Comprehensive Physiology Wiley Online Library

Epithelial Transport

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Transporting Epithelia Are Sheets of Polar Cells
1.1 Epithelial Structure Involves Specialized Cell–Cell and Cell–Matrix Junctions
1.2 Epithelial Polarity Is Essential for Vectorial Transport
2 Transporting Epithelia Generate and Maintain Differences in Chemical Composition Between Fluid Compartments
2.1 Transepithelial Transport Involves Active Ion Transport
2.2 Passive Transport Processes also Contribute to Transepithelial Transport
2.3 Transepithelial Transport Involves Transcellular and Paracellular Pathways
2.4 Chemical and Electrical Gradients Couple Ion Fluxes in Epithelia
3 The Building Blocks of Epithelial Function Are Membrane Transporters
4 Mechanisms of Ion Transport
4.1 The Two‐Membrane Hypothesis: A General Epithelial‐Transport Model
4.2 Mechanisms of Transepithelial NaCl Transport in Absorptive Epithelia
4.3 Mechanisms of Ion Transport in Primary Cl−‐Transporting Epithelia
4.4 Mechanisms of Ion Transport in H+ — and HCO3−‐Transporting Epithelia
5 Mechanisms of Transepithelial Water Transport
5.1 Transepithelial Water Transport Is Linked to Transepithelial Salt Transport
5.2 Epithelia Are Widely Diverse in Their Water‐Transport Characteristics
5.3 Transepithelial Water Transport in Leaky Epithelia Is Nearly Isosmotic
5.4 Transepithelial Water Transport in Leaky Epithelia Can Be Transcellular and/or Paracellular
5.5 Water Permeation across Cell Membranes of Some Leaky Epithelia Is via Constitutive Pores
5.6 Mechanisms of Transepithelial Water Transport in ADH‐Sensitive Epithelia
5.7 Molecular Identity of Water Pores in Epithelial‐Cell Membranes
6 Mechanisms of Regulation of Transepithelial Transport
6.1 Rapid Regulation
6.2 Long‐term Regulation
6.3 Intramembrane Regulation and Cross‐Talk Mechanisms
Figure 1. Figure 1.

Epithelial cell junctions. Left: two adjacent epithelial cells viewed in a section normal to the apical surface. Right: lateral view of one cell. Abbreviations denote features shown in both diagrams: MV = microvilli; zo = zonula occludens; za = zonula adherens (or belt desmosome); sd = spot desmosome; gj = gap junction; hd = hemidesmosome; bl = basal lamina. Tight junction (junctional complex) includes zo and za.

Modified from Cereijido 112, with permission
Figure 2. Figure 2.

Main features of epithelial cell polarity. A. Diagram depicting structural polarity: MV = microvilli; G = Golgi apparatus; N = nucleus; M = mitochondria; BLI = basolateral‐membrane infoldings; zo = zonula occludens; za = zonula adherens; sd = spot desmosome; gj = gap junction; hd = hemidesmosome; (bl) = basal lamina. Positions of organelles are typical of most epithelial cells. B. Specific transport proteins are confined to different domains (apical or basolateral) of the plasma membrane. In example depicted, organic solute (OS, e.g., glucose) is transported into cell (across apical membrane) by secondary‐active transport via Na+‐OS cotransporters and out of cell (across basolateral membrane) by uncoupled passive transport via OS carriers. Na+ transport is downhill at apical membrane (via the cotransporters) and uphill at basolateral membrane (via the Na+, K+‐ATPase). The K+ channels in basolateral membrane mediate efflux of the K+ that enter the cell via the Na+, K+‐ATPase.

Figure 3. Figure 3.

Rapid and reversible changes in intracellular ion activities following removal of Na+ (replaced with tetramethylammonium, TMA+) or Cl (replaced with cyclamate) from apical bathing solution. Numbers on the left denote voltages (in mV) at the beginning of each record. A. Top, voltage measured by intracellular Na+‐selective electrode, referenced to the membrane voltage (VNa – Vcs), intracellular Na+ activity (aNai) scale on the right; bottom, transepithelial voltage (Vms). Mucosa‐positive change in Vms was caused by Na+‐TMA+ paracellular bi‐ionic potential. Na+ removal from apical bathing solution causes a rapid, reversible fall in aNai. B. Top, basolateral‐membrane voltage (Vcs); bottom, voltage measured by intracellular Cl‐selective electrode, referenced to the membrane voltage (VCl–Vcs), intracellular Cl activity (aCli) scale on the right. During exposure to Cl‐free mucosal medium, cell hyperpolarizes and aCli falls rapidly and reversibly. These results indicate that the Na+ and Cl transport pools are accessible to the ion‐sensitive microeletrode and hence involved the entire cytoplasm.

From Reuss 564, with permission
Figure 4. Figure 4.

A. Steady‐state equivalent circuit of an epithelium with one cell type and a paracellular pathway of finite conductance. Each element in the circuit (a: apical membrane, b: basolateral membrane, s: paracellular pathway) is represented by a Thévenin electrical equivalent, i.e., an electromotive force (EMF), E, in series with a resistance, R. The Thévenin equivalent is an acceptable representation of any combination of linear electrical elements at the steady state. B. Membrane voltages for an epithelium with the indicated values of EMFs (in mV) and resistances (in Ω·cm2). Polarities referred to basolateral solution (transepithelial values) or to adjacent solution (cell membrane values). Note that all voltages differ from the respective EMF values.

Modified from Reuss et al. 569, with permission
Figure 5. Figure 5.

Ion pumps in epithelial cells. A. Predicted general structure of α‐subunit of P‐type pump (representative of Na+, K+‐, Ca2+‐and H+,K+‐ATPases). The α‐subunit contains binding site(s) for transported substrate(s), ATPase activity, regulatory domains, and inhibitor binding sites. It is a single peptide chain, with amino and carboxyl termini in the cytoplasmic side, probably ten transmembrane α‐helices and ATP binding site in the second cytoplasmic loop. Based on Lingrel and Kunzweiler 420. B. Generalized catalytic cycle for P‐type ATPases modeled as countertransport pumps exchanging Na+ (A) for K+ (B), Ca2+ (A) for H+ (B), and H+ (B) for K+ (A) (Na+, K+‐, Ca2+‐ and H+, K+‐ATPase, respectively. E1 = conformation with ion‐binding sites accessible from cytoplasm, E2 = conformation with ion‐binding sites accessible from the extracellular face, E(A) or E(B) = ion “occluded” in the protein.

Modified from Sachs and Munson 597, with permission
Figure 6. Figure 6.

Transport mechanism in Na+‐absorptive epithelia. The two‐membrane hypothesis for Na+‐absorbing “tight” epithelia 366. At the apical‐cell membrane, Na+ entry is via an Na+‐channel blockable by amiloride. At the basolateral cell membrane, extrusion of Na+ is mediated by an Na+, K+‐ATPase inhibitable by ouabain. K+ “recycles” across the basolateral cell membrane via a K+ channel.

Modified from Reuss and Cotton 572, with permission
Figure 7. Figure 7.

Short‐circuit current technique. Epithelium (vertical line between ve's) is tightly mounted in the middle partition of an Ussing chamber, separating solutions of identical composition, at the same pressure. Current is applied across the epithelium with an external circuit (ce = current electrode) and the transepithelial voltage (Vt) is measured (ve = voltage electrode). The short‐circuit current (Isc) is the current needed to make Vt = 0. This current, in the conditions defined, is equivalent to the sum of active ion fluxes across the epithelium. Pitfalls in the use of this technique include: (1) improper short‐circuiting: series resistances in preparation produce voltage drops and the true transepithelial voltage is not zero; (2) the compositions of the bathing solution are different, i.e., there are passive (electrodiffusive or osmotic) driving forces that can account for net ion fluxes.

Figure 8. Figure 8.

Demonstration that some epithelia have “leaky” (high‐permeability) junctions. A. Voltage scanning in Necturus gallbladder epithelium. High‐conductance pathways for transepithelial current flow were detected with microelectrode (S) exploring electric field with respect to distant electrode in apical bathing solution (I). S was moved along apical surface while large current was passed across the tissue (electrodes A in the inset). Microelectrode path is shown with respect to cell borders; × = tip position during voltage measurement, over junction (J) or over cell (C). In voltage scan, downward deflections mean current sinks (high‐conductance pathway). This experiment demonstrates junctional location of a high‐conductance transepithelial pathway. B. Junctional region of rabbit gallbladder epithelial cells after exposure to La3+ on the apical side. Lanthanum is clearly seen in intercellular pathway, indicating junctional permeability. Specimen fixed in glutaraldehyde, postfixed in OsO4, and stained on grid with uranyl acetate and lead citrate. X 250,000.

A. From Frömter and Diamond 223, with permission. B. From Machen et al. 432, with permission
Figure 9. Figure 9.

Expected changes in epithelial‐cell solute and/or water content by lack of adjustment of solute transport rates at the two membranes. Center: salt‐absorbing epithelial cell at steady state, i.e., apical solute entry equals basolateral solute exit and cell solute content remains constant. Left: increases in solute content, by primary increase in entry (top) or primary decrease in exit (bottom). Right: decreases in solute content, by primary decrease in entry (top) or primary increase in exit (bottom). In all four instances, cell water volume would change in same direction as cell solute content, because of osmotic water flow (at least one of the cell membranes has a high water permeability).

From Reuss 563, with permission
Figure 10. Figure 10.

Mechanisms of maintenance of intracellular electroneutrality and solution electroneutrality during steady‐state transepithelial ion transport. In all diagrams, Na+ or K+ transport is the primary event, indirectly or directly coupled to anion flux in same direction or to cation flux in the opposite direction. Examples of epithelia in which the scheme depicted has been proven or is suspected are denoted in parentheses. A. Na+ and Cl fluxes are directly coupled by cotransport (mammalian renal distal tubule). B. K+ and Cl fluxes occur via independent channels; the fluxes could be “coupled” by the membrane voltage, both as driving force for electrodiffusion and as gating mechanism (amphibian gallbladder stimulated by cAMP). C. Na+ and K+ fluxes occur in opposite directions, via separate channels; they may be “coupled” by the membrane voltage (mammalian renal cortical collecting data). D. Absorptive Na+ and Cl transepithelial fluxes occur via different pathways, transcellular and paracellular, respectively (frog skin epithelium). E. Secretory Cl and Na+ fluxes occur via different pathways, transcellular and paracellular, respectively (airway epithelium).

Figure 11. Figure 11.

Transport mechanisms in “leaky” electroneutral NaCl‐absorbing epithelia. A. Na+ and Cl influxes across apical cell membrane via exchanges with H+ and , respectively. Cl exit across basolateral cell membrane is via Cl channels and/or via K+‐Cl cotransport. Na+ extrusion is mediated by Na+,K+‐ATPase. K+ recycles via channels (basolateral or both cell membranes). This model accounts for NaCl transport in most “leaky” NaCl‐absorptive epithelia. B. The mechanism of salt entry is Na+‐Cl cotransport (demonstrated for flounder urinary bladder and mammalian renal distal tubule and proposed for rabbit and Necturus gallbladder under certain conditions). Basolateral transport mechanisms as in top diagram. C. Mechanism of salt entry is Na+‐K+–2Cl cotransport (demonstrated for flounder intestine). Basolateral transport mechanisms as in top diagram.

Modified from Reuss and Cotton 572, with permission
Figure 12. Figure 12.

Transport mechanisms in a “leaky” rheogenic Na+‐absorbing epithelium. Na+ influx is by cotransport with organic solutes (OS, e.g., sugar or amino acid). The transporters at the basolateral cell membrane are as shown in Figure 11.

Modified from Reuss and Cotton 572, with permission
Figure 13. Figure 13.

Predicted secondary structure of human SGLT1. The protein consists of single chain of 664 amino acids, 12 putative transmembrane α‐helices, N‐glycosylation at Asn248, and cytoplasmic location of both amino and carboxyl termini. The carboxyl terminus is closely associated to the plasma membrane. Model for low‐affinity Na+‐glucose cotransporter SGLT2 is almost identical.

Modified from Hediger and Rhoads 303 with permission
Figure 14. Figure 14.

Predicted secondary structure of ROMK1. In contrast with other cloned ion channels, the protein has only two transmembrane α‐helices. The extracellular loop has an N‐glycosylation site and appears to be responsible for formation of the conductive pathway. Amino and carboxyl termini are on the cytoplasmic side. The carboxyl‐terminus region is long and contains the nucleotide‐binding domain (NBD).

Modified from Hebert and Ho 300, with permission
Figure 15. Figure 15.

Mechanisms of ion transport in Cl‐transporting epithelia. A. Transport model for exocrine‐gland Cl‐secreting epithelium. Intracellular [Cl] is maintained above electrochemical equilibrium by electroneutral Na+‐K+–2Cl cotransport across the basolateral cell membrane. Na+ influx is balanced by efflux via Na+, K+ ‐ATPase; K+ influxes are balanced by efflux via K+ channels. Transepithelial secretion is induced by activation of apical‐membrane Cl channel(s). B. Model of Cl transport in thick ascending limb of Henle's loop, a Cl‐absorptive epithelium. Cl entry across the apical membrane is mediated by Na+ ‐K+–2Cl cotransporter. Most basolateral Cl efflux proceeds through Cl channels.

A. Modified from Reuss and Cotton 572, with permission. B. Modified from Reeves and Andreoli 556, with permission
Figure 16. Figure 16.

Predicted secondary structure of CFTR. The protein consists of single peptide chain with two halves, each compromising six putative transmembrane α‐helices and a nucleotide‐binding domain (NBD). The two halves are linked by the R domain, a highly charged regulatory region. R domain possesses consensus phosphorylation sites for protein kinases A and C and Ca2+‐calmodulin kinase. ΔF508 deletion found in 70% of all CF cases is located in first NBD. Two consensus sites for N‐linked glycosylation are present between transmembrane domains 7 and 8.

Modified from Welsh et al. 747, with permission
Figure 17. Figure 17.

Predicted secondary structure for shark rectal gland Na+‐K+–2Cl cotransporter (NKCC1). The protein comprises 1,191 amino acid residues. Amino and carboxyl termini are on the cytoplasmic side. There are two domains of seven and five putative transmembrane α‐helices, respectively, joined by an extracellular loop containing several N‐glycosylation sites (branched lines). This predicted secondary structure is shared by other members of putative caution‐Cl cotransporter family (see text).

Modified from Xu et al. 763, with permission
Figure 18. Figure 18.

Basic mechanisms of ion transport in H+ and secretory epithelia. Carbonic anhydrase catalyzes formation of H+ and OH from water; is then formed by reaction of OH and CO2. Net result, shown in figure, is production of H+ and . In H+‐secreting epithelium there is apical‐membrane H+ extrusion and basolateral‐membrane extrusion. In secreting epithelium, polar expression of these transporters is reversed. Cl channel in parallel with exchanger maintains intracellular [Cl]. Precise basolateral‐membrane transporters vary among H+‐secreting epithelia (see text).

Figure 19. Figure 19.

Specific transport mechanisms in H+‐secreting epithelia: A. Renal proximal tubule. B. α‐intercalated cell of the renal collecting tubule. C. Oxyntic cell of the gastric mucosa. See text for details.

Figure 20. Figure 20.

Transport mechanisms in ‐secreting epithelia. Net operation is secretion and Cl absorption. Note that polarized expression of H+ and transporters is opposite to that in H+‐secreting epithelia.

Figure 21. Figure 21.

Mechanisms of water transport in leaky epithelia. Panel A. Three‐compartment model of Curran and MacIntosh 146. Because of solute entry (solid arrow) Cs(M) > Cs(A), where Cs is total solute concentration or osmolality. This causes osmotic water flow from compartment A to compartment M (open arrow). The elevation of the hydrostatic pressure in compartment M causes solution flow from compartment M into compartment B (open/solid arrow), regardless of the solute concentration (and hence osmotic pressure) in the latter. Modified from Whittembury and Reuss 753, with permission. Panel B. Standing‐gradient hypothesis of Diamond and Bossert 163. Solute transport (solid arrows) into channel (lateral intercellular space) causes a local increase in osmolality; water flows osmotically across bounding membranes (open arrows), “diluting” the solution in the channel. Transport toward open end is by bulk flow and diffusion. Modified from Reuss and Cotton 571, with permission. Panel C. Near‐isosmotic transport model. Because of high osmotic water permeability of cell membranes, differences in solution osmolality (Cs) needed to account for fluid transport are small, probably localized at epithelium‐solution interfaces. Salt transport causes dilution of solution on cis side and concentration of solution on trans side; these differences cause osmotic water flow from cis to trans. Magnitude of paracellular water flow is uncertain. Because of high surface area of lateral membranes and small volume of lateral intercellular spaces, space osmolality is “clamped” by cell osmolality, making longitudinal gradients small at most.

Figure 22. Figure 22.

Membrane topology and putative structure of aquaporin 1 (CHIP28). A. Predicted secondary structure: CHIP comprises two repeats of three putative transmembrane domains each. Amino and carboxyl termini are on the cytoplasmic side. There is a single N‐glycosylation site in loop A (not shown). Loops B and E contain highly conserved Asn‐Pro‐Ala motifs thought to contribute to the formation of the water pore. Loop E contains Cys189, the residue conferring Hg‐sensitivity to water permeation. B. Proposed structure of the water pore of a CHIP monomer. α‐helical transmembrane domains form the peripheral wall, whereas loops B and E assemble in the membrane to form the thin barrier accounting for the selectivity for water. The diagram shows a monomer that is functional per se, but CHIP monomers assemble into tetrameric complexes.

Modified from Engel et al. 180, with permission


Figure 1.

Epithelial cell junctions. Left: two adjacent epithelial cells viewed in a section normal to the apical surface. Right: lateral view of one cell. Abbreviations denote features shown in both diagrams: MV = microvilli; zo = zonula occludens; za = zonula adherens (or belt desmosome); sd = spot desmosome; gj = gap junction; hd = hemidesmosome; bl = basal lamina. Tight junction (junctional complex) includes zo and za.

Modified from Cereijido 112, with permission


Figure 2.

Main features of epithelial cell polarity. A. Diagram depicting structural polarity: MV = microvilli; G = Golgi apparatus; N = nucleus; M = mitochondria; BLI = basolateral‐membrane infoldings; zo = zonula occludens; za = zonula adherens; sd = spot desmosome; gj = gap junction; hd = hemidesmosome; (bl) = basal lamina. Positions of organelles are typical of most epithelial cells. B. Specific transport proteins are confined to different domains (apical or basolateral) of the plasma membrane. In example depicted, organic solute (OS, e.g., glucose) is transported into cell (across apical membrane) by secondary‐active transport via Na+‐OS cotransporters and out of cell (across basolateral membrane) by uncoupled passive transport via OS carriers. Na+ transport is downhill at apical membrane (via the cotransporters) and uphill at basolateral membrane (via the Na+, K+‐ATPase). The K+ channels in basolateral membrane mediate efflux of the K+ that enter the cell via the Na+, K+‐ATPase.



Figure 3.

Rapid and reversible changes in intracellular ion activities following removal of Na+ (replaced with tetramethylammonium, TMA+) or Cl (replaced with cyclamate) from apical bathing solution. Numbers on the left denote voltages (in mV) at the beginning of each record. A. Top, voltage measured by intracellular Na+‐selective electrode, referenced to the membrane voltage (VNa – Vcs), intracellular Na+ activity (aNai) scale on the right; bottom, transepithelial voltage (Vms). Mucosa‐positive change in Vms was caused by Na+‐TMA+ paracellular bi‐ionic potential. Na+ removal from apical bathing solution causes a rapid, reversible fall in aNai. B. Top, basolateral‐membrane voltage (Vcs); bottom, voltage measured by intracellular Cl‐selective electrode, referenced to the membrane voltage (VCl–Vcs), intracellular Cl activity (aCli) scale on the right. During exposure to Cl‐free mucosal medium, cell hyperpolarizes and aCli falls rapidly and reversibly. These results indicate that the Na+ and Cl transport pools are accessible to the ion‐sensitive microeletrode and hence involved the entire cytoplasm.

From Reuss 564, with permission


Figure 4.

A. Steady‐state equivalent circuit of an epithelium with one cell type and a paracellular pathway of finite conductance. Each element in the circuit (a: apical membrane, b: basolateral membrane, s: paracellular pathway) is represented by a Thévenin electrical equivalent, i.e., an electromotive force (EMF), E, in series with a resistance, R. The Thévenin equivalent is an acceptable representation of any combination of linear electrical elements at the steady state. B. Membrane voltages for an epithelium with the indicated values of EMFs (in mV) and resistances (in Ω·cm2). Polarities referred to basolateral solution (transepithelial values) or to adjacent solution (cell membrane values). Note that all voltages differ from the respective EMF values.

Modified from Reuss et al. 569, with permission


Figure 5.

Ion pumps in epithelial cells. A. Predicted general structure of α‐subunit of P‐type pump (representative of Na+, K+‐, Ca2+‐and H+,K+‐ATPases). The α‐subunit contains binding site(s) for transported substrate(s), ATPase activity, regulatory domains, and inhibitor binding sites. It is a single peptide chain, with amino and carboxyl termini in the cytoplasmic side, probably ten transmembrane α‐helices and ATP binding site in the second cytoplasmic loop. Based on Lingrel and Kunzweiler 420. B. Generalized catalytic cycle for P‐type ATPases modeled as countertransport pumps exchanging Na+ (A) for K+ (B), Ca2+ (A) for H+ (B), and H+ (B) for K+ (A) (Na+, K+‐, Ca2+‐ and H+, K+‐ATPase, respectively. E1 = conformation with ion‐binding sites accessible from cytoplasm, E2 = conformation with ion‐binding sites accessible from the extracellular face, E(A) or E(B) = ion “occluded” in the protein.

Modified from Sachs and Munson 597, with permission


Figure 6.

Transport mechanism in Na+‐absorptive epithelia. The two‐membrane hypothesis for Na+‐absorbing “tight” epithelia 366. At the apical‐cell membrane, Na+ entry is via an Na+‐channel blockable by amiloride. At the basolateral cell membrane, extrusion of Na+ is mediated by an Na+, K+‐ATPase inhibitable by ouabain. K+ “recycles” across the basolateral cell membrane via a K+ channel.

Modified from Reuss and Cotton 572, with permission


Figure 7.

Short‐circuit current technique. Epithelium (vertical line between ve's) is tightly mounted in the middle partition of an Ussing chamber, separating solutions of identical composition, at the same pressure. Current is applied across the epithelium with an external circuit (ce = current electrode) and the transepithelial voltage (Vt) is measured (ve = voltage electrode). The short‐circuit current (Isc) is the current needed to make Vt = 0. This current, in the conditions defined, is equivalent to the sum of active ion fluxes across the epithelium. Pitfalls in the use of this technique include: (1) improper short‐circuiting: series resistances in preparation produce voltage drops and the true transepithelial voltage is not zero; (2) the compositions of the bathing solution are different, i.e., there are passive (electrodiffusive or osmotic) driving forces that can account for net ion fluxes.



Figure 8.

Demonstration that some epithelia have “leaky” (high‐permeability) junctions. A. Voltage scanning in Necturus gallbladder epithelium. High‐conductance pathways for transepithelial current flow were detected with microelectrode (S) exploring electric field with respect to distant electrode in apical bathing solution (I). S was moved along apical surface while large current was passed across the tissue (electrodes A in the inset). Microelectrode path is shown with respect to cell borders; × = tip position during voltage measurement, over junction (J) or over cell (C). In voltage scan, downward deflections mean current sinks (high‐conductance pathway). This experiment demonstrates junctional location of a high‐conductance transepithelial pathway. B. Junctional region of rabbit gallbladder epithelial cells after exposure to La3+ on the apical side. Lanthanum is clearly seen in intercellular pathway, indicating junctional permeability. Specimen fixed in glutaraldehyde, postfixed in OsO4, and stained on grid with uranyl acetate and lead citrate. X 250,000.

