Comprehensive Physiology Wiley Online Library

Intracellular pH

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Techniques
1.1 pH‐Sensitive Microelectrodes
1.2 pH‐Sensitive Fluorescent Indicators
1.3 Nuclear Magnetic Resonance Spectroscopy
2 Some Observations on Intracellular pH Transients
3 Mechanisms of pH Regulation
3.1 Physicochemical Buffers
3.2 Membrane Transport Systems
3.3 Determinants of Steady‐State pHi
4 Some Cellular Processes Affecting or Affected by pHi
4.1 Metabolism
4.2 Cell‐Cell Coupling: Gap Junctions
4.3 DNA Synthesis and Cell Growth
4.4 Membrane Channels
4.5 Cell‐Volume Regulation
4.6 Mitochondrial H+ Movements
4.7 Cytoskeleton
4.8 Endocytosis/Exocytosis
4.9 Other Cellular Processes
Figure 1. Figure 1.

pHi transients of a barnacle muscle fiber in CO2‐free artificial seawater (pH 7.6, room temperature) upon exposure to a solution containing 5% CO2/50 mM of the same pH, measured with a glass pH‐sensitive microelectrode of the Hinke type 55.

Reprinted with the permission of the American Physiological Society. For interpretation of this and the following four figures, see text under SOME OBSERVATIONS ON INTRACELLULAR pH TRANSIENTS
Figure 2. Figure 2.

Vm and pHi transients in snail neurons in CO2‐free buffer (pH 7.5, room temperature) upon successive exposures to three different levels of at the same pH of 7.5. Vm was measured with a standard 3 M KCl‐filled glass microelectrode and pHi with a glass pH‐sensitive microelectrode of the Thomas type. Modified from Thomas 434.

Reprinted with the permission of the Journal of Physiology (London). The original pHi trace has been refined by inverting the ordinate to make the figure intelligible to New World scientists
Figure 3. Figure 3.

Vm and pHi transients in semitendinosus muscle fibers from the frog, Rana pipiens, in CO2‐free HEPES buffer (pH 7.35, room temperature), upon exposure to a solution containing 5% CO2/24 mM of the same pH. Vm was measured with a standard 3M KCl‐filled glass microelectrode and pHi with a glass pH‐sensitive microelectrode of the Thomas type. Fibers were in solutions containing 2.5 mM K+ either with (A) or without (B) external Na+ (Na+ completely substituted by NMDG) 1.

Reprinted with the permission of the American Physiological Society
Figure 4. Figure 4.

Vm and pHi transients in a guinea‐pig smooth muscle cell from vas deferens. The cells were first exposed to 3% CO2/14 mM , then to CO2‐free solution, and finally again to 3% CO2 solution. Temperature was 35°C. Vm and pHi were measured with a double‐barreled microelectrode using a reference liquid ion exchanger for the Vm barrel and a pH‐sensitive liquid ion exchanger for the pH barrel. Modified from Aickin 6.

Reprinted with the permission of the Journal of Physiology (London)
Figure 5. Figure 5.

pHi transients in cultured monolayers of primary rat astrocytes upon exposure to a CO2‐free solution containing 30 mM NH4Cl, measured with the pH‐sensitive fluorescent dye BCECF. The pHo was 7.4 throughout; temperature was 37°C. The superimposed pHi courses are shown when, upon NH4Cl removal, the solution was temporarily changed either to an Na+‐free solution (substitution by N‐methyl‐D‐glucamine), or to one containing 1 mM amiloride

Shrode and Putnam, unpublished observations
Figure 6. Figure 6.

Comparison of the buffering power, β, under closed and open conditions of each of two monovalent buffers; a weak acid, HA/A, and a weak base, B/BH+. “Closed” means fixed total buffer concentration, [C]. “Open” means fixed concentration of the uncharged partner, [HA] or [B]. For simplicity, the buffers are assumed to have the same pK′ of 7.0 and, at pH = pK′, the same [C], 10 mM, both when open and closed. The β‐pH relationship of the two closed buffers is the same; β is maximal at pH = pK′, namely 5.76 mM/pH unit (that is, 0.576[C]). For the open buffers, β at pH = pK′ is twice this value, or 11.52 mM/pH unit (that is, 2.303[A] or 2.303[HB+]), but their β‐pH relationships have no maximum. Instead, β increases exponentially with pH in the case of the acid, and decreases exponentially with pH in the case of the base. See text under Physicochemical Buffers for further discussion.

Figure 7. Figure 7.

Models of three different types of cotransporters. A. The 3 base equivalents:1 Na+ electrogenic cotransporter present in rabbit renal proximal tubule cells. The transport involves the efflux of 1 and 1 along with a single Na+. B. The 2 base equivalents:1 Na+ electrogenic cotransporter. It is not certain whether this mechanism in frog retinal pigment epithelium involves the influx of each Na+ with 2 (Model a) or 1 (Model b). C. The 1 :1 Na+ electroneutral cotransporter in sheep cardiac Purkinje fibers. It involves the influx of a single per Na+.

Figure 8. Figure 8.

Dependence of rate of acid efflux, JH (product of rate of pHi recovery and buffering power), upon pHi during pHi recovery from cell acidification in cultured BC3H‐1 myocytes. •, Acid efflux mediated by the Na+/H+ exchanger; ○, acid efflux mediated by the Na+‐dependent exchanger. The values for the Na+/H+ exchanger were collected in the absence of in cells acidified to varying degrees (pHi 5.95 to 7.15) after exposure to 15 mM NH4Cl (for example, see Fig. 5). The rate of recovery was determined from the slope of the pH vs. time trace during the first minute of pHi recovery from acidification and has been shown to be due to Na+/H+ exchange only 339. The values for the Na+‐dependent exchanger were collected in the presence of 5% CO2/24 mM and 1 mM amiloride (to inhibit Na+/H+ exchange). These cells were acidified to varying degrees (pHi 6.15 to 7.25) after exposure to either 15 or 30 mM NH4Cl. Again, the rate of recovery was determined from the slope of the pH vs. time trace during the first minute of pHi recovery from acidification. The recovery under these conditions has been shown to be entirely due to Na+‐dependent exchange 339. Each experiment yielded only one recovery value. Each point represents the mean ± 1 standard error of from 3–8 separate experiments. The curves were fitted by eye. Note that the activity of the Na+‐dependent exchanger predominates in the pHi range of 7.2 to about 6.7. Below 6.6, the Na+/H+ exchanger increasingly predominates

Putnam, unpublished observations
Figure 9. Figure 9.

Effect on cell acid‐base balance of removal of 5 mmoles of per liter cytosolic water (in exchange for 5 mmoles of Cl). Point A represents initial conditions: pHi = 7.3, []i = 16 mM, PCO2 = 33 mm Hg. Point B represents the hypothetical case in which the reduction of pHi resulting from removal is canceled by simultaneous reduction of PCO2: pHi = 7.3, []i = 11 mM, PCO2 = 23 mm Hg. Point C represents the actual conditions when is removed at unchanged PCO2: pHi = 7.2, []i = 13 mM, PCO2 = 33 mm Hg. The iso‐PCO2 curves are constructed taking the “overall” pK1′ of CO2 as 6.1 and CO2 solubility as 0.03 mmole 1−1 mm Hg−1. The slope of the parallel lines is a measure of the non‐ buffering power, which remains the same in the three conditions at an assumed value of 20 mM per pH unit. For details, see text.



Figure 1.

pHi transients of a barnacle muscle fiber in CO2‐free artificial seawater (pH 7.6, room temperature) upon exposure to a solution containing 5% CO2/50 mM of the same pH, measured with a glass pH‐sensitive microelectrode of the Hinke type 55.

Reprinted with the permission of the American Physiological Society. For interpretation of this and the following four figures, see text under SOME OBSERVATIONS ON INTRACELLULAR pH TRANSIENTS


Figure 2.

Vm and pHi transients in snail neurons in CO2‐free buffer (pH 7.5, room temperature) upon successive exposures to three different levels of at the same pH of 7.5. Vm was measured with a standard 3 M KCl‐filled glass microelectrode and pHi with a glass pH‐sensitive microelectrode of the Thomas type. Modified from Thomas 434.

Reprinted with the permission of the Journal of Physiology (London). The original pHi trace has been refined by inverting the ordinate to make the figure intelligible to New World scientists


Figure 3.

Vm and pHi transients in semitendinosus muscle fibers from the frog, Rana pipiens, in CO2‐free HEPES buffer (pH 7.35, room temperature), upon exposure to a solution containing 5% CO2/24 mM of the same pH. Vm was measured with a standard 3M KCl‐filled glass microelectrode and pHi with a glass pH‐sensitive microelectrode of the Thomas type. Fibers were in solutions containing 2.5 mM K+ either with (A) or without (B) external Na+ (Na+ completely substituted by NMDG) 1.

Reprinted with the permission of the American Physiological Society


Figure 4.

Vm and pHi transients in a guinea‐pig smooth muscle cell from vas deferens. The cells were first exposed to 3% CO2/14 mM , then to CO2‐free solution, and finally again to 3% CO2 solution. Temperature was 35°C. Vm and pHi were measured with a double‐barreled microelectrode using a reference liquid ion exchanger for the Vm barrel and a pH‐sensitive liquid ion exchanger for the pH barrel. Modified from Aickin 6.

Reprinted with the permission of the Journal of Physiology (London)


Figure 5.

pHi transients in cultured monolayers of primary rat astrocytes upon exposure to a CO2‐free solution containing 30 mM NH4Cl, measured with the pH‐sensitive fluorescent dye BCECF. The pHo was 7.4 throughout; temperature was 37°C. The superimposed pHi courses are shown when, upon NH4Cl removal, the solution was temporarily changed either to an Na+‐free solution (substitution by N‐methyl‐D‐glucamine), or to one containing 1 mM amiloride

Shrode and Putnam, unpublished observations


Figure 6.

Comparison of the buffering power, β, under closed and open conditions of each of two monovalent buffers; a weak acid, HA/A, and a weak base, B/BH+. “Closed” means fixed total buffer concentration, [C]. “Open” means fixed concentration of the uncharged partner, [HA] or [B]. For simplicity, the buffers are assumed to have the same pK′ of 7.0 and, at pH = pK′, the same [C], 10 mM, both when open and closed. The β‐pH relationship of the two closed buffers is the same; β is maximal at pH = pK′, namely 5.76 mM/pH unit (that is, 0.576[C]). For the open buffers, β at pH = pK′ is twice this value, or 11.52 mM/pH unit (that is, 2.303[A] or 2.303[HB+]), but their β‐pH relationships have no maximum. Instead, β increases exponentially with pH in the case of the acid, and decreases exponentially with pH in the case of the base. See text under Physicochemical Buffers for further discussion.



Figure 7.

Models of three different types of cotransporters. A. The 3 base equivalents:1 Na+ electrogenic cotransporter present in rabbit renal proximal tubule cells. The transport involves the efflux of 1 and 1 along with a single Na+. B. The 2 base equivalents:1 Na+ electrogenic cotransporter. It is not certain whether this mechanism in frog retinal pigment epithelium involves the influx of each Na+ with 2 (Model a) or 1 (Model b). C. The 1 :1 Na+ electroneutral cotransporter in sheep cardiac Purkinje fibers. It involves the influx of a single per Na+.



Figure 8.

Dependence of rate of acid efflux, JH (product of rate of pHi recovery and buffering power), upon pHi during pHi recovery from cell acidification in cultured BC3H‐1 myocytes. •, Acid efflux mediated by the Na+/H+ exchanger; ○, acid efflux mediated by the Na+‐dependent exchanger. The values for the Na+/H+ exchanger were collected in the absence of in cells acidified to varying degrees (pHi 5.95 to 7.15) after exposure to 15 mM NH4Cl (for example, see Fig. 5). The rate of recovery was determined from the slope of the pH vs. time trace during the first minute of pHi recovery from acidification and has been shown to be due to Na+/H+ exchange only 339. The values for the Na+‐dependent exchanger were collected in the presence of 5% CO2/24 mM and 1 mM amiloride (to inhibit Na+/H+ exchange). These cells were acidified to varying degrees (pHi 6.15 to 7.25) after exposure to either 15 or 30 mM NH4Cl. Again, the rate of recovery was determined from the slope of the pH vs. time trace during the first minute of pHi recovery from acidification. The recovery under these conditions has been shown to be entirely due to Na+‐dependent exchange 339. Each experiment yielded only one recovery value. Each point represents the mean ± 1 standard error of from 3–8 separate experiments. The curves were fitted by eye. Note that the activity of the Na+‐dependent exchanger predominates in the pHi range of 7.2 to about 6.7. Below 6.6, the Na+/H+ exchanger increasingly predominates

Putnam, unpublished observations


Figure 9.

