64, 1984.
 46. Benson, J. A., R. E. Sullivan, W. W. Watson III, and G. J. Augustine Jr. The neuropeptide proctolin acts directly on Limulus cardiac muscle to increase the amplitude of contraction. Brain Res. 213: 449–454, 1981.
 47. Berg, H. A. van den. Model for mechanics of mollusc systemic heart. Comp. Biochem. Physiol. [A] 101: 835–844, 1992.
 48. Berlind, A. Endogenous burst‐organizing potentials in two classes of neurons in the lobster cardiac ganglion respond differently to alterations in divalent ion concentration. J. Comp. Physiol. [A] 157: 845–856, 1985.
 49. Berry, C. F., and G. A. Cottrell. Neurosecretion in the vena cava of the cephalopod Eledone cirrosa. Z. Zellforsch. 104: 107–115, 1970.
 50. Bihlmayer, S., S. Zahler, and R. Paul. Aspects of the structure and function of the circulatory system of the tarantula Eurypelma californicum. Verb. Dtsch. Zool. Ges. 82: 233, 1989.
 51. Binyon, J. Physiology of Echinoderms Oxford: Pergamon Press, 1972, p. 264.
 52. Blanchi, D., L. Noveillo, and M. A. Libonati. A neurohormone of cephalopods with cardioexcitatory activity. Gen. Comp. Endocrinol. 21: 267–277, 1973.
 53. Blatchford, J. G. Hemodynamics of Carcinus maenas (L.). Comp. Biochem. Physiol. [A] 39: 193–202, 1971.
 54. Bolootian, R. A., and J. L. Campbell. A primitive heart in the echinoid Strongylocentrotus purpuratus. Science 145: 173–175, 1964.
 55. Booth, C. E., and C. P. Mangum. Oxygen uptake and transport in the lamellibranch mollusc Modiolus demissus. Physiol. Zool. 51: 17–32, 1978.
 56. Booth, C. E., and B. R. McMahon. Aerobic capacity of the blue crab, Callinectes sapidus. Physiol. Zool. 65: 1074–1079, 1992.
 57. Booth, C. E., B. R. McMahon, and A. W. Pinder. Oxygen uptake and the potentiating effects of increased haemolymph lactate on oxygen transport during exercise in the blue crab, Callinectes sapidus. J. Comp. Physiol. 148: 111–121, 1982.
 58. Boroffka, I., H. Altner, and J. Haupt. Funktion und Ultrastruktur des Nephridiums von Hirudo medicinalis. I. Ort und Mechanismus der Primärhambildung. Z. Vergl. Physiol. 66: 421–438, 1970.
 59. Boroffka, I. and R. Hamp. Topographie des Kreislaufsystems und Zirkulation bei Hirudo medicinalis. Z. Morphol. Tiere 64: 59–76, 1969.
 60. Bourne, G. B. Circulatory physiology of Nautilus. Experientia 43: 484–486, 1987.
 61. Bourne, G. B. Hemodynamics in squid. Experientia 43: 500–502, 1987.
 62. Bourne, G. B., and B. R. McMahon. Control of cardiac output and its distribution in crustacean open circulatory systems. J. Physiol. 418: 143, 1989.
 63. Bourne, G. B., and J. R. Redmond. Hemodynamics of the pink abalone, Haliotus corrugata (Mollusca, Gastropoda). I. Pressure relations and pressure gradients in the intact animal. J. Exp. Zool. 200: 9–16, 1977.
 64. Bourne, G. B., and J. R. Redmond. Hemodynamics of the pink abalone, Haliotus corrugata (Mollusca, Gastropoda). II. Acute blood‐flow measurements and their relationship to blood pressure. J. Exp. Zool. 200: 17–21, 1977.
 65. Bourne, G. B., Redmond, J. R., and K. Johansen. Some aspects of haemodynamics in Nautilus pompilius. J. Exp. Zool. 205: 63–70, 1978.
 66. Bourne, G. B., J. R. Redmond, and D. D. Jorgensen. Dynamics of the molluscan circulatory system: open versus closed. Physiol. Zool. 63: 140–166, 1990.
 67. Brand, A. R. The mechanism of blood circulation in Anadonta anatina (L.) (Bivalvia, Unionidae). J. Exp. Biol. 56: 361–379, 1972.
 68. Brand, A. R. Heart action of the freshwater bivalve Anodonta anatina during activity. J. Exp. Biol. 65: 685–698, 1976.
 69. Brezden, B. L., P. R. Benjamin, and D. R. Gardner. The peptide FMRFamide activates a divalent cation‐conducting channel in heart muscle cells of the snail Lymnaea stagnalis. J. Phisiol. 443: 727–738 1991.
 70. Brezden, B. L., P. R. Benjamin, and D. R. Gardner. The molluscan cardioactive peptide FMRFamide activates a divalent cation‐conducting channel in isolated heart ventricle muscle cells of the snail, Lymnaea stagnalis. In: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System, edited by R. B. Hill, K. Kuwasawa, B. R. McMahon, and T. Kuramoto. Comp. Physiol Basel: Karger, 11, 1992, pp. 231–237.
 71. Brezden, B. L., and D. R. Gardner. The ionic basis of the resting potential in a cross‐striated muscle of the aquatic snail, Lymnaea stagnalis. J. Exp. Biol. 108: 305–314, 1984.
 72. Brezden, B. L., and D. R. Gardner. Non‐voltage‐gated calcium channels in snail heart ventricle cells. J. Exp. Biol. 150: 187–203, 1990.
 73. Brezden, B. L., and D. R. Gardner. A review of the electrophysiological, pharmacological and single channel properties of heart ventricle muscle cells in the snail Lymnaea stagnalis. Experientia 48: 841–851, 1992.
 74. Brezden, B. L., D. R. Gardner, and C. E. Morris. A potassium‐selective channel in isolated Lymnaea stagnalis heart muscle cells. J. Exp. Biol. 123: 175–189, 1986.
 75. Brown, H. F. Electrophysiological investigations of the heart of Squilla mantis. II. The heart muscle. J. Exp. Biol. 41: 701–722, 1964.
 76. Brown, W. J., and J. M. Shick. Bimodal gas exchange and the regulation of oxygen uptake in holothurians. Biol. Bull. 156: 272–288, 1979.
 77. Brownell, P. H., and S. H. Ligman. Mechanisms of circulatory homeostasis and response in Aplysia. Experientia 48: 818–826, 1992.
 78. Brownell, P. H., J. L. M. Morgan, and S. H. Ligman. A survey of peptide actions on motoneurons regulating circulatory and respiratory functions in Aplysia. In: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System, edited by R. B. Hill, K. Kuwasawa, B. R. McMahon, and T. Kuramoto. Comp. Physiol. Basel: Kager, 11, 1992, pp. 199–210.
 79. Browning, J. The density and dimensions of exchange vessels in Octopus pallidus. J. Zool. Lond. 196: 569–579, 1982.
 80. Browning, J., and J. R. Casey‐Smith. Tissue channel morphology in Octopus. Cell Tissue Res. 215: 153–170, 1981.
 81. Brusca, R. C., and G. J. Brusca. Invertebrates Sunderland, England: Sinauer Associates, 1990.
 82. Buck, L. B., J. M. Bigelow, and R. Axel. Alternative splicing in individual Aplysia neurons generates neuropeptide diversity. Cell 51: 127–133, 1987.
 83. Buckett, K. J., D. J. Dockray, N. N. Osbourne, and P. R. Benjamin. Pharmacology of the myogenic heart of the pond snail Lymnaea stagnalis. J. Neurophysiol. 63: 1463–1447, 1990.
 84. Buckett, K. J., M. Peters, and P. R. Benjamin. Excitation and inhibition of the heart of the snail, Lymnaea, by non‐FMRFamidergic motoneurons. J. Neurophysiol. 63: 1436–1447, 1990.
 85. Buckett, K. J., M. Peters, D. J. Dockray, J. van Minnen, and P. R. Benjamin. Regulation of heartbeat in Lymnaea, by motoneurons containing FMRFamide‐like peptides. J. Neurophysiol. 63: 1413–425, 1990.
 86. Bullock, T. A., and G. A. Horridge. Structure and Function in the Nervous Systems of Invertebrates San Francisco: W. H. Freeman and Co., 1965, pp. 988–997.
 87. Burggren, W. W., and B. R. McMahon. Circulation. Chapter 9 in: Biology of the Land Crabs, edited by W. W. Burggren and B. R. McMahon, Cambridge: Cambridge University Press, 1988.
 88. Burggren, W. W., A. Pinder, B. R. McMahon, M. Wheatly, and M. Doyle. Ventilation, circulation and their interactions in the land crab, Cardisoma guanhumi. J. Exp. Biol. 117: 133–154, 1985.
 89. Burnett, Bryan. Striated muscle in the wall of the dorsal abdominal artery of the California spiny lobster Pyanulirus interrupts. J. Crust. Biol. 4: 560–566, 1984.
 90. Burnett, L. E., P. L. De Fur, and D. D. Jorgenson. Application of the thermodilution technique for measuring cardiac output and assessing stroke volume in crabs. J. Exp. Zool. 218: 163–173, 1981.
 91. Calabrese, R. L. Neural generation of the peristaltic and non‐peristaltic heartbeat coordination modes in the leech Hirudo medicinalis. Am. Zool. 19: 87–102, 1979.
 92. Calabrese, R. L., and E. A. Arbas. Central and peripheral oscillators generating heartbeat in the leech Hirudo medicinalis. In: Neuronal and Cellular Oscillators, edited by J. W. Jacklet, New York: Marcel Dekker, 1989, pp. 237–267.
 93. Calabrese, R. L., and A. R. Maranto. Neural control of the hearts in the leech, Hirudo medicinalis. III. Regulation of myogenicity and muscle tension by heart accessory neurons. J. Comp. Physiol. [A] 154: 393–406, 1984.
 94. Calabrese, R. L., and E. Peterson. Neural control of heartbeat in the leech, Hirudo medicinalis. In: Neural Origin of Rhythmic Movements, edited by A. Roberts and B. Roberts. Symp. Soc. Exp. Biol. 37: 195–221, 1983.
 95. Carlson, A. J. Comparative physiology of the invertebrate heart. V. The heart rhythm under normal and experimental conditions. Am. J. Physiol. 16: 47–66, 1906.
 96. Cawthorpe, D.R.L., J. Rosenberg, W. F. Colmers, K. Lukow‐iak, and G. I. Drummond. The effects of small cardioactive peptide B on the isolated heart and gill of Aplysia californica. Can. J. Physiol. Pharmacol. 63: 918–924, 1984.
 97. Cheron, J. Recherches pour servir a l'histoire du systeme nerveux des Cephalopodes dibranchiaux. Annis. Sci. Nat (Zool.), 5: 1–122, 1866.
 98. Coleman, N. The heart rate and activity of bivalve molluscs in their natural habitats. Oceanogr. Mar. Biol. Annu. Rev. 12: 310–313, 1974.
 99. Colhoun, E. H. The physiological significance of acetylcholine in insects and observations on other pharmacologically active substances. Adv. Insect. Physiol. 1: 1–45, 1963.
 100. Colhoun, E. H. Pharmacological tantalizers. In: Insects and Physiology, edited by J.L.W. Beament and J. E. Treheme. Edinburgh: Oliver and Boyd, pp. 201–213, 1967.