A. From Frömter and Diamond 223, with permission. B. From Machen et al. 432, with permission


Figure 9.

Expected changes in epithelial‐cell solute and/or water content by lack of adjustment of solute transport rates at the two membranes. Center: salt‐absorbing epithelial cell at steady state, i.e., apical solute entry equals basolateral solute exit and cell solute content remains constant. Left: increases in solute content, by primary increase in entry (top) or primary decrease in exit (bottom). Right: decreases in solute content, by primary decrease in entry (top) or primary increase in exit (bottom). In all four instances, cell water volume would change in same direction as cell solute content, because of osmotic water flow (at least one of the cell membranes has a high water permeability).

From Reuss 563, with permission


Figure 10.

Mechanisms of maintenance of intracellular electroneutrality and solution electroneutrality during steady‐state transepithelial ion transport. In all diagrams, Na+ or K+ transport is the primary event, indirectly or directly coupled to anion flux in same direction or to cation flux in the opposite direction. Examples of epithelia in which the scheme depicted has been proven or is suspected are denoted in parentheses. A. Na+ and Cl fluxes are directly coupled by cotransport (mammalian renal distal tubule). B. K+ and Cl fluxes occur via independent channels; the fluxes could be “coupled” by the membrane voltage, both as driving force for electrodiffusion and as gating mechanism (amphibian gallbladder stimulated by cAMP). C. Na+ and K+ fluxes occur in opposite directions, via separate channels; they may be “coupled” by the membrane voltage (mammalian renal cortical collecting data). D. Absorptive Na+ and Cl transepithelial fluxes occur via different pathways, transcellular and paracellular, respectively (frog skin epithelium). E. Secretory Cl and Na+ fluxes occur via different pathways, transcellular and paracellular, respectively (airway epithelium).



Figure 11.

Transport mechanisms in “leaky” electroneutral NaCl‐absorbing epithelia. A. Na+ and Cl influxes across apical cell membrane via exchanges with H+ and , respectively. Cl exit across basolateral cell membrane is via Cl channels and/or via K+‐Cl cotransport. Na+ extrusion is mediated by Na+,K+‐ATPase. K+ recycles via channels (basolateral or both cell membranes). This model accounts for NaCl transport in most “leaky” NaCl‐absorptive epithelia. B. The mechanism of salt entry is Na+‐Cl cotransport (demonstrated for flounder urinary bladder and mammalian renal distal tubule and proposed for rabbit and Necturus gallbladder under certain conditions). Basolateral transport mechanisms as in top diagram. C. Mechanism of salt entry is Na+‐K+–2Cl cotransport (demonstrated for flounder intestine). Basolateral transport mechanisms as in top diagram.

Modified from Reuss and Cotton 572, with permission


Figure 12.

Transport mechanisms in a “leaky” rheogenic Na+‐absorbing epithelium. Na+ influx is by cotransport with organic solutes (OS, e.g., sugar or amino acid). The transporters at the basolateral cell membrane are as shown in Figure 11.

Modified from Reuss and Cotton 572, with permission


Figure 13.

Predicted secondary structure of human SGLT1. The protein consists of single chain of 664 amino acids, 12 putative transmembrane α‐helices, N‐glycosylation at Asn248, and cytoplasmic location of both amino and carboxyl termini. The carboxyl terminus is closely associated to the plasma membrane. Model for low‐affinity Na+‐glucose cotransporter SGLT2 is almost identical.

Modified from Hediger and Rhoads 303 with permission


Figure 14.

Predicted secondary structure of ROMK1. In contrast with other cloned ion channels, the protein has only two transmembrane α‐helices. The extracellular loop has an N‐glycosylation site and appears to be responsible for formation of the conductive pathway. Amino and carboxyl termini are on the cytoplasmic side. The carboxyl‐terminus region is long and contains the nucleotide‐binding domain (NBD).

Modified from Hebert and Ho 300, with permission


Figure 15.

Mechanisms of ion transport in Cl‐transporting epithelia. A. Transport model for exocrine‐gland Cl‐secreting epithelium. Intracellular [Cl] is maintained above electrochemical equilibrium by electroneutral Na+‐K+–2Cl cotransport across the basolateral cell membrane. Na+ influx is balanced by efflux via Na+, K+ ‐ATPase; K+ influxes are balanced by efflux via K+ channels. Transepithelial secretion is induced by activation of apical‐membrane Cl channel(s). B. Model of Cl transport in thick ascending limb of Henle's loop, a Cl‐absorptive epithelium. Cl entry across the apical membrane is mediated by Na+ ‐K+–2Cl cotransporter. Most basolateral Cl efflux proceeds through Cl channels.

A. Modified from Reuss and Cotton 572, with permission. B. Modified from Reeves and Andreoli 556, with permission


Figure 16.

Predicted secondary structure of CFTR. The protein consists of single peptide chain with two halves, each compromising six putative transmembrane α‐helices and a nucleotide‐binding domain (NBD). The two halves are linked by the R domain, a highly charged regulatory region. R domain possesses consensus phosphorylation sites for protein kinases A and C and Ca2+‐calmodulin kinase. ΔF508 deletion found in 70% of all CF cases is located in first NBD. Two consensus sites for N‐linked glycosylation are present between transmembrane domains 7 and 8.

Modified from Welsh et al. 747, with permission


Figure 17.

Predicted secondary structure for shark rectal gland Na+‐K+–2Cl cotransporter (NKCC1). The protein comprises 1,191 amino acid residues. Amino and carboxyl termini are on the cytoplasmic side. There are two domains of seven and five putative transmembrane α‐helices, respectively, joined by an extracellular loop containing several N‐glycosylation sites (branched lines). This predicted secondary structure is shared by other members of putative caution‐Cl cotransporter family (see text).

Modified from Xu et al. 763, with permission


Figure 18.

Basic mechanisms of ion transport in H+ and secretory epithelia. Carbonic anhydrase catalyzes formation of H+ and OH from water; is then formed by reaction of OH and CO2. Net result, shown in figure, is production of H+ and . In H+‐secreting epithelium there is apical‐membrane H+ extrusion and basolateral‐membrane extrusion. In secreting epithelium, polar expression of these transporters is reversed. Cl channel in parallel with exchanger maintains intracellular [Cl]. Precise basolateral‐membrane transporters vary among H+‐secreting epithelia (see text).



Figure 19.

Specific transport mechanisms in H+‐secreting epithelia: A. Renal proximal tubule. B. α‐intercalated cell of the renal collecting tubule. C. Oxyntic cell of the gastric mucosa. See text for details.



Figure 20.

Transport mechanisms in ‐secreting epithelia. Net operation is secretion and Cl absorption. Note that polarized expression of H+ and transporters is opposite to that in H+‐secreting epithelia.



Figure 21.

Mechanisms of water transport in leaky epithelia. Panel A. Three‐compartment model of Curran and MacIntosh 146. Because of solute entry (solid arrow) Cs(M) > Cs(A), where Cs is total solute concentration or osmolality. This causes osmotic water flow from compartment A to compartment M (open arrow). The elevation of the hydrostatic pressure in compartment M causes solution flow from compartment M into compartment B (open/solid arrow), regardless of the solute concentration (and hence osmotic pressure) in the latter. Modified from Whittembury and Reuss 753, with permission. Panel B. Standing‐gradient hypothesis of Diamond and Bossert 163. Solute transport (solid arrows) into channel (lateral intercellular space) causes a local increase in osmolality; water flows osmotically across bounding membranes (open arrows), “diluting” the solution in the channel. Transport toward open end is by bulk flow and diffusion. Modified from Reuss and Cotton 571, with permission. Panel C. Near‐isosmotic transport model. Because of high osmotic water permeability of cell membranes, differences in solution osmolality (Cs) needed to account for fluid transport are small, probably localized at epithelium‐solution interfaces. Salt transport causes dilution of solution on cis side and concentration of solution on trans side; these differences cause osmotic water flow from cis to trans. Magnitude of paracellular water flow is uncertain. Because of high surface area of lateral membranes and small volume of lateral intercellular spaces, space osmolality is “clamped” by cell osmolality, making longitudinal gradients small at most.



Figure 22.

Membrane topology and putative structure of aquaporin 1 (CHIP28). A. Predicted secondary structure: CHIP comprises two repeats of three putative transmembrane domains each. Amino and carboxyl termini are on the cytoplasmic side. There is a single N‐glycosylation site in loop A (not shown). Loops B and E contain highly conserved Asn‐Pro‐Ala motifs thought to contribute to the formation of the water pore. Loop E contains Cys189, the residue conferring Hg‐sensitivity to water permeation. B. Proposed structure of the water pore of a CHIP monomer. α‐helical transmembrane domains form the peripheral wall, whereas loops B and E assemble in the membrane to form the thin barrier accounting for the selectivity for water. The diagram shows a monomer that is functional per se, but CHIP monomers assemble into tetrameric complexes.