Effect on cell acid‐base balance of removal of 5 mmoles of per liter cytosolic water (in exchange for 5 mmoles of Cl). Point A represents initial conditions: pHi = 7.3, []i = 16 mM, PCO2 = 33 mm Hg. Point B represents the hypothetical case in which the reduction of pHi resulting from removal is canceled by simultaneous reduction of PCO2: pHi = 7.3, []i = 11 mM, PCO2 = 23 mm Hg. Point C represents the actual conditions when is removed at unchanged PCO2: pHi = 7.2, []i = 13 mM, PCO2 = 33 mm Hg. The iso‐PCO2 curves are constructed taking the “overall” pK1′ of CO2 as 6.1 and CO2 solubility as 0.03 mmole 1−1 mm Hg−1. The slope of the parallel lines is a measure of the non‐ buffering power, which remains the same in the three conditions at an assumed value of 20 mM per pH unit. For details, see text.

References
 1. Abercrombie, R. F., R. W. Putnam, and A. Roos. The intracellular pH of frog muscle: its regulation in isotonic solutions. J. Physiol. (Lond.) 345: 175–187, 1983.
 2. Ackerman, J.J.H., and D. A. d'Avignon. Basic concepts of high resolution nuclear magnetic resonance spectroscopy. In: Medical Magnetic Resonance: a Primer, edited by T. F. Budinger and A. R. Margolis,. Berkeley, CA: Society of Magnetic Resonance in Medicine, 1988, p. 249–262.
 3. Ackerman, J.J.H., G. E. Soto, W. M. Spees, Z. Zhu, and J. L. Evelhoch. The NMR chemical shift pH measurement revisited: analysis of error and modeling of pH‐dependent reference. Magn. Reson. Med. 36: 674–683, 1996.
 4. Addanki, S., F. D. Cahill, and J. F. Sotos. Determination of intramitochondrial pH and intramitochondrial‐extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5‐dimethyl‐2,4‐oxazolidine‐dione. J. Biol. Chem. 243: 2337–2348, 1968.
 5. Ahearn, G. A., P. Franco, and L. P. Clay. Electrogenic 2 Na+/1 H+ exchange in crustaceans. J. Membr. Biol. 116: 215–226, 1990.
 6. Aickin, C. C. Direct measurement of intracellular pH and buffering power in smooth muscle cells of guinea‐pig vas deferens. J. Physiol. (Lond.) 349: 571–585, 1984.
 7. Aickin, C. C. Regulation of intracellular pH in the smooth muscle of guinea‐pig ureter: Na+ dependence. J. Physiol. (Lond.) 479: 301–316, 1994.
 8. Aickin, C. C. Regulation of intracellular pH in the smooth muscle of guinea‐pig ureter: HCO3 dependence. J. Physiol. (Lond.) 479: 317–329, 1994.
 9. Aickin, C. C., and R. C. Thomas. Micro‐electrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres. J. Physiol. (Lond.) 267: 791–810, 1977.
 10. Al‐Awqati, Q. Proton‐translocating ATPases. Annu. Rev. Cell Biol. 2: 179–199, 1986.
 11. Al‐Awqati, Q., J. Barasch, and D. Landry. Chloride channels of intracellular organelles and their potential role in cystic fibrosis. J. Exp. Biol. 172: 245–266, 1992.
 12. Al‐Baldawi, N. F., and R. F. Abercrombie. Cytoplasmic hydrogen ion difusion coefficient. Biophys. J. 61: 1470–1479, 1992.
 13. Allen, D. G., and C. H. Orchard. The effect of changes of pH on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. (Lond.) 335: 555–567, 1983.
 14. Alper, S. L. The band 3‐related anion exchanger (AE) gene family. Annu. Rev. Physiol. 53: 549–564, 1991.
 15. Alper, S. L. The band 3‐related AE anion exchanger gene family. Cell Physiol. Biochem. 4: 265–281, 1994.
 16. Alpern, R. J., Y. Yamaji, A. Cano, S. Horie, R. T. Miller, O. W. Moe, and P. A. Preisig. Chronic regulation of the Na/H antiporter. J. Lab. Clin. Med. 122: 137–140, 1993.
 17. Altenberg, G. A., G. Young, J. K. Horton, D. Glass, J. A. Belli, and L. Reuss. Changes in intra‐ or extracellular pH do not mediate P‐glycoprotein‐dependent multidrug resistance. Proc. Natl. Acad. Sci. USA 90: 9735–9738, 1993.
 18. Alvarez‐Leefmans, F. J., S. M. Gamino, and L. Reuss. Cell volume changes upon sodium pump inhibition in Helix aspera neurons. J. Physiol. (Lond.) 458: 603–619, 1992.
 19. Alvarez‐Leefmans, F. J., H. Cruzblanca, S. M. Gamino, J. Altamirano, A. Nani, and L. Reuss. Transmembrane ion movements elicited by sodium pump inhibition in Helix aspera neurons. J. Neurophysiol. 71: 1787–1796, 1994.
 20. Ammann, D. Ion‐Selective Microelectrodes. Principles, Design and Application. New York: Springer Verlag, 1986.
 21. Ammann, D., F. Lanter, R. Steiner, P. Schulthess, Y. Shijo, and W. Simon. Neutral carrier based hydrogen ion selective microelectrode for extra‐ and intracellular studies. Anal. Chem. 53: 2267–2269, 1981.
 22. Amorena, C. E., T. J. Wilding, J. K. Manchester, and A. Roos. Changes in intracellular pH caused by high K in normal and acidified frog muscle. J. Gen. Physiol. 96: 959–972, 1990.
 23. Anderson, R.G.W., and L. Orci. A view of acidic intracellular compartments. J. Cell Biol. 106: 539–543; 1988.
 24. Arellano, R. O., A. Rivera, and F. Ramon. Protein phosphorylation and hydrogen ions modulate calcium‐induced closure of gap junction channels. Biophys. J. 57: 363–367, 1990.
 25. Aronson, P. S. Kinetic properties of the plasma membrane Na+‐H+ exchanger. Annu. Rev. Physiol. 47: 545–560, 1985.
 26. Aronson, P. S. The renal proximal tubule: a model for diversity of anion exchangers and stilbene‐sensitive anion transporters. Annu. Rev. Physiol. 51: 419–441, 1989.
 27. Aronson, P. S., J. Nee, and M. Suhm. Modifier role of internal H+ in activating the Na+‐H+ exchanger in renal microvillus membrane vesicles. Nature 299: 161–163, 1982.
 28. Astion, M. L., A. Chvatal, and R. K. Orkand. Further studies of electrogenic Na+/HCO3− cotransport in glial cells of Necturus optic nerve: regulation of pHi. Glia 4: 461–468, 1991.
 29. Baas, F., A.P.M. Jongsma, H. J. Broxterman, R. J. Arceci, D. Housman, G. L. Scheffer, A. Riethorst, M. van Groenigen, A.W.M. Nieuwint, and H. Joenje. Non‐P‐glycoprotein mediated mechanism for multidrug resistance precedes P‐glycoprotein expression during in vitro selection for doxorubicin resistance in a human lung cancer cell line. Cancer Res. 50: 5392–5398, 1990.
 30. Babcock, D. F. Examination of the intracellular ionic environment and of ionophore action by null point measurements employing the fluorescein chromophore. J. Biol. Chem. 258: 6380–6389, 1983.
 31. Babcock, G. T., and M. Wikström. Oxygen activation and the conservation of energy in cell respiration. Nature 356: 301–309, 1992.
 32. Barish, M. E., and C. Baud. A voltage‐gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma J. Physiol. (Lond.) 352: 243–263, 1984.
 33. Bates, R. G. Determination of pH. Theory and Practice, 2nd edition. New York: John Wiley and Sons, Inc., 1973.
 34. Baylor, S. M., W. K. Chandler, and M. W. Marshall. Optical measurements of intracellular pH and magnesium in frog skeletal muscle fibres. J. Physiol. (Lond.) 331: 105–137, 1982.
 35. Begg, D. A., and L. I. Rebhun. pH regulates the polymerization of actin in the sea urchin egg cortex. J. Cell Biol. 83: 241–248, 1979.
 36. Bennett, M.V.L., and V. K. Verselis. Biophysics of gap junctions. Cell Biol. 3: 29–47, 1992.
 37. Bennett, M.V.L., V. K. Verselis, R. L. White, and D. C. Spray. Gap junctional conductance: gating. In: Gap Junctions. E. L. Hertzberg and R. G. Johnson. New York: Alan R. Liss, Inc., 1988, p. 287–304.
 38. Benos, D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am. J. Physiol. 242 (Cell Physiol. 11): C131–C145, 1982.
 39. Berridge, M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360, 1984.
 40. Bers, D. M., and D. Ellis. Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Effect of changes of external sodium and intracellular pH. Pflugers Arch. 393: 171–178, 1982.
 41. Besterman, J. M., S. J. Tyrey, E. J. Cragoe, Jr., and P. Cuatrecasas. Inhibition of epidermal growth factor‐induced mitogenesis by amiloride and an analog: Evidence against a requirement for Na+/H+ exchange. Proc. Natl. Acad. Sci. USA 81: 6762–6766, 1984.
 42. Beyer, E. C., D. L. Paul, and D. A. Goodenough. Connexin 43: a protein from rat heart homologous to a gap junction protein from liver. J. Cell Biol. 105: 2621–2629, 1987.
 43. Bianchini, L., A. Kapus, G. Lukacs, S. Wasan, S. Wakabayashi, J. Pouysségur, F. H. Yu, J. Orlowski, and S. Grinstein. Responsiveness of mutants of NHE1 isoform of Na+/H+ antiport to osmotic stress. Am. J. Physiol. 269 (Cell Physiol. 38): C998–C1007, 1995.
 44. Bidani, A., and S.E.S. Brown. ATP‐dependent pHi recovery in lung macrophages: evidence for a plasma membrane H+‐ATPase. Am. J. Physiol. 259 (Cell Physiol. 28): C586–C598, 1990.
 45. Biemesderfer, D., J. Pizzonia, A. Abu‐Alfa, M. Exner, R. Reilly, P. Igarashi, and P. S. Aronson. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol. 34): F736–F742, 1993.
 46. Bierman, A. J., E. J. Cragoe, Jr., S. W. de Laat, and W. H. Moolenaar. Bicarbonate determines cytoplasmic pH and suppresses mitogen‐induced alkalinization in fibroblastic cells. J. Biol. Chem. 263: 15253–15256, 1988.
 47. Blanchard, A., F. Leviel, M. Bichara, R.‐A. Podevin, and M. Paillard. Interactions of external and internal K+ with K+‐HCO3− cotransporter of rat medullary thick ascending limb. Am. J. Physiol. 271 (Cell Physiol. 40): C218–C225, 1996.
 48. Blatz, A. L. Asymmetric proton block of inward rectifier channels in skeletal muscle. Pflugers Arch. 401: 402–407, 1984.
 49. Blewitt, M. G., L. A. Chung, and E. London. Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Biochemistry 24: 5458–5464, 1985.
 50. Bolton, T., and R. D. Vaughan‐Jones. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle. J. Physiol. (Lond.) 270: 801–833, 1977.
 51. Bonanno, J. A. K+‐H+ exchange, a fundamental cell acidifier in corneal epithelium. Am. J. Physiol. 260 (Cell Physiol. 29): C618–C625, 1991.
 52. Bookstein, C., A. M. DePaoli, Y. Xie, P. Niu, M. W. Musch, M. C. Rao, and E. B. Chang. Na+/H+ exchangers, NHE‐1 and NHE‐3, of rat intestine. Expression and localization. J. Clin. Invest. 93: 106–113, 1994.
 53. Bookstein, C., M. W. Musch, A. DePaoli, M. Villereal, B. Bacallao, and E. B. Chang. Characterization of a unique sodium‐hydrogen exchange isoform (NHE‐4) in inner medulla of the rat kidney and in transfected NHE‐deficient murine fibroblasts. Mol. Biol. Cell 4: 311a, 1993.
 54. Borgese, F., C. Sardet, M. Cappadoro, J. Pouysségur, and R. Motais. Cloning and expression of a cAMP‐activated Na+/H+ exchanger: evidence that the cytoplasmic domain mediates hormonal regulation. Proc. Natl. Acad. Sci. USA 89: 6765–6769, 1992.
 55. Boron, W. F. Intracellular pH transients in giant barnacle muscle fibers. Am. J. Physiol. 233 (Cell Physiol. 2): C61–C73, 1977.
 56. Boron, W. F. Intracellular pH‐regulating mechanism of the squid axon. Relation between the external Na+ and HCO3− dependences. J. Gen. Physiol. 85: 325–346, 1985.
 57. Boron, W. F. Intracellular pH regulation in epithelial cells. Annu. Rev. Physiol. 48: 377–388, 1986.
 58. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander. Na+‐H+ exchange. J. Gen. Physiol. 81: 29–52, 1983.