 101. Colombaiani, L., D. Paupardin‐Tritsch, P. P. Vidal, and H. M. Gerschenfeld. The neuropeptide FMRF‐amide decreases both the Ca2+ conductance and a cyclic 3′,5′‐adenosine monophosphate‐dependent K+ conductance in identified molluscan neurons. Neuroscience, 5: 2533–2538, 1985.
 102. Conant, F. S., and H. L. Clark. On the accelerator and inhibitory nerves to the crab's heart. J. Exp. Med. 1: 341–347, 1896.
 103. Conner, J. A. Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. J. Exp. Biol. 50: 275–295, 1969.
 104. Cooke, I. M. Electrical activity and release of neurosecretory material in crab pericardial organs. Comp. Biochem. Physiol. 13: 353–366, 1964
 105. Cooke, I. M. The sites of action of pericardial organ extract and 5‐hydroxytryptamine in the decapod crustacean heart. Am. Zool. 6: 107–121, 1966.
 106. Cooke, I. M. Studies on the crustacean cardiac ganglion. Comp. Biochem. Physiol. [C] 91: 205–218, 1988.
 107. Cooke, I. M., and M. W. Goldstone. Fluorescence localization of monoamines in crab neurosecretory structures. J. Exp. Biol. 35: 651–668, 1970.
 108. Cooke, I. M., and D. K. Hartline. Neurohormonal alteration of integrative properties of the cardiac ganglion of the lobster Homarus americanus. J. Exp. Biol. 63: 33–52, 1975.
 109. Cooke, I. M., and R. E. Sullivan. Hormones and neurosecretion. In: The Biology of Crustacea, vol. 3, edited by H. Atwood and D. Sandeman. New York: Academic Press, 1982, pp. 205–290.
 110. Cooke, I. M., and K. Tazaki. Driver potentials isolated in crustacean cardiac ganglion cells by ligaturing. Soc. Neurosci. Abstr. 5: 494, 1979.
 111. Coon, B. F. Effects of paralytic insecticides on heart pulsations and blood circulation in the American cockroach as determined by a flourescein indicator. J. Econ. Ent. 37: 785–789, 1944. In: Miller, T. 1985 (313).
 112. Cooper, B. F., J. K. Krontiris‐Litowitz, and E. T. Walters. Humoral factors released during trauma of Aplysia body wall. II. Effects of possible mediators. J. Comp. Physiol. [B] 159b: 225–235, 1989.
 113. Cottrell, G. A., N. W. Davies, and K. A. Green. Multiple actions of a molluscan cardioexcitatory neuropeptide and related peptide on identified Helix neurones. J. Physiol. 356: 315–333, 1984.
 114. Cuenot, Gonet, and Bruntz. Recherches chimiques sur les coeurs branchiaux des Cephalopodes. Demonstration du role excreteur des cellules qui eliminent le carmin ammoniacal des infections physiologiques. Arch. Zool. Exp. Gen., 9 (4), Notes et Revue No. 3 XLIX–LIII, 1908.
 115. Cuthbert, B. A., and P. D. Evans. A comparison of the effects of FMRFamide‐like peptides on locust heart and skeletal muscle. J. Exp. Biol. 144: 395–415, 1989.
 116. Dakin, W. LMBC memoir on “Buccinum”. Proc. Trans. Liverpool Biol. Soc. 26 (Memoir 20): 253–367, 1912.
 117. Davey, K. G. Control of visceral muscles in insects. Adv. Insect. Physiol. 2: 219–245, 1964.
 118. Davis, R. L. Influence of oxygen on the heartbeat rhythm of the leech. J. Exp. Biol. 123: 401–498, 1986.
 119. Delaleu, J. C., and A. Holley. Neural regulation of the heart muscle in an isopod crustacean: Acceleration and peripheral inhibition. J. Exp. Biol. 64: 345–356, 1976.
 120. De Wachter, B., and B. R. McMahon. Temperature effects on heart performance and regional haemolymph flow in the crab Cancer magister. Comp. Biochem. Physiol. 114A: 27–34.
 121. De Wachter, B., and B. R. McMahon. Haemolymph flow distribution, cardiac performance and ventilation Cancer magister (Decapoda, Crustacea) during moderate activity. J. Exp. Biol. 199: 627–633, 1996.
 122. Driedzic, W. R. Contractile performance of cephalopod hearts under anoxic conditions. J. Exp. Biol. 117: 471–474, 1985.
 123. Driedzic, W. R., B. D. Sidell, J. M. Stewart, and I. A. Johnston. Maximal activities of enzymes of energy metabolism in cephalopod systemic and branchial hearts. Physiol. Zool. 63: 615–629, 1990.
 124. Drummond, G. I., S. Wernham, and K. Lukowiak. Stimulation of adenylate cyclase in the heart of Aplysia californica by biogenic amines. Comp. Biochem. Physiol. [C] 80: 129–133, 1985.
 125. Duval, A. Heartbeat and blood pressure in terrestrial slugs. Can. J. Zool. 61: 987–992, 1983.
 126. Duval, A., and N. W. Runham. The arterial system of six species of terrestrial slug. J. Moll. Stud. 47: 43–52, 1981.
 127. Dykens, J. A., and C. P. Mangum. The design of cardiac muscle and the mode of metabolism in molluscs. Comp. Biochem. Physiol. [A] 62: 549–554, 1979.
 128. Dykens, J. A., C. P. Mangum, and J. M. Arnold. A note on the structural organization of the cardiac myofiber in Nautilus pompillus. Pacific Sci. 36: 267–271, 1982.
 129. Ebara, A., and K. Kuwasawa. The initiation site for spontaneous electrical activity in the oyster ventricle. Ann. Zool. Jpn. 48: 219–266, 1975.
 130. Ebara, A., H. Akiyama, H. Yamagishi, and H. Ohshima. Propagation of impulse in the heart of the beetle Allomyrina dichotomous. Comp. Biochem. Physiol. [A] 97: 601–605, 1990.
 131. Ebara, A., H. Uesaka, and H. Yamagishi. Pacemaker activity in the heart of a beetle Allomyrina dichotomous. Comp. Biochem. Physiol. [A] 97: 223–228, 1990.
 132. Elekes, K., and K. S‐Rózsa. Synaptic organization of a multifunctional interneuron in the central nervous system of Helix pornatia L. Cell Tissue Res. 236: 677–683, 1984.
 133. Ellington, W. R. Phosphorus nuclear magnetic resonance studies of energy metabolism in molluscan tissues: effects of anoxia and ischemia on the intracellular pH and high energy phosphates in the ventricle of the whelk Busycon contrarium. J. Comp. Physiol. 153: 159–166, 1983.
 134. Ellington, W. R. Metabolic impact of experimental reductions of intracellular pH in molluscan cardiac muscle. In: Circulation, Respiration and Metabolism, edited by R. Gilles. Berlin: Springer‐Verlag, 1985, pp. 356–366.
 135. Elliott, E. J. Three types of acetylcholine response in bivalve heart muscle cells. J. Physiol. Lond. 300: 283–302, 1980.
 136. Evans, P. D., E. A. Kravitz, and B. R. Talamo. Octopamine release at two points along lobster nerve trunks. J. Physiol. 262: 71–89, 1976.
 137. Famme, P. Haemolymph circulation as a respiratory parameter in the mussel, Mytilus edulis L. Comp. Biochem. Physiol. 69: 243–247, 1981.
 138. Farley, R. D. Cardioregulation in the desert scorpion, Paruroctonus mesaensis. Comp. Biochem. Physiol. [C] 82: 377–387, 1985.
 139. Farley, R. D. Postsynaptic potentials and contraction pattern in the heart of the desert scorpion, Paruroctonus mesaensis. Comp. Biochem. Physiol. [A] 86: 121–131, 1987.
 140. Farrell, A. P. A review of cardiac performance in the teleost heart: intrinsic and humoral regulation. Can. J. Zool. 62: 523–536, 1984.
 141. Fenner, D. H. The respiratory adaptations of the podia and ampullae of echinoids. Biol. Bull. 145: 323–339, 1973.
 142. Fiedler, A., and R. Schipp. The role of the branchial heart complex in circulation of coleoid cephalopods. Experientia 43: 544–552, 1987.
 143. Fiedler, A., and R. Schipp. The effects of biogenic monoamines and related agonists and antagonists on the isolated perfused branchial heart of Sepia officinalis L. (Cephalopoda). Comp. Biochem. Physiol. [C] 97: 71–78, 1990.
 144. Field, L. H., and J. L. Larimer. The cardioregulatory system of crayfish: neuroanatomy and physiology. J. Exp. Biol. 62: 519–530, 1975.
 145. Field, L. H., and J. L. Larimer. The cardioregulatory system of crayfish: The role of circumoesophageal interneurons. J. Exp. Biol. 62: 531–543, 1975.
 146. Florey, E. Studies on the nervous regulation of the heart beat in decapod Crustacea. J. Gen. Physiol. 43: 1061–1081, 1960.
 147. Florey, E., and M. Rathmayer. The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: further evidence for a role as neurohormone. Comp. Biochem. Physiol. [C] 61: 229–237, 1978.
 148. Florey, E., and M. Rathmayer. Pharmacological characterization of cholinoreceptors of cardiac ganglion cells of crustaceans. Gen. Pharmacol. 11: 47–53, 1980.
 149. Florkin, M., and Jeuniaux. Hemolymph: composition. In: The Physiology of Insecta, edited by M. Rockstein. New York: Academic Press, 1974, vol. V, pp. 256–308.
 150. Foelix, R. Biology of Spiders English translation by Georg Thieme Cambridge, MA: Harvard University Press, 1982.
 151. Foettinger, A. Sur l'existence de l'haemoglobine chez les echinodermes. Archs. Biol. Paris 1: 405–413, 1880.
 152. Fourtner, C. R., and R. A. Pax. The contractile blood vessels of the earthworm, Lumbricus terrestris. Comp. Biochem. Physiol. [A] 42: 627–638, 1972.
 153. Franck, J.‐M. Activités des rosettes cilliées et leurs supports ultrastructuraux chez les Cténaires. Z. Zelforsch. 130: 527–544, 1972.
 154. Freadman, M. A., and W. H. Watson. Gills as possible accessory circulatory pumps in Limulus polyphemus. Biol. Bull. 177: 372–385, 1989.
 155. Freschi, J. E. Proctolin activates a slow, voltage‐dependent sodium current in motoneurons of the lobster cardiac ganglion. Neurosci. Lett. 106: 105–111, 1989.
 156. Freschi, J. E., and D. R. Livengood. Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion. J. Neurophysiol. 62: 984–995, 1989.
 157. Fretter, V., and Graham, A. British Prosobranch Molluscs: Their Functional Anatomy and Ecology London: Ray Society, 1962.
 158. Frösch, D., and K. Mangold. On the structure and function of a neurohemal organ in the eye cavity of Eledone cirrhosa (Cephalopoda). Brain Res. 111: 287–293, 1976.
 159. Fujiwara‐Tsukamoto, Y., K. Kuwasawa, and J. Okada. Anatomy and physiology of neural regulation of haemolymph flow in the lateral arteries of the isopod crustacean, Bathynomous doederleini. Comp. Physiol Basel, Karger. 11: 70–85, 1992.
 160. de Fur, P.R.L., and C. P. Mangum. The effects of environmental variables on the heart rates of invertebrates. Comp. Biochem. Physiol. [A] 62: 283–294, 1979.