Modified from Engel et al. 180, with permission
References
 1. Adachi, S., S. Uchida, H. Ito, M. Hata, M. Hiroe, F. Marumo, and S. Sasaki. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle's loop and collecting ducts of rat kidney. J. Biol. Chem. 269: 17677–17683, 1994.
 2. Agre, P., D. Brown, and S. Nielsen. Aquaporin water channels: unanswered questions and unresolved controversies. Curr. Opin. Cell Biol. 7: 472–483, 1995.
 3. Agre, P., G. M. Preston, B. L. Smith, J. S. Jung, S. Raina, C. Moon, W. B. Guggino, and S. Nielsen. Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265: (Renal Fluid Electrolyte Physiol. 34): F463–F476, 1993.
 4. Al‐Awqati, Q. H+ transport in urinary epithelia. Am. J. Physiol. 235: F77–F88, 1978.
 5. Al‐Awqati, Q. Cellular and molecular mechanisms of regulation of ion transport in epithelia. In: The Kidney: Physiology and Pathophysiology, Edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, p. 625–644.
 6. Al‐Awqati, Q. Plasticity in epithelial polarity of renal intercalated cells: targeting of the H+‐ATPase and band 3. Am. J. Physiol. 270 (Cell Physiol 39): C1571–C1580.
 7. Al‐Awqati, Q., and R. Beauwens. Cellular mechanisms of H+ and HCO3− transport in tight urinary epithelia. In: Handbook of Physiology. Renal Physiology, edited by E. E. Windhager. New York: Oxford University Press for the American Physiological Society, 1992, sect. 8, vol. 1, chapt. 8, p. 323–350.
 8. Al‐Awqati, Q., L. Norby, A. Mueller, and P. R. Steinmetz. Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder. J. Clin. Invest. 58: 351–358, 1976.
 9. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell, 3rd Edition. New York: Garland Publishing, Inc., 1994.
 10. Alper, S. L., J. Natale, S. Gluck, H. F. Lodish, and D. Brown. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against the erythroid band 3 and renal vacuolar H+‐ATPase. Proc. Natl. Acad. Sci. USA. 86: 5429–5433, 1989.
 11. Alpern, R. J. Mechanism of basolateral membrane H+/OH−/HCO3− transport in the rat proximal convoluted tubule. A sodium‐coupled electrogenic process. J. Gen. Physiol. 86: 613–636, 1985.
 12. Alpern, R. J., and M. Chambers. Basolateral membrane Cl/HCO3 exchange in rat proximal convoluted tubule. Na‐dependent and ‐independent modes. J. Gen. Physiol. 89: 581–598, 1987.
 13. Altenberg, G. A., J. Copello, C. Cotton, K. Dawson, Y. Segal, F. Wehner, and L. Reuss. Electrophysiological methods for studying ion and water transport in Necturus gallbladder epithelium. Methods Enzymol. 192: 650–683, 1990.
 14. Altenberg, G. A., and L. Reuss. Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration. J. Gen. Physiol. 95: 369–392, 1990.
 15. Amemiya, M., J. Loffing, M. Lotscher, B. Kaissling, R. J. Alpern, and O. W. Moe. Expression of NHE‐3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int. 48: 1206–1215, 1995.
 16. Amerongen, H. H., J. A. Mack, J. M. Wilson, and M. R. Neutra. Membrane domains of intestinal epithelial cells: distribution of Na,K‐ATPase and the membrane skeleton in adult rat intestine during fetal development and after epithelial isolation. J. Cell Biol. 109: 2129–2138, 1989.
 17. Anderson, J. M., M. S. Balda, and A. S. Fanning. The structure and regulation of tight junctions. Curr. Opin. Cell Biol. 5: 772–778, 1993.
 18. Anderson, M. P., H. A. Berger, D. P. Rich, R. J. Gregory, A. E. Smith, and M. J. Welsh. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67: 775–784, 1991.
 19. Anderson, M. P., R. J. Gregory, S. Thompson, D. W. Souza, P. Paul, R. C. Mulligan, A. E. Smith, and M. J. Welsh. Demonstration that CFTR is a chloride channel by alteration of its ion selectivity. Science 253: 202–205, 1991.
 20. Anderson, M. P., D. N. Sheppard, H. A. Berger, and M. J. Welsh. Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelial. Am. J. Physiol. 263 (Lung Cellular and Molecular Physiology 32): L1–L14, 1992.
 21. Anderson, J. M., and C. M. Van Itallie. Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. 269 (Gastrointest. Liver Physiol. 32): G467–G475, 1995.
 22. Ando‐Akatsuka, Y., M. Saitou, T. Hirase, M. Kishi, A. Sakakibara, M. Itoh, S. Yonemura, M. Furuse, and S. Tsukita. Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat‐kangaroo homologues. J. Cell Biol. 133: 43–47, 1996.
 23. Arispe, N., E. Rojas, J. Hartman, E. J. Sorscher, and H. B. Pollard. Intrinsic anion channel activity of the recombinant first nucleotide binding fold domain of the cystic fibrosis transmembrane regulator protein. Proc. Natl. Acad. Sci. U.S.A. 89: 1539–1543, 1992.
 24. Armitage, F. E., and C. S. Wingo. Luminal acidification in K‐replete OMCDi: contributions of H‐K‐ATPase and bafilomycin‐A1‐sensitive H‐ATPase. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F450–F458, 1994.
 25. Aronson, P. S. Mechanisms of active H+ secretion in the proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Phsyiol. 14): F647–F659, 1983.
 26. Aronson, P. S. The renal proximal tubule. A model for diversity of anion exchangers and stilbene‐sensitive anion transporters. Annu. Rev. Physiol. 51: 419–441, 1989.
 27. Aronson, P. S., J. Nee, and M. A. Suhm. Modifier role of internal H+ in activating the Na+‐H+ exchanger in renal microvillus membrane vesicles. Nature 299: 161–163, 1982.
 28. Ashcroft, F. M. Adenosine 5′‐triphosphate‐sensitive potassium channels. Annu. Rev. Neurosci. 11: 97–118, 1988.
 29. Ashcroft, S. J. H., and F. M. Ashcroft. Properties and functions of ATP‐sensitive K channels. Cell Signal. 2: 197–214, 1990.
 30. Asher, C., R. Eren, L. Kahn, O. Yeger, and H. Garty. Expression of the amiloride‐blockable Na+ channel by RNA from control vs. aldosterone stimulated tissue. J. Biol. Chem. 267: 16061–16065, 1992.
 31. Asher, C., and H. Garty. Aldosterone increases the apical Na+ permeability of toad bladder by two different mechanisms. Proc. Natl. Acad. Sci. U.S.A. 85: 7413–7417, 1988.
 32. Attall, B., E. Gullemare, F. Lesage, E. Honore, G. Romey, M. Lazdunski, and J. Barhanin. The protein IsK is a dual activator of K+ and Cl− channels. Nature 365: 850–852, 1993.
 33. Augustus, J., J. Bijman, C. H. van Os, and J. F. G. Slegers. High conductance in an epithelial membrane not due to extracellular shunting. Nature 268: 657–658, 1977.
 34. Ausiello, D. A., J. L. Stow, H. F. Cantiello, J. B. de Almeida, and D. J. Benos. Purified epithelial Na+ channel complex contains the pertussis toxin‐sensitive Gαi‐3 protein. J. Biol. Chem. 267: 4759–4765, 1992.
 35. Awayda, M. S., I. I. Ismailov, B. K. Berdiev, C. M. Fuller, and D. J. Benos. Protein kinase regulation of a cloned epithelial Na+ channel. J. Gen. Physiol. 108: 49–65, 1996.
 36. Bakker, R., and J. A. Groot. Further evidence for the regulation of the tight junction ion selectivity by cAMP in goldfish intestinal mucosa. J. Membr. Biol. 111: 25–35, 1989.
 37. Balda, M. S., and J. M. Anderson. Two classes of tight junctions are revealed by ZO‐1 isoforms. Am. J. Physiol. 264 (Cell Physiol. 33): C918–C924, 1993.
 38. Balda, M. S., M. B. Fallon, C. M. Van Itallie, and J. M. Anderson. Structure, regulation, and pathophysiology of tight junctions in the gastrointestinal tract. Yale J. Biol. Med. 65: 725–735, 1992.
 39. Barasch, J., B. Kiss, A. Prince, L. Saiman, D. Gruenert, and Q. Al‐Awqati. Defective acidification of intracellular organelles in cystic fibrosis. Nature 352: 70–73, 1991.
 40. Barbry, P., O. Chassande, R. Marsault, M. Lazdunski, and C. Frelin. [3H]phenamil binding protein of the renal epithelium Na+ channel. Purification, affinity labeling, and functional reconstitution. Biochemistry 29: 1039–1045, 1990.
 41. Barfuss, D. W., and J. A. Schafer. Hyperosmolarity of absorbate from isolated rabbit proximal tubules. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F130–F139, 1984.
 42. Barlet‐Bas, C., C. Khadouri, S. Marsy, and A. Doucet. Enhanced intracellular sodium concentration in kidney cells recruits a latent pool of Na‐K‐ATPase whose size is modulated by corticosteroids. J. Biol. Chem. 265: 7799–7809, 1990.
 43. Barrett, K. M., and T. D. Bigby. New roles for eicosanoids as regulators of epithelial function and growth. News Physiol. Sci. 10: 153–159, 1995.
 44. Baukrowitz, T., T.‐C. Hwang, A. C. Nairn, and D. C. Gadsby. Coupling of CFTR Cl− channel gating to an ATP hydrolysis cycle. Neuron 12: 473–482, 1994.
 45. Baum, M., O. W. Moe, D. L. Gentry, and R. J. Alpern. Effect of glucocorticoids on renal cortical NHE‐3 and NHE‐1 mRNA. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F437–F442, 1994.
 46. Bean, B. P. Pharmacology and electrophysiology of ATP‐activated ion channels. Trends Pharmacol. Sci. 13: 87–90, 1992.
 47. Bear, C. E., C. Li, N. Kartner, R. J. Bridges, T. J. Jensen, M. Ramjeesingh, and J. R. Riordan. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68: 809–818, 1992.
 48. Beck, J. S., S. Breton, G. Giebisch, and R. Laprade. Potassium conductance regulation by pH during volume regulation in rabbit proximal convoluted tubules. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F453–F458, 1992.
 49. Beck, J. S., S. Breton, R. Laprade, and G. Giebisch. Volume regulation and intracellular calcium in the rabbit proximal convoluted tubule. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F861–F867, 1991.
 50. Beck, J. S., R. Laprade, and J.‐Y. Lapointe. Coupling between transepithelial Na transport and basolateral K conductance in renal proximal tubule. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F517–F527, 1994.
 51. Beck, J. S., and D. J. Potts. Cell swelling, co‐transport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules. J. Physiol. (Lond.) 425: 369–378, 1990.
 52. Becq, F., T. J. Jensen, X.‐B. Chang, A. Savoia, J. M. Rommens, L.‐C. Tsui, M. Buchwald, J. R. Riordan, and J. W. Hanrahan. Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc. Natl. Acad. Sci. U.S.A. 91: 9160–9164, 1994.
 53. Benham, C. D., and R. W. Tsien. A novel receptor‐operated Ca2+‐permeable channel activated by ATP in smooth muscle. Nature 328: 275–278, 1987.
 54. Bennett, E., and G. A. Kimmich. The molecular mechanism and potential dependence of the Na+/glucose cotransporter. Biophys. J. 70: 1676–1688.
 55. Bennett, M.V.L., L. C. Barrio, T. A. Bargiello, D. C. Spray, E. Hertzberg, and J. C. Saez. Gap junctions: new tools, new answers, new questions. Neuron 6: 305–320, 1991.
 56. Benos, D. J., M. S. Awayda, B. K. Berdiev, A. L. Bradford, C. M. Fuller, O. Senyk, and I. I. Ismailov. Diversity and regulation of amiloride‐sensitive Na+ channels. Kidney Int. 49: 1632–1637, 1996.
 57. Benos, D. J., M. S. Awayda, I. I. Ismailov, and J. P. Johnson. Structure and function of amiloride‐sensitive Na+ channels. J. Membr. Biol. 143: 1–18, 1995.
 58. Benos, D. J., G. Saccomani, B. M. Brenner, and S. Sariban‐Sohraby. Purification and characterization of the amiloride‐sensitive sodium channel from A6 cultured cells and bovine renal papilla. Proc. Natl. Acad. Sci. U.S.A. 83: 8525–8529, 1986.
 59. Benos, D. J., G. Saccomani, and S. Sariban‐Sohraby. The epithelial sodium channel. Subunit number of location of the amiloride binding site. J. Biol. Chem. 262: 10613–10618, 1987.
 60. Bentzel, C. J., and K. Loeschke. The tight junction‐intercellular space: an integrated transport path. In: Isotonic Transport in Leaky Epithelia, Alfred Benzon Symposium 34, edited by H. H. Ussing, J. Fischbarg, O. Sten‐Knudsen, E. H. Larsen, and N. J. Willumsen. Copenhagen: Munksgaard, 1993, p. 233–243.
 61. Berdiev, B. K., A. G. Prat, H. F. Cantiello, D. A. Ausiello, C. M. Fuller, B. Jovov, D. J. Benos, and I. I. Ismailov. Regulation of epithelial sodium channels by short actin filaments. J. Biol. Chem. 271: 17704–17710, 1996.
 62. Berger, H. A., S. M. Travis, and M. J. Welsh. Regulation of the cystic fibrosis transmembrane conductance regulator Cl− channel by specific protein kinases and protein phosphatases. J. Biol. Chem. 268: 2037–2047, 1993.
 63. Bertorello, A. M., and A. I. Katz. Regulation of Na+‐K+ pump activity: pathways between receptors and effectors. News Physiol. Sci. 10: 253–259, 1995.
 64. Bianchini, L., A. Kapus, G. Lukacs, S. Wasan, S. Wakabayashi, J. Pouysségur, F. H. Yu, J. Orlowski, and S. Grinstein. Responsiveness of mutants of NHE1 isoform of Na+/H+ antiport to osmotic stress. Am. J. Physiol. 269 (Cell Physiol. 38): C998–C1007, 1995.
 65. Biemesderfer, D., J. Pizzonia, A. Abu‐Alfa, M. Exner, R. Reilly, P. Igarashi, and P. S. Aronson. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F736–F742, 1993.
 66. Birner, B., D.D.F. Loo, and E. M. Wright. Voltage‐clamp studies of the intestinal Na+/glucose cotransporter cloned from rabbit small intestine. Pflugers Arch. 418: 79–85, 1991.
 67. Blazer‐Yost, B., and M. Cox. Aldosterone‐induced proteins: characterization using lectin‐affinity chromatography. Am. J. Physiol. 249 (Cell Physiol. 18): C215–C225, 1985.
 68. Blot‐Chabaud, M., F. Wanstok, J. P. Bonvalet, and N. Farman. Cell sodium‐induced recruitment of Na+‐K+ ATPase pumps in rabbit cortical collecting tubules is aldosterone dependent. J. Biol. Chem. 265: 11676–11681, 1990.
 69. Boim, M. A., K. Ho, M. E. Shuck, M. J. Bienkowski, J. H. Block, J. L. Slightom, Y. Yang, B. M. Brenner, and S. C. Hebert. ROMK inwardly rectifying ATP‐sensitive K+ channel. II. Cloning and distribution of alternative forms. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F1132–F1140, 1995.
 70. Bolívar, J. J., and M. Cereijido. Voltage and Ca2+‐activated K+ channel in cultured epithelial cells. J. Membr. Biol. 97: 43–51, 1987.
 71. Boron, W. F. Transport of H+ and of ionic weak acids and bases. J. Membr. Biol. 72: 1–16, 1983.
 72. Boron, W. F. Intracellular pH regulation in epithelial cells. Annu. Rev. Physiol. 48: 377–388, 1986.
 73. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander. Na‐H exchange. J. Gen. Physiol. 81: 29–52, 1983.
 74. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3− transport. J. Gen. Physiol. 81: 53–94, 1983.
 75. Boron, W. F., and E. L. Boulpaep. The electrogenic Na/HCO3 cotransporter. Kidney Int. 36: 392–403, 1989.
 76. Boucher, R. C., M. J. Stutts, M. R. Knowles, L. Cantley, and J. T. Gatzy. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J. Clin. Invest. 78: 1245–1252, 1986.
 77. Boulpaep, E. L., and H. Sackin. Electrical analysis of intraepithelial barriers. Curr. Top. Membr. Transp. 13: 169–197, 1980.
 78. Breitwieser, G. E., A. A. Altamirano, and J. M. Russell. Effects of pH changes on sodium pump fluxes in squid giant axon. Am. J. Physiol. 253 (Cell Physiol. 22): C547–C554, 1987.
 79. Breton, S., J. S. Beck, and R. Laprade. cAMP stimulates proximal convoluted tubule Na+‐K+‐ATPase activity. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F400–F410, 1994.
 80. Brosius, F. C., S. L. Alper, A. M. García, and H. F. Lodish. The major kidney band 3 transcript predicts an amino‐terminal truncated band 3 polypeptide. J. Biol. Chem. 264: 7784–7787, 1989.
 81. Brown, A. M. Ionic channels and their regulation by G protein subunit. Annu. Rev. Physiol. 52: 197–213, 1990.
 82. Brown, A. M., and L. Birnbaumer. Direct G‐protein gating of ion channels. Am. J. Physiol. 254 (Heart Circ. Physiol. 23): H401–H410, 1988.
 83. Brown, D. Membrane recycling and epithelial cell function. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1–F12, 1989.
 84. Brown, D. Structural‐functional features of vasopressin‐induced water flow in the kidney collecting duct. Semin. Nephrol. 11: 478–501, 1991.
 85. Brown, D., S. Hirsch, and S. Gluck. An H+‐ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331: 622–624, 1988.
 86. Brown, D., S. Hirsch, and S. Gluck. Localization of a proton‐pumping ATPase in rat kidney. J. Clin. Invest. 82: 2114–2126, 1988.
 87. Brown, D., J.‐M. Verbavatz, G. Valenti, B. Lui, and I. Sabolic. Localization of the CHIP28 water channel in reabsorptive segments of the rat male reproductive tract. Eur. J. Cell. Biol. 61: 264–273, 1993.
 88. Bubien, J. K., I. I. Ismailov, B. K. Berdiev, T. Cornwell, R. P. Lifton, C. M. Fuller, J.‐M. Achard, D. J. Benos, and D. G. Warnock. Liddle's disease: abnormal regulation of amiloride‐sensitive Na+ channels by β‐subunit mutation. Am. J. Physiol. 270 (Cell Physiol 39): C208–C213, 1996.
 89. Burant, C. F., J. Takeda, E. Brot‐Laroche, G. I. Bell, and N. O. Davidson. Fructose transporter in human spermatozoa and small intestine in GLUT5. J. Biol. Chem. 267: 14523–14526, 1992.
 90. Burch, L. H., C. R. Talbot, M. R. Knowles, C. M. Canessa, B. C. Rossier, and R. C. Boucher. Relative expression of the human epithelial Na+ channel subunits in normal and cystic fibrosis airways. Am. J. Physiol. 269 (Cell Physiol. 38): C511–C518, 1995.
 91. Burckhardt, B.‐C., and H. Gögelein. Small and maxi K+ channels in the basolateral membrane of isolated crypts from rat distal colon: single‐channel and slow whole‐cell recordings. Pflugers Arch. 420: 54–60, 1992.
 92. Burckhardt, B.‐Ch., K. Sato, and E. Frömter. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. Pflugers Arch. 401: 34–42, 1984.
 93. Burckhardt, B.‐Ch., K. Sato, and E. Frömter. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. II. Exclusion of HCO3− effects on other ion permeabilities and on coupled electroneutral HCO3− transport. Pflugers Arch. 401: 43–51, 1984.
 94. Buxton, R. S. Nomenclature of the desmosomal cadherins. Cell Biol. 121: 481–483, 1993.
 95. Cabantchik, Z. I., and R. Greger. Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol. 262 (Cell Physiol. 31): C803–C827, 1992.
 96. Cabantchik, Z. I., and A. Rothstein. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol. 15: 207–226, 1974.
 97. Canessa, C. M., J.‐D. Horisberger, and B. C. Rossier. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361: 467–470, 1993.
 98. Canessa, C. M., A.‐M. Mérillat, and B. C. Rossier. Membrane topology of the epithelial sodium channel in intact cells. Am. J. Physiol. 267 (Cell Physiol. 36): C1682–C1690, 1994a.
 99. Canessa, C. M., L. Schild, G. Buell, B. Thorens, I. Gautschil, J.‐D. Horisberger, and B. C. Rossier. Amiloride‐sensitive epithelial sodium channel is made of three homologous subunits. Nature 367: 463–467, 1994.
 100. Cannon, C., J. van Adelsberg, S. Kelly, and Q. Al‐Awqati. Carbon dioxide induced exocytotic insertion of H+ pumps in turtle bladder luminal membrane: role of cell pH and calcium. Nature 314: 443–446, 1985.
 101. Cantiello, H. F. Actin filaments stimulate the Na+‐K+‐ATPase. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F637–F643, 1995.
 102. Cantiello, H. F., C. R. Patenaude, and D. A. Ausiello. G‐protein subunit, αi‐3, activates a pertussis toxin‐sensitive Na+ channel from the epithelial cell line, A6. J. Biol. Chem. 264: 20867–20870, 1989.
 103. Cantiello, H. F., J. L. Stow, A. G. Prat, and D. A. Ausiello. Actin filaments regulate epithelial Na+ channel activity. Am. J. Physiol. 261 (Cell Physiol. 30): C882–C888, 1991.
 104. Caplan, M. J., and Rodríguez‐Boulan, E. chapt. 17, this volume.
 105. Carafoli, E. Calcium pump of the plasma membrane. Physiol. Rev. 71: 129–153, 1991.
 106. Carafoli, E. Biogenesis: Plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 8: 993–1002, 1994.
 107. Carpi‐Medina, P., E. González, B. Lindemann, and G. Whittembury. The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolality. Pflugers Arch. 400: 343–348, 1983.
 108. Carpi‐Medina, P., E. González, and G. Whittembury. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F554–F563, 1984.
 109. Carpi‐Medina, P, and G. Whittembury. Comparison of trans‐cellular and transepithelial water osmotic permeabilities in the isolated proximal straight tubule of the rabbit kidney. Pflugers Arch. 412: 66–74, 1988.
 110. Carroll, T. P., E. M. Schwiebert, and W. B. Guggino. CFTR: Structure and function. Cell Physiol. Biochem. 3: 388–399, 1993.
 111. Carson, M. R., S. M. Travis, and M. J. Welsh. The two nucleotide‐binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J. Biol. Chem. 270: 1711–1717, 1995.
 112. Cereijido, M. Evolution of ideas on the tight junction. In: Tight Junctions, edited by M. Cereijido. Boca Raton, FL: CRC, 1992, p. 1–13.
 113. Chang, X. B., J. A. Tabcharani, Y. X. Hou, A.T.J. Jensen, N. Kartner, N. Alon, J. W. Hanrahan, and J. R. Riordan. Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J. Biol. Chem. 268: 11304–11311, 1993.
 114. Chang, D., N. L. Kushman, and D. C. Dawson. Intracellular pH regulates basolateral K+ and Cl− conductances in colonic epithelial cells by modulating Ca2+ activation. J. Gen. Physiol. 98: 183–196, 1991.
 115. Chase, H. S., Jr., and Q. Al‐Awqati. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium. J. Gen. Physiol. 77: 693–712, 1981.
 116. Chase, H. S., Jr., and Q. Al‐Awqati. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder: Studies using a fast reaction apparatus. J. Gen. Physiol. 81: 643–665, 1983.
 117. Chen, P.‐Y., D. Pearce, and A. S. Verkman. Membrane water and solute permeability determined quantitatively by self‐quenching of an entrapped fluorophore. Biochemistry 27: 5713–5719, 1988.
 118. Cheng, S. H., R. Gregory, J. Marshall, S. Paul, D. W. Souza, G. A. White, C. R. O'Riordan, and A. E. Smith. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63: 827–834, 1990.
 119. Christensen, O. Mediation of cell volume regulation by Ca2+ influx through stretch‐activated channels. Nature 330: 66–68, 1987.
 120. Civan, M. M, and H. Garty. Toad urinary bladder as a model for studying transepithelial sodium transport. Methods Enzymol. 192: 683–697, 1990.
 121. Clapham, D. E. Direct G protein activation of ion channels? Annu. Rev. Neurosci. 17: 441–464, 1994.
 122. Claude, P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J. Membr. Biol. 39: 219–232, 1978.
 123. Clausen, C. Impedance analysis in tight epithelia. Methods Enzymol. 171: 628–641, 1989.
 124. Clausen, C., T. E. Machen, and J. M. Diamond. Use of AC impedance analysis to study membrane changes related to acid secretion in amphibian gastric mucosa. Biophys. J. 41: 167–178, 1993.
 125. Colclasure, G. C., and J. C. Parker. Cytosolic protein concentration is the primary volume signal in dog red cells. J. Gen. Physiol. 98: 881–892, 1991.
 126. Colclasure, G. C., and J. C. Parker. Cytosolic protein concentration is the primary volume signal for swelling‐induced [K‐Cl] cotransport in dog red cells. J. Gen. Physiol. 100: 1–10, 1992.
 127. Copello, J., T. A. Heming, Y. Segal, and L. Reuss. cAMP‐activated apical membrane chloride channels in Necturus gall‐bladder epithelium. Conductance, selectivity, and block. J. Gen. Physiol. 102: 177–199, 1993.
 128. Copello, J., Y. Segal, and L. Reuss. Cytosolic pH regulates maxi K+ channels in Necturus gall‐bladder epithelial cells. J. Physiol. (Lond.) 434: 577–590, 1991.
 129. Copello, J., F. Wehner, and L. Reuss. Artifactual expression of maxi‐K+ channels in basolateral membrane of gallbladder epithelial cells. Am. J. Physiol. 264 (Cell Physiol. 33): C1128–C1136, 1993.
 130. Corcia, A., and W. McD. Armstrong. KCl cotransport. A mechanism for basolateral chloride exit in Necturus gallbladder. J. Membr. Biol. 76: 173–182, 1983.