 59. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3− transport. J. Gen. Physiol. 81: 53–94, 1983.
 60. Boron, W. F., and P. De Weer. Active proton transport stimulated by CO2/HCO3−, blocked by cyanide. Nature 259: 240–241, 1976.
 61. Boron, W. F., and P. De Weer. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J. Gen. Physiol. 67: 91–112, 1976.
 62. Boron, W. F., and R. C. Knakal. Intracellular pH‐regulating mechanism of the squid axon. Interaction between DNDS and extracellular Na+ and HCO3−. J. Gen. Physiol. 93: 123–150, 1989.
 63. Boron, W. F., W. C. McCormick, and A. Roos. pH regulation in barnacle muscle fibers: dependence on intracellular and extracellular pH. Am. J. Physiol. 237 (Cell Physiol. 6): C185–C193, 1979.
 64. Boron, W. F., W. C. McCormick, and A. Roos. pH regulation in barnacle muscle fibers: dependence on extracellular sodium and bicarbonate. Am. J. Physiol. 240 (Cell Physiol. 9): C80–C89, 1981.
 65. Boron, W. F., and A. Roos. Comparison of microelectrode, DMO and methylamine methods for measuring intracellular pH. Am. J. Physiol. 231: 799–809, 1976.
 66. Boron, W. F., and J. M. Russell. Stoichiometry and ion dependencies of the intracellular‐pH‐regulating mechanism in squid giant axons. J. Gen. Physiol. 81: 373–399, 1983.
 67. Boscoboinik, D., R. S. Gupta, and R. M. Epand. Investigation of the relationship between altered intracellular pH and multidrug resistance in mammalian cells. Br. J. Cancer 61: 568–572, 1990.
 68. Boyarsky, G., M. B. Ganz, R. B. Sterzel, and W. F. Boron. pH regulation in single glomerular mesangial cells. I. Acid extrusiion in absence and presence of HCO3−. Am. J. Physiol. 255 (Cell Physiol. 24): C844–C856, 1988.
 69. Brown, D., S. Hirsch, and S. Gluck. An H+‐ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331: 622–624, 1988.
 70. Buckler, K. J., and R. D. Vaughan‐Jones. Application of a new pH‐sensitive fluoroprobe (carboxy‐SNARF‐1) for intracellular pH measurement in small isolated cells. Pflugers Arch. 417: 234–239, 1990.
 71. Buckler, K. J., R. D. Vaughan‐Jones, C. Peers, D. Lagadic‐Gossmann, and P.C.G. Nye. Effects of extracellular pH, Pco2 and HCO3− on intracellular pH in isolated type‐I cells of the neonatal rat carotid body. J. Physiol. (Lond.) 444: 703–721, 1991.
 72. Burt, J. M., and D. C. Spray. Single channel events and gating behavior of the cardiac gap junction channel. Proc. Natl. Acad. Sci. USA 85: 3431–3434, 1988.
 73. Busa, W. B., and J. H. Crowe. Intracellular pH regulates transitions between dormancy and development of brine shrimp (Artemia salina) embryos. Science 221: 366–368, 1983.
 74. Busa, W. B., and R. Nuccitelli. Metabolic regulation via intracellular pH. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15): R409–R438, 1984.
 75. Buytendijk, F.J.J., and M. W. Woerdeman. Die physicochemischen Erscheinungen während der Entwicklung. I. Die Messung der Wasserstoffionenkonzentration. Wilhelm Roux Arch. Entwicklungsmech. Org. 112: 387–410, 1927.
 76. Byerly, L., R. Meech, and W. Moody, Jr. Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J. Physiol. (Lond.) 351: 199–216, 1984.
 77. Byerly, L., and Y. Suen. Characterization of proton currents in neurones of the snail. J. Physiol. (Lond.) 413: 75–89, 1989.
 78. Cabantchik, Z. I., and R. Greger. Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol. 262 (Cell Physiol. 31): C803–C827, 1992.
 79. Cala, P. M. Volume regulation by Amphiuma red blood cells: The membrane potential and its implications regarding the nature of the ion‐flux pathways. J. Gen. Physiol. 76: 683–708, 1980.
 80. Cala, P. M. Volume regulation by Amphiuma red blood cells: the role of Ca2+ as modulator of alkali metal/H+ exchange. J. Gen. Physiol. 82: 761–784, 1983.
 81. Caldwell, P. C. An investigation of the intracellular pH of crab muscle fibres by means of micro‐glass and micro‐tungsten electrodes. J. Physiol. (Lond.) 126: 169–180, 1954.
 82. Caldwell, P. C. Studies on the internal pH of large muscle and nerve fibres. J. Physiol. (Lond.) 142: 22–62, 1958.
 83. Calonge, M. L., and A. A. Hundáin. PKC activators stimulate H+ conductance in chicken enterocytes. Pflugers Arch. 431: 594–598, 1996.
 84. Carnell, L., and H.‐P.H. Moore. Transport via the regulated secretory pathway in semi‐intact PC12 cells: role of intracisternal calcium and pH in the transport and sorting of secretogranin II. J. Cell Biol. 127: 693–705, 1994.
 85. Casavola, V., S. J. Reshkin, H. Murer, and C. Helmle‐Kolb. Polarized expression of Na+/H+ exchange activity in LLC‐PK1/PKE20 cells: II. hormonal regulation. Pflugers Arch. 420: 282–289, 1992.
 86. Cassel, D., B. Whiteley, J. X. Zhuang, and L. Glaser. Mitogen‐independent activation of Na+/H+ exchange in human epidermoid carcinoma A431 cells: Regulation by medium osmolarity. J. Cell. Physiol. 122: 178–186, 1985.
 87. Chaillet, J. R., and W. F. Boron. Intracellular calibration of a pH‐sensitive dye in isolated, perfused salamander proximal tubules. J. Gen. Physiol. 86: 765–794, 1985.
 88. Chamberlin, M. E., and K. Strange. Anisosmotic cell volume regulation: a comparative view. Am. J. Physiol. 257 (Cell Physiol. 26): C159–C173, 1989.
 89. Chang, A., T. G. Hammond, T. T. Sun, and M. L. Zeidel. Permeability properties of the mammalian bladder apical membrane. Am. J. Physiol. 267 (Cell Physiol. 36): C1483–C1492, 1994.
 90. Chao, P., D. Ammann, A. Oesch, W. Simon, and F. Lang. Extra‐ and intracellular hydrogen ion‐selective microelectrodes based on neutral carriers with extended pH response range in acid media. Pflügers Arch. 411: 216–219, 1988.
 91. Cherney, V. V., V. S. Markin, and T. E. DeCoursey. The voltage‐activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient. J. Gen. Physiol. 105: 861–896, 1995.
 92. Chraïbi, A., R. Guinamard, and J. Teulon. Effects of internal pH on the nonselective cation channel from the mouse collecting tubule. J. Membr. Biol. 148: 83–90, 1995.
 93. Christensen, O., and T. Zeuthen. Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential. Pflugers Arch. 408: 249–259, 1987.
 94. Clark, J. D., and L. E. Limbird. Na+‐H+ exchanger subtypes: a predictive review. Am. J. Physiol. 261 (Cell Physiol. 30): C945–C953, 1991.
 95. Clay, J. R. Ik inactivation in squid axons is shifted along the voltage axis by changes in the intracellular pH. Biophys. J. 58: 797–801, 1990.
 96. Clemens, N., W. Siffert, and P. Scheid. Thrombin‐induced cytosolic alkalinization in human platelets occurs without an apparent involvement of HCO3−/Cl− exchange. Pflügers Arch. 416: 68–73, 1990.
 97. Cohen, P., C. B. Klee, C. Picton, and S. Shenolikar. Calcium control of muscle phosphorylaase kinase through the combined action of calmodulin and troponin. Ann. NY Acad. Sci. 356: 151–161, 1980.
 98. Cohen, R. D., and R. A. Iles. Intracellular pH: measurement, control and metabolic interrelationships. Crit. Rev. Clin. Lab. Sci. 6: 101–143, 1975.
 99. Collins, J. F., T. Honda, S. Knobel, N. M. Bulus, J. Conary, R. DuBois, and F. K. Ghishan. Molecular cloning, sequencing, tissue distribution, and functional expression of a Na+/H+ exchanger (NHE‐2). Proc. Natl. Acad. Sci. USA 90: 3938–3942, 1993.
 100. Cook, D. L., M. Ikeuchi, and W. Y. Fujimoto. Lowering of pHi inhibits Ca2+‐activated K+ channels in pancreatic B‐cells. Nature 311: 269–271, 1984.
 101. Cook, S. P., and D. F. Babcock. Selective modulation by cGMP of the K+ channel activated by speract. J. Biol. Chem. 268: 22402–22407, 1993.
 102. Copello, J., Y. Segal, and L. Reuss. Cytosolic pH regulates maxi K+ channels in Necturus gall‐bladder epithelial cells. J. Physiol. (Lond.) 434: 577–590, 1991.
 103. Cosson, P., I. de Curtis, J. Pouysségur, G. Griffiths, and J. Davoust. Low cytoplasmic pH inhibits endocytosis and transport from the trans‐Golgi network to the cell surface. J. Cell Biol. 108: 377–387, 1989.
 104. Counillon, L., and J. Pouysségur. Molecular biology and hormonal regulation of vertebrate Na+/H+ exchanger isoforms. In: Molecular Biology and Function of Carrier Proteins, edited by L. Reuss, J. M. Russell, Jr., and M. L. Jennings,. New York: Rockefeller University Press, 1993, p. 169–185.
 105. Counillon, L., and J. Pouysségur. Structure‐function studies and molecular regulation of the growth factor activatable sodium‐hydrogen exchanger (NHE‐1). Cardiovas. Res. 29: 147–154, 1995.
 106. Counillon, L., W. Scholz, H. J. Lang, and J. Pouysségur. Pharmacological characterization of stably transfected Na+/H+ antiporter isoforms using amiloride analogs and a new inhibitor exhibiting anti‐ischemic properties. Mol. Pharmacol. 44: 1041–1045, 1993.
 107. Cuevas, J., A. L. Bassett, J. S. Cameron, T. Furukawa, R. J. Myerburg, and S. Kimura. Effect of H+ on ATP‐regulated K+ channels in feline ventricular myocytes. Am. J. Physiol. 261 (Heart Circ. Physiol. 30): H755–H761, 1991.
 108. Curtin, N. A. Buffer power and intracellular pH of frog sartorius mucle. Biophys. J. 50: 837–841, 1986.
 109. Dart, C., and R. D. Vaughan‐Jones. Na+‐HCO3− symport in the sheep cardiac Purkinje fibre. J. Physiol. (Lond.) 451: 365–385, 1992.
 110. Dascalu, A., A. Nevo, and R. Korenstein. Hyperosmotic activation of the Na+/H+ exchanger in a rat bone cell line: temperature dependence and activation pathways. J. Physiol. (Lond.) 456: 503–518, 1992.
 111. Davenport, H. W. The ABC of Acid‐Base Chemistry. Chicago University of Chicago Press, 1947.
 112. Davies, N. W., N. B. Standen, and P. R. Stanfield. The effect of intracellular pH on ATP‐dependent potassium channels of frog skeletal muscle. J. Physiol. (Lond.) 445: 549–568, 1992.
 113. Davis, B. A., E. M. Hogan, and W. F. Boron. Intracellular Cl− dependence of hypertonically activated Na‐H exchange activity in barnacle muscle. Biophys. J. 57: 186a, 1990.
 114. Davis, B. A., E. M. Hogan, and W. F. Boron. Activation of Na‐H exchange by intracellular lithium in barnacle muscle fibers. Am. J. Physiol. 263 (Cell Physiol. 32): C246–C256, 1992.
 115. De Brabander, M., G. Geuens, R. Nuydens, R. Willebrords, and J. De Mey. Microtubule stability and assembly in living cells: the influence of metabolic inhibitors, taxol and pH. Cold Spring Harb. Symp. Quant. Biol. 45: 227–240, 1982.
 116. Deamer, D. W., and J. W. Nicholls. Proton flux mechanisms in model and biological membranes. J. Membr. Biol. 107: 91–103, 1989.
 117. Deamer, D. W., R. C. Prince, and A. R. Crofts. The response of fluorescent amines to pH gradient across liposomes membranes. Biochim. Biophys. Acta 274: 323–335, 1972.
 118. DeCoursey, T. E. Hydrogen ion currents in rat alveolar epithelial cells. Biophys. J. 60: 1243–1253, 1991.
 119. DeCoursey, T. E., and V. V. Cherny. Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys. J. 65: 1590–1598, 1993.
 120. DeCoursey, T. E., and V. V. Cherney. Voltage‐activated hydrogen ion currents. J. Membr. Biol. 141: 203–223, 1994.