 161. Furgal, S. M., and P. H. Brownell. Ganglionic circulation and its effects on neurons controlling cardiovascular functions in Aplysia californica. J. Exp. Zool. 244: 347–363, 1987.
 162. Furukawa, Y., and M. Kobayashi. Neural control of heart beat in the African giant snail, Achatina fulica Ferussac. I. Identification of heart regulatory neurones. J. Exp. Biol. 129: 279–293, 1987.
 163. Furukawa, Y., and M. Kobayashi. Neural control of heart beat in the African giant snail, Achatina fulica Ferussac. II. Interconnections among the heart regulatory neurones. J. Exp. Biol. 129: 295–307, 1987.
 164. Gardner, D. R., and B. L. Brezden. Ion channels in Lymnaea stagnalis heart ventricle cells. Comp. Biochem. Physiol. [A] 96: 79–85, 1990.
 165. Gaskell, J. F. The chromaffine system of annelids and the relation of this system to the contractile vascular system in the leech, Hirudo medicinalis: a contribution to the comparative physiology of the contractile vascular system and its regulators, the adrenalin secreting system and the sympathetic nervous system. Phil Trans. R. Soc. Lond. 205B: 153–211, 1914.
 166. Gauldie, R. W., and N. R. Renshaw. Arteriograms of a primitive mollusc. J. Moll. Stud. 44: 113–115, 1978.
 167. George, C. J., K. K. Nair, and P. T. Muthe. The pericardial membrane and its role in crustacean circulation. J. Anim. Morphol. Physiol. 2: 73–78, 1955.
 168. Goldstein, M. A., J. P. Schroeter, and L. H. Micheal. Role of the Z band in the mechanical properties of the heart. FASEB J. 5: 2167–2174, 1991.
 169. Gonzalez‐Fernandez, F., and R. G. Sherman. Cardioregulatory nerves in a spider. Neurosci. Abstr. 5: 246, 1979.
 170. Gonzalez‐Santander, R., and E. S. Garcia‐Blanco. Ultrastructure of the obliquely striated or pseudostriated muscle fibres of the cephalopods: Sepia, Octopus and Eledone. J. Submicrosc. Cytol. 4: 233–245, 1972.
 171. Gosline, J. M., and R. E. Shadwick. The biomechanics of the arteries of Nautilus, Nototodarus, and Sepia. Pacific Sci. 36: 283–296, 1982.
 172. Greenaway, P., and C. Farrelly. Vasculature of the gas exchange organs in air‐breathing brachyurans. Physiol. Zool. 63: 117–139, 1990.
 173. Greenberg, M. J., and D. A. Price. Relationships among the FMRFamide‐like peptides. Prog. Brain Res. 92: 25–37, 1992.
 174. Grega, D. S., and R. G. Sherman. Responsiveness of neurogenic hearts to octopamine. Comp. Biochem. Physiol. [C] 52: 5–8, 1975.
 175. Guyton, A. C. Textbook of Medical Physiology 8th edition. Philadelphia: Saunders, 1991.
 176. Hagiwara, S., and T. H. Bullock. Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. J. Cell. Comp. Physiol. 50: 35–47, 1957.
 177. Hallett, M. Lobster heart: electrophysiology of single cells including effects of the regulator nerves. Comp. Biochem. Physiol. [A] 39: 643–648, 1971.
 178. Hammersen, F., and H.‐W. Staudte. Beiträge zum Feinbau Blutgefäffe von Invertebraten. I. Die Ultrastruktur des Sinus lateralis von Hirudo medicinalis L. Z. Zellforsch. 100: 215–250, 1969.
 179. Hartline, D. K. Impulse identification and axon mapping of the nine neurons in the cardiac ganglion of the lobster Homarus americanus. J. Exp. Biol. 47: 327–340, 1967.
 180. Hartline, D. K. Integrative neurophysiology of the lobster cardiac ganglion. Am. Zool. 19: 53–65, 1979.
 181. Harvey, W. De Motu Cordis: an Anatomical Disputation Concerning the Movement of the Heart and Blood in Living Creatures. 1628 Translated by Gwyneth Whitteridge, Oxford: Blackwell, 1976.
 182. Hassal, C. H. Respiratory physiology of the crayfish Procambarus clarkii. M.Sc. thesis, University of Calgary, Calgary, Alberta, Canada, 1979.
 183. Hecht, H. H. Comparative physiological and morphological aspects of pacemaker tissue. Ann. N.Y. Acad. Sci. 127: 49–83, 1965.
 184. Heinrich, B. Temperature regulation of the sphinx moth Manduca sexta. II. Regulation of heat loss by control of blood circulation. J. Exp. Biol. 54: 153–166, 1971.
 185. Heinrich, B. Heat exchange in relation to blood flow between thorax and abdomen in bumblebees. J. Exp. Biol. 64: 561–585, 1976.
 186. Hernadi, L. Relationship between the distribution of serotonergic cell bodies and the running of vascular elements in the central nervous system of the snail, Helix pomatia. Comp. Biochem. Physiol. [A] 103: 85–92, 1992.
 187. Herried, C. F., V. F. La Russa, and C. R. De Fesi. Blood vascular system of the holothuroid Stichopus moebi. J. Morphol. 150: 423–452, 1976.
 188. Higgins, W. J., and M. J. Greenberg. Intracellular actions of 5‐hydroxytryptamine on the bivalve myocardium. II. Cyclic nucleotide‐dependent protein kinase and microsomal calcium uptake. J. Exp. Zool. 190: 305–316, 1974.
 189. Hildebrandt, J.‐P. Circulation in the leech, Hirudo medicinalis L. J. Exp. Biol. 134: 235–246, 1988.
 190. Hildebrandt, J.‐P., and I. Zerbst‐Boroffka. Effect of salt and volume loading on the circulation in the leech, Hirudo medicinalis L. J. Comp. Physiol. [B] 158: 553–557, 1988.
 191. Hill, R. B. Contractility cycle of an isolated gastropod ventricle. Experientia 23: 570–575, 1967.
 192. Hill, R. B., and H. Irisawa. The immediate effects of changed perfusion pressure and the subsequent adaption in the isolated ventricle of the marine gastropod Rapana thomasiana (Prosobranchia). Life Sci. 6: 1691–1696, 1967.
 193. Hill, R. B., and J. H. Welsh. Heart, circulation and blood cells. In: Physiology of Mollusca, edited by K. M. Wilbur and C. M. Yonge, London: Academic Press, 1966, vol. II, 126–174.
 194. Hill, R. B., and R. E. Yantorno. Inotropism and contracture of aplysiid ventricles as related to the action of neurohormors on resting and action potentials of molluscan hearts. Am. Zool. 19: 145–162, 1979.
 195. Hoar, W. S. General and Comparative Physiology Englewood Cliffs, NJ: Prentice‐Hall, 1983.
 196. Hoffmann, P. Uber electocardiogramme von evertebraten. Medesche Klin. 51: 2022–2024, 1910.
 197. Holman, G. M., B. J. Cook, and R. J. Nachman. Isolation, primary structure and synthesis of leucomyosuppressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut. Comp. Biochem. Physiol. [C] 85: 324–333, 1986.
 198. Hooper, S. L., and M. Moulins. Switching of a neuron from one network to another by sensory‐induced changes in membrane properties. Science 244: 1587–1589, 1989.
 199. Houlihan, D. F., C. Agnisola, N. M. Hamilton, and I. Trara Genoino. Oxygen consumption of the isolated heart of Octopus vulgaris: effects of power output and hypoxia. J. Exp. Biol. 131: 137–157, 1987.
 200. Houlihan, D. F., G. Duthie, P. J. Smith, M. J. Wells, and J. Wells. Ventilation and circulation during exercise in Octopus vulgaris. J. Comp. Physiol. 156: 683–689, 1986.
 201. Howse, H. D., V. J. Ferrans, and R. G. Hibbs. A light and electron microscopic study of the heart of a crayfish, Procambarus clarkii (Giraud). I. Histology and histochemistry. J. Morphol. 131: 237–252, 1970.
 202. Hoyle, G. Muscle and neuromuscular physiology. In: Physiology of Mollusca, edited by K. M. Wilbur and C. M. Yonge, London: Academic Press, 1964, vol. I, pp. 313–351.
 203. Hyman, L. H. The Invertebrates. Vol. I. Protozoa through Ctenophora New York: McGraw‐Hill, 1940.
 204. Irisawa, H. Comparative physiology of cardiac pacemaker mechanism. Physiol. Rev. 58: 461–498, 1978.
 205. Irisawa, A., and K. Hama. Some observations on the structure of the mantis shrimp heart. Z. Zellforsch. 68: 674–688, 1965.
 206. Isgrove, A. Eledone Liverpool Marine Biological Committee Memoirs, no. 18. Edited by W. A. Herdman, London: Williams and Northgate, 1909.
 207. Ivanov, A. V. Pogonophora Translated by D. B. Carlisle. London: Academic Press, 1963, pp. 75–78.
 208. Johansen, K. Cardiac output in the large cephalopod Octopus dofleini. J. Exp. Biol. 42: 475–480, 1965.
 209. Johansen, K., C. Lenfant, and T. A. Mecklenburg. Respiration in the crab Cancer magister. Z. Vergl. Physiol. 70: 1–19, 1970.
 210. Johansen, K., and A. W. Martin. Circulation in the cephalopod Octopus dofleini. Comp. Biochem. Physiol. 5: 161–176, 1962.
 211. Johansen, K., and A. W. Martin. Circulation in a giant earthworm, Glossoscolex giganteus. J. Exp. Biol. 43: 333–347, 1965.
 212. Jones, D. R., P. G. Bushnell, B. K. Evans, and J. Baldwin. Circulation in the Gippsland giant earthworm Megascolides australis. Physiol. Zool. 67 (6): 1345–1359, 1995.
 213. Jones, H. D. The circulatory system of gastropods and bivalves. In: The Mollusca, edited by A. S. M. Saleuddin and K. M. Wilbur. New York Academic Press, (2), 1983, pp. 189–238.
 214. Jones, H. D. In vivo cardiac pressure, heart rate and heart mass of Busycon canaliculatum (L.). J. Exp. Biol. 140: 257–271, 1988.
 215. Jones, H. D., and D. Peggs. Hydrostatic and osmotic pressures in the heart and pericardium of Mya arenaria and Anodonta cygnea. Comp. Biochem. Physiol. [A] 76: 381–385, 1983.
 216. Jones, H. D., and E. R. Trueman. Locomotion of the limpet, Patella vulgata L. J. Exp. Biol. 52: 201–216, 1970.
 217. Jones, J. C. The circulatory system of insects. In: Physiology of the Insecta, edited by M. Rockstein. 1964, pp. 1–107.
 218. Jorgensen, D. D., S. K. Ware, and J. R. Redmond. Cardiac output and tissue blood flow in the abalone, Haliotis cracherodii (Mollusca, Gastropoda). J. Exp. Zool. 231: 309–324, 1984.
 219. Josephson, R. K. Extensive and intensive factors determining the performance of striated muscle. J. Exp. Zool. 194: 135–153, 1975.
 220. Keller, R. Crustacean neutropeptides: structures, functions and comparative aspects. Experientia 58: 439–448, 1992.
 221. Kiefer, G. Pharmakologische Untersuchungen Uber den Automatismu sder Lateralherzen des Regenwurmes Lumbricus terrestris Linne. Z. Wiss. Zool. 162: 356–367, 1959.