 131. Costantin, J., S. Alcalen, A. S. Otero, W. P. Dubinsky, and S. G. Schultz. Reconstitution of an inwardly rectifying potassium channel from the basolateral membranes of Necturus enterocytes into planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 86: 5212–5216, 1989.
 132. Cotton, C. U., and L. Reuss. Effects of changes in mucosal solution Cl− or K+ concentration on cell water volume of Necturus gallbladder epithelium. J. Gen. Physiol. 97: 667–686, 1991.
 133. Cotton, C. U., and L. Reuss. Electrophysiological effects of extracellular ATP on Necturus gallbladder epithelium. J. Gen. Physiol. 97: 949–972, 1991.
 134. Cotton, C. U., A. M. Weinstein, and L. Reuss. Osmotic water permeability of Necturus gallbladder. J. Gen. Physiol. 93: 649–679, 1989.
 135. Coutry, N., N. Farman, J. P. Bonvalet, and M. Blot‐Chabaud. Synergistic action of vasopressin and aldosterone on basolateral Na+‐K+‐ATPase in the cortical collecting duct. J. Membr. Biol. 145: 99–106, 1995.
 136. Crane, R. K. Intestinal absorption of sugars. Physiol. Rev. 40: 789–825, 1960.
 137. Cremaschi, D., S. Hénin, and G. Meyer. Stimulation by HCO3+ of Na+ transport in rabbit gallbladder. J. Membr. Biol. 47: 145–170, 1979.
 138. Cremaschi, D., and G. Meyer. Amiloride‐sensitive sodium channels in rabbit and guinea‐pig gall‐bladder. J. Physiol. (Lond.) 326: 21–34, 1982.
 139. Cremaschi, D., G. Meyer, C. Rossetti, G. Bottà, and P. Palestini. The nature of the neutral Na+‐Cl− coupled entry at the apical membrane of rabbit gallbladder epithelium. I. Na+/H+, Cl−/HCO3− double exchange and Na+/Cl− symport. J. Membr. Biol. 95: 209–218, 1987.
 140. Cremaschi, D., C. Porta, G. Bottà, and G. Meyer. Nature of the neutral Na+‐Cl− coupled entry at the apical membrane of rabbit gallbladder epithelium: IV. Na+/H+, Cl−/HCO3− double exchange, hydrochlorothiazide‐sensitive Na+‐Cl− symport and Na+‐K+–2Cl− cotransport are all involved. J. Membr. Biol. 129: 221–235, 1992.
 141. Crowson, M. S., and G. E. Shull. Isolation and characterization of a cDNA encoding the putative distal colon H+,K+‐ATPase. J. Biol. Chem. 267: 13740–13748, 1992.
 142. Cunningham, S. A., R. A. Frizzell, and A. P. Morris. Vesicular targeting and the control of ion secretion in epithelial cells: implications for cystic fibrosis. J. Physiol. (Lond.) 482: 27S–30S, 1995.
 143. Cuppoletti, J., A. M. Baker, and D. H. Malinowska. Cl− channels of the gastric parietal cell that are active at low pH. Am. J. Physiol. 264 (Cell Physiol. 33): C1609–C1618, 1993.
 144. Curci, S., L. Debellis, and E. Frömter. Evidence for rheogenic sodium bicarbonate cotransport in the basolateral membrane of oxyntic cells of frog gastric fundus. Pflugers Arch. 408: 497–504, 1987.
 145. Curci, S., and E. Frömter. Electrophysiological techniques in the analysis of ion transport across gastric mucosa. Methods Enzymol. 192: 82–93, 1990.
 146. Curran, P. F., and J. R. MacIntosh. A model system for biological water transport. Nature 193: 347–348, 1962.
 147. Curran, P. F., and A. K. Solomon. Ion and water fluxes in the ileum of rats. J. Gen. Physiol. 41: 143–168, 1957.
 148. Dausch, R., and K. R. Spring. Regulation of NaCl entry into Necturus gallbladder epithelium by protein kinase C. Am. J. Physiol. 266 (Cell Physiol. 35): C531–C535, 1994.
 149. Davidson, N. O., A.M.L. Hausman, C. A. Ifkovits, J. B. Buse, G. W. Gould, C. F. Burant, and G. I. Bell. Human intestinal glucose transporter expression and localization of GLUTS. Am. J. Physiol. 262 (Cell Physiol. 31): C795–C800, 1992.
 150. Davis, C. W., and A. L. Finn. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science 216: 525–527, 1982.
 151. Dawson, D. C., and Q. Al‐Awqati. Induction of reverse flow of Na+ through the active transport pathway in toad urinary bladder. Biochim. Biophys. Acta 508: 413–417, 1978.
 152. De Jonge, H. R., N. Van Den Berghe, B. Tilly, M. Kansen, and J. Bijman. (Dys)regulation of epithelial chloride channels. Biochem. Soc. Trans. 17: 816–818, 1989.
 153. del Castillo, J. R., V. M. Rajendran, and H. J. Binder. Apical membrane localization of ouabain‐sensitive K+‐activated ATPase activities in rat distal colon. Am. J. Physiol. 261 (Gastrointest. Liver Physiol. 24): G1005–G1011, 1991.
 154. Demarest, J. R., and A. L. Finn. Interaction between the basolateral K+ and apical Na+ conductances in Necturus urinary bladder. J. Gen. Physiol. 89: 563–580, 1987.
 155. Dempster, J. A., A. N. Van Hoek, and C. H. van Os. The quest for water channels. News Physiol. Sci. 7: 172–176, 1992.
 156. Denker, B. M., B. L. Smith, F. P. Kuhajda, and P. Agre. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubule. J. Biol. Chem. 263: 14634–15642, 1988.
 157. Denning, G. M., M. P. Anderson, J. F. Amara, J. Marshal, A. E. Smith, and M. J. Welsh. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature‐sensitive. Nature 358: 761–764, 1992.
 158. Diamond, J. M. The reabsorptive function of the gall‐bladder. J. Physiol. (Lond.) 161: 442–473, 1962.
 159. Diamond, J. M. The mechanism of solute transport by the gall‐bladder. J. Physiol. (Lond.) 161: 474–502, 1962.
 160. Diamond, J. M. The mechanism of water transport by the gallbladder. J. Physiol. (Lond.) 161: 503–527, 1962.
 161. Diamond, J. M. The epithelial junction: bridge, gate, and fence. Physiologist 20: 10–17, 1977.
 162. Diamond, J. M. Transcellular cross‐talk between epithelial cell membranes. Nature 300: 683, 1982.
 163. Diamond, J. M., and W. H. Bossert. Standing‐gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50: 2061–2083, 1967.
 164. Diener, M., M. Nobles, and W. Rummel. Activation of basolateral Cl− channels in the rat colonic epithelium during regulatory volume decrease. Pflugers Arch. 421: 530–538, 1992.
 165. DiGiovanni, S. R., S. Nielsen, E. I. Christensen, and M. A. Knepper. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc. Natl. Acad. Sci. U.S.A. 91: 8984–9888, 1994.
 166. Doucet, A., and S. Marsy. Characterization of K‐ATPase activity in distal nephron: stimulation by potassium depletion. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F418–F423, 1987.
 167. Dragsten, P. R., R. Blumenthal, and J. S. Handler. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature 294: 718–722, 1981.
 168. Drenckhahn, D., K. Schluter, D. P. Allen, and V. Bennett. Co‐localization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230: 1287–1289, 1985.
 169. Drenckhahn, D., M. Oelmann, P. Schaef, M. Wagner, and S. Wagner. Band 3 is the basolateral anion exchanger of dark epithelial cells of turtle urinary bladder. Am. J. Physiol. 252 (Cell. Physiol. 21): C570–C574, 1987.
 170. Driscoll, M., and M. Chalfie. The mec‐4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 849: 588–593, 1991.
 171. Drumm, M. L., A. H. Pope, W. H. Cliff, J. M. Rommens, S. A. Marvins, L. Tsui, F. Collins, R. A. Frizzell, and J. M. Wilson. Correction of cystic fibrosis defect in vitro by retrovirus‐mediated gene transfer. Cell 62: 227–1233, 1990.
 172. DuBose, T. D., Jr., J. Codina, A. Burges, and T. A. Pressley. Regulation of H+‐K+‐ATPase expression in kidney. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F500–F507, 1995.
 173. Duffey, M. E., B. Hainau, S. Ho, and C. J. Bentzel. Regulation of epithelial tight junction permeability by cyclic AMP. Nature 294: 451–453, 1981.
 174. Eaton, D. C., K. L. Hamilton, and K. E. Johnson. Intracellular acidosis blocks the basolateral Na‐K pump in rabbit urinary bladder. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F946–F954, 1984.
 175. Echevarría, M., G. Frindt, G. M. Preston, M. Snezana, P. Agre, J. Fischbarg, and E. Windhager. Expression of multiple water channel activities in Xenopus oocytes injected with mRNA from rat kidney. J. Gen. Physiol. 101: 827–841, 1993.
 176. Echevarria, M., E. E. Windhager, S. S. Tate, and G. Frindt. Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc. Natl. Acad. Sci. U.S.A. 91: 10997–11001, 1994.
 177. Edelman, I. S. Receptors and effectors in hormone action on the kidney. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F333–F339, 1981.
 178. Egan, M., T. Flotte, S. Afione, R. Solow, P. L. Zeitlin, B. J. Carter, and W. B. Guggino. Defective regulation of outwardly rectifying Cl− channels by protein kinase A corrected by insertion of CFTR. Nature 358: 581–584, 1992.
 179. Egan, M. E., E. M. Schwiebert, and W. B. Guggino. Differential expression of ORCC and CFTR induced by low temperature in CF airway epithelial cells. Am. J. Physiol. 268 (Cell Physiol. 37): C243–C251, 1995.
 180. Engel, A., T. Walz, and P. Agre. The aquaporin family of membrane water channels. Curr. Opin. Struct. Biol. 4: 545–553, 1994.
 181. Ericson, A.‐C., and K. R. Spring. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am. J. Physiol. 243 (Cell Physiol. 12): C140–C145, 1982.
 182. Erlij, D., and H. H. Ussing. Transport across amphibian skin. In: Membrane Transport in Biology, Vol. III, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1978, p. 175–208.
 183. Evans, R. M. The steroid and thyroid hormone receptor super‐family. Science 240: 889–895, 1988.
 184. Evans, R. M. Molecular characterization of the glucocorticoid receptor. Recent Prog. Horm. Res. 45: 1–22, 1989.
 185. Eveloff, J., and D. G. Warnock. K‐Cl transport systems in rabbit renal basolateral membrane vesicles. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F883–F889, 1987.
 186. Ewart, H. S., and A. Klip. Hormonal regulation Na+‐K+‐ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am. J. Physiol. 269 (Cell Physiol. 38): C295–C311, 1995.
 187. Fafournoux, P., J. Noël, and J. Pouysségur. Evidence that Na+/H+ exchanger isoforms NHE1 and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J. Biol. Chem. 269: 2589–2596, 1994.
 188. Fedorak, R. N., N. Cortas, and M. Field. Diabetes mellitus and glucagon alter ouabain‐sensitive Na+‐K+‐ATPase in rat small intestine. Diabetes 40: 1603–1610, 1991.
 189. Fejes‐Tóth, G., W.‐R. Chen, E. Rusvai, T. Moser, and A. Náray‐Fejes‐Tóth. Differential expression of AE1 in renal HCO3‐secreting and ‐reabsorbing intercalated cells. J. Biol. Chem. 269: 26717–26721, 1994.
 190. Fejes‐Tóth, G., and A. Náray‐Fejes‐Tóth. Effect of acid/base balance on H‐ATPase 31kD subunit mRNA levels in collecting duct cells. Kidney Int. 48: 1420–1426, 1995.
 191. Felder, C. C., F. E. Albrecht, T. Campbell, G. M. Eisner, and P. A. José. cAMP‐independent, G protein‐linked inhibition of Na+/H+ exchange in renal brush border by D1 dopamine agonists. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F1032–F1037, 1993.
 192. Ferreira, K.T.G. The effect of copper on frog skin. The role of sulphydryl groups. Biochim. Biophys. Acta 510: 298–304, 1978.
 193. Filipovic, D., and H. Sackin. A calcium‐permeable stretch‐activated cation channel in renal proximal tubule. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F119–F129, 1991.
 194. Filipovic, D., and H. Sackin. Stretch‐ and volume‐activated channels in isolated proximal tubule cells. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F857–F870, 1992.
 195. Fine, D. M., C. F. Lo, L. Aguillar, D. L. Blackmon, and M. H. Montrose. Cellular chloride depletion inhibits cAMP‐activated electrogenic chloride fluxes in HT29‐18‐C1 cells. J. Membr. Biol. 145: 129–141, 1995.
 196. Finkelstein, A. Water and nonelectrolyte permeability of lipid bilayer membranes. J. Gen. Physiol. 68: 127–135, 1976.
 197. Finkelstein, A. Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues. J. Gen. Physiol. 68: 137–143, 1976.
 198. Finkelstein, A. Water Movements through Lipid Bilayers, Pores and Plasma Membranes: Theory and Reality. New York: Wiley, 1987.
 199. Finn, A. L. Transport across amphibian urinary bladder. In: Membrane Transport in Biology, Vol. III, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1978, p. 209–238.
 200. Finn, A. L. Symports and antiports in epithelial cell volume regulation. In: Na+/H+ Exchange, edited by S. Grinstein. Boca Raton, FL: CRC, 1988. p. 191–200.
 201. Finn, A. L., and L. Reuss. Effects of changes in the composition of the serosal solution on the electrical properties of the toad urinary bladder epithelium. J. Physiol. (Lond.) 250: 541–558, 1975.
 202. Fischer, H., B. Illek, and T. E. Machen. The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conductance regulator Cl− channel in mouse 3T3 fibroblasts. J. Physiol. (Lond.) 489: 745–754, 1995.
 203. Fisher, R. S., F. G. Grillo, and S. Sariban‐Sohraby. Brefeldin A inhibition of apical Na+ channels in epithelia. Am. J. Physiol. 270 (Cell Physiol. 39): C138–C147, 1996.
 204. Flarnion, B., and K. R. Spring. Water permeability of apical and basolateral cell membranes of rat inner medullary collecting duct. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F986–F999, 1990.
 205. Flarnion, B., K. R. Spring, and M. Abramow. Adaptation of inner medullary collecting duct to dehydration involves a paracellular pathway. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F53–F63, 1995.
 206. Flemström, G., and A. Garner. Gastroduodenal HCO3− transport: characteristics and proposed role in acidity regulation and mucosal protection. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G183–G193, 1982.
 207. Fliegel, L., R. S. Haworth, and J.R.B. Dyck. Characterization of the placental brush border membrane Na+/H+ exchanger: identification of thiol‐dependent transitions in apparent molecular size. J. Biochem. 289: 101–107, 1993.
 208. Folkesson, H. G., M. A. Matthay, A. Frigeri, and A. S. Verkman. Transepithelial water permeability in microperfused distal airways. Evidence for channel‐mediated water transport. J. Clin. Invest. 97: 664–671, 1996.
 209. Fong, P., and T. J. Jentsch. Molecular basis of epithelial Cl channels. J. Membr. Biol. 144: 189–197, 1995.
 210. Forbush, B., III, and M. Haas. Identification of a 200 K Dalton component of the Na,K,Cl‐cotransport system in membranes from dogfish shark rectal gland. Biophys. J. 53: 222a, 1988.
 211. Forbush, B. III, M. Haas, and C. Lytle. The Na‐K‐Cl cotransporter in shark rectal gland. I. Regulation in the intact perfused gland. Am. J. Physiol. 262 (Cell Physiol. 31): C1000–C1008, 1992.
 212. Forbush, B., III, C. Lytle, C. Xu, J. A. Payne, and D. Biemesderfer. The Na,K,Cl cotransporter of shark rectal gland. Renal Physiol. Biochem. 17: 201–204, 1994.
 213. Forte, J. G., D. K. Hanzel, T. Urushidani, and J. M. Wolosin. Pumps and pathways for gastric HCl secretion. Ann. NY Acad. Sci. 574: 145–158, 1989.
 214. Forte, J. G., T. E. Machen, and K. J. Obrink. Mechanisms of gastric H+ and Cl− transport. Annu Rev. Physiol. 42: 111–126, 1980.
 215. Foskett, J. K. The role of calcium in the control of volume regulatory transport pathways. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange, Boca Raton: CRC, 1994, p. 259–278.
 216. Friedrich, F., H. Weiss, M. Paulmichl, and F. Lang. Activation of potassium channels in renal epithelioid cells (MDCK). Am. J. Physiol. 256 (Cell Physiol. 25): C1016–1021, 1989.
 217. Frindt, G., R. B. Silver, E. E. Windhager, and L. G. Palmer. Feedback regulation of Na channels in rat CCT. II. Effects of inhibition of Na entry. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F565–F574, 1993.
 218. Frizzell, R. A., and W. H. Cliff. Chloride channels. No common motif. Curr. Biol. 2: 285–287, 1992.
 219. Frizzell, R. A., M. C. Dugas, and S. G. Schultz. Sodium chloride transport by rabbit gallbladder direct evidence for a coupled NaCl influx process. J. Gen. Physiol. 65: 769–795, 1975.
 220. Frizzell, R. A., G. Reckhammer, and R. L. Shoemaker. Altered regulation of airway epithelial chloride channels in cystic fibrosis. Science 233: 558–560, 1986.
 221. Frömter, E. The route of passive ion movement through the epithelium of Necturus gallbladder. J. Membr. Biol. 8: 259–301, 1972.
 222. Frömter, E. Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic Phenomena. Pflugers Arch. 393: 179–189, 1982.
 223. Frömter, E., and J. Diamond. Route of passive ion permeation in epithelia. Nature [New Biol.] 235: 9–13, 1972.
 224. Fuller, C. M., M. S. Awayda, M. P. Arrate, A. L. Bradford, R. G. Morris, C. M. Canessa, B. C. Rossier, and D. J. Benos. Cloning of a bovine renal epithelial Na+ channel subunit. Am. J. Physiol. 269 (Cell Physiol. 38): C641–654, 1995.
 225. Fuller, C. M., and B. J. Benos. CFTR Am. J. Physiol. 263 (Cell Physiol. 32): C267–C286, 1992.
 226. Furuse, M., T. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura, S. Tsukita, and S. Tsukita. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123: 1777–1788, 1993.
 227. Furuse, M., M. Itoh, T. Hirase, A. Nagafuchi, S. Yonemura, S. Tsukita, and S. Tsukita. Direct association of occludin with ZO‐1 and its possible involvement in the localization of occludin at tight junctions. J. Cell Biol. 127: 1617–1626, 1994.
 228. Fushimi, K., S. Uchida, Y. Hara, Y. Hirata, F. Marumo, and S. Sasaki. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361: 549–552, 1993.
 229. Fushimi, K., and A. S. Verkman. Relationship between vasopressin‐sensitive water transport and plasma membrane fluidity in kidney collecting tubule. Am. J. Physiol. 260 (Cell Physiol. 29): C1–C8, 1991.
 230. Gabriel, S. E., L. L. Clarke, R. C. Boucher, and M. J. Stutts. CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363: 263–266, 1993.
 231. Gadsby, D. C., G. Nagel, and T.‐C. Hwang. The CFTR chloride channel of mammalian heart. Annu. Rev. Physiol. 57: 387–416, 1995.
 232. Gadsby, D. C., and A. C. Nairn. Regulation of CFTR channel gating. Trends Biochem. Sci. 19: 513–518, 1994.
 233. Gallacher, D. V. Are there purinergic receptors on parotid acinar cells? Nature 296: 83–86, 1982.
 234. Gamba, G., A. Miyanoshita, M. Lombardi, J. Lytton, W.‐L. Lee, M. A. Hediger, and S. C. Hebert. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium‐(potassium)‐chloride co‐transporter family expressed in kidney. J. Biol. Chem. 269: 17713–17722, 1994.
 235. Gamba, G., S. N. Saltzberg, M. Lambardi, A. Miyanoshita, J. Lytton, M. A. Hediger, B. M. Brenner, and S. C. Hebert. Primary structure and functional expression of a cDNA encoding the thiazide‐sensitive, electroneutral sodium‐chloride co‐transporter. Proc. Natl. Acad. Sci. U.S.A. 90: 2749–2753, 1994.
 236. Garcia‐Austt, J., D. W. Good, M. B. Burg, and M. A. Knepper. Deoxycorticosterone‐stimulated bicarbonate secretion in rat cortical collecting ducts: effects of luminal chloride removal and in vivo acid loading. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F205–F212, 1985.
 237. Garg, L. C., M. A. Knepper, and M. B. Burg. Mineralocorticoid effects on Na‐K‐ATPase in individual nephron segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F536–F544, 1981.
 238. Garty, H. Mechanisms of aldosterone action in tight epithelia. J. Membr. Biol. 90: 193–205, 1986.
 239. Garty, H. Regulation of Na+ permeability by aldosterone. Semin. Nephrol. 12: 24–29, 1992.
 240. Garty, H. Molecular properties of epithelial, amiloride‐blockable Na+ channels. FASEB J. 8: 0522–0528, 1994.
 241. Garty, H., and C. Asher. Ca2+‐induced down‐regulation of Na+ channels in toad bladder epithelium. J. Biol. Chem. 261: 7400–7406, 1986.
 242. Garty, H., C. Asher, and O. Yeger. Direct inhibition of epithelial Na+ channels by Ca2+ and other divalent cations. J. Membr. Biol. 95: 151–162, 1987.
 243. Garty, H., E. D. Civan, and M. M. Civan. Effects of internal and external pH on amiloride‐blockable Na+ transport across toad urinary bladder vesicles. J. Membr. Biol. 87: 67–75, 1985.
 244. Garty, H., and I. S. Edelman. Amiloride‐sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder. J. Gen. Physiol. 81: 785–803, 1983.
 245. Garty, H., O. Yeger, A. Yanovsky, and C. Asher. Guanosine nucleotide‐dependent activation of the amiloride‐blockable Na+ channel. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F965–F969, 1989.
 246. Geering, K., M. Girardet, C. Bron, J.‐P. Kraehenbuhl, and B. C. Rossier. Hormonal regulation of (Na+, K+)‐ATPase biosynthesis in the toad bladder. Effect of aldosterone and 3,5,3′‐triiodo‐1‐thyronine. J. Biol. Chem. 257: 10338–10343, 1982.
 247. Gillen, C. M., S. Brill, J. A. Payne, and B. Forbush, III. Molecular cloning and functional expression of the K‐Cl co‐transporter from rabbit, rat, and human. J. Biol. Chem. 271: 16237–16244.
 248. Giraldez, F., K. J. Murray, F. V. Sepúlveda, and D. N. Sheppard. Characterization of a phosphorylation‐activated Cl−‐selective channel in isolated Necturus enterocytes. J. Physiol. (Lond.) 416: 517–538, 1989.
 249. Glick, G. G., F. Ismail‐Beigi, and I. S. Edelman. Hormonal regulation of Na,K‐ATPase. Prog. Clin. Biol. Res. 2688: 277–295, 1988.
 250. Gluck, S. L. The structure and biochemistry of the vacuolar H+ ATPase in proximal and distal urinary acidification. J. Bioenerg. Biomembr. 24: 351–358, 1992.
 251. Gluck, S., and Q. Al‐Awqati. Vasopressin increases water permeability by inducing pores. Nature 284: 631–632, 1980.
 252. Gluck, S., and J. Caldwell. Immunoaffinity purification and characterization of vacuolar H+ ATPase from bovine kidney. J. Biol. Chem. 262: 15780–15789, 1987.
 253. Gluck, S., and J. Caldwell. Proton‐translocating ATPase from bovine kidney medulla: partial purification and reconstitution. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F71–F79, 1988.
 254. Gluck, S., C. Cannon, and Q. Al‐Awqati. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci. U.S.A. 79: 4327–4331, 1982.
 255. Gögelein, H. Chloride channels in epithelia. Biochim. Biophys. Acta 947: 521–547, 1988.
 256. Gögelein, H., and R. Greger. Properties of single K+ chanels in the basolateral membrane of rabbit proximal straight tubules. Pflugers Arch. 410: 288–295, 1987.
 257. Goldstein, O., C. Asher, P. Barbryk, E. J. Cragoe, Jr., W. Clauss, and H. Garty. An epithelial high‐affinity amiloride binding site, different from the Na+ channel. J. Biol. Chem. 268: 7856–7862, 1993.
 258. Goligorsky, M. S., W. Lieberthal, L. Racusen, and E. E. Simon. Integrin receptors in renal tubular epithelium: new insights into pathophysiology of acute renal failure. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F1–F8, 1993.
 259. González, E., P. Carpi‐Medina, H. Linares, and G. Whittembury. Water osmotic permeability of the apical membrane of proximal straight tubular (PST) cells. Pflugers Arch. 402: 337–339, 1984.
 260. González, E., P. Carpi‐Medina, and G. Whittembury. Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F321–F330, 1982.
 261. Good, D. G. Hyperosmolality inhibits bicarbonate absorption in rat medullary thick ascending limb via a protein‐tyrosine kinase‐dependent pathway. J. Biol. Chem. 270: 9883–9889, 1995.
 262. Good, D. W., T. George, and B. A. Watts, III. Basolateral membrane Na+/H+ exchange enhances HCO3− absorption in rat medullary thick ascending limb: Evidence for functional coupling between basolateral and apical membrane Na+/H+ exchangers. Proc. Natl. Acad. Sci. U.S.A..