 121. DeCoursey, T. E., and V. V. Cherney. Effects of buffer concentration on voltage‐gated H+ currents: does diffusion limit the conduction? Biophys. J. 71: 182–193, 1996.
 122. Deffner, G.G.J., and R. E. Haftner. Chemical investigations of the giant nerve fibres of squid. I. Fractionation of dialyzable constituents of axoplasm and quantitative determination of the free amino acids. Biochim. Biophys. Acta 32: 362–374, 1959.
 123. Deitmer, J. W., and C. R. Rose. pH regulation and proton signalling by glial cells. Prog. Neurobiol. 48: 73–103, 1996.
 124. Deitmer, J. W., and W.‐R. Schlue. An inwardly directed electrogenic sodium‐bicarbonate cotransport in leech glial cells. J. Physiol. (Lond.) 411: 179–194, 1989.
 125. Downey, G. P., and S. Grinstein. Receptor‐mediated actin assembly in electropermeabilized neutrophils: role of intracellular pH. Biochem. Biophys. Res. Commun. 160: 18–24, 1989.
 126. Dubuisson, M. A discussion on muscular contraction and relaxation: their physical and chemical basis, introduced by A. V. Hill. Proc. R. Soc. Lond. [Biol.] 137: 40–87, 1950.
 127. Dunn, K. W., S. Mayor, J. N. Myers, and F. R. Maxfield. Applications of ratio fluorescence microscopy in the study of cell physiology. FASEB J. 8: 573–582, 1994.
 128. Edmonds, B. T., J. Murray, and J. Condeelis. pH regulation of the F‐actin binding properties of Dictyostelium elongation factor 1α. J. Biol. Chem. 270: 15222–15230, 1995.
 129. Edsall, J. T., and J. J. Wyman. Biophysical Chemistry, Vol. 1. New York: Academic Press, 1958.
 130. Ek, J. F., M. Delmar, R. Perzova, and S. M Taffet. Role of histidine 95 on the pH gating of the cardiac gap junction protein connexin‐43. Circ. Res. 74: 1058–1064, 1994.
 131. Ek‐Vitorin, J. F., G. Calero, G. E. Morley, W. Coombs, S. M. Taffet, and M. Delmar. pH regulation of connexin‐43: molecular analysis of the gating particle. Biophys. J. 71: 1273–1284, 1996.
 132. Ellis, D., and R. C. Thomas. Direct measurement of the intracellular pH of mammalian cardiac muscle. J. Physiol. (Lond.) 262: 755–771, 1976.
 133. Engasser, J.‐M., and C. Horvath. Buffer‐facilitated proton transport pH profile of bound enzymes. Biochim. Biophys. Acta 358: 178–192, 1974.
 134. Epel, D., R. A. Steinhardt, T. Humphreys, and D. Mazia. An analysis of the partial metabolic derepression of sea urchin eggs by ammonia: the existence of independent pathways. Dev. Biol. 40: 245–255, 1974.
 135. Fabiato, A., and F. Fabiato. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscle. J. Physiol. (Lond.) 276: 233–255, 1978.
 136. Fafournoux, P., J. Noël, and J. Pouysségur. Evidence that Na+/H+ exchanger isoforms NHE‐1 and NHE‐3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J. Biol. Chem. 269: 2589–2596, 1994.
 137. Fairbanks, G., T. L. Steck, and D.F.H. Wallach. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606–2617, 1971.
 138. Fenn, W. O., and D. M. Cobb. The potassium equilibrium in muscle. J. Gen. Physiol. 17: 629–656, 1934.
 139. Fenn, W. O., and F. W. Maurer. The pH of muscle. Protoplasma 24: 337–345, 1935.
 140. Firek, L., and R. Weingart. Modification of gap junction conductance by divalent cations and protons in neonatal rat heart cells. J. Mol. Cell Cardiol. 27: 1633–1643, 1995.
 141. Fitz, J. G., S. D. Lidofsky, M.‐H. Xie, and B. F. Scharschmidt. Transmembrane electrical potential difference regulates Na+/HCO3− cotransport and intracellular pH in hepatocytes. Proc. Natl. Acad. Sci. USA 89: 4197–4201, 1992.
 142. Fliegel, L., and O. Fröhlich. The Na+/H+ exchanger: an update of structure, regulation and cardiac physiology. Biochem. J. 296: 273–285, 1993.
 143. Fluri, G. S., A. Rudisuli, M. Willi, S. Rohr, and R. Weingart. Effects of arachidonic acid on the gap junctions of neonatal rat heart cells. Pflügers Arch. 417: 149–156, 1990.
 144. Forte, J. G., D. K. Hanzel, T. Urushidani, and J. M. Wolosin. Pumps and pathways for gastric HCl secretion. Ann. NY Acad. Sci. 574: 145–1158, 1989.
 145. Frelin, C., P. Vigne, and M. Lazdunski. The role of the Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. A molecular basis for the antagonistic effect of ouabain and amiloride on the heart. J. Biol. Chem. 259: 8880–8885, 1984.
 146. Funder, J., and J. O. Wieth. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol. Scand. 68: 234–245, 1966.
 147. Furshpan, E. J., and D. D. Potter. Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.) 145: 289–325, 1959.
 148. Gadian, D. G., G. K. Radda, M. J. Dawson, and D. R. Wilkie. pH measurements of cardiac and skeletal muscle using 31P‐NMR. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions, edited by R. Nuccitelli and D. W. Deamer,. New York: Alan R. Liss, Inc., 1982, p. 60–70.
 149. Ganz, M. B., G. Boyarsky, W. F. Boron, and R. B. Sterzel. Effects of angiotensin II and vasopressin on intracellular pH of glomerular mesangial cells. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F787–F794, 1988.
 150. Ganz, M. B., G. Boyarsky, R. B. Sterzel, and W. F. Boron. Arginine vasopressin enhances pHi regulation in the presence of HCO3 by stimulating three acid‐base transport systems. Nature 337: 648–651, 1989.
 151. Garty, H., C. Asher, and O. Yeger. Direct inhibition of epithelial Na+ channels by a pH‐dependent interaction with calcium, and by other divalent ions. J. Membr. Biol. 95: 151–162, 1987.
 152. Gekle, M., S. Mildenberger, R. Freudinger, and S. Silbernagl. Endosomal alkalinization reduces Jmax and Km of albumin receptor‐mediated endocytosis in OK cells. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F899–F906, 1995.
 153. Gekle, M., and S. Silbernagl. Comparison of the buffer capacity of endocytotic vesicles, lysosomes and cytoplasm in cells derived from the proximal tubule of the kidney (opossum kidney cells). Pflugers Arch. 429: 452–454, 1995.
 154. Gilbert, D. S. Axoplasm chemical composition in Myxicola and solubility properties of its structural proteins. J. Physiol. (Lond.) 253: 303–319, 1975.
 155. Gillies, R. J., J. R. Alger, J. A. den Hollander, and R. G. Shulman. Intracellular pH measured by NMR: methods and results. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. edited by R. Nuccitelli and D. W. Deamer,. New York: Alan R. Liss, Inc., 1982, p. 79–104.
 156. Gladden, L. B. Current “anaerobic threshold” controversies. Physiologist 27: 312–318, 1984.
 157. Gleeson, D., N. D. Smith, and J. L. Boyer. Bicarbonate‐dependent and ‐independent intracellular pH regulatory mechanisms in rat hepatocytes. Evidence for Na+‐HCO3− cotransport. J. Clin. Invest. 84: 312–321, 1989.
 158. Gluck, S. L. The structure and biochemistry of the vacuolar H+ ATPase in proximal and distal urinary acidification. J. Bionerg. Biomembr. 24: 351–359, 1992.
 159. Gluck, S. L. The vacuolar H+‐ATPases: versatile proton pumps participating in constitutive and specialized functions of eukaryotic cells. Int. Rev. Cytol. 137C: 105–137, 1993.
 160. Godt, R. E., and D. W. Maughan. On the composition of the cytosol of relaxed skeletal muscle of the frog. Am. J. Physiol. 254 (Cell Physiol. 23): C591–C604, 1988.
 161. Good, D. W. Ammonium transport by the thick ascending limb of Henle's loop. Annu. Rev. Physiol. 56: 623–647, 1994.
 162. Grant, C. E., G. Valdimarsson, D. R. Hipfner, K. C. Almquist, S.P.C. Cole, and R. G. Deeley. Overexpression of multidrug resistance‐associated protein (MRP) increases resistance to natural product drug. Cancer Res. 54: 357–361, 1994.
 163. Green, J., and S. Muallem. A common mechanism for activation of the Na+/H+ exchanger by different types of stimuli. FASEB J. 3: 2408–2414, 1989.
 164. Greenfield, N. J., M. Hussain, and J. Lenard. Effect of growth state and amines on cytoplasmic and vacuolar pH, phosphate and polyphosphate levels in Saccharomyces cerevisiae: a 31P‐nuclear magnetic resonance study. Biochim. Biophys. Acta 926: 205–214, 1987.
 165. Griffiths, G., and K. Simons. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234: 438–443, 1986.
 166. Grinstein, S. Non‐invasive measurement of the luminal pH of compartments of the secretory pathway. Physiologist 39: 144, 1996.
 167. Grinstein, S., and S. Cohen. Cytoplasmic [Ca2+] and intracellular pH in lymphocytes. Role of membrane potential and volume‐activated Na+/H+ exchange. J. Gen. Physiol. 89: 185–213, 1987.
 168. Grinstein, S., S. Cohen, J. D. Goetz, and A. Rothstein. Osmotic and phorbol ester‐induced activation of Na+/H+ exchange: possible role of protein phosphorylation in lymphocyte volume regulation. J. Cell Biol. 101: 269–276, 1985.
 169. Grinstein, S., and W. Furuya. Cytoplasmic pH regulation in phorbol ester‐activated human neutrophils. Am. J. Physiol. 251 (Cell Physiol. 20): C55–C65, 1986.
 170. Grinstein, S., and R. W. Putnam. Measurement of intracellular pH. In: Methods in Membrane and Transporter Research. edited by J. Schafer, G. Giebisch, P. Kristensen, and H. Ussings,. Austin, TX: R. G. Landes Company, 1994, p. 113–141.
 171. Grinstein, S., and A. Rothstein. Mechanisms of regulation of the Na+/H+ exchanger. J. Membr. Biol. 90: 1–12, 1986.
 172. Grinstein, S., M. Woodside, C. Sardet, J. Pouysségur, and D. Rotin. Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation‐independent mechanism. J. Biol. Chem. 267: 23823–23828, 1992.
 173. Gros, G., W. Moll, H. Hoppe, and H. Gros. Proton transport by phosphate diffusion—a mechanism of facilitated CO2 transfer. J. Gen. Physiol. 67: 773–790, 1976.
 174. Grynkiewicz, G., M. Poenie, and R. Y. Tsien. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450, 1985.
 175. Gutknecht, J. Proton conductance through phospholipid bilayers: water wires or weak acids? J. Bioenerg. Biomembr. 19: 427–442, 1987.
 176. Gutknecht, J., and D. C. Tosteson. Diffusion of weak acids across lipid bilayer membranes: effect of chemical reactions in the unstirred layers. Science 182: 1258–1261, 1973.
 177. Haggerty, J. G., N. Agarwal, R. F. Reilly, E. A. Adelberg, and C. W. Slayman. Pharmacologically different Na/H antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC‐PK1). Proc. Natl. Acad. Sci. USA 85: 6797–6801, 1988.
 178. Hamm, J. R., and G. M. Yue. 31P nuclear magnetic resonance measurements on intracellular pH in giant barnacle muscle. Am. J. Physiol. 252 (Cell Physiol. 21): C30–C37, 1987.
 179. Harris, A. L., D. C. Spray, and M.V.L. Bennett. Kinetic properties of a voltage‐dependent junctional conductance. J. Gen. Physiol. 77: 95–117, 1981.
 180. Harris, S. P., N. W. Pichards, C. D. Logsdon, J. Pouysségur, and D. C. Dawson. Cloning of partial length cDNAs homologous to the human NHE‐1 antiporter from reptilian [turtle] colon. J. Gen. Physiol. 100: 34a, 1992.
 181. Hartree, W., and A. V. Hill. The recovery heat production in muscle. J. Physiol. (Lond.) 56: 367–381, 1922.