 222. Kihara, A., and K. Kuwasawa. A neuroanatomical and electrophysiological analysis of nervous regulation in the heart of an isopod crustacean, Bathynomus doederleini. J. Comp. Physiol. 154: 883–894, 1984.
 223. Kihara, A., Kuwasawa, K., and T. Yazawa. Neural control of the cardio‐arterial valves in an isopod crustacean, Bathynomus doerderleini: excitatory and inhibitory junctional potentials. J. Comp. Physiol. 157: 529–536, 1985.
 224. Kimura, Y., S. Terakawa, K. Hsu, and Y. H. Ji. Ionic composition of the haemolymph of the Chinese scorpion, Buthus matensis. Comp. Biochem. Physiol. [A] 91: 323–325, 1988.
 225. Kling, G., and P. M. Jakobs. Cephalopod myocardial receptors: pharmacological studies on the isolated heart of Sepia officinalis (L.). Experientia 43: 511–524, 1987.
 226. Kling, G., and R. Schipp. Comparative and cytochemical analysis of the cephalopod systemic heart and its innervation. Experientia 43: 502–511, 1987.
 227. Kobayashi, M. Innervation and control of the heart of a gastropod, Rapana. Experientia 43: 981–985, 1987.
 228. Kobayashi, M., Y. Muneoka, and M. Fujiwara‐Sakata. Involvement of neuropeptides in the regulation of heart beat of the African Giant Snail, Achatina fulica Fèrussac. In: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System, edited by R. B. Hill, K. Kuwasawa, B. R. McMahon, and T. Kutamoto. Comp. Physiol. Basel: Karger: 211–219, 1992.
 229. Kobierski, L. A., B. S. Beltz, B. A. Trimmer, and E. A. Kravitz. FMRFamide‐like peptides of Homarus americanus: distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. J. Comp. Neurol. 266: 1–15, 1987.
 230. Koch, U. T., and J. Koester. Time sharing of heart power: cardiovascular adaptations to food‐arousal in Aplysia. J. Comp. Physiol. 149: 31–42, 1982.
 231. Koester, J., and U. T. Koch. Neural control of the circulatory system in Aplysia. Experientia 43: 972–980, 1987.
 232. Kozloff, E. N. Invertebrates Toronto: Saunders, 1990, 866 pp.
 233. Krahl, B., and I. Zerbst‐Boroffka. Blood pressure in the leech Hirudo medicinalis. J. Exp. Biol. 107: 163–168, 1983.
 234. Krigsman, B. J., and G. A. Divaris. Contractile and pacemaker mechanisms of the heart of molluscs. Biol. Rev. 30: 1–39, 1955.
 235. Krogh, A. The rate of diffusion of gases through animal tissues with some remarks on the coefficient of invasion. J. Physiol. (Lond.) 52: 3391–3408, 1919.
 236. Krontiris‐Litowitz, J. K., B. F. Cooper, and E. T. Walters. Humoral factors released during trauma of Aplysia body wall. I. Body wall contraction, cardiac modulation, and central reflex suppression. J. Comp. Physiol. 159B: 211–223, 1989.
 237. Kuhlman, J. R., C. Li, and R. L. Calabrese. FMRF‐amide‐like substances in the leech. I. Immunocytochemical localization. J. Neurosci. 5: 2301–2309, 1985.
 238. Kuhlman, J. R., C. Li, and R. L. Calabrese. FMRF‐amide‐like substances in the leech. II. Bioactivity on the heartbeat system. J. Neurosci. 5: 2310–2317, 1985.
 239. Kuramoto, T. Cardiac activity and pressure change in the lateral pericardium of the unrestrained lobster Panulirus japonicus. Physiol. Zool. 63: 182–189, 1990.
 240. Kuramoto, T., and A. Ebara. Effects of perfusion pressure on the isolated heart of the lobster, Panulirus japonicus. J. Exp. Biol. 109: 121–140, 1984.
 241. Kuramoto, T., and A. Ebara. Neurohormonal modulation of the cardiac outflow through the cardioarterial valve in the lobster. J. Exp. Biol. 111: 123–130, 1984.
 242. Kuramoto, T., and A. Ebara. Effects of perfusion pressure on the bursting neurones in the intact or segmented cardiac ganglion of the lobster, Panulirus japonicus. J. Neurosci. Res. 13: 569–580, 1985.
 243. Kuramoto, T., and A. Ebara. Combined effects of 5‐hydroxytryptamine and filling pressure on the isolated heart of the lobster, Panulirus japonicus. J. Comp. Physiol. [B] 158: 403–412, 1988.
 244. Kuramoto, T., and A. Ebara. Combined effects of octopamine and filling pressure on the isolated heart of the lobster, Panulirus japonicus. J. Comp. Physiol. [B] 161: 339–347, 1991.
 245. Kuramoto, T., E. Hirose, and M. Tani. Neuromuscular transmission and hormonal modulation in the cardioarterial valve of the lobster, Homarus americanus. Comp. Physiol. Basel: Karger. 11: 62–69, 1992.
 246. Kuramoto, T., and K. Kuwasawa. Ganglionic activation of the myocardium of the lobster, Panulirus japonicus. J. Comp. Physiol. 139: 67–76, 1980.
 247. Kuramoto, T., and H. Yamagishi. Physiological anatomy, burst formation, and burst frequency of the cardiac ganglion of crustaceans. Physiol. Zool. 63: 102–116, 1990.
 248. Kuwasawa, K. Effects of ACh and IJPs on the AV valve and ventricle of Dolabella auricularia. Am. Zool. 19: 129–143, 1979.
 249. Kuwasawa, K., and R. B. Hill. Interaction of inhibitory and excitatory junctional potentials in the control of a myogenic myocardium: the ventricle of Busycon canaliculatum. Experientia 28: 800–801, 1972.
 250. Kuwasawa, K., and R. B. Hill. Regulation of ventricular rhythmicity in the hearts of prosobranch gastropods. In: Neurobiology of Invertebrates: Mechanisms of Rhythm Regulation, edited by J. Salanki. Budapest: Akademiai Kiado, 1973, pp. 143–165.
 251. Kuwasawa, K., and R. B. Hill. Junctional potentials in molluscan cardiac muscle. Life Sci. 12: 365–372, 1973.
 252. Kuwasawa, K., S. Matsumura, and M. Kurokawa. Immunocytochemical and physiological studies of FMRFamide, catch‐relaxing peptide and GWamide in the heart of molluscs. In: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System, edited by R. B. Hill, K. Kuwasawa, B. R. McMahon, and T. Kuramoto. Comp. Physiol. Basel: Karger, 11: 220–230, 1992.
 253. Kuwasawa, K., H. Neal, and R. B. Hill. Afferent pathways in the innervation of the ventricle of a prosobranch gastropod Busycon canaliculatum L. J. Comp. Physiol. 96: 73–83, 1975.
 254. Kuwasawa, K., T. Yazawa, and M. Kurokawa. Inhibitory neural control of the myocardium in opisthobranch molluscs. Experientia 43: 986–990, 1987.
 255. Lanzavecchia, G. Morphological modulations in helical muscles (Aschelminthes and Annelida). Int. Rev. Cytol. 51: 133–186, 1977.
 256. Lawrence, J. M. A Functional Biology of Echinoderms London: Croom Helm, 1987, pp. 340.
 257. Lawrence, J. M., and J. M. Lane. The utilization of nutrients by postmetamorphic echinoderms. In: Echinoderm nutrition, edited by M. Jangoux and J. M. Lawrence, Rotterdam: A. A. Balkema, 1982, pp. 331–371.
 258. Lemche, H., and K. G. Wingstrand. The anatomy of Neopilina galathea Lemche. In: Galathea Report, edited by A. F. Brunn, S. Greve, R. Sparck, and T. Wolff. Copenhagen: Danish Science Press, 1959, vol. 3, pp. 9–71.
 259. Lemos, J. R., and A. Berlind. Cyclic adenosine monophosphate mediation of peptide neurohormone effects on the lobster cardiac ganglion. J. Exp. Biol. 90: 307–326, 1981.
 260. Lesser, W., and M. J. Greenberg. Cardiac regulation by endogenous SCPs and FMRFamide‐related peptides in the snail Helix aspersa. J. Exp. Biol. 178: 205–230, 1993.
 261. Lewis, J.G.E. The Biology of Centipedes Cambridge: Cambridge University Press, 1981.
 262. Li, C., and R. L. Calabrese. FMRFamide‐like substances in the leech. III. Biochemical characterization and physiological effects. J. Neurosci. 7: 595–603, 1987.
 263. Linacre, A., E. Kellet, S. Saunders, K. Bright, P. R. Benjamin, and J. F. Burke. Cardioactive neuropeptide Phe‐Met‐Arg‐Phe‐amide (FMRFamide) and novel related peptides are encoded in multiple copies by a single gene in the snail Lymnaea stagnalis. J. Neurosci. 10 (2): 412–419, 1990.
 264. Lloyd, P. E., I. Kupfermann, and K. R. Weiss. Two endogenous neuropeptides (SCPa and SCPb) produce cAMP‐mediated stimulation of cardiac activity in Aplysia. J. Comp. Physiol. 156: 659–667, 1985.
 265. Lloyd, P. E., I. Kupfermann, K. R. Weiss. Sequence of small cardioactive peptide A: A second member of a class of neuropeptides in Aplysia. Peptides 8: 179–184, 1987.
 266. Lloyd, P. E., A. C. Mahon, I. Kupfermann, J. L. Cohen, R. H. Scheller, and K. R. Weiss. Biochemical and immunocytological localization of molluscan small cardioactive peptides in the nervous system of Aplysia californica. J. Neurosci. 5: 1851–1861, 1985.
 267. Looss, A. Ueber neue und bekannte Trematoden aus Seeschildkröten. Zool. Jahrb. Abt. Systematik. Okol. Geograph. Tiere. 16: 411–894, 1902. Not available to authors. Cited in Martin and Johansen. 1965 (278).
 268. Luisada, A. Physiologie des organes contractiles de l'appareil circulatoire d'Octupus vulgaris exploree au moyen de l'electrographic. J. Physiol. Pathol. Gen. 30: 593–603, 1932.
 269. Mahon, A. C., P. E. Lloyd, K. R. Weiss, I. Kupfermann, and R. H. Scheller. The small cardioactive peptides A and B of Aplysia are derived from a common precursor molecule. Proc. Natl. Acad. Sci. U.S.A. 82: 3925–3929, 1985.
 270. Malpighi, L. Dissertacio Epistolica de Bombyce. London, 1669.
 271. Mandelbaum, D. E., J. Koester, M. Schonberg, and K. R. Weiss. Cyclic AMP mediation of the excitatory effect of serotonin in the heart of Aplysia. Brain Res. 177: 388–394, 1979.
 272. Mangold, E. Studein zur Physiologie des Krebsherzens, besonders über eine aktive Funktion des ‘Pericard’ bei Cancer pagurus. Z. Vergl. Physiol. 2: 184–208, 1925.
 273. Mantel, L. H., and L. L. Farmer. Osmotic and ionic regulation. Chapter 2 in: The Biology of Crustacea, edited by ed. L. H. Mantel. (Series editor, D. Bliss. New York: Academic Press, 1983.).