 263. Gordon, L.G.M., G. Kottra, and E. J. Frömter. Methods to detect, quantify, and minimize edge leaks in Ussing chambers. Methods Enzymol. 192: 697–710, 1990.
 264. Gottschalk, C. W., W. E. Lassiter, and M. Mylle. Localization of urine acidification in the mammalian kidney. Am. J. Physiol. 198: 581–585, 1960.
 265. Grantham, J. J., and M. B. Burg. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259, 1966.
 266. Grassl, S. M., and P. S. Aronson. Na+/HCO3− co‐transport in basolateral membrane vesicles isolated from rabbit renal cortex. J. Biol. Chem. 261: 8778–8873, 1986.
 267. Green, R., and G. Giebisch. Luminal hypotonicity: A driving force for fluid absorption from the proximal tubule. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F167–F174, 1984.
 268. Greger, R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol. Rev. 65: 760–797, 1985.
 269. Greger, R. Chloride channel blockers. Methods Enzymol. 191: 793–810, 1990.
 270. Greger, R., M. Bleich, and E. Schlatter. Ion channels in the thick ascending limb of Henle's loop. Renal Physiol. Biochem. 13: 37–50, 1990.
 271. Greger, R., M. Bleich, and E. Schlatter. Ion channel regulation in the thick ascending limb of the loop of Henle. Kidney Int. 40: S119–S124, 1991.
 272. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch. 396: 325–334, 1983.
 273. Grinstein, S., W. Furuya, and L. Bianchini. Protein kinases, phosphatases, and the control of cell volume. News Physiol. Sci. 7: 232–237, 1992.
 274. Grunder, S., A. Thiemann, M. Pusch, and J. T. Jentsch. Regions involved in the opening of CLC‐2 chloride channel by voltage and cell volume. Nature 360: 759–762, 1992.
 275. Guggino, W. B. Functional heterogeneity in the early distal tubule of the Amphiuma kidney: evidence for two modes of Cl− and K+ transport across the basolateral cell membrane. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19) F430–F440, 1986.
 276. Guggino, W. B. Outwardly rectifying chloride channels and CF: a divorce and remarriage. J. Bioenerg. Biomembr. 25: 27–35, 1993.
 277. Guggino, W. B., R. London, E. L. Boulpaep, and G. Giebisch. Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: Dependence on bicarbonate and sodium. J. Membr. Biol. 71: 227–240, 1983.
 278. Guinamard, R., A. Chraïbi, and J. Teulon. A small‐conductance Cl− channel in the mouse thick ascending limb that is activated by ATP and protein kinase A. J. Physiol. (Lond.) 485: 97–112, 1995.
 279. Gullans, S. R., D. M. Cohen, R. Kojima, J. Randall, B. M. Brenner, B. Santos, and A. Chevaile. Transcriptional responses to tubule challenges. Kidney Int. 49: 1578–1681, 1996.
 280. Gumbiner, B. M. Breaking through the tight junction barrier. J. Cell Biol. 123: 1631–1633, 1993.
 281. Gunter‐Smith, P. J., E. Grasset, and S. G. Schultz. Sodium‐coupled amino acid and sugar transport by Necturus small intestine. J. Membr. Biol. 66: 25–39, 1982.
 282. Gustin, M. C., and D. B. P. Goodman. Characterization of the phosphorylated intermediate of the K+‐ouabain‐insensitive ATPase of the rabbit colon brush‐border membrane. J. Biol. Chem. 257: 9629–9633, 1982.
 283. Haas, M. Properties and diversity of (Na‐K‐Cl) cotransporters. Annu. Rev. Physiol. 51: 443–457, 1989.
 284. Haas, M. The Na‐K‐Cl cotransporters. Am. J. Physiol. 267 (Cell Physiol. 36): C869–C885, 1994.
 285. Haas, M., B. Forbush, III. [3H]bumetamide binding to duck red cells. Correlation with inhibition of (Na+K+2Cl−) co‐transport. J. Biol. Chem. 261: 8434–8441, 1986.
 286. Haas, M., D. McBrayer, and C. Lytle. [Cl−]1‐dependent phosphorylation of the Na‐K‐Cl cotransport protein of dog tracheal epithelial cells. J. Biol. Chem. 270: 28955–28961, 1995.
 287. Hamill, O. P., and D. W. McBride, Jr. Molecular mechanisms of mechanoreceptor adaptation. News Physiol. Sci. 9: 53–59, 1994.
 288. Hamilton, K. L., and D. C. Eaton. Single‐channel recordings from amiloride‐sensitive epihelial sodium channel. Am. J. Physiol. 249 (Cell Physiol. 18): C200–C207, 1985.
 289. Handler, J. S. Antidiuretic hormone moves membranes. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F375–F382, 1988.
 290. Hanrahan, J. W., W. P. Alles, and S. A. Lewis. Single anion‐selective channels in basolateral membrane of a mammalian tight epithelium. Proc. Natl. Acad. Sci. U.S.A. 82: 7791–7795, 1985.
 291. Harris, H. W., and J. S. Handler. The role of membrane turnover in the water permeability response to antidiuretic hormone. J. Membr. Biol. 103: 207–216, 1988.
 292. Harvey, B. J. Cellular mechanisms of regulation of ion and water channels and pumps in high‐resistance epithelia. In: Isotonic Transport in Leaky Epithelia, Alfred Benzon Symposium 34, edited by H. H. Ussing, J. Fischbarg, O. Sten‐Knudsen, E. H. Larsen, and N. J. Willumsen,. Copenhagen: Munskgaard, 1993, p. 312–332.
 293. Hasegawa, H., T. Ma, W. Skach, M. A. Matthay, and A. S. Verkman. Molecular cloning of a mercurial‐insensitive water channel expressed in selected water‐transporting tissues. J. Biol. Chem. 269: 5497–5500, 1994.
 294. Hayashi, M., S. Sasaki, H. Tsuganezawa, T. Monkawa, W. Kitajima, K. Konishi, K. Fushimi, F. Marumo, and T. Saruta. Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J. Clin. Invest. 94: 1778–1783, 1994.
 295. Hays, R. M., N. Franki, H. Simon, and Y. Gao. Antidiuretic hormone and exocytosis: lessons from neurosecretion. Am. J. Physiol. 267 (Cell Physiol. 36): C1507–C1524, 1994.
 296. Hays, S. R., and R. J. Alpern. Basolateral membrane Na+‐independent Cl−/HCO3− exchange in the inner stripe of the outer medullar collecting tubule. J. Gen. Physiol. 95: 347–368, 1990.
 297. Hebert, S. C. Hypertonic cell volume regulation in mouse thick limbs. I. ADH dependency and nephron heterogeneity. Am. J. Physiol. 250 (Cell Physiol. 19): C907–C919, 1986.
 298. Hebert, S. C., and T. E. Andreoli. Interactions of temperature and ADH on transport in cortical collecting tubules. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 9): F470–F480, 1980.
 299. Hebert, S. C., and T. E. Andreoli. Water transport and osmoregulation by terminal nephron segments. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 933–949.
 300. Hebert, S. C., and K. Ho. Structure and functional properties of an inwardly rectifying ATP‐regulated K+ channel from rat kidney. Renal Physiol. Biochem. 17: 143–147, 1994.
 301. Hediger, M. A., M. J. Coady, T. S. Ikeda, and E. M. Wright. Expression cloning and cDNA sequencing of the Na+/glucose cotransporter. Nature 330: 379–381, 1987.
 302. Hediger, M. A., Y. Kanai, G. You, and S. Nussberger. Mammalian ion‐coupled solute transporters. J. Physiol. (Lond.) 482: 7S–17S, 1995.
 303. Hediger, M. A., and D. B. Rhoads. Molecular physiology of sodium‐glucose cotransporters. Physiol. Rev. 74: 993–1026, 1994.
 304. Heintze, K., K.‐U. Petersen, P. Olles, S. H. Saverymuttu, and J. R. Wood. Effects of bicarbonate on fluid and electrolyte transport by the guinea pig gallbladder: a bicarbonate‐chloride exchange. J. Membr. Biol. 45: 43–59, 1979.
 305. Helman, S. I., and N. L. Kizer. Apical sodium ion channels of tight epithelia as viewed from the perspective of noise analysis. Curr. Top. Membr. Transp. 37: 117–155, 1990.
 306. Helman, S. I., and D. A. Miller. Edge damage effect on measurements of urea and sodium flux in frog skin. Am. J. Physiol. 226: 1198–1203, 1974.
 307. Helman, S. I., and S. M. Thompson. Interpretation and use of electrical equivalent circuit in studies of epithelial tissues. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F519–F531, 1982.
 308. Heming, T. A., J. Copello, and L. Reuss. Regulation of cAMP‐activated apical membrane chloride conductance in gallbladder epithelium. J. Gen. Physiol. 103: 1–18, 1994.
 309. Hersey, S. J., and G. Sachs. Gastric acid secretion. Physiol. Rev. 75: 155–189, 1995.
 310. Hill, A. E. Solute‐solvent coupling in epithelia: a critical examination of the standing‐gradient osmotic flow theory. Proc. R. Soc. Lond. (Biol.) 190: 99–114, 1975.
 311. Hille, B. Ionic channels of excitable membranes. Sunderland: Sinauer, 1992.
 312. Hirayama, B. A., C. D. Smith and E. M. Wright. Secondary structure of the Na+/glucose cotransporter. J. Gen. Physiol. 100: 19–20 (Abst.), 1992.
 313. Hirsch, J., and E. Schlatter. K+ channels in the basolateral membrane of rat cortical collecting duct. Pflugers Arch. 424: 470–477, 1993.
 314. Hirsch, J., and E. Schlatter. K+ channels in the basolateral membrane of rat cortical collecting duct are regulated by a cGMP‐dependenet protein kinase. Pflugers Arch. 429: 338–344, 1995.
 315. Ho, K., C. G. Nichols, W. J. Lederer, J. Lytton, P. M. Vassiley, M. V. Kanazirska, and S. C. Hebert. Cloning and expression of an inwardly rectifying ATP‐regulated potassium channel. Nature 362: 31–38, 1993.
 316. Hong, K., and M. Driscoll. A transmembrane domain of the putative channel subunit MEC‐4 influences mechanotransduction and neurodegeneration in C. elegans. Nature 367: 470–473, 1994.
 317. Hoshi, T., and F. Sakai. A comparison of the electrical resistances of the surface cell membrane and cellular wall in the proximal tubule of the newt kidney. Jpn. J. Physiol. 17: 627–637, 1967.
 318. House, C. R. Water Transport in Cells and Tissues. London: Arnold, 1974.
 319. Huang, M., and M. Chalfie. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367: 467–470, 1994.
 320. Huang, H., H. St.‐Jean, M. J. Coady, J.‐Y. Lapointe. Evidence for coupling between Na+ pump activity and TEA‐sensitive K+ currents in Xenopus laevis occytes. J. Membr. Biol. 143: 29–35, 1995.
 321. Huf, E. G., N. S. Doss, and J. P. Wills. Effects of metabolic inhibitors and drugs on ion transport and oxygen consumption in isolated frog skin. J. Gen. Physiol. 41: 397–417, 1957.
 322. Humphreys, B.D.L., Jiang, M. N. Chernova, and S. L. Alper. Hypertonic activation of AE3 anion exchanger in Xenopus oocytes via NHE‐mediated intracellular alkalinization. Am. J. Physiol. 268 (Cell Physiol. 37): C201–C209, 1995.
 323. Hunter, M., K. Kawahara, and G. Giebisch. Calcium‐activated epithelial potassium channels. Miner. Electrolyte Metab. 14: 48–57, 1988.
 324. Hurst, A. M., M. Duplain, and J.‐Y. Lapointe. Basolateral membrane potassium channels in rabbit cortical thick ascending limb. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F262–F267, 1992.
 325. Hwang, T. C., L. Lu, P. L. Zeitlin, D. C. Gruenert, R. Huganir, and W. B. Guggino. Cl− channels in CF: lack of activation by protein kinase C and cAMP‐dependent protein kinase. Science 244: 1351–1353, 1989.
 326. Hwang, T. C., G. Nagel, A. C. Nairn, and D. C. Gadsby. Regulation of the gating of cystic fibrosis transmembrane conductance regulator Cl channels by phosphorylation and ATP hydrolysis. Proc. Natl. Acad. Sci. U.S.A. 91: 4698–4702, 1994.
 327. Ikeda, T. S., E.‐S. Hwang, M. J. Coady, B. A. Hirayama, M. A. Hediger, and E. M. Wright. Characterization of a Na+/glucose cotransporter cloned from rabbit intestine. J. Membr. Biol. 110: 87–95, 1989.
 328. Inagaki, N., T. Gonoi, J. P. Clement, IV, N. Namba, J. Inazawa, G. González, L. Aguilar‐Bryan, S. Seinio, and J. Bryan. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270: 1166–1170, 1995.
 329. Ishibashi, K., F. C. Rector, and C. A. Berry. Role of Na‐dependent Cl/HCO3 exchange in basolateral Cl transport of rabbit proximal tubules. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F251–F258, 1993.
 330. Ishibashi, K., S. Sasaki, K. Fushimi, S. Uchida, K. Nakajima, Y. Yamaguchi, T. Gojobori T. Marumo, and F. Marumo. Molecular cloning and expression of a new member of the aquaporin family (AQP3) with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc. Natl. Acad. Sci. U.S.A. 91: 6269–6273, 1994.
 331. Ismailov, I. I. and D. J. Benos. Effects of phosphorylation on ion channel function. Kidney Int. 48: 1167–1179, 1995.
 332. Jennings, M. L., and R. K. Schulz. Swelling‐activated KCl cotransport in rabbit red cells: flux is determined mainly by cell volume rather than shape. Am. J. Physiol. 259 (Cell Physiol. 28): C960–C967, 1990.
 333. Jennings, M. L., and R. K. Schulz. Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N‐ethylmaleimide. J. Gen. Physiol. 97: 799–818, 1991.
 334. Jentsch, T. J. Molecular physiology of anion channels. Curr. Opin. Cell Biol. 6: 600–606, 1994.
 335. Jentsch, T. J., P. Schwartz, B. S. Schill, B. Langer, A. P. Lepple, S. K. Keller, and M. Wiederholt. Kinetic properties of the sodium bicarbonate (carbonate) symport in monkey kidney epithelial cells (BSC‐1). J. Biol. Chem. 261: 10673–10679, 1986.
 336. Jovov, B., I. I. Ismailov, and D. J. Benos. Cystic fibrosis transmembrane conductance regulator is required for protein kinase A activation of an outwardly rectified anion channel purified from bovine tracheal epithelia. J. Biol. Chem. 270: 1521–1528, 1995.
 337. Jung, J. S., G. M. Preston, B. L. Smith, W. B. Guggino, and P. Agre. Molecular structure of the water channel through aquaporin CHIP: the tetrameric‐hourglass model. J. Biol. Chem. 269: 14648–14654, 1994.
 338. Kandasamy, R. A., and J. Orlowski. Genomic organization and glucocorticoid transcriptional activation of the rat Na+/H+ exchanger Nhe3 gene. J. Biol. Chem. 271: 10551–10559, 1996.
 339. Kandasamy, R. A., F. H. Yu, R. Harris, A. Boucher, J. W. Hanrahan, and J. Orlowski. Plasma membrane Na+/H+ exchanger isoforms (NHE‐1, −2, and −3) are differentially responsive to second messenger agonists of the protein kinase A and C pathways. J. Biol. Chem. 270: 9209–29216, 1995.
 340. Kanai, Y., W. S. Lee, G. You, D. Brown, and M. A. Hediger. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D‐glucose. J. Clin. Invest. 93: 397–404, 1994.
 341. Kaplan, M. R., M. D. Plotkin, W.‐S. Lee, Z.‐C. Xu, J. Lytton, and S. C. Hebert. Apical localization of the Na‐K‐Cl cotransporter, rBSCl, on rat thick ascending limbs. Kidney Int. 49: 40–47, 1996.
 342. Karniski, L. P., and P. S. Aronson. Formate: a critical intermediate for chloride transport in the proximal tubule. News Physiol. Sci. 2: 160–164, 1987.
 343. Karsny, E. J., J. L. Madara, D. R. DiBona, and R. A. Frizzell. Cyclic AMP regulates tight junction permselectivity in flounder intestine. Federation Proc. 42: 1100–1108, 1983.
 344. Kasai, H., and G. J. Augustine. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348: 735–738, 1990.
 345. Kaunitz, J. D., and G. Sachs. Identification of a vanadate‐sensitive potassium‐dependent proton pump from rabbit colon. J. Biol. Chem. 261: 14005–14010, 1986.
 346. Kawasaki, M., S. Uchida, T. Monkawa, A. Miyawaki, K. Mikoshiba, F. Marumo, and S. Sasaki. Cloning and expression of a protein kinase C‐regulated chloride channel abundantly expressed in rat brain neuronal cells. Neuron 12: 597–604, 1994.
 347. Kemendy, A. E., T. R. Kleyman, and D. C. Eaton. Aldosterone alters the open probability of amiloride‐blockable sodium channels in A6 epithelia. Am. J. Physiol. 263 (Cell Physiol. 32): C825–C837, 1992.
 348. Kennelly, P. J., and E. G. Krebs. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266: 15555–15558, 1991.
 349. Kerem, B., J. M. Rommens, J. A. Buchanan, D. Markiewicz, T. K. Cox, A. Chakravarti, M. Buchwald, and L.‐C. Tsui. Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073–1080, 1989.
 350. Kieferle, S., P. Fong, M. Bens, A. Vandewalle, and T. J. Jentsch. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc. Natl. Acad. Sci. U.S.A. 91: 6943–6947, 1994.
 351. King‐Hele, J. A. Approximate analytical solutions for water and solute flow in intercellular spaces with a leaky tight junction. J. Theor. Biol. 80: 451–465, 1979.
 352. Kirtane, A., N. Ismail‐Beigi, and F. Ismail‐Beigi. Role of enhanced Na+ entry in the control of Na,K‐ATPase gene expression by serum. J. Membr. Biol. 137: 9–15, 1994.
 353. Kishimoto, A., N. Kajikawa, M. Shiota, and Y. Nishizuka. Proteolytic activation of calcium‐activated, phospholipid‐dependent protein kinase by calcium‐dependent neutral protease. J. Biol. Chem. 258: 1156–1164, 1983.
 354. Kishimoto, A., K. Mikawa, K. Hashimoto, I. Yasuda, S. Tanaka, M. Tominaga, T. Kuroda, and Y. Nishizuka. Limited proteolysis of protein kinase C subspecies by calcium‐dependent neutral protease (calpain). J. Biol. Chem. 264: 4088–4092, 1989.
 355. Klaassen, C.H.W., and J.J.H.H.M. De Pont. Gastric H+/K+‐ATPase. Cell Physiol. Biochem. 4: 115–134, 1994.
 356. Klaerke, D. A., and P. L. Jorgensen. Role of Ca2+‐activated K+ channel in regulation of NaCl reabsorption in thick ascending limb of Henle's loop. Comp. Biochem. Physiol. [A] 904: 757–765, 1988.
 357. Klaerke, D. A., H. Wiener, T. Zeuthen, and P. L. Jorgensen. Ca2+ activation and pH dependence of a maxi K+ channel from rabbit distal colon epithelium. J. Membr. Biol. 136: 9–21, 1993.
 358. Klanke, C. A., Y. R. Su, D. F. Callen, Z. Wang, P. Meneton, N. Baird, R. A. Kandasamy, J. Orlowski, B. E. Otterud, M. Leppert, G. E. Shull, and A. G. Menon. Molecular cloning and physical and genetic mapping of a novel human Na/H exchanger (NHE5/SLC9A5) to chromosome 16q22.1. Genomics 25: 615–622, 1995.
 359. Kleyman, T. R., and E. J. Cragoe, Jr. Cation transport probes: the amiloride series. Methods Enzymol. 191: 739–755, 1990.
 360. Knepper, M. A. The aquaporin family of molecular water channels. Proc. Natl. Acad. Sci. U.S.A. 91: 6255–6258, 1994.
 361. Knepper, M. A., S. P. Lankford, and Y. Terada. Renal tubular actions of ANF. Can. J. Physiol. Pharmacol. 69: 1537–1545, 1991.
 362. Knepper, M. A., and R. A. Star. The vasopressin‐regulated urea transporter in renal inner medullary collecting duct. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F393–F401, 1990.
 363. Koo, Y. H., and P. L. Pedersen. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase. J. Biol. Chem. 270: 22093–22096, 1995.
 364. Köckerling, A., and M. Fromm. Origin of cAMP‐dependent Cl− secretion from both crypts and surface epithelial of rat intestine. Am. J. Physiol. 264 (Cell Physiol. 33): C1294–C1301, 1993.
 365. Koefoed‐Johnsen, V. The effect of g‐strophanthin (ouabain) on the active transport of sodium through the isolated frog skin. Acta Physiol. Scand. 42 (Suppl. 145): 87–88, 1957.
 366. Koefoed‐Johnsen, V., and H. H. Ussing. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.
 367. Koepsell, H., and M. Veyh. Structure of Na+‐D‐glucose cotransport system. Cell Physiol. Biochem. 4: 206–216, 1994.
 368. Kofuji, P., W. J. Lederer, and D. H. Schulze. Na/Ca exchanger isoforms expressed in kidney. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F598–F603, 1993.
 369. Kong, C.‐T., S.‐F. Yet, and J. E. Lever. Cloning and expression of a mammalian Na+/amino acid cotransporter with sequence similarity to Na+/glucose cotransporters. J. Biol. Chem. 268: 1509–1512, 1993.
 370. Kopito, R. R., M. M. Andersson, D. A. Herzlinger, Q. Al‐Awqati, and H. F. Lodish. Structure and tissue‐specific expression of the mouse anion‐exchanger gene in erythroid and renal cells. In: Cell Physiology of Blood, edited by R. B. Gunn and J. C. Parker. New York: Rockefeller, 1988, p. 151–162.
 371. Kopito, R. R., and H. F. Lodish. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316: 234–238, 1985.
 372. Kottra, G. Calcium is not involved in the cAMP‐mediated stimulation of Cl− conductance in the apical membrane of Necturus gallbladder epithelium. Pflugers Arch. 429: 647–658, 1995.
 373. Kottra, G., W. Haase, and E. Frömter. Tight‐junction tightness of Necturus gall bladder epithelium is not regulated by cAMP or intracellular Ca2+. I. Microscopic and general electrophysiological observations. Pflugers Arch. 425: 528–534, 1993.
 374. Kottra, G., and E. Frömter. Tight‐junction tightness of Necturus gall bladder epithelium is not regulated by cAMP or intracellular Ca2+. II. Impedance measurements. Pflugers Arch. 425: 535–545, 1993.
 375. Krapf, R. Basolateral membrane H/OH/HCO3 transport in the rat cortical thick ascending limb. J. Clin. Invest. 82: 234–241, 1988.
 376. Krapivinsky, G. B., M. J. Ackerman, E. A. Gordon, L. D. Krapivinsky, and D. E. Clapham. Molecular characterization of a swelling‐induced chloride conductance regulatory protein, plCln. Cell 76: 439–448, 1994.
 377. Kraut, J. A., F. Starr, G. Sachs, and M. Reuben. Expression of gastric and colonic H+‐K+‐ATPase in the rat kidney. Am. J. Physiol. 268: (Renal Fluid Electrolyte Physiol. 37): F581–F587, 1995.
 378. Kristensen, P., and H. H. Ussing. Epithelial organization. In: The Kidney. Physiology and Pathophysiology, Chapter 10, 2nd edition, edited by D. W. Seldin, and G. Giebisch. New York: Raven Press, p. 265–285, 1992.
 379. Kudrycki, K. D., and G. E. Shull. Primary structure of rat kidney band 3 anion exchange protein deduced from a cDNA. J. Biol. Chem. 264: 8185–8192, 1989.
 380. Kuijpers, G.A.J., and J.J.H.H.M. De Pont. Role of proton and bicarbonate transport in pancreatic cell function. Annu. Rev. Physiol. 49: 87–104, 1987.
 381. Kunzelmann, K., H. Pavenstadt, C. Beck, O. Unal, P. Emmrich, H. J. Arndt, and R. Greger. Characterization of potassium channels in respiratory cells. I. General Properties. Pflugers Arch. 414: 291–296, 1989.
 382. La, B.‐Q., S. L. Carosi, J. Valentich, S. Shenolikar, and S. C. Sansom. Regulation of epithelial chloride channels by protein phosphatase. Am. J. Physiol. 260 (Cell Physiol. 29): C1217–C1223, 1991.
 383. Lang, F., F. Friedrich, M. Paulmichl, W. Schobersberger, A. Jungwirth, M. Ritter, M. Steidl, H. Weiss, E. Wöll, E. Tschernko, R. Paulmichl, and C. Hallbrucker. Ion channels in Madin‐Darby canine kidney cells. Renal Physiol. Biochem. 13: 82–93, 1990.
 384. Lang, F., G. Messner, and W. Rehwald. Electrophysiology of sodium‐coupled transport in proximal renal tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F953–962, 1986.
 385. Lang, F., G. Messner, W. Wang, M. Paulmichl, H. Oberleithner, and P. Deetjen. The influence of intracellular sodium activity on the transport of glucose in proximal tubule of frog kidney. Pflugers Arch. 401: 14–21, 1984.
 386. Lapointe, J., L. Garneau, P. D. Bell, and J. Cardinal. Membrane crosstalk in the mammalian proximal tubule during alterations in transepithelial sodium transport. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F339–F345, 1990.
 387. Lau, K. R., R. L. Hudson, and S. G. Schultz. Cell swelling induces a barium‐inhibitable potassium conductance in the basolateral membrane of Necturus small intestine. Proc. Natl. Acad. Sci. U.S.A. 81: 3591–3594, 1984.
 388. Lauf, P. K., J. Bauer, N. C. Adragna, H. Fujise, A.M.M. Zade‐Oppen, K. H. Ryu, and E. Delpire. Erythrocyte K‐Cl cotransport: proteins and regulation. Am. J. Physiol. 263 (Cell Physiol. 32): C917–C932, 1992.
 389. Läuger, P. Electrogenic Ion Pumps. Sunderland, MA: Sinauer, 1991.
 390. Law, P. Y., and I. S. Edelman. Induction of citrate synthase by aldosterone in the rat kidney. J. Membr. Biol. 41: 41–64, 1978.
 391. Leaf, A. From toad bladder to kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F103–F111, 1982.
 392. Leblanc, G., and F. Morel. Na and K movements across the membranes of frog skin epithelia associated with transient current changes. Pflugers Arch. 358: 159–177, 1975.