 182. Harvey, B. J., S. R. Thomas, and J. Ehrenfeld. Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium. J. Gen. Physiol. 92: 767–791, 1988.
 183. Harvey, W. R. and N. Nelson, eds. V‐ATPases. Journal of Experimental Biology, vol. 172. Cambridge, U.K.: The Company of Biologists Ltd., 1992.
 184. Haugland, R. P., and A. Minta. Design and application of indicator probes. In: Non‐invasive Techniques in Cell Biology, edited by J. K. Foskett and S. Grinstein,. New York: Wiley‐Liss, 1990, p. 1–20.
 185. Hayden, S. M., P. S. Miller, A. Brauweiler, and J. R. Bamburg. Analysis of the interactions of actin depolymerizing factor with G‐ and F‐actin. Biochemistry 32: 9994–10004, 1993.
 186. Heberle, J., J. Riesle, G. Thiedemann, D. Oesterhelt, and N. A. Dencher. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370: 379–382, 1994.
 187. Heilmann, P., W. Beisker, U. Miaskowski, P. Camner, and W. G. Kreyling. Intraphagolysosomal pH in canine and rat alveolar macrophages: flow cytometric measurements. Environ. Health Perspect. 97: 115–120, 1992.
 188. Henderson, L. J. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am. J. Physiol. 21: 173–179, 1908.
 189. Hendey, B., M. D. Mamrack, and R. W. Putnam. Thrombin induces a calcium transient that mediates an activation of the Na+/H+ exchanger in human fibroblasts. J. Biol. Chem. 264: 19540–19547, 1989.
 190. Heuser, J. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J. Cell Biol. 108: 855–864, 1989.
 191. Hill, A. V. The influence of the external medium on the internal pH of muscle. Proc. R. Soc. Lond. [Biol] 144: 1–22, 1955.
 192. Hill, A. V., and H. Lupton. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q. J. Med. 16: 135–171, 1923.
 193. Hille, B. Ion Channels of Excitable Membranes, 2nd edition. Sunderland, MA: Sinauer Assoc., Inc., 1992.
 194. Hinke, J.A.M. Cation‐selective microelectrodes for intracellular use. In: Glass Electrodes for Hydrogen and Other Cations, edited by G. Eisenman,. New York: Dekker, 1967, p. 467–477.
 195. Hinke, J.A.M. Thirty years of ion‐selective microelectrodes: disappointments and successes. Can. J. Physiol. Pharmacol. 65: 873–878, 1987.
 196. Ho, A. K., M. Girard, I. Young, and C. L. Chik. Intracellular pH on adrenergic‐stimulated cAMP and cGMP production in rat pinealocytes. Am. J. Physiol. 261 (Cell Physiol. 30): C642–C649, 1991.
 197. Ho, A. K., L. O'Brien, M. Girard, and C. L. Chik. Intracellular pH on protein kinase C and ionomycin potentiation of isoproterenol‐stimulated cyclic AMP and cyclic GMP production in rat pinealocytes. J. Neurochem. 59: 2304–2310, 1992.
 198. Hochachka, P. W., and T. P. Mommsen. Protons and anaerobiosis. Science 219: 1391–1397, 1983.
 199. Hoffmann, E. K., and L. O. Simonsen. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69: 315–382, 1989.
 200. Hofmann, G. E., and S. C. Hand. Subcellular differentiation arrested in Artemia embryos under anoxia: Evidence supporting a regulatory role for intracellular pH. J. Exp. Zool. 253: 287–302, 1990.
 201. Hogan, E. M., M. A. Cohen, and W. F. Boron. K+‐ and HCO3−‐dependent acid‐base transport in squid giant axons. I. Base efflux. J. Gen. Physiol. 106: 821–844, 1995.
 202. Hogan, E. M., M. A. Cohen, and W. F. Boron. K+‐ and HCO3−‐dependent acid‐base transport in squid giant axon. II. Base influx. J. Gen. Physiol. 106: 845–862, 1995.
 203. Honda, T., S. M. Knobel, N. M. Bulus, and F. K. Ghishan. Kinetic characterization of a stably expressed novel Na+/H+ exchanger (NHE‐2). Biochim. Biophys. Acta 1150: 199–202, 1993.
 204. Huet, S., B. Schott, and J. Roberts. P‐glycoprotein overexpression cannot explain the complete doxorubicin‐resistance phenotype in rat glioblastoma cell lines. Br. J. Cancer 65: 538–544, 1992.
 205. Hughes, B. A., J. S. Adorante, S. S. Miller, and H. Lin. Apical electrogenic NaHCO3 cotransport. A mechanism for CO3 absorption across the retinal pigment epithelium. J. Gen. Physiol. 94: 125–150, 1989.
 206. Hunter, M., H. Oberleithner, R. M. Henderson, and G. Giebisch. Whole‐cell potassium currents in single early distal tubule cells. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F699–F703, 1988.
 207. Igarashi, P., R. F. Reilly, F. Hildebrandt, D. Biemesderfer, N. A. Reboucas, C. W. Slayman, and P. S. Aronson. Molecular biology of renal Na+‐H+ exchangers. Kidney Int. 40 (Suppl. 33): S84–S89, 1991.
 208. Igarashi, P., M. I. Freed, M. B. Ganz, and R. F. Reilly. Effects of chronic metabolic acidosis on Na+‐H+ exchangers in LLC‐PK1 renal epithelial cells. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F83–F88, 1992.
 209. Ilundáin, A. Intracellular pH regulation in intestinal and renal epithelial cells. Comp. Biochem. Physiol. 101A: 413–424, 1992.
 210. Inaba, M., A. Yawata, I. Koshino, K. Sato, M. Takeuchi, Y. Takakuwa, S. Manno, Y. Yawata, A. Kanzaki, J. Sakai, A. Ban, K. Ono, and Y. Maede. Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J. Clin. Invest. 97: 1804–1817, 1996.
 211. Irving, M., J. Maylie, N. L. Sizto, and W. K. Chandler. Simultaneous monitoring of changes in magnesium and calcium concentrations in frog cut twitch fibres containing antipyrlazo III. J. Gen. Physiol. 93: 585–608, 1989.
 212. Irving, M., J. Maylie, N. L. Sizto, and W. K. Chandler. Intracellular difusion in the presence of mobile buffers. Application to proton movement in muscle. Biophys. J. 57: 717–721, 1990.
 213. Isfort, R. J., D. B. Cody, T. N. Asquith, G. M. Ridder, S. B. Stuard, and R. A. Leboeuf. Induction of protein phosphorylation, protein synthesis, immediate‐early‐gene expression and cellular proliferation by intracellular pH modulation. Implications for the role of hydrogen ions in signal transduction. Eur. J. Biochem. 213: 349–357, 1993.
 214. Ito, H., J. Vereecke, and E. Carmeliet. Intracellular protons inhibit inward rectifier K+ channel of guinea‐pig ventricular cell membrane. Pflugers Arch. 422: 280–286, 1992.
 215. Iwata, S., C. Ostermeier, B. Ludwig, and H. Michel. Structure of 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660–669, 1995.
 216. Jacobs, M. H. The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Am. J. Physiol. 53: 457–463, 1920.
 217. Jacobs, M. H. The influence of ammonium salts on cell reaction. J. Gen. Physiol. 5: 181–188, 1922.
 218. Jakubovicz, D. E., S. Grinstein, and A. Klip. Cell swelling following recovery from acidification in C6 glioma cells: an in vitro model of postischemic brain edema. Brain Res. 435: 138–146, 1987.
 219. Jans, A.W.H., E. S. Krijnen, J. Luig, and R.K.H. Kinne. A 31P‐NMR study on the recovery of intracellular pH in LLC‐PK1/Cl4 cells from intracellular alkalinization. Biochim. Biophys. Acta 931: 326–334, 1987.
 220. Jean, T., C. Frelin, P. Vigne, and M. Lazdunski. The Na+/H+ exchange system in glial cell lines. Properties and activation by an hyperosmotic shock. Eur. J. Biochem. 160: 211–219, 1986.
 221. Johnson, J. D., D. Epel, and M. Paul. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature 262: 661–664, 1976.
 222. Johnston, M. F., S. A. Simon, and F. Ramon. Interaction of anaesthetics with electrical synapses. Nature 286: 498–500, 1980.
 223. Juliano, R. L., and V. Ling. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455: 152–162, 1976.
 224. Junge, W., and S. McLaughlin. The role of fixed and mobile buffers in the kinetics of proton movement. Biochim. Biophys. Acta 890: 1–5, 1987.
 225. Kahn, A. M., E. J. Cragoe, Jr., J. C. Allen, C. L. Seidel, and H. Shelat. Effects of pHi on Na+‐H+, Na+‐dependent, and Na+‐independent Cl‐HCO3− exchangers in vascular smooth muscle. Am. J. Physiol. 261 (Cell Physiol. 30): C837–C844, 1991.
 226. Kapus, A., R. Romanek, A. Q. Yi, O. D. Rotstein, and S. Grinstein. A pH‐sensitive and voltage‐dependent proton conductance in the plasma membrane of macrophages. J. Gen. Physiol. 102: 729–760, 1993.
 227. Karniski, L. P., and P. S. Aronson. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc. Natl. Acad. Sci. USA 82: 6362–6365, 1985.
 228. Kasianowicz, J. J., and S. M. Bezrukov. Protonation dynamics of the α‐toxin ion channel from spectral analysis of pH‐dependent current fluctuations. Biophys. J. 69: 94–105, 1995.
 229. Kataoka, T., M. Muroi, S. Ohkuma, T. Waritani, J. Magae, A. Takatsuki, S. Kondo, M. Yamasaki, and K. Nagai. Prodigiosin 25‐C uncouples vacuolar type H+‐ATPase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett. 359: 53–59, 1995.
 230. Keifer, D. W., and A. Roos. Membrane permeability to the molecular and ionic forms of DMO in barnacle muscle. Am. J. Physiol. 240 (Cell Physiol. 9): C73–C79, 1981.
 231. Keizer, J. G., and H. Joenje. Increased cytosolic pH in multi‐drug‐resistant human lung tumor cells: Effect of verapamil. J. Natl. Cancer Inst. 81: 706–709, 1989.
 232. Kelly, R. B. Microtubules, membrane traffic and cell organization. Cell 61: 5–7, 1990.
 233. Kettenmann, H., B. R. Ransom, and W.‐R. Schlue. Intracellular pH shifts capable of uncoupling cultured oligodendrocytes are seen only in low HCO3− solution. Glia 3: 110–117, 1990.
 234. Kikeri, D., S. Azar, A. Sun, M. L. Zeidel, and S. C. Hebert. Na+‐H+ antiporter and Na+‐(HCO3−)n symporter regulate intracellular pH in mouse medullary thick limbs of Henle. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F45–F456, 1990.
 235. Kikeri, D., A. Sun, M. L. Zeidel, and S. C. Hebert. Cell membranes impermeable to NH3. Nature 339: 478–480, 1989.
 236. Kite, G. L. Studies on the physical properties of the protoplasm. I. The physical properties of the protoplasm of certain animal and plant cells. Am. J. Physiol. 32: 146–164, 1913.
 237. Klaus, S., L. Casteilla, F. Bouillaud, and D. Riequier. The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int. J. Biochem. 23: 791–801, 1991.
 238. Kleyman, T. R., and E. J. Cragoe, Jr. Amiloride and its analogs as tools in the study of ion transport. J. Membr. Biol. 105: 1–21, 1988.
 239. Knauf, P. A. Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure. Curr. Top. Membr. Transp. 12: 249–363, 1979.
 240. Koechlin, B. A. On the chemical composition of the axoplasm of squid giant nerve fibres with particular reference to its ion pattern. J. Biophys. Biochem. Cytol. 1: 511–529, 1955.
 241. Kopito, R. R., and H. F. Lodish. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316: 234–238, 1985.
 242. Koppel, M., and K. Spiro. Über die Wirkung von Moderatoren (Puffern) bei der Verschiebung des Säure‐Basengleichgewichtes in biologischen Flüssigkeiten. Biochem. Ztschr. 65: 409–439, 1914.
 243. Kostyuk, P. G., and G. A. Sorokina. On the mechanism of hydrogen ion distribution between cell protoplasm and the medium. In: Membrane Trasnport and Metabolism, edited by A. Kleinzeller and A. Kotyk,. London: Academic Press, 1961, p. 193–203.
 244. Kotyk, A., and J. Slavik. Intracellular pH and Its Measurement. Boca Raton: CRC Press, 1989.