 274. Maranto, A. R., and R. L. Calabrese. Neural control of the hearts in the leech, Hirudo medicinalis. I. Anatomy, electrical coupling, and innervation of the hearts. J. Comp. Physiol. [A] 154: 367–380, 1984.
 275. Maranto, A. R., and R. L. Calabrese. Neural control of the hearts in the leech, Hirudo medicinalis. II. Myogenic activity and its control by heart motor neurons. J. Comp. Physiol. [A] 154: 381–391, 1984.
 276. Martin, A. W. Some invertebrate myogenic hearts: the hearts of worms and molluscs. In: Hearts and Heart‐Like Organs, edited by G. H. Bourne, New York: Academic Press, 1980, pp. 1–39.
 277. Martin, A. W. Excretion. In: The Mollusca, edited by A. S. M. Saleuddin and K. M. Wilbur. New York: Academic Press, 1983, Chapter 5: Part 2, pp. 353–407.
 278. Martin, A. W., F. M. Harrison, M. J. Huston, and D. M. Stewart. The blood volumes of some representative molluscs. J. Exp. Biol. 35: 260–279, 1958.
 279. Martin, A. W., and K. Johansen. Adaptions of the circulation in invertebrates. In: Handbook of Physiology, edited by W. F. Hamilton and P. Dow. Washington, DC: American Physiological Society, 1965, sect. 2, vol. III, pp. 2545–2581.
 280. Martin, A. W., and K. Johansen. Circulation in the giant earthworm, Glossoscolex giganteus. In: Physiological Adaptations in Vertebrates, edited by S. C. Wood, R. E. Weber, A. R. Hargens, and R. W. Millard, Lung Biology in Health and Disease, vol. 56. New York: Marcel Dekker, 1992, pp. 315–321.
 281. Martin, A. W., and V. R. Meenakshi. The conversion of sodium benzoate to hippuric acid by a cephalopod mollusc. J. Comp. Physiol. 94: 287–296, 1974.
 282. Martin, G. G., J. H. Hose, and C. J. Corzine. Morphological comparison of major arteries in the ridgeback prawn, Sicyonia ingentis. J. Morphol. 200: 175–183, 1989.
 283. Martin, R. Fine structure of the neurosecretory system of the vena cava in Octopus. Brain Res. 8: 201–205, 1968.
 284. Martin, R., and K. H. Voigt. The neurosecretory system of the octopus vena cava: a neurohemal organ. Experientia 43: 537–543, 1987.
 285. Matsui, K. Effects of stretching on the beat of the isolated ventricle in the mollusc, Dolabella auricula. Annot. Zool. Japon. 34: 51–59, 1961.
 286. Matsui, K., and K. Kuwasawa. Spontaneous inhibitory postsynaptic potentials in the cardiac ganglion preparation of the lobster Panulirus Japonicus. Comp. Biochem. Physiol. [A]. 44a: 953–965, 1973.
 287. Matsui, K., T. Minamizawa, and N. Ai. Effect of stretching on the beat of a single muscle bundle preparation from a molluscan heart. Zool. Mag. 70: 395–401, 1961.
 288. Mayeri, E. Functional organization of the cardiac ganglion of the lobster, Homarus americanus. J. Gen. Physiol. 62: 448–472, 1973.
 289. Maynard, D. M. Activity in a crustacean ganglion. I. Cardioinhibition and acceleration in Panulirus argus. Biol. Bull. 104: 156–170, 1953.
 290. Maynard, D. M. Circulation and heart function. In: The Physiology of Crustacea, edited by H. P. Wolvekamp and T. H. Waterman. New York: Academic Press, 1960, vol. 1, pp. 161–226.
 291. Maynard, D. M. Cardiac inhibition in decapod Crustacea. In: Nervous Inhibition, edited by E. Florey. New York: Pergamon Press, 1961, pp. 144–178.
 292. Maynard, E. A. Microscopic localization of cholinesterases in the nervous system of the lobsters Panulirus argus and Homarus americanus. Tiss. Cell 3: 215–250, 1971.
 293. Maynard, D. M., and J. H. Welsh. Neurohormones of the pericardial organs of brachyuran Crustacea. J. Physiol. 149: 215–227, 1959.
 294. McGaw, I., C. N. Airriess, and B. R. McMahon. Peptidergic modulation of cardiovascular dynamics in the Dungeness crab Cancer magister. J. Comp. Physiol. 164B: 103–111, 1994.
 295. McLaughlin, P. A. Comparative Morphology of Recent Crustacea San Francisco: Freeman, 1980.
 296. McLaughlin, P. A. Internal anatomy. In: L. Mantel. Internal Anatomy and Physiological Regulation, vol. 5. of the Biology of Crustacea, edited by D. E. Bliss, New York: Academic Press, 1983, pp. 1–53.
 297. McMahon, B. R. Oxygen uptake and acid‐base balance during activity in decapod crustaceans. In: Locomotion and Energetics in Arthropods, edited by C. F. Herried and C. R. Fortner, New York: Plenum, 1981, pp. 299–335.
 298. McMahon, B. R. Factors controlling the distribution of cardiac output in Crustacea. In: R. B. Hill, K. Kuwasawa, B. R. McMahon, and T. Kuramoto, Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System, Comp. Physiol. ???edited by Basel: Karger, Vol 11: 51–61, 1992.
 299. McMahon, B. R., W. W. Burggren, A. J. Pinder, M. G. Wheatly, and A. Doyle. Air exposure and physiological compensation in a tropical intertidal chiton, Chiton stokesii (Mollusca, Polyplacophora). Physiol. Zool. 64: 728–747, 1991.
 300. McMahon, B. R., and L. E. Burnett. The crustacean open circulatory system revisited: a review. Physiol. Zool. 63: 35–71, 1990.
 301. McMahon, B. R., D. G. McDonald, and C. M. Wood. Ventilation, oxygen uptake and hemolymph oxygen transport following enforced exhaustive activity in the Dungeness crab Cancer magister. J. Exp. Biol. 80: 271–285, 1979.
 302. McMahon, B. R., and C. L. Reiber. Effects of proctolin in controlling the distribution of cardiac output in the lobster. FASEB J. 5: A1507, 1991.
 303. McMahon, B. R., and J. L. Wilkens. Simultaneous apnoea and bradycardia in the lobster Homarus americanus. Can. J. Zool. 50: 165–170, 1972.
 304. McMahon, B. R., and J. L. Wilkens. Respiratory and circulatory responses to hypoxia in the lobster Homarus americanus. J. Exp. Biol. 62: 637–655, 1975.
 305. McMahon, B. R., and J. L. Wilkens. Periodic respiratory and circulatory performance in the red rock crab C. productus. J. Exp. Zool. 202: 363–374, 1977.
 306. McMahon, B. R., and J. L. Wilkens. Ventilation, perfusion and oxygen consumption. In: L. Mantel (Ed.) Internal Anatomy and Physiological Regulation, vol. 5. of Biology of Crustacea, edited by D. E. Bliss, New York: Academic Press, 1983, pp. 289–372.
 307. Mercier, A. J., I. Orchard, V. Te Brugge, and M. Skerrett. Isolation of two FMRFamide‐related peptides from crayfish pericardial organs. Peptides 14: 137–143, 1993.
 308. Mercier, A. J., and R. T. Russenes. Modulation of isolated crayfish hearts by FMRFamide‐related peptides. Biol. Bull. 182: 333–340, 1992.
 309. Miller, M. M., J. A. Benson, and A. Berlind. Excitatory effects of dopamine on the cardiac ganglia of the crabs Portunus sanguinolentus and Podophthalmus vigil. J. Exp. Biol. 198: 97–118, 1984.
 310. Miller, M. W., and R. E. Sullivan. Some effects of proctolin on the cardiac ganglion of the Maine lobster, Homarus americanus (Milne Edwards). J. Neurobiol. 12: 629–639, 1981.
 311. Miller, T. A. Cockroach heart response to cardioaccelerators. Entomologia Exp. Appl. 12: 53–61, 1969.
 312. Miller, T. A. Electrophysiology of the insect heart. Chapter 4 in: Insect Physiology, edited by M. Rockstein. New York: Academic Press, 1973, vol. V, pp. 169–201.
 313. Miller, T. A. Neural versus neurohormonal control of insect heartbeat. Am. Zool. 19: 77–86, 1979.
 314. Miller, T. A. Structure and physiology of the circulatory system. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology, edited by G. Kerkut and T. Gilbert. New York: Pergamon Press, 1985, vol. 3, pp. 289–354.
 315. Millot, N., and H. G. Vevers. Axial organ and fluid circulation in echinoids. Nature 204: 1216–1217, 1964.
 316. Mommsen, T. P., P. W. Hochachka, and C. J. French. Metabolism of arginine, proline and ornithine in tissues of the squid, Illex illecebrosus. Can. J. Zool. 61: 1835–1846, 1983.
 317. Nagle, G. T. The molluscan neuropeptide FMRFamide: calcium‐dependent release and blood levels in Macrocallista (Bivalvia). Life Sci. 30: 803–807, 1982.
 318. Nakao, T. An electron microscopic study of the circulatory system in Nereis japonica. J. Morphol. 144: 217–236, 1974.
 319. Narain, A. S. A review of the structure of the heart of molluscs, particularly bivalves, in relation to cardiac function. J. Moll. Stud. 42: 46–62, 1976.
 320. Nardi, G., and H. Steinberg. Isolation and distribution of adenochrome(s) in Octopus vulgaris. Comp. Biochem. Physiol [B] 48: 453–461, 1974.
 321. Nicaise, G., and J. Amsellem. Cytology of muscle and neuromuscular junction. In: The Mollusca, edited by A. S. M. Saleuddin and K. M. Wilbur. New York: Academic Press, 1983, vol. 4, pp. 1–33.
 322. Nomura, H. The effect of stretching on the intracellular action potential from the cardiac muscle fibre of a marine mollusc, Dollabella auricula. Sci. Rep. Tokyo Kyoiku Daigaku Sect. B 11: 153–165, 1963.
 323. Ocorr, K. A., and A. Berlind. The identification and localization of a catecholamine in the motor neurons of the lobster cardiac ganglion. J. Neurobiol. 14: 51–59, 1983.
 324. Paciotti, G. F., and W. J. Higgins. Potentiation of the 5‐Hydroxytryptamine‐induced increases in myocardial contractility in Mercenaria mercenaria ventricle by forskolin. Comp. Biochem. Physiol [C] 80: 325–329, 1985.
 325. Painter, S. D. FMRFamide inhibition of a molluscan heart is accompanied by increases in cyclic AMP. Neuropeptides 3: 19–27, 1982.
 326. Painter, S. D., and M. J. Greenberg. A survey of the responses of bivalve hearts to the molluscan neuropeptide FMRFamide and to 5‐hydroxytryptamine. Biol. Bull. 162: 311–332, 1982.
 327. Parker, T. J., and W. A. Haswell. A Text Book of Zoology Vol. 1. 4th edition. London: Macmillan, 1930, pp. 816.
 328. Paul, R. Gas exchange, circulation and energy metabolism in Arachnids. In: Strategies of Physiological Adaptation, edited by S. C. Wood, R. Milard, A. Hargens, and R. Weber. Lung Biology in Health and Disease. New York: Marcel Dekker, 1989.