 393. Lee, M. D., K. Y. Bhakta, S. Raina, R. Yonescu, C. A. Griffin, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, G. M. Preston, and P. Agre. The human aquaporin‐5 gene. J. Biol. Chem. 271: 8599–8604, 1996.
 394. Lee, W.‐S., and S. C. Hebert. ROMK inwardly rectifying ATP‐sensitive K+ channel. I. Expression in rat distal nephron segments. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F1124–F1131, 1995.
 395. Lencer, W. I., D. Brown, D. A. Ausiello, and A. S. Verkman. Endocytosis of water channels in rat kidney: cell specificity and correlation with in vivo antidiuretic states. Am. J. Physiol. 259 (Cell Physiol. 28): C920–C932, 1990.
 396. Lencer, W. I., A. S. Verkman, D. A. Ausiello, A. Arnaout, and D. Brown. Endocytic vesicles from renal papilla which retrieve the vasopressin‐sensitive water channel do not contain an H+ ATPase. J. Cell Biol. 111: 379–389, 1990.
 397. Lencer, W. I., P. Weyer, A. S. Verkman, D. A. Ausiello, and D. Brown. FITC‐dextran as a probe for endosome function and localization in kidney. Am. J. Physiol. 258 (Cell Physiol. 27): C309–C317, 1990.
 398. Lescale‐Matys, L., D. S. Putnam, and A. A. McDonough. Na+‐K+‐ATPase α1‐ and β1‐subunit degradation: evidence for multiple subunit specific rates. Am. J. Physiol. 264 (Cell Physiol. 33): C583–C590, 1993.
 399. Leviel, F., P. Borensztein, P. Houillier, M. Paillard, and M. Bichara. Electroneutral K+/HCO3− cotransport in cells of medullary thick ascending limb of rat kidney. J. Clin. Invest. 90: 869–878, 1992.
 400. Levine, S., N. Franki, and R. M. Hays. Effect of phloretin on water and solute movement in the toad bladder. J. Clin. Invest. 52: 1435–1442, 1973.
 401. Levine, S. A., M. H. Montrose, C. M. Tse, and M. Donowitz. Kinetics and regulation of three cloned mammalian Na+/H+ exchangers stably expressed in a fibroblast cell line. J. Biol. Chem. 268: 25527–25535, 1993.
 402. Levine, S. D., M. Jacoby, and A. Finkelstein. The water permeability of toad urinary bladder. I. Permeability of barriers in series with the luminal membrane. J. Gen. Physiol. 83: 529–542, 1984.
 403. Levine, S. D., M. Jacoby, and A. Finkelstein. The water permeability of toad urinary bladder. II. The value of Pf/Pd(w) for the antidiuretic hormone‐induced water permeation pathway. J. Gen. Physiol. 83: 543–562, 1984.
 404. Levine, S. D., R. D. Levine, R. E. Worthington, and R. M. Hays. Selective inhibition of osmotic water flow by general anesthetics in toad urinary bladder. J. Clin. Invest. 58: 980–988, 1976.
 405. Lewis, S. A. A reinvestigation of the function of the mammalian urinary bladder. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 3): F187–F195, 1977.
 406. Lewis, S. A. The mammalian urinary bladder: it's more than accommodating. News Physiol. Sci. 1: 61–65, 1986.
 407. Lewis, S. A., and W. P. Alles. Urinary kallikrein: a physiological regulator of epithelial Na+ absorption. Proc. Natl. Acad. Sci. U.S.A. 83: 5345–5348, 1986.
 408. Lewis, S. A., and C. Clausen. Urinary proteases degrade epithelial sodium channels. J. Membr. Biol. 122: 77–88, 1991.
 409. Lewis, S. A., and P. Donaldson. Ion channels and cell volume regulation: chaos in an organized system. News Physiol. Sci. 5: 112–119, 1990.
 410. Lewis, S. A., D. C. Eaton, and J. M. Diamond. The mechanism of Na+ transport by rabbit urinary bladder. J. Membr. Biol. 28: 41–70, 1976.
 411. Lewis, S. A., and J. W. Hanrahan. Physiological approaches for studying mammalian urinary bladder epithelium. Methods Enzymol. 192: 632–650, 1990.
 412. Li, C., M. Ramjeesingh, and C. E. Bear. Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel. J. Biol. Chem. 271: 11623–11626, 1996.
 413. Liedtke, C. M., and U. Hopfer. Mechanism of Cl− translocation across small intestinal brush‐border membrane. I. Absence of Na+‐Cl− cotransport. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G263–G271, 1982.
 414. Liedtke, C. M., and U. Hopfer. Mechanism of Cl− translocation across small intestinal brush‐border membrane. II. Demonstration of Cl−‐OH− exchange and Cl− conductance. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G272–G280, 1982.
 415. Light, D. B., D. A. Ausiello, and B. A. Stanton. Guanine nucleotide‐binding protein, αi‐3, directly activates a cation channel in rat renal inner medullary collecting duct cells. J. Clin. Invest. 84: 352–356, 1989.
 416. Light, D. B., J. D. Corbin, and B. A. Stanton. Dual ion‐channel regulation by cyclic GMP and cyclic GMP‐dependent protein kinase. Nature 344: 336–339, 1990.
 417. Light, D. B., E. M. Schwiebert, K. H. Karlson, and B. A. Stanton. Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science 243: 383–385, 1989.
 418. Lindemann, B. Fluctuation analysis of sodium channels in epithelia. Annu. Rev. Physiol. 46: 497–515, 1984.
 419. Ling, B. N., and D. C. Eaton. Effects of luminal Na+ on single Na+ channels in A6 cells, a regulatory role of protein kinase C. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1094–F1103, 1989.
 420. Lingrel, J. B., and T. Kuntzweiler. Na+,K+‐ATPase. J. Biol. Chem. 269: 19659–19662, 1994.
 421. Lingueglia, E., N. Voilley, R. Waldmann, M. Lazdunski, and P. Barbry. Expression cloning of an epithelial amiloride‐sensitive Na+ channel—a new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 318: 95–99, 1993.
 422. Loo, D. D., S. A. Lewis, M. S. Ifshin, and J. M. Diamond. Turnover, membrane insertion, and degradation of sodium channels in rabbit urinary bladder. Science 221: 1288–1290, 1983.
 423. Lu, M., and W.‐H. Wang. Nitric oxide regulates the low‐conductance K+ channel in basolateral membrane of cortical collecting duct. Am. J. Physiol. 270 (Cell Physiol. 39): C1336–C134, 1996.
 424. Lukacs, G. L., X. B. Chang, C. Bear, N. Kartner, A. Mohamed, J. R. Riordan, and S. Grinstein. The F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. J. Biol. Chem. 268: 21592–21598, 1994.
 425. Lytle, C., and B. Forbush, III. Na‐K‐Cl co‐transport in the shark rectal gland. II. Regulation in isolated tubules. Am. J. Physiol. 262 (Cell Physiol. 31): C1009–C1017, 1992.
 426. Lytle, C., and B. Forbush, III. The Na‐K‐Cl cotransport‐protein of shark rectal gland. II. Regulation by direct phosphorylation. J. Biol. Chem. 267: 25438–25443, 1992.
 427. Lytle, C., and B. Forbush, III. Regulatory phosphorylation of the secretory Na‐K‐Cl cotransporter: modulation by cytoplasmic Cl. Am. J. Physiol. 270 (Cell Physiol. 39): C437–C448, 1996.
 428. Lytle, C., and T. J. McManus. A minimal kinetic model of (Na+K+2Cl) cotransport with ordered binding and glide symmetry. J. Gen. Physiol. 88: 36a (Abstr.), 1986.
 429. Lytle, C., J.‐C. Xu, D. Biemesderfer, M. Haas, and B. Forbush, III. The Na‐K‐Cl cotransport protein of shark rectal gland. I. Development of monoclonal antibodies, immunoaffinity purification, and partial biochemical characterization. J. Biol. Chem. 267: 25428–25437, 1992.
 430. Ma, H. and B. N. Ling. Luminal adenosine receptors regulate amiloride‐sensitive Na+ channels in A6 distal nephron cells. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F798–F805, 1996.
 431. Macey, R. I., and R.E.I. Farmer. Inhibition of water and solute permeability in human red cells. Biochim. Biophys. Acta 211: 104–106, 1970.
 432. Machen, T. E., D. Erlij, and F.B.P. Wooding. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J. Cell Biol. 54: 302–312, 1972.
 433. Macknight, A.D.C. Ion and water transport in toad urinary epithelia. In: Handbook of Physiology: Renal Physiology, edited by E. E. Windhager. New York: Oxford University Press for the American Physiological Society, 1992, sect. 8, vol. 1, chapt. 8, p. 271–320.
 434. Macknight, A.D.C., and A. Leaf. Regulation of cellular volume. Physiol. Rev. 57: 510–573, 1977.
 435. MacLeod, R. J., and J. R. Hamilton. Separate K+ and Cl− transport pathways are activated for regulatory volume decrease in jejunal villus cells. Am. J. Physiol. 260 (Gastrointest. Liver Physiol. 23): G405–G415, 1991.
 436. Macri, P., S. Breton, J. S. Beck, J. Cardinal, and R. Laprade. Basolateral K+, Cl− and HCO3− conductances and cell volume regulation in rabbit PCT. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F365–F374, 1993.
 437. MacRobbie, E.A.C., and H. H. Ussing. Osmotic behavior of the epithelial cells of frog skin. Acta Physiol. Scand. 53: 348–365, 1961.
 438. Madara, J. M. Functional morphology of epithelium of the small intestine. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by S. G. Schultz, M. Field and R. A. Frizzell. Bethesda, MD Am. Physiol. Soc., 1991, sect. 6, vol. IV, chapt. 3, p. 83–120.
 439. Madara, J. L., and J. R. Pappenheimer. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J. Membr. Biol. 100: 149–164, 1987.
 440. Madsen, K. M., and C. C. Tisher. Structure‐function relationships in H+‐secreting epithelia. Federation Proc. 44: 2704–2709, 1985.
 441. Mahraoui, L., M. Rousset, E. Dussaulx, D. Darmoul, A. Zweibaum, and E. Brot‐Laroche. Expression and localization of GLUT5 in Caco‐2 cells in human small intestine and colon. Am. J. Physiol. 263 (Gastrointest. Liver Physiol. 26): G312–G318, 1993.
 442. Malinowska, D. H., E. Y. Kupert, A. Bahinshi, A. M. Sherry, and J. Cuppoletti. Cloning, functional expression, and characterization of a PKA‐activated gastric Cl− channel. Am. J. Physiol. 268 (Cell Physiol. 37): C191–C200, 1995.
 443. Martin, D. W. The effect of the bicarbonate ion on the gallbladder salt pump. J. Membr. Biol. 18: 219–230, 1974.
 444. Marunaka, Y., and D. C. Eaton. Effects of insulin and phosphatase on a Ca2+‐dependent Cl‐channel in a distal nephron cell line (A6). J. Gen. Physiol. 95: 773–789, 1990.
 445. Marunaka, Y., and D. C. Eaton. Effects of vasopressin and cAMP on single amiloride‐blockable Na channels. Am. J. Physiol. 260 (Cell Physiol. 29): C1071–C1084, 1991.
 446. Maruyama, T., and T. Hoshi. The effect of D‐glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim. Biophys. Acta 282: 214–225, 1972.
 447. Marver, D. Evidence of corticosteroid action along the nephron. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F111–F123, 1984.
 448. Mathews, P. M., D. Claeys, F. Jaisser, K. Geering, J.‐D. Horisberger, J.‐P. Kraehenbuhl, and B. C. Rossier. Primary structure and functional expression of the mouse and frog α‐subunit of the gastric H+‐K+‐APase. Am. J. Physiol. 268 (Cell Physiol. 37): C1207–C1214, 1995.
 449. Matlin, K. S., and M. J. Caplan. Epithelial cell structure and polarity. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, p. 447–473.
 450. Matthews, J. B., C. S. Awtrey, and J. L. Madara. Microfilament‐dependent activation of Na+/K+/2Cl− cotransport by cAMP in intestinal epithelial monolayers. J. Clin. Invest. 90: 1608–1613, 1992.
 451. Mauchamp, J., A. Margotat, M. Chambard, B. Charrier, L. Remy, and M. Michel‐Bechet. 1979. Polarity of three dimensional structures derived from isolated hog thyroid cells in primary culture. Cell Tissue Res. 204: 417–430, 1979.
 452. Maunsbach, A. E. Cellular mechanism of tubular protein transport. Int. Rev. Physiol. 2: 145–167, 1976.
 453. Maunsbach, A. B., and E. L. Boulpaep. Quantitative ultrastructure and functional correlates in proximal tubule of Ambystoma and Necturus. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F710–F724, 1984.
 454. Maurel, C., J. Reizer, J. I. Schroeder, M. J. Chrispeels. The vacuolar membrane protein γ‐TIP creates water specific channels in Xenopus oocytes. EMBO J. 12: 2241–2247, 1993.
 455. Mays, R. W., K. A. Beck, and W. J. Nelson. Organization and function of the cytoskeleton in polarized epithelial cells: a component of the protein sorting machinery. Curr. Opin. Cell Biol. 6: 16–24, 1994.
 456. McCann, J. D., and M. J. Welsh. Regulation of Cl− and K+ channels in airway epithelium. Annu. Rev. Physiol. 52: 115–136, 1990.
 457. McCarty, N. A., and R. G. O'Neil. Calcium signalling in cell volume regulation. Physiol. Rev. 72: 1037–1061, 1992.
 458. McDonald, R. A., R. P. Matthews, R. L. Idzerda, and G. S. McKnight. Basal expression of the cystic fibrosis transmembrane conductance regulator gene is dependent on protein kinase A activity. Proc. Natl. Acad. Sci. U.S.A. 92: 7560–7564, 1995.
 459. McDonald, F. J., P. M. Snyder, P. B. McCray, and M. J. Welsh. Cloning, expression, and tissue distribution of a human amiloride‐sensitive Na+ channel. Am. J. Physiol. 266 (Lung Cell. Mol. Physiol. 10): L78–L734, 1994.
 460. McEwan, G. T., C. D. Brown, B. H. Hirst, and N. L. Simmons. Characterization of volume‐activated ion transport across epithelial monolayers of human intestinal T84 cells. Pflugers Arch. 423: 213–220, 1993.
 461. McKinney, T. D., and K. K. Davidson. Effects of respiratory acidosis on HCO3− transport by rabbit collecting tubules. Am. J. Physiol. 255: (Renal Fluid Electrolyte Physiol. 24): F656–F665, 1988.
 462. McNeill, H., M. Ozawa, R. Kemler, and W. J. Nelson. Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62: 309–316, 1990.
 463. McNicholas, C.M., W.B. Guggino, E. M. Schwiebert, S. C. Hebert, G. Giebisch, and M. E. Egan. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP‐binding cassette transporter cystic fibrosis transmembrane regulator. Proc. Natl. Acad. Sci. U.S.A. 93: 8083–8088, 1996.
 464. McNicholas, C. M., W. Wang, K. Ho, S. G. Hebert, and G. Giebisch. Regulation of ROMK1 K+ channel activity involves phosphorylation processes. Proc. Natl. Acad. Sci. U.S.A. 91: 8077–8081, 1994.
 465. Mills, J. W., and D. R. DiBona. Distribution of Na+ pump sites in the frog gallbladder. Nature 271: 273–275, 1978.
 466. Minton, A. P. Influence of macromolecular crowding on intracellular association reactions: possible role in volume regulation. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange. Boca Raton, FL: CRC, 1994, p. 181–190.
 467. Minton, A. P., G. C. Colclasure, and J. C. Parker. Model for the role of macromolecular crowding in regulation of cellular volume. Proc. Natl. Acad. Sci. U.S.A. 89: 10504–10506, 1992.
 468. Møllgárd, K., and J. Rostgaard. Morphological aspects of some sodium transporting epithelia suggesting a transcellular pathway via elements of endoplasmic reticulum. J. Membr. Biol. 40: 71–89, 1978.
 469. Montrose‐Rafizadeh, C., and W. B. Guggino. Cell volume regulation in the nephron. Annu. Rev. Physiol. 52: 761–772, 1990.
 470. Moorman, J. R., S. J. Ackerman, G. C. Kowdley, M. P. Griffin, J. P. Mounsey, Z. Chen, S. E. Cala, J. J. O'Brian, G. Szabo, and L. R. Jones. Unitary anion currents through phospholemman channel molecules Nature 377: 737–740, 1995.
 471. Mooseker, M. S. Organization, chemistry and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu. Rev. Cell Biol. 1: 209–241, 1985.
 472. Morales, M. M., T. P. Carroll, T. Mortia, E. M. Schwiebert, O. Devuyst, P. D. Wilson, A. G. Lopes, B. A. Stanton, H. C. Dietz, G. R. Cutting, and W. B. Guggino. Both the wild type and a functional isoform of CFTR are expressed in kidney. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F1038–F1048, 1996.
 473. Mugharbil, A., R. G. Knickelbein, P. S. Aronson, and J. W. Dobbins. Rabbit ileal brush‐border membrane Cl‐HCO3 exchanger is activated by an internal pH sensitive modifier site. Am. J. Physiol. 259 (Gastrointest. Liver Physiol. 22): G666–G670, 1990.
 474. Mulders, S. M., G. M. Preston, P. M. T. Deen, W. B. Guggino, C. H. van Os, and P. Agre. Water channel properties of major protein of lens. J. Biol. Chem. 270: 9010–9016, 1995.
 475. Müller, H.‐P., and W. Schaffner. Regulation of gene activity in eukaryotes. In: Essentials of Molecular Biology, edited by D. Freifelder and G. M. Malacinski. Boston: Jones and Bartlett, 1993, p. 359–389.
 476. Nakhoul, N. L., L. K. Chen, and W. F. Boron. Intracellular pH regulation in rabbit S3 proximal tubule: basolateral Cl‐HCO3 exchange and Na‐HCO3 cotransport. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F371–F381, 1990.
 477. Nellans, H. N., R. A. Frizzell, and S. G. Schultz. Coupled sodium‐chloride influx across the brush border of rabbit ileum. Am. J. Physiol. 225: 467–475, 1973.
 478. Nelson, D. J., J. M. Tang, and L. G. Palmer. Single‐channel recordings of apical membrane chloride conductance in A6 epithelial cells. J. Membr. Biol. 80: 81–89, 1984.
 479. Nelson, R. D., X.‐L. Guo, K. Masood, D. Brown, M. Kalkbrenner, and S. Gluck. Selectively amplified expression of an isoform of the vacuolar H+ ATPase 56 kilodalton subunit in renal intercalated cells. Proc. Natl. Acad. Sci. U.S.A. 89: 3541–3545, 1992.
 480. Nelson, W. J. Cytoskeleton functions in membrane traffic in polarized epithelial cells. Semin. Cell Biol. 2: 375–385, 1991.
 481. Nelson, W. J. Regulation of cell surface polarity from bacteria to mammals. Science 258: 948–955, 1992.
 482. Nielsen, S., C.‐L. Chou, D. Marples, E. I. Christensen, B. K. Kishore, and M. A. Knepper. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin‐CD water channels to plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 92: 1013–1017, 1995.
 483. Nielsen, S., S. R. DiGiovanni, E. I. Christensen, M. A. Knepper, and H. W. Harris. Cellular and subcellular immunolocalization of vasopressin‐regulated water channel in rat kidney. Proc. Natl. Acad. Sci. U.S.A. 90: 11663–11667, 1993.
 484. Nielsen, S., D. Marples, J. Frøkiær, M. Knepper, and P. Agre. The aquaporin family of water channels in kidney. An update on physiology and pathophysiology of aquaporin‐2. Kidney Int. 49: 1718–1723, 1996.
 485. Nielsen, S., B. L. Smith, E. I. Christensen, M. A. Knepper, and P. Agre. CHIP28 water channels are localized in constitutively water‐permeable segments of the nephron. J. Cell Biol. 120: 371–383, 1993.
 486. Nielsen, S., B. L. Smith, E. I. Christensen, and P. Agre. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. U.S.A. 90: 7272–7279, 1993.
 487. Noël, J., and J. Pouysségur. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+/H+ exchanger isoforms. Am. J. Physiol. 268 (Cell Physiol. 37): C283–C296, 1995.
 488. North, R. A. Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 9: 474–483, 1996.
 489. Novak, I., and R. Greger. Effect of bicarbonate on potassium conductance of isolated perfused rat pancreatic ducts. Pflugers Arch. 419: 76–83, 1991.
 490. Oberleithner, H., U. Kersting, S. Silbernagl, W. Steigner, and U. Vogel. Fusion of cultured dog kidney (MDCK) cells. II. Relationship between cell pH and K+ conductance in response to aldosterone. J. Membr. Biol. 111: 49–56, 1989.
 491. Oberleithner, H., S. Wunsch, and S. Schneider. Patchy accumulation of apical Na+ transporters allows cross talk between extracellular space and cell nucleus. Proc. Natl. Acad. Sci. U.S.A. 89: 241–245, 1992.
 492. Oblatt‐Montal, M., G. L. Reddy, T. Iwamoto, J. M. Tomich, and M. Montal. Identification of an ion channel‐forming motif in the primary structure of CFTR, the cystic fibrosis chloride channel. Proc. Natl. Acad. Sci. U.S.A. 91: 1495–1499, 1994.
 493. O'Grady, S. M., M. W. Musch, and M. Field. Stoichiometry and ion affinities of the Na‐K‐Cl cotransport system in the intestine of the winter flounder (Pseudopleuronectes americanus). J. Membr. Biol. 91: 33–41, 1986.
 494. Oh, Y., and D. J. Benos. Single‐channel characteristics of a purified bovine renal amiloride‐sensitive Na+ channel in planar lipid bilayers. Am. J. Physiol. 264 (Cell Physiol. 33): C1489–C1499, 1993.
 495. Oh, Y., P. R. Smith, A. L. Bradford, D. Keeton, and B. J. Benos. Regulation by phosphorylation of purified epithelial Na+ channels in planar lipid bilayers. Am. J. Physiol. 265 (Cell Physiol. 34): C85–C91, 1993.
 496. Ojakian, G. K., and R. Schwimmer. Regulation of epithelial cell surface polarity reversal by β1 integrins. J. Cell Sci. 107: 561–576, 1994.
 497. O'Neil, R. G., and R. A. Hayhurst. Sodium‐dependent modulation of the renal Na‐K‐ATPase: influence of mineralocorticoids on the cortical collecting duct. J. Membr. Biol. 85: 169–179, 1985.
 498. Opperman, C. H., C. G. Taylor, and M. Conkling. Root‐knot nematode‐directed expression of a plant root‐specific gene. Science 263: 221–223, 1994.
 499. Orlowski, J., R. A. Kandasamy, and G. E. Shull. Molecular cloning of putative members of the Na/H exchanger gene family. J. Biol. Chem. 267: 9331–9339, 1992.
 500. Otsu, K., J. L. Kinsella, P. Heller, and J. P. Froehlich. Sodium dependence of the Na+ ‐H+ exchanger in the pre‐steady state. J. Biol. Chem. 268: 3184–3193, 1993.
 501. Pácha, J., G. Frindt, L. Antonian, R. B. Silver, and L. G. Palmer. Regulation of Na channels of the rat cortical collecting tubule of aldosterone. J. Gen. Physiol. 102: 25–52, 1993.
 502. Palfrey, C., and A. Cossins. Cell physiology: fishy tales of kidney function. Nature 371: 377–378, 1994.
 503. Palmer, L. G. Voltage‐dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. J. Membr. Biol. 80: 153–165, 1984.
 504. Palmer, L. G. Ion selectivity of epithelial Na channels. J. Membr. Biol. 96: 97–106, 1987.
 505. Palmer, L. G. Epithelial Na channels: function and diversity. Annu. Rev. Physiol. 54: 51–66, 1992.
 506. Palmer, L. G. Epithelial Na channels and their kin. News Physiol. Sci. 10: 61–67, 1995.
 507. Palmer, L. G., L. Antonian, and G. Frindt. Regulation of the Na‐K pump of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102: 43–57, 1993.
 508. Palmer, L. G., and G. Frindt. Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333–F339, 1987.
 509. Palmer, L. G., J.H.‐Y. Li, B. Lindemann, and I. S. Edelman. Aldosterone control of the density of sodium channels in the toad urinary bladder. J. Membr. Biol. 64: 91–102, 1982.
 510. Palmer, L. G., and M. Lorenzen. Antidiuretic hormone‐dependent membrane capacitance and water permeability in the toad urinary bladder. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F195–F204, 1983.
 511. Palmer, L. G., and H. Sackin. Regulation of renal ion channels. FASEB J. 2: 3061–3065, 1988.
 512. Palmer, L. G., and H. Sackin. Electrophysiological analysis of transepithelial transport. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, p. 361–405.
 513. Palmer, L. G., and N. Speez. Modulation of antidiuretic hormone‐dependent capacitance and water flow in toad urinary bladder. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F501–F508, 1984.
 514. Pappenheimer, J. R. On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28): G409–G417, 1993.
 515. Pappenheimer, J. R., and J. L. Madara. Role of active transport in regulation of junctional permeability and paracellular absorption of nutrients by intestinal epithelia. In: Isotonic Transport in Leaky Epithelia, Alfred Benzon Symposium 34, edited by H. H. Ussing, J. Fischbarg, O. Sten‐Knudsen, E. H. Larsen and N. J. Willumsen. Copenhagen: Munksgaard, 1993, p. 221–230.
 516. Parent, L., J. Cardinal, and R. Sauvé. Single‐channel analysis of a K channel at basolateral membrane of rabbit proximal convoluted tubule. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F105–F113, 1988.
 517. Parent, L., S. Supplisson, D.D.F. Loo, and E. M. Wright. Electrogenic properties of the cloned Na+/glucose cotransporter. I. Voltage‐clamp studies. J. Membr. Biol. 125: 49–62, 1992.