 245. Krämer, K., and F. Palmieri. Molecular aspects of isolated and reconstituted carrier proteins from animal mitochondria. Biochim. Biophys. Acta 974: 1–23, 1989.
 246. Krapf, R., and R. J. Alpern. Cell pH and transepithelial H/HCO3 transport in the renal proximal tubule. J. Membr. Biol. 131: 1–10, 1993.
 247. Kudrycki, K. E., P. R. Newman, and G. E. Shull. cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the band 3 Cl−/HCO3− exchanger. J. Biol. Chem. 265: 462–471, 1990.
 248. Kuffler, S. W., and D. D. Potter. Glia in the leech contral nervous system: physiological properties and neuron‐glia relationships. J. Neurophysiol. 27: 290–320, 1964.
 249. Kulanthaivel, P., F. H. Leibach, V. B. Mahesh, E. J. Cragoe, Jr., and V. Ganapathy. The Na+‐H+ exchanger of the placental brush‐border membrane is pharmacologically distinct from that of the renal brush‐border membrane. J. Biol. Chem. 265: 1249–1252, 1990.
 250. Kume, H., K. Takagi, T. Satake, H. Tokuno, and T. Tomita. Effects of intracellular pH on calcium‐activated potassium channels in rabbit tracheal smooth muscle. J. Physiol. (Lond.) 424: 445–457, 1990.
 251. Lagarde, A. E., and J. Pouysségur. The Na+/H+ antiport in cancer. Cancer Biochem. Biophys. 9: 1–14, 1986.
 252. LaNoue, K. F., and A. C. Schoolwerth. Metabolic transport in mitochondria. Annu. Rev. Biochem. 48: 871–922, 1979.
 253. Laurido, C., S. Candia, D. Wolff, and R. Latorre. Proton modulation of a Ca2+‐activated K+ channel from rat skeletal muscle incorporated into planar bilayers. J. Gen. Physiol. 98: 1025–1043, 1991.
 254. Lee, H. C., and J. G. Forte. A novel method for measurement of intravesicular pH using fluorescent probes. Biochim. Biophys. Acta 601: 152–166, 1980.
 255. Lee, H. C., J. G. Forte, and D. Epel. The use of fluorescent amines for the measurement of pHi: Applications in liposomes, gastric microsomes, and sea urchin gametes. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions, edited by R. Nuccitelli and D. Deamer,. New York: Alan R. Liss, Inc., 1982, p. 135–160.
 256. Leviel, F., P. Borensztein, P. Houillier, M. Paillard, and M. Bichara. Electroneutral K+/HCO3− cotransport in cells of medullary thick ascending limb of rat kidney. J. Clin. Invest. 90: 869–878, 1992.
 257. Liu, S., D. Piwnica‐Worms, and M. Lieberman. Intracellular pH regulation in cultured embryonic chick heart cells. Na+‐dependent Cl−/HCO3− exchange. J. Gen. Physiol. 96: 1247–1269, 1990.
 258. Liu, S., S. Taffet, L. Stoner, M. Delmar, M. L. Vallano, and J. Jalife. A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: The carboxyl tail length. Biophys. J. 64: 1422–1433, 1993.
 259. Loew, L. M., R. A. Tuft, W. Carrington, and F. S. Fay. Imaging in five dimensions: time‐dependent membrane potentials in individual mitochondria. Biophys. J. 65: 2396–2407, 1993.
 260. Loewenstein, W. R. Permeability of membrane junctions. Ann. NY Acad. Sci. 137: 441–472, 1966.
 261. Loewenstein, W. R., and Y. Kanno. Studies on an epithelial (gland) cell junction. I. Modification of surface membrane permeability. J. Cell Biol. 22: 565–586, 1964.
 262. Lubman, R. L., and E. D. Crandall. Regulation of intracellular pH in alveolar epithelial cells. Am. J. Physiol. 262 (Lung Cell. Mol. Physiol. 6): L1–L14, 1992.
 263. Lukacs, G. L., A. Kapus, A. Nanda, R. Romanek, and S. Grinstein. Proton conductance of the plasma membrane: properties, regulation, and functional role. Am. J. Physiol. 265 (Cell Physiol. 34): C3–C14, 1993.
 264. Lux, S. E., K. M. John, R. R. Kopito, and H. F. Lodish. Cloning and characterization of band 3, the human erythrocyte anion‐exchange protein (AE1). Proc. Natl. Acad. Sci. USA 86: 9089–9093, 1989.
 265. Lyall, V., G. M. Feldman, and T.U.L. Biber. Regulation of apical Na+ conductive transport in epthelia by pH. Biochim. Biophys. Acta 1241: 31–44, 1995.
 266. Ma, J., and J‐Y. Zhao. Highly cooperative and hysteresis response of the skeletal muscle ryanodine receptor to changes in proton concentrations. Biophys. J. 66: A19, 1994.
 267. Ma, L., and M. S. Center. The gene encoding vacuolar H+‐ATPase subunit C is overexpressed in multidrug‐resistant HL60 cells. Biochem. Biophys. Res. Commun. 182: 675–681, 1992.
 268. Makowski, L., D.L.D. Caspar, W. C. Phillips, and D. A. Goodenough. Gap junction structures II. Analysis of the X‐ray diffraction data. J. Cell Biol. 74: 629–645, 1977.
 269. Makowski, L., D.L.D. Caspar, W. C. Phillips, and T. S. Baker. Gap junction structure. VI. Variation and conservation in connexon conformation and packing. Biophys. J. 45: 208–218, 1984.
 270. Matsumura, Y., S. Aoki, K. Kajino, and M. Fujimoto. The double‐barreled microelectrode for the measurement of intracellular pH, using liquid ion‐exchanger, and its biological application. Proc. Int. Cong. Physiol. Sci. 14: 572, 1980.
 271. Mazia, D. Chromosome cycles turned on in unfertilized sea urchin eggs exposed to NH4OH. Proc. Natl. Acad. Sci. USA 71: 690–693, 1974.
 272. Mazia, D., and A. Ruby. DNA synthesis turned on in unfertilized sea urchin eggs by treatment with NH4OH. Exp. Cell Res. 85: 167–172, 1974.
 273. Meech, R. W., and R. C. Thomas. Effect of measured calcium chloride injections on the membrane potential and internal pH of snail neurones. J. Physiol. (Lond.) 298: 111–129, 1980.
 274. Mellman, I. The importance of being acid: the role of acidification in intracellular membrane traffic. J. Exp. Biol. 172: 39–45, 1992.
 275. Mellman, I., R. Fuchs, and A. Helenius. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55: 663–700, 1986.
 276. Metzger, J. M., M. S. Parmacek, E. Barr, K. Pasyk, W.‐I. Lin, K. L. Cochrane, L. J. Field, and J. M. Leiden. Skeletal troponin C reduces contractile sensitivity to acidosis in cardiac myocytes from transgenic mice. Proc. Natl. Acad. Sci. USA 90: 9036–9040, 1993.
 277. Miller, K., J. Halow, and A. P. Koretsky. Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and ischemia. Am. J. Physiol. 265 (Cell Physiol. 34): C1544–C1551, 1993.
 278. Mills, G. B., E. J. Cragoe, Jr., E. W. Gelfand, and S. Grinstein. Interleukin 2 induces a rapid increase in intracellular pH through activation of a Na+/H+ antiport. Cytoplasmic alkalinization is not required for lymphocyte proliferation. J. Biol. Chem. 260: 12500–12507, 1985.
 279. Misler, S., K. Gillis, and J. Tabcharani. Modulation of gating of a metabolically regulated, ATP‐dependent K+ channel by intracellular pH in B cells of the pancreatic islet. J. Membr. Biol. 109: 135–143, 1989.
 280. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148, 1961.
 281. Mitchell, P. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur. J. Biochem. 95: 1–20, 1979.
 282. Moll, W. Measurements of facilitated diffusion of oxygen in red blood cells at 37°C. Pflugers Arch. 305: 269–278, 1969.
 283. Moody, W. J., Jr. Appearance of calcium action potentials in crayfish slow muscle fibres under conditions of low intracellular pH. J. Physiol. (Lond.) 302: 335–346, 1980.
 284. Moody, W. J., Jr. The ionic mechanism of intracellular pH regulation in crayfish neurones. J. Physiol. (Lond.) 316: 293–308, 1981.
 285. Moody, W. J., Jr. Effects of intracellular H+ on the electrical properties of excitable cells. Annu. Rev. Neurosci. 7: 257–278, 1984.
 286. Moody, W. J., Jr., and S. Hagiwara. Block of inward rectification by intracellular H+ in immature oocytes of the starfish Mediaster aequalis. J. Gen. Physiol. 79: 115–130, 1982.
 287. Moolenaar, W. H. Effect of growth factors on intracellular pH regulation. Annu. Rev. Physiol. 48: 363–376, 1986.
 288. Moriyama, Y., T. Manabe, T. Yoshimori, Y. Tashiro, and M. Futai. ATP‐dependent uptake of anti‐neoplastic agents by acidic organelles. J. Biochem. 115: 213–218, 1994.
 289. Morley, G. E., S. M. Taffet, and M. Delmar. Intramolecular interactions mediate pH regulation of connexin‐43 channels. Biophys. J. 70: 1294–1302, 1996.
 290. Motais, R., F. Borgese, B. Fievet, and F. Garcia‐Romeu. Regulation of Na+/H+ exchange and pH in erythrocytes of fish. Comp. Biochem. Physiol. 102A: 597–602, 1992.
 291. Mugnarbil, A., R. G. Knickelbein, P. S. Aronson, and J. W. Dobbins. Rabbit ileal brush‐border membrane CI‐HCO3 exchanger is activated by an internal pH‐sensitive modifier site. Am. J. Physiol. 259 (Gastrointest. Liver Physiol. 22): G666–G670, 1990.
 292. Mülder, H. S., J. Lankelma, H. Dekker, H. J. Broxterman, and H. M. Pinedo. Daunorubicin efflux against a concentration gradient in non‐P‐glycoprotein multidrug‐resistant lung‐cancer cells. Int. J. Cancer 59: 275–281, 1994.
 293. Munsch, T., and J. W. Deitmer. Sodium‐bicarbonate cotransport current in identified leech glial cells. J. Physiol. (Lond.) 474: 43–53, 1994.
 294. Murer, H., U. Hopfer, and R. Kinne. Sodium/proton antiport in brush‐border membranes isolated from rat small intestine and kidney. Biochem. J. 154: 597–604, 1976.
 295. Naccache, P. H., S. Therrien, A. C. Caon, N. Liao, C. Gilbert, and S. R. McColl. Chemoattractant‐induced cytoplasmic pH changes and cytoskeletal reorganization in human neutrophils. Relationship to the stimulated calcium transients and oxidative burst. J. Immunol. 142: 2438–2444, 1989.
 296. Nagle, J. F. Theory of passive proton conductance in lipid bilayers. J. Bioenerg. Biomembr. 19: 413–426, 1987.
 297. Nakamato, R. K., R. Rao, and C. W. Slayman. Transmembrane segments of the P‐type cation‐transporting ATPases. Ann. NY Acad. Sci. 574: 165–179, 1989.
 298. Nakhoul, N. L., and W. F. Boron. Acetate transport in the S3 segment of the rabbit proximal tubule and its effect on intracellular pH. J. Gen. Physiol. 92: 395–412, 1988.
 299. Nasse, H. Untersuchungen über den Austritt und Eintritt von Stoffen (Transsudation and Diffusion) durch die Wand der Haargefässe. Arch Gesamte Physiol. Menschen Tiere 16: 604–634, 1878.
 300. Nelson, N. Evolution of organellar proton‐ATPases. Biochim. Biophys. Acta 1100: 109–124, 1992.
 301. Newman, E. A., and M. L. Astion. Localization and stoichiometry of electrogenic sodium bicarbonate cotransport in retinal glial cells. Glia 4: 424–428, 1991.
 302. Neyton, J., and A. Trautmann. Single channel currents of an intercellular junction. Nature 317: 331–335, 1985.
 303. Nicholls, D. G., S. A. Cunningham, and E. Rial. The bioenergetic mechanisms of brown adipose tissue mitochondria. In: Brown Adipose Tissue, edited by P. Trayhurn and D. G. Nicholls,. London: E. Arnold, 1986, p. 52–85.
 304. Nieuwint, A.W.M., F. Baas, J. Wiegant, and H. Joenje. Cytogenetic alterations associated with P‐glycoprotein‐ and non‐P‐glycoprotein‐mediated multidrug resistance in SW‐1573 human lung tumor cell lines. Cancer Res. 52: 4361–4371, 1992.
 305. Niggli, V., E. Sigel, and E. Carafoli. Inhibition of the purified and reconstituted Ca2+ pump of erythrocytes by μM levels of DIDS and NAP‐taurine. FEBS Lett. 138: 164–166, 1982.