 329. Paul, R. J., S. Bihlmayer, M. Colmorgen, and S. Zahler. The open circulatory system of spiders (Eurypelma californicum, Pbolus phalangioides): a survey of functional morphology and physiology. Physiol. Zool. 67: 1360–1382, 1994.
 330. Paul, R. J., K. Tiling, P. Focke, and B. Linzen. Heart and circulatory functions in a spider (Eurypelma californicum): the effects of hydraulic force generation. J. Comp. Physiol. [B] 158: 673–687, 1989.
 331. Paul, R. J., S. Zaher, R. Werner, and J. Markl. Adaptation of an open circulatory system to the oxidative capacity of different muscle cell types. Naturwissenschaften 78: 134–135, 1991.
 332. Payza, K. FMRFamide receptors in Helix aspersa. Peptides 8: 1065–1074, 1987.
 333. Pelseneer, P. Mollusca. In: A Treatise on Zoology, edited by E. R. Lankester, London: Adams and Charles Black, 1906, part 5.
 334. Peterson, E. L., and R. L. Calabrese. Dynamic analysis of the rhythmic neural circuit in the leech Hirudo medicinalis. J. Neurophsyiol. 47: 256–271, 1982.
 335. Potts, W.T.W. The rate of urine production of Anodonta cygnea. J. Exp. Biol. 31: 614–618, 1954.
 336. Price, D. A. FMRFamide: assays and artifacts. In: Molluscan Neuroendocrinology, edited by J. Lever and H. H. Boer, Amsterdam: North‐Holland Publishing Company, 1986, pp. 184–190.
 337. Price, D. A., N. W. Davies, K. E. Doble, and M. J. Greenberg. The variety and distribution of FMRFamide‐related peptides in the molluscs. Zool. Sci. 4: 395–410, 1987.
 338. Price, D. A., and M. J. Greenberg. The structure of a molluscan cardioexcitatory neuropeptide. Science 197: 670–671, 1977.
 339. Prosser, C. L. Circulation of body fluids. In: ed. Comparative Animal Physiology, edited by C. L. Prosser, Philadelphia: Saunders, 1973, pp. 822–856.
 340. Prosser, C. L., and G. L. Zimmerman. Effects of drugs on the hearts of Arenicola and Lumbricus. Physiol. Zool. 16: 77–83, 1943.
 341. Ramsay, J. A. A Physiological Approach to Lower Animals Cambridge: Cambridge University Press 1952.
 342. Randall, D. G., and P. S. Davie. The hearts of urochordates and cephalochordates. In: Hearts and Heart‐like Organs, edited by G. H. Bourne, New York: Academic Press, 1980, pp. 40–57.
 343. Redmond, J. R., D. D. Jorgenson, and G. B. Bourne. Circulatory physiology of Limulus. In: Physiology and Biology of Horsehoe Crabs: Studies on Normal and Environmentally Stressed Animals, New York: Liss, 1982, pp. 144–146.
 344. Rees, J., L. Y. Davis, and H. M. Lenhoff. Paths and rates of food distribution in the colonial hydroid Pennaria. Comp. Biochem. Physiol. 34: 309–316, 1970.
 345. Reiber, C. L. The hemodynamics of the crustacean open circulatory system: hemolymph flow in the crayfish (Procambarus clarkii) and the lobster (Homarus americanus). Ph.D. dissertation. University of Massachusetts, Amherst, MA, 1992.
 346. Reiber, C. L., and B. R. McMahon. Redistribution of cardiac output in response to hypoxia: a comparison of the freshwater crayfish Procambarus clarkii and the lobster Homarus americanus. In: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System edited by R. B. Hill, K. Kuwasawa, B. R. McMahon, and T. Kuramoto. Comp. Physiol. Basel: Karger, vol 11: 22–28, 1992.
 347. Reynolds, P. A. Functional morphology of the perianal sinus and pericardium of Dentalium rectius (Mollusca: Scaphalopoda) with a reinterpretation of the scaphopod heart. Am. Malac. Bull. 7: 137–146, 1990.
 348. Robb, S., L. C. Packman, and P. D. Evans. Isolation, primary structure and bioactivity of SchistoFLRF‐amide, a FMRF‐amide‐like neuropeptide from the locust, Schistocerca gregaria. Biochem. Biophys. Res. Commun. 160: 850–856, 1989.
 349. Ruppert, E., and K. Carle. Morphology of metazoan circulatory systems. Zoomorphology 103: 193–208, 1983.
 350. Russell, C. W., and B. K. Evans. Cardiovascular anatomy and physiology of the black‐lip abalone, Haliotus ruber. J. Exp. Zool. 252: 105–117, 1989.
 351. Rutledge, P. R. Circulation and oxygen transport during activity in the crayfish, Pacifastacus leniusculus. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 11): R99–R105, 1981.
 352. Sanger, J. W. Cardiac fine structure in selected arthropods and molluscs. Am. Zool. 19: 9–27, 1979.
 353. Saunders, S. E., K. Bright, E. Kellett, P. R. Benjamin, and J. F. Burke. Neuropeptides Gly‐Asp‐Pro‐Phe‐Leu‐Arg‐Phe‐amide (GDPFLRFamide) and Ser‐Asp‐Pro‐Phe‐Leu‐Arg‐Phe‐amide (SDPFLRFamide) are encoded by an exon 3′ to Phe‐Met‐Arg‐Phe‐NH2 (FMRFamide) in the snail Lymnaea stagnalis. J. Neurosci. 11 (3): 740–745, 1991.
 354. Saver, M., and J. L. Wilkens. The effects of neurohormones on cardiac performance as measured by EMG and contractility in the shore crab, Carcinus maenas. Am. Zool. 32: 64A, 1992.
 355. Scheller, R. H., J. F. Jackson, L. B. McAllister, B. S. Rothman, E. Mayeri, and R. Axel. A single gene encodes multiple neuropeptides mediating a stereotyped behavior. Cell 32: 7–22, 1983.
 356. Schipp, R. General morphological and functional characteristics of the cephalopod circulatory system: an introduction. Experientia 43: 474–477, 1987.
 357. Schipp, R. The blood vessels of cephalopods: a comparative morphological and functional survey. Experientia 43: 525–536, 1987.
 358. Schipp, R., P. M. Jakobs, and A. Fiedler. Monoaminergic‐peptidergic interactions in neuroregulatory control of the cephalic aorta in Sepia officinalis L. (Cephalopoda). Comp. Biochem. Physiol. [C] 99: 421–430, 1991.
 359. Schwaub, E. R., R. A. Chilson, and C. D. Eddlemann. Heart rate modulation mediated by the ventral nerve cord in the honey bee Apis mellifera. J. Comp. Physiol. [B] 161: 602–610, 1991.
 360. Senff, R. E. Cardiac acceleration in response to stimulation of the segmental nerves in the adult cockroach Periplaneta americanus. Comp. Biochem. Physiol. [A] 40: 1009–1013, 1971.
 361. Shadwick, R. E., and J. M. Gosline. Elastic arteries in invertebrates: mechanics of the Octopus aorta. Science 213: 759–761, 1981.
 362. Shadwick, R. E., and J. M. Gosline. Physical and chemical properties of rubber‐like elastic fibres from the Octopus aorta. J. Exp. Biol. 114: 239–257, 1985.
 363. Shadwick, R. E., and J. M. Gosline. Mechanical properties of the Octopus aorta. J. Exp. Biol. 114: 259–284, 1985.
 364. Shadwick, R. E., J. M. Gosline, and W. K. Milsom. Arterial haemodynamics in the cephalopod mollusc Octopus dofleini. J. Exp. Biol. 130: 87–106, 1987.
 365. Shadwick, R. E., R. K. O'Dor, and J. M. Gosline. Respiratory and cardiac function during exercise in squid. Can. J. Zool. 68: 792–798, 1990.
 366. Shadwick, R. E., C. A. Pollock, and S. A. Stricker. Structure and biomechanical properties of crustacean blood vessels. Physiol. Zool. 63: 90–101, 1990.
 367. Sherman, I. W., and Sherman, V. G. The Invertebrates: Function and Form. A Laboratory Guide New York: Macmillan, 1971, p. 133.
 368. Sherman, R. G., and T. G. Burrage. Cellular development of the American lobster heart. Am. Zool. 19: 29–38, 1979.
 369. Sherman, R. G., C. R. Bursey, C. Fourtner, and R. A. Pax. Cardiac ganglia in spiders (Arachnida, Araneae). Experientia (Basel) 25: 438, 1969.
 370. Shick, M. A Functional Biology of Sea Anemones Chapman and Hall, 1991, pp. 385.
 371. Shigeto, N. Excitatory and inhibitory actions of acetylcholine on hearts of oyster and mussel. Am. J. Physiol. 218: 1773–1779, 1970.
 372. Shimihara, T. The inhibitory postsynaptic potential in the cardiac ganglion cell of the lobster, Panulirus japonicus. Sci. Rep. Tokyo Kyoiku Daigaku B 14: 9–26, 1969.
 373. Sigurdson, W. J., C. E. Morris, B. L. Brezden, and D. R. Gardner. Stretch activation of a K+ channel in molluscan heart cells. J. Exp. Biol. 127: 191–209, 1987.
 374. Siwicki, K. K., and C. A. Bishop. Mapping of proctolin‐like immunoreactivity in the nervous systems of lobster and crayfish. J. Comp. Neurol. 243: 435–453, 1986.
 375. Skelton, M., E. A. Alevizos, and J. Koester. Control of the cardiovascular system of Aplysia by identified neurons. Experientia 48: 809–817, 1992.
 376. Skelton, M. E., and J. Koester. The morphology, innervation and neural control of the anterior arterial system of Aplysia California. J. Comp. Physiol. 171: 141–155, 1992.
 377. Smith, L. S. Circulatory anatomy of the octopus arm. J. Morphol. 113: 261–266, 1963.
 378. Smith, P.J.S. Studies on the Circulatory Organs of the Octopus, Eledone cirrhosa (Lam). Ph.D. dissertation. University of Aberdeen, Aberdeen, Scotland, 1979.
 379. Smith, P.J.S. The role of venous pressure in regulation of output from the heart of the octopus Eledone cirrhosa (Lam.). J. Exp. Biol. 93: 243–255, 1981.
 380. Smith, P.J.S. The octopod ventricular cardiogram. Comp. Biochem. Physiol. [A] 70: 103–105, 1981.
 381. Smith, P.J.S. The contribution of the branchial heart to the accessory branchial pump in the Octopoda. J. Exp. Biol. 98: 229–237, 1982.
 382. Smith, P.J.S. Molluscan circulation: haemodynamics and the heart. In: Circulation, Respiration and Metabolism, edited by R. Gilles. Berlin: Springer‐Verlag, 1985, pp. 344–355.
 383. Smith, P.J.S. Cardiac performance in response to loading pressures for two molluscan species, Busycon canaliculatum (L.) (Gastropoda) and Mercenaria mercenaria (L.) (Bivalvia). J. Exp. Biol. 119: 301–320, 1985.
 384. Smith, P.J.S. Cardiac output in the Mollusca: scope and regulation. Experientia 43: 956–965, 1987.
 385. Smith, P.J.S. Integrated cardiovascular control in the Mollusca. Physiol. Zool. 63: 12–34, 1990.
 386. Smith, P.J.S., and P. R. Boyle. The cardiac innervation of Eledone cirrhosa (Lamarck) (Mollusca: Cephalopoda). Phil. Trans. R. Soc. (Lond.) B300: 493–511, 1983.