 518. Parent, L., S. Supplisson, D.D.F. Loo, and E. M. Wright. Electrogenic properties of the cloned Na+/glucose cotransporter. II. A transport model under nonrapid equilibrium conditions. J. Membr. Biol. 125: 63–79, 1992.
 519. Parisi, M., and J. Bourguet. The single file hypothesis and the water channels induced by antidiuretic hormone. J. Membr. Biol. 71: 189–193, 1983.
 520. Parisi, M., J. Wietzerbin, and J. Bourguet. Intracellular pH, transepithelial pH gradients and ADH‐induced water channels. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F712–F718, 1983.
 521. Parker, J. C. In defense of cell volume? Am. J. Physiol. 265 (Cell Physiol. 34): C1191–C1200, 1993.
 522. Parker, J. C., G. C. Colclasure, and T. J. McManus. Coordinated regulation of shrinkage‐induced Na/H exchange and swelling‐induced [K‐Cl] cotransport in dog red cells. Further evidence from activation kinetics and phosphatase inhibition. J. Gen. Physiol. 98: 869–880, 1991.
 523. Parker, J. C., P. B. Dunham, and A. P. Minton. Effects of ionic strength on the regulation of Na/H exchange and K‐Cl cotransport in dog red blood cells. J. Gen. Physiol. 105: 677–699, 1995.
 524. Pasyk, E. A., and K. Foskett. Mutant (F508) cystic fibrosis transmembrane conductance regulator Cl− channel is functional when retained in endoplasmic reticulum of mammalian cells. J. Biol. Chem. 270: 12347–12350, 1995.
 525. Paulais, M., and J. Teulon. A cation channel in the thick ascending limb of Henle's loop of the mouse kidney: inhibition by adenine nucleotides. J. Physiol. (Lond.) 413: 315–327, 1989.
 526. Paulais, M., and J. Teulon. cAMP‐activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney. J. Membr. Biol. 113: 253–260, 1990.
 527. Payne, J. A., and B. Forbush, III. Alternatively spliced isoforms of the putative renal Na‐K‐Cl cotransporter are differentially distributed within the rabbit kidney. Proc. Natl. Acad. Sci. U.S.A. 91: 4544–4548, 1994.
 528. Payne, J. A., T. J. Stevenson, and L. F. Donaldson. Molecular characterization of a putative K‐Cl cotransporter in rat brain. A neuronal‐specific isoform. J. Biol. Chem. 271: 16245–16252.
 529. Payne, J. A., J.‐C. Xu, M. Haas, C. Y. Lytle, D. Ward, and B. Forbush, III. Primary structure, functional expression, and chromosomal localization of the bumetanide‐sensitive Na‐K‐Cl cotransporter in human colon. J. Biol. Chem. 270: 17977–17985, 1995.
 530. Penniston, J. T., and A. Enyedi. Plasma membrane Ca2+ pump: recent developments. Cell Physiol. Biochem. 4: 148–159, 1994.
 531. Persson, B. E., and K. R. Spring. Gallbladder epithelial cell hydraulic water permeability and volume regulation. J. Gen. Physiol. 79: 481–505, 1982.
 532. Petersen, K.‐U., and L. Reuss. Cyclic AMP‐induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J. Gen. Physiol. 81: 705–729, 1983.
 533. Petersen, O. H. New aspects of cytosolic calcium signaling. News Physiol. Sci. 11: 13–17, 1996.
 534. Petersen, O. H., M. Wakui, Y. Osipchuk, D. Yule, and D. V. Gallacher. Electrophysiology of pancreatic acinar cells. Methods Enzymol. 192: 300–308, 1990.
 535. Petrov, A. G., and P.N.R. Usherwood. Mechanosensitivity of cell membranes. Ion channels, lipid matrix and cytoskeleton. Eur. Biophys. J. 23: 1–19, 1994.
 536. Piepenhagen, P. A., L. L. Peters, S. E. Lux, and J. Nelson. Differential expression of Na+‐K+‐ATPase, ankyrin, fodrin, and E‐cadherin along the kidney nephron. Am. J. Physiol. 269 (Cell Physiol. 38): C1417–C1432, 1995.
 537. Pierce, S. K., and A. D. Politis. Ca2+‐activated cell volume recovery mechanisms. Annu. Rev. Physiol. 52: 27–42, 1990.
 538. Pietras, R. J., and E. M. Wright. The membrane action of antidiuretic hormone (ADH) on toad urinary bladder. J. Membr. Biol. 22: 107–123, 1975.
 539. Pizzonia, J. H., M. Exner, D. Biemesderfer, A. K. Abu‐Alfa, M. S. Wu, P. Igarashi, and P. S. Aronson. Immunochemical characterization of the Na/H exchanger isoform NHE4 in rat kidney. J. Am. Soc. Nephrol. 5: 297, (Abstr.), 1994.
 540. Planelles, G., and T. Anagnostopoulos. Thiazide‐sensitive Na‐Cl cotransport mediates NaCl absorption in amphibian distal tubule. Pflugers Arch. 421: 307–313, 1992.
 541. Pouysségur, J. Molecular biology and hormonal regulation of vertebrate Na+/H+ exchanger isoforms. Renal Physiol. Biochem. 17: 190–193, 1994.
 542. Prat, A. G., D. A. Ausiello, and H. F. Cantiello. Vasopressin and protein kinase‐A activate G‐protein‐sensitive epithelial Na+ channels. Am. J. Physiol. 265 (Cell Physiol. 34): C218–C223, 1993.
 543. Prat, A. G., A. M. Bertorello, D. A. Ausiello, and H. F. Cantiello. Activation of epithelial Na+ channels by protein kinase‐A requires actin filaments. Am. J. Physiol. 265 (Cell Physiol. 34): C224–C233, 1993.
 544. Preisig, P. A., and R. J. Alpern. Basolateral membrane H/HCO3 transport in renal tubules. Kidney Int. 39: 1077–1086, 1991.
 545. Preston, G. M., and P. Agre. Molecular cloning of the red cell integral membrane protein of Mr 28,000: a member of an ancient channel family. Proc. Natl. Acad. Sci. U.S.A. 88: 11110–111114, 1991.
 546. Preston, G. M., T. P. Carroll, W. B. Guggino, and P. Agre. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256: 385–387, 1992.
 547. Pusch, M., and T. J. Jentsch. Molecular physiology of voltagegated chloride channels. Physiol. Rev. 74: 813–828, 1994.
 548. Rabon, E., J. Cuppoletti, D. Malinowska, A. Smolke, H. F. Helander, J. Mendlein, and G. Sachs. Proton secretion by the gastric parietal cell. J. Exp. Biol. 106: 119–133, 1983.
 549. Rabon, E. C., and M. A. Reuben. The mechanism and structure of the gastric H,K‐ATPase. Annu. Rev. Physiol. 52: 321–344, 1990.
 550. Raina, S., G. M. Preston, W. B. Guggino, and P. Agre. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J. Biol. Chem. 270: 1908–1912, 1995.
 551. Rao, M. C., N. T. Nash, and M. Field. Differing effects of cGMP and cAMP on ion transport across flounder intestine. Am. J. Physiol. 246 (Cell Physiol. 15): C167–C171, 1984.
 552. Rayson, B. M. [Ca2+], regulates transcription rate of the Na+/K+‐ATPase α1 subunit. J. Biol. Chem. 266: 21335–21338, 1991.
 553. Rector, F. C., N. W. Carter, and D. W. Seldin. The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J. Clin. Invest. 44: 278–290, 1965.
 554. Reddy, M. M., P. M. Quinton, C. Haws, J. J. Wine, R. Grygorczyk, J. A. Tabcharani, J. W. Hanrahan, K. L. Gunderson, and R. R. Kopito. Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271: 1876–1879, 1996.
 555. Reeves, W. B., and T. E. Andreoli. Renal epithelial chloride channels. Annu. Rev. Physiol. 54: 29–50, 1992.
 556. Reeves, W. B., and T. E. Andreoli. Sodium chloride transport in the loop of Henle. In: The Kidney, Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch,. New York: Raven, 1992, p. 1975–2001.
 557. Reif, M. C., S. L. Troutman, and J. A. Schafer. Sodium transport by rat cortical collecting tubule. Effects of vasopressin and deoxycorticosterone in rat and rabbit CCD. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F147–F156, 1990.
 558. Reisin, I. L., A. G. Prat, E. H. Abraham, J. F. Amara, R. J. Gregory, D. A. Ausiello, and H. F. Cantiello. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J. Biol. Chem. 269: 20584–20591, 1994.
 559. Reithmeier, R. A. F. The erythrocyte anion transporter (Band 3). Curr. Opin. Struct. Biol. 3: 515–523, 1993.
 560. Reithmeier, R.A.F. Mammalian exchangers and cotransporters. Curr. Opin. Cell Biol. 6: 583–594, 1994.
 561. Reuss, L. Basolateral KCl co‐transport in a NaCl‐absorbing epithelium. Nature 305: 723–726, 1983.
 562. Reuss, L. Independence of apical membrane Na+ and Cl− entry in Necturus gallbladder epithelium. J. Gen. Physiol. 84: 423–445, 1984.
 563. Reuss, L. Cell volume regulation in nonrenal epithelia. Renal Physiol. Biochem. 11: 187–201, 1988.
 564. Reuss, L. Ion transport across gallbladder epithelium. Physiol. Rev. 69: 503–545, 1989.
 565. Reuss, L. Tight junction permeability to ions and water. In: The Tight Junction, edited by M. Cereijido, Boca Raton, FL: CRC, 1991, p. 49–66.
 566. Reuss, L. Pathways for osmotic water transport in gallbladder epithelium. In: Isotonic Transport in Leaky Epithelia, Alfred Benzon Symposium 34, edited by H. H. Ussing, J. Fischbarg, O. Sten‐Knudsen, E. H. Larsen and N. J. Willumsen,. Copenhagen: Munksgaard, 1993, p. 181–200.
 567. Reuss, L. Active water transport? J. Physiol. 497: 1, 1996.
 568. Reuss, L. and G. A. Altenberg. cAMP‐activated Cl− channels: regulatory role in gallbladder and other absorptive epithelia. News Physiol. Sci. 10: 86–91, 1995.
 569. Reuss, L., E. Bello‐Reuss, and T. P. Grady. Effects of ouabain on fluid transport and electrical properties of Necturus gallbladder. Evidence in favor of a neutral basolateral sodium transport mechanism. J. Gen. Physiol. 73: 385–402, 1979.
 570. Reuss, L., and J. L. Costantin. Cl−/HCO−3 exchange at the apical membrane of Necturus gallbladder. J. Gen. Physiol. 83: 801–818, 1984.
 571. Reuss, L., and C. U. Cotton. Isosmotic fluid transport across epithelia. Contemp. Nephrol. 4: 1–37, 1988.
 572. Reuss, L., and C. U. Cotton. Volume regulation in epithelia: transcellular transport and cross‐talk. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange,. Boca Raton, FL: CRC, 1994, p. 31–48.
 573. Reuss, L., and K.‐U. Petersen. Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium. J. Gen. Physiol. 85: 409–429, 1985.
 574. Reuss, L., P. Reinach, S. A. Weinman, and T. P. Grady. Intracellular ion activities and Cl− transport mechanisms in bullfrog corneal epithelium. Am. J. Physiol. 244 (Cell Physiol. 13): C336–C347, 1983.
 575. Reuss, L., B. Simon, and C. U. Cotton. Pseudo‐streaming potentials in Necturus gallbladder epithelium. II. The mechanism is a junctional diffusion potential. J. Gen. Physiol. 99: 317–338, 1992.
 576. Reuss, L., B. Simon, and Z. Xi. Pseudo‐streaming potentials in Necturus gallbladder epithelium. I. Paracellular origin of the transepithelial voltage changes. J. Gen. Physiol. 99: 297–316, 1992.
 577. Reuss, L., and J. S. Stoddard. Role of H+ and HCO−3 in salt transport in gallbladder epithelium. Annu. Rev. Physiol. 49: 35–49, 1987.
 578. Rich, D. P., H. A. Berer, S. H. Cheng, S. M. Travis, M. Saxena, A. E. Smith, and M. J. Welsh. Regulation of the cystic fibrosis transmembrane conductance regulator Cl− channel by negative charge in the R domain. J. Biol. Chem. 268: 20259–20267, 1993.
 579. Riordan, J. R. The cystic fibrosis transmembrane conductance regulator. Annu. Rev. Physiol. 55: 609–630, 1993.
 580. Riordan, J. R., J. M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plvsic, J.‐L. Chou, M. L. Drumm, M. C. Iannuzzi, F. S. Collins, and T. C. Tsui. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066–1074, 1989.
 581. Erratum: Science 245: 1437, 1989.
 582. Robertson, M. A., and J. K. Foskett. Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl−]i Am. J. Physiol. 267 (Cell Physiol. 36): C146–C156, 1994.
 583. Rodríguez‐Boulan, E., and E. Nelson. Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718–725, 1989.
 584. Romero, M. F., M. A. Hediger, E. L. Boulpaep, and W. F. Boron. Physiology of the cloned renal electrogenic Na+/HCO−3 cotransporter, NBC. J. Gen. Physiol. 108: 16–17a, 1996.
 585. Rommens, J. M., M. C. Iannuzzi, B. S. Kerem, M. L. Drumm, G. Melmer, M. Dean, R. Rozmahel, J. L. Cole, D. Kennedy, N. Hidaka, M. Zsiga, M. Buchwald, J. R. Riordan, L.‐C. Tsui, and F. S. Collins. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245: 1059–1065, 1989.
 586. Rose, R. C., and S. G. Schultz. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J. Gen. Physiol. 57: 639–663, 1971.
 587. Rossier, B. C., and L. G. Palmer. Mechanisms of aldosterone action on sodium and potassium transport. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch,. New York: Raven, 1992, p. 1373–1409.
 588. Ruesch, A., C. J. Kros, and G. P. Richardson. Block by amiloride and derivatives of mechano‐electrical transduction in outer hair cells of mouse cochlear cultures. J. Physiol. (Lond.) 474: 75–86, 1994.
 589. Ruoslahti, E. Integrins. J. Clin. Invest. 87: 1–5, 1991.
 590. Ruoslahti, E., N. A. Noble, S. Kagami, and W. A. Border. Integrins. Kidney Int. 44: S17–S22, 1994.
 591. Russell, J. M. Cation‐coupled chloride influx in squid axon. Role of potassium and stoichiometry of the transport process. J. Gen. Physiol. 81: 909–926, 1983.
 592. Sabolic, I., G. Valenti, J. M. Verbavatz, A. N. van Hoek, A. S. Verkman, D. A. Ausiello, and D. Brown. Localization of the CHIP28 water channel in rat kidney. Am. J. Physiol. 263 (Cell Physiol. 32): C1225–C1233, 1992.
 593. Sachs, F. Stretch‐sensitive ion channels. An update. In: Sensory Transduction, edited by D. P. Corey and S. D. Roper,. New York: Rockefeller, 1992, p. 241–260.
 594. Sachs, G. The gastric pump: the H+, K+‐ATPase. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson,. New York: Raven, 1987, p. 865–881.
 595. Sachs, G., M. Besancon, J. M. Shin, F. Mercier, K. Munson, and S. Hersey. Structural aspects of the gastric H,K‐ATPase. J. Bioenerg. Biomembr. 24: 301–308, 1992.
 596. Sachs, G., H. H. Chang, E. Rabon, R. Schackmann, M. Lewis, and G. Saccomani. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J. Biol. Chem. 251: 7690–7698, 1976.
 597. Sachs, G., L. D. Faller, and E. Rabon. Proton/hydroxyl transport in gastric and intestinal epithelia. J. Membr. Biol. 64: 123–135, 1982.
 598. Sachs, G., and K. Munson. Mammalian phosphorylating ion‐motive ATPAses. Curr. Opin. Cell Biol. 3: 685–694, 1991.
 599. Sachs, G., J. M. Shin, M. Besancon, K. Munson, and S. Hersey. Topology and sites in the H,K‐ATPase. Ann. N.Y. Acad. Sci. 671: 204–216, 1992.
 600. Sackin, H. Stretch‐activated potassium channels in renal proximal tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1253–F1262, 1987.
 601. Sackin, A. A stretch‐activated H+ channel sensitive to cell volume. Proc. Natl. Acad. Sci. U.S.A. 86: 1731–1735, 1989.
 602. Sackin, H. Stretch‐activated ion channels. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange,. Boca Raton, FL: CRC, 1994, p. 259–278.
 603. Sackin, H., and E. L. Boulpaep. Models for coupling of salt and water transport. Proximal tubular reabsorption in Necturus kidney. J. Gen. Physiol. 66: 671–733, 1975.
 604. Sackin, H., and L. G. Palmer. Basolateral potassium channels in renal proximal tubule. Am. J. Physiol. 253: (Renal Fluid Electrolyte Physiol. 23): F476–F487, 1987.
 605. Sakamoto, H., M. Kawasaki, S. Uchida, S. Sasaki, and F. Marumo. Identification of a new outwardly rectifying Cl− channel that belongs to a subfamily of the ClC Cl− channels. J. Biol. Chem. 271: 10210–10216, 1996.
 606. Salzman, A. L., M. J. Menconi, N. Unno, R. M. Ezzell, D. M. Casey, P. K. González, and M. P. Fink. Nitric oxide dilates tight junctions and depletes ATP in cultured Caco‐2BBe intestinal epithelial monolayers. Am. J. Physiol. 268 (Gastrointest. Liver Physiol. 31): G361–G373, 1995.
 607. Sansom, S. C., B.‐Q. La, and S. L. Carosi. Double‐barreled chloride channels of collecting duct basolateral membrane. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F46–F52, 1990.
 608. Sansom, S. C., B. Q. La, and S. L. Carosi. Potassium and chloride channels of the basolateral membrane (BLM) of the rabbit cortical collecting duct (CCD) (Abstract). Kidney Int. 37 (Supp. 1): 570, 1990.
 609. Sardet, C., A. Franchi, and J. Pouysségur. Molecular cloning, primary structure, and expression of the human growth factor‐activatable Na+/H+ antiporter. Cell 56: 271–280, 1989.
 610. Sariban‐Sohraby, S., M. Abramov, and R. S. Fisher. Single channel behavior of a purified epithelial Na+ channel subunit that binds amiloride. Am. J. Physiol. 263 (Cell Physiol. 32): C1111–C1117, 1992.
 611. Sariban‐Sohraby, S., M. Burg, W. P. Wiesmann, P. K. Chiang, and J. P. Johnson. Methylation increases sodium transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science 225: 745–746, 1984.
 612. Sariban‐Sohraby, S., E. J. Sorscher, B. M. Brenner, and D. J. Benos. Phosphorylation of a single subunit of the epithelial Na+ channel protein following vasopressin treatment of A6 cells. J. Biol. Chem. 263: 13875–13879, 1988.
 613. Sasaki, S., K. Ishibashi, N. Yoshiyama, and T. Shiigai. KCl cotransport across the basolateral membrane of rabbit renal proximal straight tubules. J. Clin. Invest. 81: 194–199, 1988.
 614. Sasaki, S., and N. Yoshiyama. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange. J. Clin. Invest. 81: 1004–1011, 1988.
 615. Schafer, J. A., and T. E. Andreoli. Cellular constraints to diffusion. The effect of antidiuretic hormone on water flows in isolated mammalian collecting ducts. J. Clin. Invest. 51: 1264–1278, 1972.
 616. Schafer, J. A., and C. T. Hawk. Regulation of Na+ channels in the cortical collecting duct by AVP and mineralocorticoids. Kidney Int. 41: 255–268, 1992.
 617. Schafer, J. A., S. L. Troutman, and T. E. Andreoli. Osmosis in cortical collecting tubules. ADH‐independent osmotic flow rectification. J. Gen. Physiol. 64: 228–240, 1974.
 618. Schlatter, E., and R. Greger. cAMP increases the basolateral chloride conductance in the isolated perfused medullary thick ascending limb. Pflugers Arch. 405: 367–376, 1985.
 619. Schnapp, B. J., R. D. Vale, M. P. Sheetz, and T. S. Reese. Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell 40: 455–462, 1985.
 620. Schultz, S. G. Application of equivalent electrical circuit models to study of sodium transport across epithelial tissues. Federation Proc. 38: 2024–2029, 1979.
 621. Schultz, S. G. Basic Principles of Membrane Transport. Cambridge: Cambridge University Press, 1980.
 622. Schultz, S. G. Homocellular regulatory mechanisms in sodium‐transporting epithelia: avoidance of extinction by “flush‐through.” Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F579–590, 1981.
 623. Schultz, S. G. Membrane cross‐talk in sodium‐absorbing epithelial cells. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch,. New York: Raven, 1992, p. 287–299.
 624. Schultz, S. G. The “pump‐leak” parallelism in Necturus enterocytes: some cellular and molecular insights. Renal Physiol. Biochem. 17: 134–137, 1994.
 625. Schultz, S. G., R. A. Frizzell, and H. N. Nellans. Active sodium transport and the electrophysiology of rabbit colon. J. Membr. Biol. 33: 351–384, 1977.
 626. Schultz, S. G., and R. L. Hudson. Biology of sodium‐absorbing epithelial cells: dawning of a new era. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by S. G. Schultz, M. Field, and R. A. Frizzell,. Betuesda, MD: Am. Physiol. Soc., 1991, sect. 6, vol. IV, chapt. 2, p. 45–81.
 627. Schuster, V. L. Cortical collecting duct bicarbonate secretion. Kidney Int. 40: S47–S50, 1991.
 628. Schuster, V. L. Function and regulation of collecting duct intercalated cells. Annu. Rev. Physiol. 55: 267–288, 1993.
 629. Schuster, V. L., G. Fejes‐Tóth, A. Náray‐Fejes‐Tóth, and S. Gluck. Co‐localization of H+‐ATPase and band 3 anion exchanger in rabbit collecting duct intercalated cells. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F506–F517, 1991.
 630. Schwartz, G. J., and Q. Al‐Awqati. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J. Clin. Invest. 75: 1638–1644, 1985.
 631. Schwartz, G. J., and Q. Al‐Awqati. Regulation of transepithelial H+ transport by exocytosis and endocytosis. Annu. Rev. Physiol. 48: 153–161, 1986.
 632. Schwartz, G. J., J. Barasch, and Q. Al‐Awqati. Plasticity of functional epithelial polarity. Nature 318: 368–371, 1985.
 633. Schwiebert, E. M., M. E. Egan, T.‐H. Hwang, S. B. Fulmer, S. A. Allen, G. R. Cutting, and W. B. Guggino. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81: 1063–1073, 1995.
 634. Schwiebert, E. M., T. Flotte, G. R. Cutting, and W. B. Guggino. Both CFTR and outwardly rectifying chloride channels contribute to cAMP‐stimulated whole cell chloride currents. Am. J. Physiol. 266 (Cell Physiol. 35): C1464–C1477, 1994.
 635. Schwiebert, E. M., D. B. Light, G. Fejes‐Tóth, A. Naray‐Fejes‐Tóth, and B. A. Stanton. A GTP‐binding protein activates chloride channels in a renal epithelium. J. Biol. Chem. 265: 7725–7728, 1990.
 636. Schwiebert, E. M., J. W. Mills, and B. A. Stanton. Actin‐based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell lines. J. Biol. Chem. 269: 7081–7089, 1994.
 637. Segal, A. S., E. L. Boulpaep, and A. B. Maunsbach. A novel preparation of dissociated renal proximal tubule cells that maintain epithelial polarity in suspension. Am. J. Physiol. 270 (Cell Physiol. 39): C1843–C1863, 1996.
 638. Segal, Y., and L. Reuss. Maxi K+ channels and their relationship to the apical membrane conductance in Necturus gallbladder epithelium. J. Gen. Physiol. 95: 791–818, 1990.
 639. Seibert, F. S., J. A. Tabcharani, X.‐B. Chang, A. M. Dulhanty, C. Matthews, J. W. Hanrahan, and J. R. Riordan. cAMP‐dependent protein kinase‐mediated phosphorylation of cystic fibrosis transmembrane conductance regulator residue Ser‐753 and its role in channel activation. J. Biol. Chem. 270: 2158–2162, 1995.
 640. Seki, G., S. Coppola, K. Yoshitomi, B.‐C. Burckhardt, I. Samarzijia, S. Müller‐Berger, and E. Frömter. On the mechanism of bicarbonate exit from renal proximal tubular cells. Kidney Int. 49: 1671–1677, 1996.
 641. Seksek, O., J. Biwersi, and A. S. Verkman. Evidence against defective trans‐Golgi acidification in cystic fibrosis. J. Biol. Chem. 271: 15542–15548, 1996.
 642. Sepúlveda, F. V., F. Fargon, and P. A. McNaughton. K+ and Cl− currents in enterocytes isolated from guinea‐pig small intestinal villi. J. Physiol. 434: 351–367, 1991.
 643. Sepúlveda, F. V., and W. T. Mason. Single channel recordings obtained from basolateral membranes of isolated rabbit enterocytes. FEBS Lett. 191: 87–91, 1985.
 644. Sheppard, D. N., L. S. Ostedgaard, D. P. Rich, and M. J. Welsh. The amino‐terminal portion of CFTR forms a regulated Cl− channel. Cell 76: 1091–1098, 1994.
 645. Shi, L.‐B., D. Brown, and A. S. Verkman. Water, urea and proton transport properties of endosomes containing the vasopressin‐sensitive water channel from toad bladder. J. Gen. Physiol. 95: 941–960, 1990.
 646. Shin, J. M., and G. Sachs. Dimerization of the gastric H+,K+‐ATPase. J. Biol. Chem. 271: 1904–1908, 1996.
 647. Silva, P., J. Stoff, M. Field, L. Fine, J. N. Forrest, and F. H. Epstein. Mechanism of active chloride secretion by shark rectal gland: role of Na‐K‐ATPase in chloride transport. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 4): F298–F306, 1977.
 648. Silver, R. B., G. Frindt, E. E. Windhager, and L. G. Palmer. Feedback regulation of Na channels in rat CCT. I. Effects of inhibition of Na pump. Am. J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F557–F564, 1993.
 649. Singh, G., J. Orlowski, and M. Soleimani. Transient expression of Na+/H+ exchanger isoform NHE‐2 in LLC‐PK1 cells: Inhibition of endogenous NHE‐3 and regulation by hypertonicity. J. Membr. Biol. 151: 261–268, 1996.
 650. Skou, J. C. The Na‐K Pump. NIPS 7: 95–100, 1992.
 651. Skou, J. C., and M. Esmann. The Na,K‐ATPase. J. Bioenerg. Biomembr. 24: 249–261, 1992.