 306. Njus, D., J. Knoth and M. Zallakian. Proton‐linked transport in chromaffin granules. Curr. Top. Bioeng. 11: 107–147, 1981.
 307. Noël, J., and J. Pouysségur. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+/H+ exchanger isoforms. Am. J. Physiol. 268 (Cell Physiol. 37): C283–C296, 1995.
 308. Nonner, W., B. C. Spalding, and B. Hille. Low intracellular pH and chemical agents slow inactivation gating in sodium channels of muscle. Nature 284: 360–363, 1980.
 309. Nordström, T., O. D. Rotstein, R. Romanek, S. Asotra, J.N.M. Heersche, M. F. Manolson, G. F. Brisseau, and S. Grinstein. Regulation of cytoplasmic pH in osteoclasts. Contribution of proton pumps and a proton‐selective conductance. J. Biol. Chem. 270: 2203–2212, 1995.
 310. Nosek, T. M., K. Y. Fender, and R. E. Godt. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers. Science 236: 191–193, 1987.
 311. Oberleithner, H., and A. Schwab. Alkaline stress‐induced cell transformation. News Physiol. Sci. 9: 165–168, 1994.
 312. Ohkuma, S., and B. Poole. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA 73: 3327–3331, 1978.
 313. Ohno‐Shosaku, T., T. Kubota, J. Yamaguchi, and M. Fujimoto. Regulation of inwardly rectifying K+ channels by intracellular pH in opossum kidney cells. Pflugers Arch. 416: 138–143, 1990.
 314. Orchard, C. H., and J. C. Kentish. Effects of changes of pH of contractile function of cardiac muscle. Am. J. Physiol. 258 (Cell Physiol. 27): C967–C981, 1990.
 315. Orci, L., M. Ravazzola, M. Amherdt, O. Madsen, A. Perrelet, J.‐D. Vassalli, and R.G.W. Anderson. Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles. J. Cell Biol. 103: 2273–2281, 1986.
 316. Orlowski, J., R. A. Kandasamy, and G. E. Shull. Molecular cloning of putative members of the Na/H exchanger gene family. cDNA cloning, deduced amino acid sequence, and mRNA tissue expression of the rat Na/H exchanger NHE‐1 and two structurally related proteins. J. Biol. Chem. 267: 9331–9339, 1992.
 317. Otsu, K., J. Kinsella, B. Sacktor, and J. P. Froehlich. Transient state kinetic evidence for an oligomer in the mechanism of Na+‐H+ exchange. Proc. Natl. Acad. Sci. USA 86: 4818–4822, 1989.
 318. Overly, C. C., K.‐D. Lee, E. Berthiaume, and P. J. Hollenbeck. Quantitative measurement of intraorganelle pH in the endosomal‐lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc. Natl. Acad. Sci. U.S.A. 92: 3156–3160, 1995.
 319. Overton, E. Über die osmotischen Eigenschaften der Zelle in ihrer Bedeutung fur die Toxicologie und Pharmacologic Z. Phys. Chem. 22: 189–209, 1897.
 320. Overton, E. Beiträge zur allgemeinen Muskel und Nervenphysiologie. Pflugers Arch. 92: 115–280, 1902.
 321. Page, E., and Y. Shibata. Permeable junctions between cardiac cells. Annu. Rev. Physiol. 43: 431–441, 1981.
 322. Pajor, A. M., and H. G. Valmonte. Expression of the renal Na+/dicarboxylate cotransporter, NaDC‐1, in COS‐7 cells. Pflugers Arch. 431: 645–651, 1996.
 323. Palmer, L. G., and G. Frindt. Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333–F339, 1987.
 324. Palokangas, H., K. Metsikkö, and K. Väänänen. Active vacuolar H+ ATPase is required for both endocytic and exocytic processes during viral infection of BHK‐21 cells. J. Biol. Chem. 269: 17577–17585, 1994.
 325. Paradiso, A. M., M. C. Townsley, E. Wenzl, and T. E. Machen. Regulation of intracellular pH in resting and in stimulated parietal cells. Am. J. Physiol. 257 (Cell Physiol. 26): C554–C561, 1989.
 326. Parker, J. C. In defense of cell volume? Am. J. Physiol. 265 (Cell Physiol. 34): C1191–C1200, 1993.
 327. Parton, R. G., C. G. Dotti, R. Bacallao, I. Kurtz, K. Simons, and K. Prydz. pH‐induced microtubule‐dependent redistribution of late endosomes in neuronal and epithelial cells. J. Cell Biol. 113: 261–274, 1991.
 328. Paul, D. Molecular cloning of cDNA for rat liver gap junction protein. J. Cell Biol. 103: 123–134, 1986.
 329. Paula, S., A. G. Volkov, A. N. Van Hoek, T. H. Haines, and D. W. Deamer. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys. J. 70: 339–348, 1996.
 330. Peracchia, C. Increase in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration. J. Membr. Biol. 113: 75–92, 1990.
 331. Peracchia, C. Effects of caffeine and ryanodine on low pH‐induced changes in gap junction conductance and calcium concentration in crayfish septate axons. J. Membr. Biol. 117: 79–89, 1990.
 332. Periyasamy, S. M., S. S. Kakar, K. D. Garlid, and A. Askar. Ion specificity of cardiac sarcolemmal Na+/H+ antiporter. J. Biol. Chem. 265: 6035–6041, 1990.
 333. Peters, J. P., and D. D. Van Slyke. Quantitative Clinical Chemistry, Vol. I: Interpretations. Baltimore: Williams and Wilkins, 1931, p. 909–912.
 334. Petroff, O.A.C., J. W. Pritchard, K. L. Behar, J. R. Alger, J. A. den Hollander, and R. G. Shulman. Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35: 781–788, 1985.
 335. Pomès, R., and B. Roux. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single‐file water chain in the Gramicidin A channel. Biophys. J. 71: 19–39, 1996.
 336. Pouysségur, J., A. Franchi, G. L'Allemain, and S. Paris. Cytoplasmic pH, a key determinant of growth factor‐induced DNA synthesis in quiescent fibroblasts. FEBS Lett. 190: 115–119, 1985.
 337. Pouysségur, J., C. Sardet, A. Franchi, G. L'Allemain, and S. Paris. A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc. Natl. Acad. Sci. USA 81: 4833–4837, 1984.
 338. Prod'hom, B., D. Pietrobon, and P. Hess. Direct measurement of proton transfer rates to a group controlling the dihydropyridine‐sensitive Ca2+ channel. Nature 329: 243–246, 1987.
 339. Putnam, R. W. pH regulatory transport systems in a smooth muscle‐like cell line. Am. J. Physiol. 258 (Cell Physiol. 27): C470–C479, 1990.
 340. Putnam, R. W. Localization of pH‐regulating transport systems to the surface membrane of semitendinosus muscle from the frog, Rana pipiens. J. Physiol. (Lond.) 427: 56P, 1990.
 341. Putnam, R. W., P. B. Douglas, and D. Dewey. Control of HCO3‐dependent exchangers by cyclic nucleotides in vascular smooth muscle cells. In: Regulation of Smooth Muscle Contraction, edited by R. S. Moreland,. New York: Plenum Press, 1991, p. 461–472.
 342. Putnam, R. W., and R. D. Grubbs. Steady‐state pHi, buffering power, and effect of CO2 in a smooth‐muscle like cell line. Am. J. Physiol. 258 (Cell Physiol. 27): C461–C469, 1990.
 343. Putnam, R. W., and A. Roos. Aspects of pHi regulation in frog skeletal muscle. Curr. Top. Membr. Transp. 26: 35–56, 1986.
 344. Putnam, R. W., and A. Roos. Which value for the first dissociation constant of carbonic acid should be used in biological work? Am. J. Physiol. 260 (Cell Physiol. 29): C1113–C1116, 1991.
 345. Raffin, J. P., M. T. Thebault, and J. Y. Le Gall. Changes in phosphmetabolites and intracellular pH in the tail muscle of the prawn Palaemon serratus as shown by in vivo 31P‐NMR. Comp. Physiol. B 158: 223–228, 1988.
 346. Rajendran, V. M., and H. J. Binder. Characterization of Na‐H exchange in apical membrane vesicles of rat colon. J. Biol. Chem. 265: 8408–8414, 1990.
 347. Raley‐Susman, K. M., E. J. Cragoe, Jr., R. M. Sapolsky, and R. R. Kopito. Regulation of intracellular pH in cultured hippocampal neurons by an amiloride‐insensitive Na+/H+ exchanger. J. Biol. Chem. 266: 2739–2745, 1991.
 348. Ravesloot, J. H., T. Eisen, R. Baron, and W. F. Boron. Role of Na‐H exchangers and vacuolar H+ pumps in intracellular pH regulation in neonatal rat osteoclasts. J. Gen. Physiol. 105: 177–208, 1995.
 349. Rees, B. B., C. Patton, J. L. Grainger, and D. Epel. Protein synthesis increases after fertilization of sea urchin eggs in the absence of an increase in intracellular pH. Dev. Biol. 169: 683–698, 1995.
 350. Regassa, L. B., and M. J. Betley. Alkaline pH decreases expression of the accessory gene regulator (agr) in Staphylococcus aureus. J. Bacteriol. 174: 5095–5100, 1992.
 351. Regula, C. S., J. R. Pfeiffer, and R. D. Berlin. Microtubule assembly and disassembly at alkaline pH. J. Cell Biol. 89: 45–53, 1981.
 352. Restrepo, D., D. J. Kozody, L. J. Spinelli, and P. A. Knauf. pH homeostasis in promyelocytic leukemic HL60 cells. J. Gen. Physiol. 92: 489–507, 1988.
 353. Reusch, H. P., J. Lowe, and H. E. Ives. Osmotic activation of a Na+‐dependent CI−/HCO3− exchanger. Am. J. Physiol. 268 (Cell Physiol. 37): C147–C153, 1995.
 354. Reuss, L., Y. Segal, and G. Altenberg. Regulation of ion transport across gallbladder epithelium. Annu. Rev. Physiol. 53: 361–373, 1991.
 355. Revel, J.‐P., B. J. Nicholson, and S. B. Yancey. Chemistry of gap junctions. Annu. Rev. Physiol. 47: 263–279, 1985.
 356. Rink, T. J., R. Y. Tsien, and T. Pozzan. Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95: 189–196, 1982.
 357. Rodrigo, G. C., and R. A. Chapman. A novel resin‐filled ion‐sensitive micro‐electrode suitable for intracellular measurements in isolated cardiac myocytes. Pflugers Arch. 416: 196–200, 1990.
 358. Romero, M. F., M. A. Hediger, E. L. Boulpaep, and W. F. Boron. Expression cloning of the renal electrogenic Na/HCO3 cotransporter (NBC) from Ambystoma tigrinum. The Physiologist 39: 144, 1996.
 359. Romero, M. F., M. A. Hediger, E. L. Boulpaep, and W. F. Boron. Physiology of the cloned renal electrogenic Na/HCO3 cotransporter. J. Gen. Physiol. 108: 16–17a, 1996.
 360. Roos, A. Intracellular pH and intracellular buffering power of the cat brain. Am. J. Physiol. 209: 1233–1246, 1965.
 361. Roos, A. Intracellular pH and buffering power of rat muscle. Am. J. Physiol. 221: 182–188, 1971.
 362. Roos, A. Intracellular pH and distribution of weak acids across cell membranes. A study of d‐ and l‐lactate and of DMO in rat diaphragm. J. Physiol. (Lond.) 249: 1–25, 1975.
 363. Roos, A., and W. F. Boron. The buffer value of weak acids and bases: origin of the concept, and first mathematical derivation and application to physico‐chemical systems. The work of M. Koppel and K. Spiro (1914). Respir. Physiol. 40: 1–32, 1980.
 364. Roos, A., and W. F. Boron. Intracellular pH. Physiol. Rev. 61: 296–434, 1981.
 365. Rose, B., and W. R. Loewenstein. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin. J. Membr. Biol. 28: 87–119, 1976.
 366. Ross, W., W. Bertrand, and A. Morrison. A photoactivatable probe for the Na+/H+ exchanger cross‐links a 66‐kDa renal brush border membrane protein. J. Biol. Chem. 265: 5341–5344, 1990.
 367. Rothenberg, P., L. Glaser, P. Schlesinger, and D. Cassel. Activation of Na+/H+ exchange by epidermal growth factor elevates intracellular pH in A431 cells. J. Biol. Chem. 258: 12644–12653, 1983.
 368. Rousseau, E., and J. Pinkos. pH modulates conducting and gating behaviour of single calcium release channels. Pflugers Arch. 415: 645–647, 1990.
 369. Rudnick, G. ATP‐driven H+ pumping into intracellular organelles. Ann. Revu. Physiol. 48: 403–413, 1986.