 387. Smith, P.J.S., and R. B. Hill. Cardiac performance in response to loading pressures and perfusion with 5‐hydroxytryptamine in the isolated heart of Busycon canaliculatum (Gastropoda, Prosobranchia). J. Exp. Biol. 123: 243–253, 1986.
 388. Smith, P.J.S., and R. B. Hill. Modulation of output from an isolated gastropod heart: effects of acetylcholine and FMRFamide. J. Exp. Biol. 127: 105–120, 1987.
 389. Smits, A., personal communication.
 390. Soffe, S. R., P. R. Benjamin, and C. T. Slade. Effects of environmental osmolarity on blood composition and light microscope appearance of neurosecretory neurones in the snail Lymnaea stagnalis (L.). Comp. Biochem. Physiol. [A] 61: 577–584, 1978.
 391. Sommerville, B. A. The circulatory physiology of Helix pomatia. I. Observations on the mechanisms by which Helix emerges from its shell and on the effects of body movement on cardiac function. J. Exp. Biol. 59: 275–282, 1973.
 392. Sommerville, B. A. Factors affecting the heart activity and blood pressure of the swan mussel, Anodonta cygnea. J. Exp. Biol. 62: 341–355, 1975.
 393. S‐Rósza, K. Analysis of the neural network regulating the cardio‐renal system in the central nervous system of Helix pomatia L. Am. Zool. 19: 117–128, 1979.
 394. S‐Rózsa, K. Organization of the multifunctional neural network regulating visceral organs in Helix pomatia L. (Molluscs, Gastropoda). Experientia 43: 965–972, 1987.
 395. S‐Rózsa, K., T. Kiss, and V.‐I. Szöke. On the role of bioactive substances in the rhythm regulation of heart muscle cells of Gastropods and Insecta. In: Neurobiology of Invertebrates: Mechanisms of Rhythm Regulation, edited by J. Salanki. Budapest: Akademiai Kiado, 1973, pp. 167–181.
 396. S‐Rózsa, K., and J. Salánki. Single neurone responses to tactile stimulation of the heart in the snail, Helix pomatia L. J. Comp. Physiol. 84: 267–279, 1973.
 397. S‐Rózsa, K., and J. Salánki. Responses of central neurones to the stimulation of heart chemoreceptors in the snail, Helix pomatia L. Annal. Biol. Tihany 40: 95–108, 1973.
 398. S‐Rózsa, K., J. Salánki, M. Véró, N. Kovacevic, and D. Konjevic. Neural networks regulating heart activity in Aplysia depilans and its comparison with other gastropod species. Comp. Biochem. Physiol. [A] 65: 61–68, 1980.
 399. Stangier, J. Biological effects of crustacean cardioactive peptide (CCAP), a putative neurohormone/neurotransmitter from crustacean pericardial organs. In: Comparative Aspects of Neuropeptide Function edited by E. Florey and G. E. Stefanoe, Manchester, England: Manchester University Press, 1991. pp. 201–210.
 400. Stangier, J., H. Dircksen, and R. Keller. Identification and immunocytochemical localization of proctolin in the pericardial organs of the shore crab, Carcinus maenas. Peptides 7: 67–72, 1987.
 401. Stangier, J., C. Hilbich, K. Beyreuth, and R. Keller. Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab, Carcinus maenas. Proc. Natl. Acad. Sci. U.S.A. 84: 575–579, 1987.
 402. Steinacker, A. The anatomy of the decapod crustacean auxiliary hearts. Biol. Bull. 154: 497–507, 1978.
 403. Steinacker, A. Neural and neurosecretory control of the decapod auxiliary heart. Am. Zool. 19: 76–75, 1979.
 404. Stewart, D. M., and A. W. Martin. Blood pressure in the tarantula, Dugesiella hentzi. J. Comp. Physiol. 88: 141–172, 1974.
 405. Stokes, D. R., R. K. Josephson, and R. B. Price. Structural and functional heterogeneity in an insect muscle. J. Exp. Zool. 194: 379–408, 1975.
 406. Storey, K. B., and J. M. Storey. Octopine metabolism in the cuttlefish, Sepia officinalis: octopine production by muscle and its role as aerobic substrate for non‐muscular tissues. J. Comp. Physiol. 131: 311–319, 1979.
 407. Straub, W. Zur Physiologie des Aplysienherzen. Pflugers Arch. 86: 504–532, 1901.
 408. Straub, W. Fortgesetzte Studien am Aplysienherzen (Dynamik Kreislauf und dessen Innervation) nebst bemerkungen zur vergleichenden Muskelphysiologie. Pflugers Arch. 103: 429–449, 1904.
 409. Stübel, H. Studien zur vergleichenden Physiologie der peristaltischen Bewegungen. IV. Die Peristaltik der Blutgefasse des Regenwurmes. Pflugers Arch. ges. Physiol. 139: 1–34, 1909.
 410. Sullivan, R. E. Stimulus‐coupled 3H‐serotonin release from identified neurosecretory fibers in the spiny lobster, Panulirus interruptus. Life Sci. 22: 1429–1438, 1978.
 411. Sullivan, R. E. A proctolin‐like peptide in crab pericardial organs. J. Exp. Zool. 210: 543–552, 1979.
 412. Sullivan, R. E., Friend, B. J., and D. L. Barker. Structure and function of spiny lobster ligamental nerve plexuses: evidence for synthesis, storage, and secretion of biogenic amines. J. Neurobiol. 8: 581–605, 1977.
 413. Sullivan, R. E., and M. W. Miller. Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion. J. Neurobiol. 15: 173–196, 1984.
 414. Sullivan, R. E., and M. W. Miller. Cholinergic activation of the lobster cardiac ganglion. J. Neurobiol. 21: 639–650, 1990.
 415. Sundermann, G. Die ultrastruktur der vakuolisierten Rundzellen von Loligo vulgaris, Lam. (Mollusca, Cephalopoda). Zool. J. Anat. 103: 93–104, 1980.
 416. Takeuchi, A., and N. Takeuchi. The effect on crayfish muscle of iontophoretically applied glutamate. J. Physiol. (Lond.) 170: 296–317, 1964.
 417. Tanaka, K., and K. Kuwasawa. Central outputs for extrinsic neural control of the heart in an isopod crustacean, Bathynomus doederleini: neuroanatomy and electrophysiology. Comp. Biochem. Physiol. [C] 98: 79–86, 1991.
 418. Tanaka, K., and K. Kuwasawa. Identification of cardio‐acceleratory neurons in the thoracic ganglion of the isopod crustacean Bathynomus doederleini. Brain Res. 544: 311–314, 1991.
 419. Tanaka, K., and K. Kuwasawa. Identification of cardio‐inhibitory neurons in the thoracic ganglion of the isopod crustacean Bathynomus doederleini. Brain Res. 558: 339–342, 1991.
 420. Tanaka, K., T. Yazawa, and K. Kuwasawa. Cholinergic and GABAergic control of the heart in the isopod crustacean Bathynomus doederleini. Comp. Physiol. Basel: Karger. 11: 132–140, 1992.
 421. Taylor, A. C., and B. R. Brand. Effects of hypoxia and body size on the oxygen consumption of the bivalve Arctica islandica (L.). J. Exp. Mar. Biol. Ecol. 19: 187–196, 1975.
 422. Taylor, D. L. Intra‐colonial transport of organic compounds and calcium in some Atlantic reef corals. Proceedings of the Third International Coral‐Reef Symposium, Rosientel School of Marine and Atmospheric Science, University of Miami, Miami, FL. 1977, pp. 431–436.
 423. Taylor, H. H., and P. Greenaway. The role of branchiostegites in gas exchange in a bimodally breathing crab Holthuisana transversa: evidence for a facultative change in the distribution of the respiratory circulation. J. Exp. Biol. 111: 103–121, 1984.
 424. Taylor, H. H., and E. W. Taylor. Observations of valve‐like structures and evidence for rectification of flow within the gill lamellae of the crab Carcinus maenas (Crustacea, Decapoda). Zoomorphology 106: 1–11, 1986.
 425. Taussig, R., J. R. Nambu, and R. H. Scheller. Evolution of peptides hormones: an Aplysia CRF‐like peptide. In: Neurohormones in Invertebrates edited by M. C. Thorndyke and G. J. Goldsworthy, Cambridge: Cambridge University Press, 1988, pp. 299–310.
 426. Taussig, R., and R. H. Scheller. The Aplysia FMRFamide gene encodes sequences related to mammalian brain peptides. DNA 5: 453–461, 1986.
 427. Tazaki, K., and I. M. Cooke. Spontaneous electrical activity and interaction of large and small cells in cardiac ganglion of the crab, Portunus sanguinolentus. J. Neurobiol. 42: 975–999, 1979.
 428. Tazaki, K., and I. M. Cooke. Isolation and characterization of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus. J. Neurobiol. 42: 1000–1021, 1979.
 429. Terwilliger, R., and N. Terwilliger. Structure and function of holothurian hemoglobins. In: Echinoderm Biology, edited by R. Burke. Rotterdam: Balkema, 1988, p. 589–595.
 430. Terzuolo, C. A., and T. H. Bullock. Acceleration and inhibition in crustacean ganglion cells. Archs. ital. Biol. 96: 117–134, 1958.
 431. Thompson, R. J., D. R. Livingston, and A. de Zwamm. Physiological and biochemical aspects of the valve snap and valve closure responses in the giant scallop, Plactopecten magellanicus. I. Physiology. J. Comp. Physiol. 137: 97–104, 1980.
 432. Thompson, W. J., and G. S. Stent. Neuronal control of heartbeat in the medicinal leech. I. Generation of the vascular contraction rhythm by heart motor neurons. J. Comp. Physiol. 111: 261–279, 1976.
 433. Tiang, C., and G. G. Haddad. A direct mechanism for sensing low oxygen levels by central neurons. Proc. Natl. Acad. Sci. U.S.A. 91: 7198–7201, 1994.
 434. Trimmer, B. A., L. A. Kobierski, and E. A. Kravitz. Purification and characterization of FMRFamidelike immunoreactive substances from the lobster nervous system: isolation and sequence analysis of two closely related peptides. J. Comp. Neurol. 266: 16–26, 1987.
 435. Trueman, E. R. Locomotion in Molluscs. In: The Mollusca, edited by A.S.M. Saleuddin and K. M. Wilbur. New York: Academic Press, 1983, vol. 4, pp. 155–198.
 436. Tublitz, N. J., and J. W. Truman. Insect cardioactive peptides: I. Distribution and molecular characteristics of two cardioexcitatory peptides in the tobacco hawkmoth Manduca sexta. J. Exp. Biol. 114: 365–379, 1985.
 437. Tublitz, N. J., and J. W. Truman. Insect cardioactive peptides: II. Neurohormonal control of heart activity by two cardioexcitatory peptides in the tobacco hawkmoth Manduca sexta. J. Exp. Biol. 114: 381–395, 1985.
 438. Uesaka, H., H. Yamagishi, and A. Ebara. Coordination of activities between the auricle and ventricle in an oyster, Crassostrea gigas. Comp. Biochem. Physiol. [A] 87: 689–694, 1987.