 652. Smith, B. L., and P. Agre. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266: 6407–6415, 1991.
 653. Smith, P. L., M. A. Cascairo, and S. K. Sullivan. Sodium dependence of luminal alkalinization by rabbit ileal mucosa. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G358–G368, 1985.
 654. Soleimani, M., and P. S. Aronson. Ionic mechanism of Na+/HCO3− contransport in rabbit renal basolateral membrane vesicles. J. Biol. Chem. 264: 18302–18308, 1989.
 655. Soleimani, M., S. M. Grassl, and P. S. Aronson. Stoichiometry of Na+‐HCO3− cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J. Clin. Invest. 79: 1276–1280, 1987.
 656. Soleimani, M., G. A. Lesoine, J. A. Bergman, and T. D. McKinney. A pH modifier site regulates activity of the Na+/HCO3− cotransporter in basolateral membranes of kidney proximal tubule. J. Clin. Invest. 88: 1135–1140, 1991.
 657. Soleimani, M., G. Singh, G. L. Bizal, S. R. Gullans, and J. A. McAteer. Na+/H+ exchanger isoforms NHE‐2 and NHE‐1 in inner medullary collecting duct cells: expression, functional localization, and differential regulation. J. Biol. Chem. 269: 27973–27978, 1994.
 658. Soltoff, S. P., M. K. McMillan, E. J. Cragoe Jr., L. C. Cantley, and B. R. Talamo. Effects of extracellular ATP on ion transport systems and [Ca2+]i in rat parotid acinar cells. Comparison with the muscarinic agonist carbachol. J. Gen. Physiol. 95: 319–346, 1990.
 659. Spring, K. R. Mechanism of fluid transport by epithelia. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by S. G. Schultz, M. Field, and R. A. Frizzell. Bethesda, MD: Am. Physiol. Soc., 1991, sect. 6, vol. IV, chapt. 0, p. 195–207.
 660. Spring, K. R., and A. W. Siebens. Solute transport and epithelial cell volume regulation. Comp. Biochem. Physiol. 90A: 557–560, 1988.
 661. Star, R. A., M. B. Burg, and M. A. Knepper. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. J. Clin. Invest. 76: 1123–1130, 1985.
 662. Starke, L. C. Regulation of Na/K/2Cl and KCl cotransport in duck red cells. Ph.D. Thesis, Durham, NC: Duke University, 1989.
 663. Staub, O., F. Verrey, T. R. Kleyman, D. J. Benos, B. C. Rosier, and J. P. Kraehenbuhl. Primary structure of an apical protein from Xenopus laevis that participates in amiloride‐sensitive sodium channel activity. J. Cell Biol. 119: 1497–1506, 1992.
 664. Stein, W. D. Channels, Carriers, and Pumps. An Introduction to Membrane Transport. San Diego: Academic, 1990.
 665. Steinmetz, P. R. Cellular organization of urinary acidification. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F173–F186, 1986.
 666. Stern, C. D., and D. O. MacKenzie. Sodium transport and the control of epiblast polarity in the early chick embryo. J. Embryol. Exp. Morphol. 77: 73–98, 1983.
 667. Stetson, D. L., S. A. Lewis, W. Alles, and J. B. Wade. Evaluation by capacitance measurements of antidiuretic hormone induced membrane area changes in toad bladder. Biochim. Biophys. Acta 689: 267–274, 1982.
 668. Stoddard, J., and L. Reuss. Dependence of cell membrane conductances on bathing solution HCO3−/CO2 in Necturus gallbladder. J. Membr. Biol. 102: 163–174, 1988.
 669. Stokes, J. B. Passive NaCl transport in the flounder urinary bladder: predominance of a cellular pathway. Am. J. Physiol. 254 (Cell Physiol. 23): C229–C237, 1988.
 670. Strange, K. Ouabain‐induced cell swelling in rabbit cortical collecting tubule: NaCl transport by principal cells. J. Membr. Biol. 107: 249–261, 1989.
 671. Strange, K. Are all cell volume changes the same? News Physiol. Sci. 9: 223–227, 1994.
 672. Strange, K., F. Emma, and P. S. Jackson. Cellular and molecular physiology of volume‐sensitive anion channels. Am. J. Physiol. 270 (Cell Physiol. 39): C711–C730, 1996.
 673. Strange, K., and K. R. Spring. Cell membrane permeability of rabbit cortical collecting duct. J. Membr. Biol. 96: 27–43, 1987.
 674. Stutts, M. J., C. Canessa, J. C. Olson, M. Hamrick, J. A. Cohn, B. C. Rossier, and R. C. Boucher. CFTR as a cAMP‐dependent regulator of sodium channels. Science 269: 847–850, 1995.
 675. Stutts, M. J., T. C. Chinet, S. J. Mason, J. M. Fullton, L. L. Clarke, and R. C. Boucher. Regulation of Cl− channels in normal and cystic fibrosis airway epithelial cells by extracellular ATP. Proc. Natl. Acad. Sci. U.S.A. 89: 1621–1625, 1992.
 676. Sullivan, S. K., and M. Field. Ion transport across mammalian small intestine. In: Handbook of Physiology. The Gastrointestinal System. Intestinal Absorption and Secretion, edited by S. G. Schultz, M. Field and R. A. Frizzell,. Bethesda MD: Am. Physiol. Soc., 1991, sect. 6, vol. IV, chapt. 10, p. 287–301.
 677. Sun, A. M., S. N. Saltzbert, D. Kikeri, and S. C. Hebert. Mechanisms of cell volume regulation by the mouse medullary thick ascending limb of Henle. Kidney Int. 38: 1019–1029, 1990.
 678. Supplisson, S., D. D. Loo, and G. Sachs. Diversity of K+ channels in the basolateral membrane of resting Necturus oxyntic cells. J. Membr. Biol. 123: 209–221, 1991.
 679. Szerlip, H. M., L. Waisberg, M. Clayman, E. Neilson, J. B. Wade, and M. Cox. Aldosterone‐induced proteins: purification and localization of GP65, 70. Am. J. Physiol. 256 (Cell Physiol. 25): C865–C872, 1989.
 680. Tabcharani, J. A., A. Boucher, J.W.L. Eng, and J. W. Hanrahan. Regulation of an inwardly rectifying K channel in the T84 epithelial cell line by calcium, nucleotides and kinases. J. Membr. Biol. 142: 255–266, 1994.
 681. Tabcharani, J. A., X.‐B. Chang, J. R. Riordan, and J. W. Hanrahan. Phosphorylation‐regulated Cl− channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352: 628–631, 1991.
 682. Tabcharani, J. A., R. A. Harris, A. Boucher, J.W.L. Eng, and J. W. Hanrahan. Basolateral K channel activated by carbachol in the epithelial cell line T84. J. Membr. Biol. 142: 241–254, 1994.
 683. Tabcharani, J. A., J. M. Rommens, Y. X. Hou, X. B. Chang, L. Tsui, J. R. Riordan, and J. W. Hanrahan. Multi‐ion pore behavior in the CFTR chloride channel. Nature 366: 79–82, 1993.
 684. Takeuchi, Y., S. Uchida, F. Marumo, and S. Sasaki. Cloning, tissue distribution, and intrarenal localization of ClC chloride channels in human kidney. Kidney Int. 48: 1497–1503.
 685. Tatsuta, H., S. Ueda, S. Morishima, and Y. Okada. Voltage‐and time‐dependent K+ channel currents in the basolateral membrane of villus enterocytes isolated from guinea pig small intestine. J. Gen. Physiol. 103: 429–446, 1994.
 686. Thiemann, A., S. Grunder, M. Pusch, and T. J. Jentsch. A chloride channel widely expressed in epithelial and non‐epithelial cells. Nature 356: 57–60, 1992.
 687. Thorens, B. Facilitated glucose transporters in epithelial cells. Annu. Rev. Physiol. 55: 591–608, 1993.
 688. Thorens, B., Z.‐Q. Cheng, D. Brown, and H. F. Lodish. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney epithelial cells. Am. J. Physiol. 259 (Cell Physiol. 28): C279–C285, 1990.
 689. Torres, R. J., G. A. Altenberg, J. A. Copello, G. Zampighi, and L. Reuss. Preservation and structural and functional polarity in isolated epithelial cells. Am. J. Physiol. 270 (Cell Physiol. 39): C1864–C1874, 1996.
 690. Torres, R. J., G. A. Altenberg, J. A. Cohn, and L. Reuss. Polarized expression of cyclic AMP‐activated chloride channels in isolated epithelial cells. Am. J. Physiol. 271 (Cell Physiol. 40): C1574–C1582, 1996.
 691. Tripathi, S., and E. L. Boulpaep. Mechanisms of water transport by epithelial cells. Q. J. Exp. Physiol. 74: 385–417, 1989.
 692. Tse, C.‐M., S. R. Brant, M. S. Walker, J. Pouysségur, and M. Donowitz. Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney‐specific Na+/H+ exchanger isoform [NHE‐3]. J. Biol. Chem. 267: 9340–9346, 1992.
 693. Tse, M., S. Levine, C. Yun, S. Brant, L. Counillon, J. Pouysségur, and M. Donowitz. Structure/function studies of the epithelial isoforms of the mammalian Na+/H+ exchanger gene family. J. Membr. Biol. 135: 93–108, 1993.
 694. Tse, C. M., S. A. Levine, C.H.C. Yun, M. H. Montrose, P. J. Little, J. Pouysségur, and M. Donowitz. Cloning and expression of a rabbit cDNA encoding a serum‐activated ethylisopropyl amiloride resistant epithelial Na+/H+ exchanger isoform (NHE‐2). J. Biol. Chem. 268: 11917–11924, 1993.
 695. Tsuchiya, K., W. Wang, G. Giebisch, and P. A. Welling. ATP is a coupling modulator of parallel Na,K‐ATPase‐K‐channel activity in the renal proximal tubule. Proc. Natl. Acad. Sci. U.S.A. 89: 6418–6244, 1992.
 696. Turnheim, K., R. A. Frizzell, and S. G. Schultz. Interaction between cell sodium and the amiloride‐sensitive sodium entry step in rabbit colon. J. Membr. Biol. 39: 233–256, 1978.
 697. Ubl, J., H. Murer, and H.‐A. Kolb. Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells. J. Membr. Biol. 104: 223–232, 1988.
 698. Uchida, S., S. Sasaki, T. Furukawa, M. Hiraoka, T. Imai, Y. Hirata, and F. Marumo. Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J. Biol. Chem. 268: 3821–3824, 1993.
 699. Uchida, S., S. Sasaki, K. Nitta, K. Uchida, S. Horita, H. Nihei, and F. Marumo. Localization and functional characterization of rat kidney‐specific chloride channel, ClC‐K1. J. Clin. Invest. 95: 104–113, 1995.
 700. Urbach, V., E. van Kerkhove, and B. J. Harvey. Inward‐rectifier potassium channels in basolateral membranes of frog skin epithelium. J. Gen. Physiol. 103: 583–604, 1994.
 701. Ussing, H. H. The distinction by means of tracers between active transport and diffusion. Acta. Physiol. Scand. 19: 43–56, 1949.
 702. Ussing, H. H. The Alkali Metal Ions in Biology. I. The Alkali Metal Ions in Isolated Systems and Tissues. Berlin: Springer‐Verlag, 1960.
 703. Ussing, H. H. Epithelial cell volume regulation illustrated by experiments in frog skin. Renal Physiol. 9: 38–46, 1986.
 704. Ussing, H. H. Epithelial transport: frog skin as a model system. In: Membrane Transport. People and Ideas, edited by D. C. Tosteson. New York: Oxford, 1989, p. 337–362.
 705. Ussing, H. H., and K. Eskesen. Mechanism of isotonic water transport in glands. Acta Physiol. Scand. 136: 443–454, 1989.
 706. Ussing, H. H, and E. E. Windhager. Nature of shunt path and active sodium transport path through frog skin epithelium. Acta Physiol. Scand. 61: 484–504, 1964.
 707. Ussing, H. H., and K. Zerahn. Active transport of sodium as the source of electric current in the short‐circuited isolated frog skin. Acta Physiol. Scand. 23: 110–127, 1951.
 708. Vale, R. D., B. J. Schnapp, T. S. Reese, and M. P. Sheetz. Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell 40: 449–454, 1985.
 709. Valverde, M.A., S.P. Hardy, and F. V. Sepúlveda. Chloride channels: a state of flux. FASEB J. 9: 509–515, 1995.
 710. van Adelsberg, J., and Q. Al‐Awqati. Regulation of cell pH by calcium‐mediated exocytosis of H+ ATPases. J. Cell Biol. 102: 1638–1645, 1986.
 711. van Adelsberg, J., J. C. Edwards, and Q. Al‐Awqati. The apical Cl/HCO3 exchanger of β‐intercalated cells. J. Biol. Chem. 268: 11283–11289, 1993.
 712. van Adelsberg, J., C. Edwards, J. Takito, B. Kiss, and Q. Al‐Awqati. An induced extracellular matrix protein reverses the polarity of band 3 in intercalated epithelial cells. Cell 76: 1053–1061, 1994.
 713. van Hoek, A. N., M. L. Hom, L. H. Luthjens, M. D. deJone, J. A. Dempster, and C. H. van Os CH. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J. Biol. Chem. 266: 16633–16635, 1991.
 714. van Os, C. H. Transcellular calcium transport in intestinal and renal epithelial cells. Biochim. Biophys. Acta 906: 195–222, 1987.
 715. Venosa, R. A. Hypo‐osmotic stimulation of active Na transport in frog muscle: apparent upregulation of Na+ pumps. J. Membr. Biol. 120: 97–104, 1991.
 716. Verkman, A. S. Mechanisms and regulation of water permeability in renal epithelia. Am. J. Physiol. 257 (Cell Physiol. 26): C837–C850, 1989.
 717. Verkman, A. S., W. Lencer, D. Brown, and D. A. Ausiello. Endosomes from kidney collecting tubule contain the vasopressin‐sensitive water channel. Nature 333: 268–269, 1988.
 718. Verkman, A. S., A. N. van Hoek, T. Ma, A. Frigeri, W. R. Skach, A. Mitra, B. K. Tamarappoo, and J. Farinas. Water transport across mammalian cell membranes. Am. J. Physiol. 270 (Cell Physiol. 39): C12–C30, 1996.
 719. Verrey, F., J.‐P. Kraehenbuhl, and B. C. Rossier. Aldosterone induces a rapid increase in the rate of Na,K‐ATPase gene transcription in cultured kidney cells. Mol. Endocrinol. 3: 1367–1376, 1989.
 720. Verrey, F., E. Schaerer, P. Zoerkler, M. P. Paccolat, K. Geering, J. P. Kraehenbuhl, and B. C. Rossier. Regulation by aldosterone of Na+,K+‐ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J. Cell Biol. 105: 1231–1237, 1987.
 721. Völkl, H., J. Geibel, R. Greger, and L. Lang. Effects of ouabain and temperature on cell membrane potentials in isolated perfused straight proximal tubules of the mouse kidney. Pflugers Arch. 407: 252–257, 1986.
 722. Völkl, H., M. Paulmichl, and F. Lang. Cell volume regulation in renal cortical cells. Renal Physiol. Biochem. 3–5: 158–173, 1988.
 723. Wade, J. B. Hormonal modulation of epithelial structures. Curr. Top. Membr. Transp. 13: 124–147, 1980.
 724. Wade, J. B. Membrane structural studies of the action of vasopressin. Federation Proc. 44: 2687–2692, 1985.
 725. Wade, J. B. Role of membrane traffic in the water and Na+ responses to vasopressin. Semin. Nephrol. 14: 322–332, 1994.
 726. Wakabayashi, S., T. Ikeda, J. Noël, B. Schmitt, J. Orlowski, J. Pouysségur, M. Shigekawa. Cytoplasmic domain of the ubiquitous Na+/H+ exchanger NHE1 can confer Ca2+ responsiveness to the apical isoform NHE3. J. Biol. Chem. 270: 26460–26465, 1995.
 727. Walz, T., B. L. Smith, P. Agre, and A. Engel. The 3‐D structure of human erythrocyte aquaporin CHIP. EMBO J. 13: 2985–2993, 1994.
 728. Walz, T., B. L. Smith, M. L. Zeidel, A. Engel, and P. Agre. Biologically active two‐dimensional crystals of aquaporin CHIP. J. Biol. Chem. 269: 1583–1586, 1994.
 729. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124–1127, 1993.
 730. Wang, W.‐H. Two types of K+ channels in thick ascending limb of rat kidney. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F599–F605, 1994.
 731. Wang, W.‐H., A. Cassola, and G. Giebisch. Involvement of actin cytoskeleton in modulation of apical K channel activity in rat collecting duct. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F592–F598, 1994.
 732. Wang, W.‐H., R. M. Henderson, J. Geibel, S. White, and G. Giebisch. Mechanism of aldosterone‐induced increase of K+ conductance in early distal renal tubule cells of the frog. J. Membr. Biol. 111: 277–289, 1989.
 733. Wang, W.‐H., and M. Lu. Effect of arachidonic acid on activity of the apical K+ channel in the thick ascending limb of the rat kidney. J. Gen. Physiol. 106: 727–743, 1995.
 734. Wang, W.‐H., C. M. McNicholas, A. S. Segal, and G. Giebisch. A novel approach allows identification of K channels in the lateral membrane of rat CCD. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 33): F813–F822, 1994.
 735. Wang, W.‐H., H. Sackin, and G. Giebisch. Renal potassium channels and their regulation. Annu. Rev. Physiol. 54: 81–96, 1992.
 736. Wang, Z., J. Orlowski, and G. E. Shull. Primary structure and functional expression of a novel gastrointestinal isoform of the rat Na+/H+ exchanger. J. Biol. Chem. 268: 11925–11928, 1993.
 737. Wang, Z.‐Q., and S. Gluck. Isolation and properties of bovine kidney brush border vacuolar H+‐ATPase. A proton pump with enzymatic and structural differences from kidney microsomal H+‐ATPase. J. Biol. Chem. 265: 21957–21965, 1990.
 738. Weinman, E. J., W. P. Dubinsky, K. Fisher, D. Steplock, Q. Dinh, L. Chang, and S. Shenolikar. Regulation of reconstituted renal Na+/H+ exchanger by calcium‐dependent protein kinases. J. Membr. Biol. 103: 237–244, 1988.
 739. Weinman, E. J., and S. Shenolikar. Regulation of the renal brush border membrane Na+/H+ exchanger. Annu. Rev. Physiol. 55: 289–304, 1993.
 740. Weinman, E. J., and S. Shenolikar. Protein kinase C activates the renal apical membrane Na+/H+ exchanger. J. Membr. Biol. 93: 133–139, 1986.
 741. Weinman, E. J., D. Steplock, Y. Wang, and S. Shenolikar. Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na+‐H+ exchanger. J. Clin. Invest. 95: 2143–2149.
 742. Weinman, S. A., and L. Reuss. Na+‐H+ exchange and Na+ entry across the apical membrane of Necturus gallbladder. J. Gen. Physiol. 83: 57–74, 1984.
 743. Weinstein, A. M., and J. L. Stephenson. Electrolyte transport across a simple epithelium. Steady‐state and transient analysis. Biophys. J. 27: 165–186, 1979.
 744. Weinstein, A. M., and J. L. Stephenson. Coupled water transport in standing gradient models of the lateral intercellular space. Biophys. J. 35: 167–191, 1981.
 745. Weinstein, A. M., and J. L. Stephenson. Models of coupled salt and water transport across leaky epithelia. J. Membr. Biol. 60: 1–20, 1981.
 746. Welling, P. A., and R. G. O'Neil. Ionic conductive properties of rabbit proximal straight tubule basolateral membrane. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F940–F950, 1990.
 747. Wells, R. G., A. M. Pajor, Y. Kanai, E. A. Turk, E. M. Wright, and M. A. Hediger. Cloning of a human kidney cDNA with similarity to the sodium‐glucose cotransporter. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F459–F465, 1992.
 748. Welsh, M. J., M. P. Anderson, D. P. Rich, H. A. Berger, G. M. Denning, L. S. Ostedgaard, D. N. Sheppard, S. H. Cheng, R. J. Gregory, and A. E. Smith. Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron 8: 821–829, 1992.
 749. Welsh, M. J. Effect of phorbol ester and calcium ionophores of chloride secretion in canine tracheal epithelium. Am. J. Physiol. 253 (Cell Physiol. 22): C828–C834, 1987.
 750. Welsh, M. J., and A. E. Smith. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73: 1251–1254, 1993.
 751. Werner, A., M. L. Moore, N. Mantei, J. Biber, G. Semenza, and H. Murer. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc. Natl. Acad. Sci. U.S.A. 88: 9608–9612, 1991.
 752. White, J. F., and W. McD. Armstrong. Effect of transported solutes on membrane potentials in bullfrog small intestine. Am. J. Physiol. 221: 194–201, 1971.
 753. Whittembury, G., and F. A. Rawlins. Evidence of a paracellular pathway for ion flow in the kidney proximal tubule: Electron microscopic demonstration of lanthanum precipitate in the tight junction. Pflugers Arch. 330: 302–309, 1971.
 754. Whittembury, G., and L. Reuss. Mechanisms of coupling of solute and solvent transport in epithelia. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch,. New York: Raven, 1992, p. 317–360.
 755. Wiesmann, W. P., J. P. Johnson, G. A. Miura, and P. K. Chiang. Aldosterone‐stimulated transmethylations are linked to sodium transport. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F43–F47, 1985.
 756. Windhager, E. E., E. L. Boulpaep, G. Giebisch. Electrophysiological studies in single nephrons. In: Proceedings of the Third International Congress on Nephrology, edited by G. E. Schreiner. Washington, D.C., 1966, Vol. 1. New York: Karger, 1967, p. 35–47.
 757. Windhager, E. E., and A. Taylor. Regulatory role of intracellular calcium ions in epithelial Na transport. Annu. Rev. Physiol. 45: 519–532, 1983.
 758. Wingo, C. S., and B. D. Cain. The renal H‐K‐ATPase: Physiological significance and role in potassium homeostasis. Annu. Rev. Physiol. 55: 323–347, 1993.
 759. Wolosin, J. M. Ion transport studies with H+‐K+‐ATPase‐rich vesicles: implications for HCl secretion and parietal cell physiology. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G595–G607, 1985.
 760. Woodbury, W. F. The cell membrane: ionic and potential gradients and active transport. In: Physiology and Biophysics, edited by T. C. Ruch and H. D. Patton. Philadelphia: Saunders, 1965, p. 1–25.
 761. Wright, E. M. The intestinal Na+/glucose cotransporter. Annu. Rev. Physiol. 55: 575–589, 1993.
 762. Wright, E. M., K. M. Hager, and E. Turk. Sodium cotransport proteins. Curr. Opin. Cell Biol. 4: 696–702, 1992.
 763. Wright, F. S., and G. Giebisch. Regulation of potassium excretion. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, p. 2209–2247.
 764. Xu, J.‐C., L. Lytle, T. T. Zhu, J. A. Payne, E. Benz, Jr., and B. Forbush III. Molecular cloning and functional expression of the bumetanide‐sensitive Na‐K‐Cl cotransporter. Proc. Natl. Acad. Sci. U.S.A. 91: 2201–2205, 1994.
 765. Yamaji, Y., M. Amemiya, A. Cano, P. A. Preisig, R. T. Miller, O. W. Moe, and R. J. Alpern. Overexpression of csk inhibits acid‐induced activation of NHE‐3. Proc. Natl. Acad. Sci. U.S.A. 92: 6274–6278, 1995.
 766. Yamaji, Y., O. W. Moe, R. T. Miller, and R. J. Alpern. Acid activation of immediate early genes in renal epithelial cells. J. Clin. Invest. 94: 1297–1303, 1994.
 767. Yang, Y., S. Janich, J. A. Cohn, and J. M. Wilson. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre‐Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. U.S.A. 90: 9480–9484, 1993.
 768. Yool, A. J., W. D. Stamer, J. W. Regan. Forskolin stimulation of water and cation permeability in aquaporin 1 water channels. Science 273: 1216–1218, 1996.
 769. Yoshitomi, K., B.‐Ch. Burckhardt, and E. Frömter. Rheogenic sodium‐bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch. 406: 360–366, 1985.
 770. Yoshitomi, K., C. Koseki, J. Taniguchi, and M. Imai. Functional heterogeneity in the hamster medullary thick ascending limb of Henle's loop. Pflugers Arch. 408: 600–608, 1987.
 771. Yun, C. H. C., S. Gurubhagavatula, S. Levine, J. L. M. Montgomery, S. R. Brant, M. E. Cohen, E. J. Cragoe, J. Pouysségur, C. M. Tse, and M. Donowitz. Glucocorticoid stimulation of ileal Na+ absorptive cell brush border Na+/H+ exchange and association with an increase in message for NHE‐3, an epithelial Na+/H+ exchanger isoform. J. Biol. Chem. 268: 206–211, 1993.
 772. Zadunaisky, J. A. Active transport of chloride in frog cornea. Am. J. Physiol. 211: 506–512, 1966.
 773. Zeidel, M. L., D. Kikeri, P. Silva, M. Burrowes, and B. M. Brenner. Atrial natriuretic peptides inhibit conductive sodium uptake by rabbit inner medullary collecting duct cells. J. Clin. Invest. 82: 1067–1074, 1988.
 774. Zemelman, B. V., W. A. Walker, and S.‐H. W. Chu. Expression and developmental regulation of Na+,K+ adenosine triphosphatase in the rat small intestine. J. Clin. Invest. 90: 1016–1022, 1992.
 775. Zeuthen, T. Relations between intracellular ion activities and extracellular osmolarity in Necturus gallbladder epithelium. J. Membr. Biol. 66: 109–121, 1982.
 776. Zeuthen, T. Cotransport of K+, Cl− and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosa. J. Physiol. (Lond.) 478: 203–219, 1994.
 777. Zeuthen, T., S. Hamann, and M. la Cour. Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog. J. Physiol. (Lond.), 497: 3–17, 1996.
 778. Zhang, R., W. Skach, H. Hasegawa, A. N. van Hoek, and A. S. Verkman. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28. J. Cell Biol. 120: 359–369, 1993.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Luis Reuss. Epithelial Transport. Compr Physiol 2011, Supplement 31: Handbook of Physiology, Cell Physiology: 309-388. First published in print 1997. doi: 10.1002/cphy.cp140108