 439. Uesaka, H., H. Yamagishi, and A. Ebara. Stretch‐mediated interaction between the auricle and ventricle in an oyster, Crassostrea gigas. Comp. Biochem. Physiol. [A] 88: 221–227, 1987.
 440. Van Harreveld, A., and M. Mendelson. Glutamate induced contractions in crustacean muscle. J. Cell. Comp. Physiol. 54: 85–94, 1959.
 441. Volterra, A., and S. A. Seigelbaum. Role of two different guanine nucleotide‐binding proteins in the antagonistic modulation of the S‐type K+ channel by cAMP and arachidonic acid metabolites in Aplysia sensory neurons. Proc. Natl. Acad. Sci. U.S.A. 85: 7810–7814, 1988.
 442. Voltzow, J. Morphology of the pedal circulatory system of the marine gastropod Busycon contrarium and its role in locomotion (Gastropoda, Buccinacea). Zoomorphology 105: 395–400, 1985.
 443. von Raben, K. Veranderungen im Kiemendeckel und in der Kiemen einiger Brachyuren (Decapoden) im Verlauf der Anpas‐sung an die Feuchtluftatmung. Z. Wiss. Zool. 145: 425–461, 1934.
 444. Wallace, B. G. Distribution of AChE in cholinergic and non‐cholinergic neurons. Brain Res. 219: 190–195, 1981.
 445. Wallace, B. G., and J. W. Gillon. Characterization of acetylcholinesterase in individual neurons in the leech central nervous system. J. Neurosci. 2: 1108–1118, 1982.
 446. Wasserthal, L. T. Oscillating haemolymph circulation in a butterfly, Papillio machaon L., revealed by contact thermography and photocell measurements. J. Comp. Physiol. 139: 145–163, 1980.
 447. Wasserthal, L. T. Oscillating haemolymph “circulation” and discontinous tracheal ventilation in the giant silk moth, Attacus atlas L. J. Comp. Physiol. 145: 1–15, 22, 1981.
 448. Wasserthal, L. T. Antagonism between haemolymph transport and tracheal ventilation in an insect wing (Attacus atlas L.), J. Comp. Physiol. 147: 27–40, 1982.
 449. Watanabe, A., S. Obara, and T. Akiyama. Inhibitory synapses on pacemaker neurons in the heart ganglion of a stomatopod, Squilla oratoria. J. Gen. Physiol. 52: 908–924, 1968.
 450. Watson, W. H. III, and J. R. Groome. Modulation of the Limulus heart. Am. Zool. 29: 1287–1303, 1989.
 451. Watson, W. H. III, and T. Hoshi. Proctolin induces rhythmic contractions and spikes in Limulus heart muscle. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 18): R490–495, 1985.
 452. Watts, J. A., R. A. Koch, M. J. Greenberg, and S. K. Pierce. Ultrastructure of the heart of the marine mussel, Geukensia demissa. J. Morphol. 170: 301–319, 1981.
 453. Webber, D. M., and R. K. O'Dor. Respiration and swimming performance of short‐finned squid (Illex Illecebrosus). NATO Sci. Coun. Stud. 9: 133–138, 1985.
 454. Weeks, J. C., and W. B. Kristan Jr. Initiation, maintenance, and modulation of swimming in the medicinal leech by the activity of a single neuron. J. Exp. Biol. 77: 71–88, 1978.
 455. Weiss, K. R., H. Bayley, P. E. Lloyd, R. Tenenbaum, M. A. Gawinowicz‐Kolks, L. Buck, E. Cropper, S. C. Rosen, and I. Kupfermann. Purification and sequencing of neuropeptides contained in neuron R15 of Aplysia californica. Proc. Natl. Acad. Sci. U.S.A. 86: 2913–2917, 1989.
 456. Wells, M. J. The heartbeat of Octopus vulgaris. J. Exp. Biol. 78: 87–104, 1979.
 457. Wells, M. J. Circulation in cephalopods. In: The Mollusca, edited by A. S. M. Saleuddin and K. M. Wilbur. New York: Academic Press, 1983, vol. 5, pp. 239–290.
 458. Wells, M. J. The evolution of a circulatory system. In: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System, edited by R. B. Hill, K. Kuwasawa, B. R. McMahon, and T. Kuramoto. Comp. Physiol. Basel: Karger, 11: 5–14, 1992.
 459. Wells, M. J. The cephalopod heart: the evolution of a high‐performance invertebrate heart. Experientia 48: 800–808, 1992.
 460. Wells, M. J., G. Duthie, D. F. Houlihan, P.J.S. Smith, and J. Wells. Blood flow and pressure changes in exercising octopuses (Octopus vulgaris). J. Exp. Biol. 131: 175–187, 1987.
 461. Wells, M. J., and K. Mangold. The effects of extracts from neurosecretory cells in the anterior vena cava and pharyngoophthalmic vein upon the hearts of intact free‐moving octopuses. J. Exp. Biol. 84: 319–334, 1980.
 462. Wells, M. J., R. K. O'Dor, K. Mangold, and J. Wells. Oxygen consumption in movement by Octopus. Mar. Behav. Physiol. 9: 289–303, 1983.
 463. Wells, M. J., and P.J.S. Smith. The performance of the octopus circulatory system: a triumph of engineering over design. Experientia 43: 487–499, 1987.
 464. Wells, M. J., and J. Wells. Blood flow in acute hypoxia in a cephalopod. J. Exp. Biol. 122: 345–353, 1986.
 465. Welsh, J. A. Chemical Mediation in Crustacea. II. The action of acetylcholine and adrenalin on the isolated heart of Panulirus argus. Physiol. Zool. 12: 231–234, 1939.
 466. Wiersma, C.A.G., and E. Novitski. The mechanism of the nervous regulation of the crayfish heart. J. Exp. Biol. 19: 225–265, 1942.
 467. Wilkens, J. L. Re‐evaluation of the stretch sensitivity hypothesis of crustacean hearts: hypoxia, not lack of stretch, causes reduction in heart rate of isolated hearts. J. Exp. Biol. 176: 223–232, 1993.
 468. Wilkens, J. L. Regulation of the cardiovascular system in crayfish. Am. Zool. 35: 37–48, 1995.
 469. Wilkens, J. L., and A. J. Mercier. Peptidergic modulation of cardiac performance in isolated hearts from the shore crab, Carcinus maenas. Physiol. Zool. 66: 237–256, 1993.
 470. Wilkens, J. L., A. J. Mercier, and J. Evans. Cardiac and ventilatory responses to stress and to neurohormonal modulators by the shore crab, Carcinus maenas. Comp. Biochem. Physiol. [C] 82: 337–343, 1985.
 471. Wilkens, J. L., and B. R. McMahon. Intrinsic properties and extrinsic neurohormonal control of crab cardiac hemodynamics. Experientia 48: 827–834, 1992.
 472. Wilkens, J. L., and B. R. McMahon. Cardiac performance in the semi‐isolated heart of the crab Carcinus maenas. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 35): R781–R789, 1994.
 473. Wilkens, J. L., and R. L. Walker. Nervous control of crayfish cardiac hemodynamics. Mol. Comp. Physiol. Basel: Karger, 11: 115–122, 1992.
 474. Wilkens, J. L., L. A. Wilkens, and B. R. McMahon. Central control of cardiac and scaphognathite pacemakers in the crab Cancer magister. J. Comp. Physiol. 90: 119–137, 1974.
 475. Wilkens, L. A. Electrophysiological studies on the heart of the bivalve mollusc Modiolus demissus. I. The ionic basis of the resting potential. J Exp. Biol. 56: 273–292, 1972.
 476. Wilkens, L. A., and M. J. Greenberg. Effects of acetylcholine and 5‐HT and their ionic mechanisms of action on the electrical and mechanical activity of molluscan heart smooth muscle. Comp. Biochem. Physiol. [A] 45: 637–651, 1973.
 477. Willard, A. L. Effects of serotonin on the generation of the motor program for swimming by the medicinal leech. J. Neurosci. 1: 936–944, 1981.
 478. Willey, C. H. Studies on the lymph system of digenetic trematodes. J. Morphol. 50: 1–33, 1930.
 479. Wilson, R. S. The heart beat of the spider Heteropoda venatoria. J. Insect. Physiol. 13: 1309–1326, 1967.
 480. Witmer, V. A. Die Feinstruktur der kiemenherzen des cephalopoden Octopus joubini. Zool. Bietr. 20: 459–487, 1974.
 481. Wood, C. M., and D. G. Randall. Haemolymph gas transport, acid‐base regulation and anaerobic metabolism during exercise in the land crab (Cardisoma carnifex). J. Exp. Zool. 218: 23–35, 1981.
 482. Yamagishi, H., and E. Hirose. Nervous regulation of the myogenic heart in early juveniles of the isopod crustacean, Ligia exotica. Comp. Physiol. Basel: Karger, 11: 141–148, 1992.
 483. Yamagishi, H., H. Uesaka, and A. Ebara. Inter‐ and motor‐neuronal function of the cardioinhibitory nerve in the heart of the isopod crustacean, Ligia exotica. Comp. Biochem. Physiol. [A] 94: 471–476, 1989.
 484. Yazawa, T., and K. Kuwasawa. The cardio‐regulator nerves of the hermit crabs: anatomical and electrophysiological and identification of their distribution inside the heart. J. Comp. Physiol. [A] 154: 871–881, 1984.
 485. Yazawa, T., and K. Kuwasawa. The cardio‐regulator nerves of hermit crabs: multimodal activation of the heart by the accelerator axons. J. Comp. Physiol. [A] 155: 313–318, 1984.
 486. Yazawa, T., and K. Kuwasawa. Cholinergic, catecholaminergic and GABAergic mechanisms of synaptic transmission in the heart of the hermit crab. In: Frontiers in Crustacean Neurobiology, edited by K. Wiese, W.‐D. Krenz, J. Tautz, H. Reichert, and B. Mulloney. Basel: Birkhauser Verlag, 1990, pp. 401–406.
 487. Yazawa, T., and K. Kuwasawa. Intrinsic and extrinsic neural and neurohumoral control of the decapod heart. Experientia 48: 834–840, 1992.
 488. Yazawa, T., and K. Kuwasawa. Dopaminergic acceleration and GABAergic inhibition in extrinsic neural control of the hermit crab heart. J. Comp. Physiol. 174A: 65–75, 1994.
 489. Yokoyama. Proc. Imp. Acad. Tokyo. 15: 94, 1939. Not available to authors. Cited in J. C. Jones, 1964 (216).
 490. Young, J. Z. The Anatomy of the Brain of Octopus Oxford: Clarendon Press, 1971.
 491. Young, R. E. Correlated activities in the cardioregulatory nerves and ventilatory system in the Norwegian lobster, Hephrops norvegicus (L.). Comp. Biochem. Physiol. [A] 61: 387–394, 1978.
 492. Zerbst‐Boroffka, I. Blood volume as a controlling factor for body water homeostasis in Hirudo medicinalis. J. Comp. Physiol. 127: 343–347, 1978.
 493. Zerbst‐Boroffka, I., B. Bazin, A. Wenning. Nerve supply of the excretory system and the lateral vessels of the leech. Verh. Deutsch. Zool. Ges. 75: 341, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Brian R. McMahon, Jerrel L. Wilkens, Peter J. S. Smith. Invertebrate Circulatory Systems. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 931-1008. First published in print 1997. doi: 10.1002/cphy.cp130213