 370. Ruetz, S., A. E. Lindsey, and R. R. Kopito. Function and biosynthesis of erythroid and nonerythroid anion exchangers. In: Molecular Biology and Function of Carrier Proteins, edited by L. Reuss, J. M. Russell, Jr. and M. L. Jennings,. New York: Rockefeller University Press, 1993, p. 193–200.
 371. Russell, J. M., and W. F. Boron. Role of chloride in regulation of intracellular pH. Nature 264: 73–74, 1976.
 372. Russell, J. M., and W. F. Boron. Intracellular pH regulation in squid giant axons. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions, edited by R. Nuccitelli and D. Deamer,. New York: Alan R. Liss, 1982, p. 221–237.
 373. Russell, J. M., W. F. Boron, and M. S. Brodwick. Intracellular pH and Na fluxes in barnacle muscle with evidence for reversal of the ionic mechanism of intracellular pH regulation. J. Gen. Physiol. 82: 47–78, 1983.
 374. Russell, J. M., and M. S. Brodwick. The interaction of intracellular Mg2+ and pH on CI− fluxes associated with intracellular pH regulation in barnacle muscle fibers. J. Gen. Physiol. 91: 495–513, 1988.
 375. Sagnella, D. E., and G. A. Voth. Structure and dynamics of hydronium in the ion channel Gramicidin A. Biophys. J. 70: 2043–2051, 1996.
 376. Sampath, P., and T. D. Pollard. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry 30: 1973–1980, 1991.
 377. Sardet, C., A. Franchi, and J. Pouysségur. Molecular cloning, primary structure, and expression of the human growth factor‐activatable Na+/H+ antiporter. Cell 56: 271–280, 1989.
 378. Sardet, C., L. Counillon, A. Franchi, and J. Pouysségur. Growth factors induce phosphorylation of the Na+/H+ antiporter, a glycoprotein of 110 kD. Science 247: 723–7726, 1990.
 379. Sarkadi, B., L. Attisano, S. Grinstein, M. Buchwald, and A. Rothstein. Volume regulation of Chinese hamster ovary cells in anisoosmotic media. Biochim. Biophys. Acta 774: 159–168, 1984.
 380. Sato, F., J. Mogami, and S. A. Baba. Flagellar quiescence and transience of inactivation induced by rapid pH drop. Cell Motil. Cytoskeleton 10: 374–379, 1988.
 381. Schatten, G. The supramolecular organization of the cytoskeleton during fertilization. In: Subcellular Biochemistry, Vol. 1, edited by D. B. Roodyn,. New York: Plenum Press, 1984, p. 359–453.
 382. Schatten, G., T. Bestor, R. Balczon, J. Henson, and H. Schatten. Intracellular pH shift leads to microtubule assembly and microtubule‐mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly. Eur. J. Cell Biol. 36: 116–127, 1985.
 383. Scherrer, P. Proton movement on membranes. Nature 374: 222, 1995.
 384. Schindler, M., S. Grabski, E. Hoff, and S. M. Simon. Defective pH regulation of acidic compartments in human breast cancer cells (MCF‐7) is normalized in Adriamycin‐resistant cells (MCF‐7adr). Biochemistry 35: 2811–2817, 1996.
 385. Schmidt, J. M., R. M. Robson, J. Zhang, and M. H. Stromer. The marked pH dependence of the talin‐actin interaction. Biochem. Biophys. Res. Commun. 197: 660–666, 1993.
 386. Schwiening, C. J., H. J. Kennedy, and R. C. Thomas. Calcium‐hydrogen exchange by the plasma membrane Ca‐ATPase of voltage‐clamped snail neurones. Proc. R. Soc. Lond. [Biol.] 253: 285–289, 1993.
 387. Seksek, O., J. Biwersi, and A. S. Verkman. Direct measurement of trans‐Golgi pH in living cells and regulation by second messengers. J. Biol. Chem. 270: 4967–4970, 1995.
 388. Shen, S. S., and R. A. Steinhardt. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature 272: 253–254, 1978.
 389. Shi, L. B., K. Fushimi, H. R. Bae, and A. S. Verkman. Heterogeneity in ATP‐dependent acidification in endocytic vesicles from kidney proximal tubule. Measurement of pH in individual endocytic vesicles in a cell‐free system. Biophys. J. 59: 1208–1217, 1991.
 390. Shrode, L. D., J. D. Klein, W. C. O'Neill, and R. W. Putnam. Shrinkage‐induced activation of Na+/H+ exchange in primary rat astrocytes: role of myosin light chain kinase. Am. J. Physiol. 268 (Cell Physiol. 37): C257–C266, 1995.
 391. Shrode, L. D., and R. W. Putnam. Intracellular pH regulation in primary rat astrocytes and C6 glioma cells. Glia 12: 196–210, 1994.
 392. Shulman, R. G., T. R. Brown, K. Ugurbil, S. Ogawa, S. M. Cohen, and J. A. den Hollander. Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205: 160–166, 1979.
 393. Siebens, A. W., and W. F. Boron. Effect of electroneutral luminal and basolateral lactate transport on intracellular pH in salamander proximal tubules. J. Gen. Physiol. 90: 799–831, 1987.
 394. Simchowitz, L., I. Spillberg, and P. De Weer. Sodium and potassium fluxes and membrane potential of human neutrophils. J. Gen. Physiol. 79: 453–479, 1982.
 395. Simchowitz, L., and A. Roos. Regulation of intracellular pH in human neutrophils. J. Gen. Physiol. 85: 443–470, 1985.
 396. Simchowitz, L., and A. O. Davis. Intracellular pH recovery from alkalinization. J. Gen. Physiol. 96: 1037–1059, 1990.
 397. Simon, S., D. Roy, and M. Schindler. Intracellular pH and the control of multidrug resistance. Proc. Natl. Acad. Sci. USA 91: 1128–1132, 1994.
 398. Singh, S. K., H. J. Binder, J. P. Geibel, and W. F. Boron. An apical permeability barrier to NH3/NH4+ in isolated, perfused colonic crypts. Proc. Natl. Acad. Sci. USA 92: 11573–11577, 1995.
 399. Siskind, M. S., E. A. Alexander, and J. H. Schwartz. Regulation of cGMP production by intracellular alkalinization in cultured rat inner medullary collecting duct cells. Biochem. Biophys. Res. Commun. 170: 860–866, 1990.
 400. Skehel, J. J., P. M. Bayley, E. B. Brown, S. R. Martin, M. D. Waterfield, J. M. White, I. A. Wilson, and D. C. Wiley. Changes in the conformation of influenze virus hemagglutinin at the pH optimum of virus‐mediated membrane fusion. Proc. Natl. Acad. Sci. USA 79: 968–972, 1982.
 401. Sly, W. S., and P. Y. Hu. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu. Rev. Biochem. 64: 375–401, 1995.
 402. Smith, G. L., P. Donoso, C. J. Bauer, and D. A. Eisner. Relationship between intracellular pH and metabolite concentrations during metabolic inhibition in isolated ferret heart. J. Physiol. (Lond.) A11: 11–22, 1993.
 403. Soboll, S., T. A. Link, and G. Von Jagow. Proton transport across the mitochondrial membrane and subcellular proton concentrations. In: pH Homeostasis. Mechanisms and Control, edited by D. Häussinger,. New York: Academic Press, 1988, p. 97–122.
 404. Soleimani, M., C. Bookstein, J. A. McAteer, Y. J. Hattabaugh, G. L. Bizal, M. W. Musch, M. Villereal, M. C. Rao, R. L. Howard, and E. B. Chang. Effect of high osmolality on Na+/H+ exchange in renal proximal tubule cells. J. Biol. Chem. 269: 15613–15618, 1994.
 405. Soleimani, M., and P. S. Aronson. Ionic mechanism of Na+‐HCO3− cotransporter in rabbit renal basolateral membrane vesicles. J. Biol. Chem. 264: 18302–18308, 1989.
 406. Somogyi, R., A. Batzer, and H. A. Kolb. Inhibition of electrical coupling in pairs of murine pancreatic acinar cells by OAG and isolated protein kinase C. J. Membr. Biol. 108: 273–283, 1989.
 407. Sorgato, M. C., and O. Moran. Channels in mitochondrial membranes: knowns, unknowns, and prospects. Crit. Rev. Biochem. Mol. Biol. 28: 127–171, 1993.
 408. Spanswick, R. M. Vacuolar and cell membrane H+‐ATPases of plant cells. Ann. NY Acad. Sci. 574: 180–188, 1989.
 409. Spray, D. C., and M.V.L. Bennett. Physiology and pharmacology of gap junctions. Annu. Rev. Physiol. 47: 281–303, 1985.
 410. Spray, D. C., and J. M. Burt. Structure‐activity relations of the cardiac gap junction channel. Am. J. Physiol. 258 (Cell Physiol. 27): C195–C205, 1990.
 411. Spray, D. C., R. D. Ginzberg, E. A. Morales, Z. Gatmaitan, and I. M. Arias. Electrophysiological properties of gap junctions between dissociated pairs of rat hepatocytes. J. Cell Biol. 101: 135–144, 1986.
 412. Spray, D. C., A. L. Harris, and M.V.L. Bennett. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211: 712–715, 1981.
 413. Spray, D. C., and J. C. Saez. Agents that affect gap junctinal conductance: sites of action and specificities. In: Biochemical Regulation of Intercellular Communication, edited by M. A. Mehlman, New York: Alan R. Liss, 1988, p. 1–26.
 414. Spyropoulos, C. S. Cytoplasmic pH of nerve fibres. J. Neurochem. 5: 185–194, 1960.
 415. Steinhardt, R. A., S. Shen, and D. Mazia. Membrane potential, membrane resistance and an energy requirement for the development of potassium conductance in the fertilization reaction of echinoderm eggs. Exp. Cell Res. 72: 195–203, 1972.
 416. Sugiura, H., J. Toyama, N. Tsuboi, K. Kamiya, and I. Kodama. ATP directly affects junctional conductance between paired ventricular myocytes isolated from guinea pig heart. Circ. Res. 66: 1095–1102, 1990.
 417. Suprenant, K. A. Alkaline pH favors microtubule self‐assembly in surf clam, Spisula solidissima, oocyte extracts. Exp. Cell Res. 184: 167–180, 1989.
 418. Suprenant, K. A. Unidirectional microtubule assembly in cell‐free extracts of Spisula solidissima oocytes is regulated by subtle changes in pH. Cell Motil. Cytoskeleton 19: 207–220, 1991.
 419. Swallow, C. J., S. Grinstein, and O. D. Rotstein. Regulation and functional significance of cytoplasmic pH in phagocytic leukocytes. Curr. Top. Membr. Transp. 35: 227–247, 1990.
 420. Swallow, C. J., S. Grinstein, and O. D. Rotstein. A vacuolar type H+‐ATPase regulates cytoplasmic pH in murine macrophages. J. Biol. Chem. 265: 7645–7654, 1990.
 421. Swenson, K. I., H. Piwnica‐Worms, H. McNamee, and D. L. Paul. Tyrosine phosphorylation of the gap junction protein connexin43 is required for the pp60v‐src‐induced inhibition of communication. Cell Regul. 1: 989–1002, 1990.
 422. Szwergold, B. S., T. R. Brown, and J. J. Freed. Bicarbonate abolishes intracellular alkalinization in mitogen‐stimulated 3T3 cells. J. Cell. Physiol. 138: 227–235, 1989.
 423. Tager, J. M., J.M.F.G. Aerts, R.J.A. Oude Elferink, A. K. Groen, M. Hollemans, and A. W. Schram. pH regulation of intracellular membrane flow. In: pH Homeostasis. Mechanisms and Control, edited by D. Häussinger,. New York: Academic Press, 1988, p. 123–162.
 424. Taglicht, D., E. Padan, and S. Schuldiner. Proton‐sodium stoi‐chiometry of NhaA, an electrogenic antiporter from Escherichia coli. J. Biol. Chem. 268: 5382–5387, 1993.
 425. Tanner, M.J.A. The acid test for band 3. Nature 382: 209–210, 1996.
 426. Taylor, C. V., and D. M. Whitaker. Potentiometric determinations in the protoplasm and cell‐sap of nitella. Protoplasma 3: 1–6, 1927.
 427. Thiebaut, F., S. J. Currier, J. Whitaker, R. P. Haugland, M. M. Gottesman, I. Pastan, and M. C. Willingham. Activity of the multidrug transporter results in alkalinization of the cytosol: Measurement of cytosolic pH by microinjection of a pH‐sensitive dye. J. Histochem. Cytochem. 38: 685–690, 1990.
 428. Thomas, J. A. Intracellularly trapped pH indicators. In: Optical Methods in Cell Physiology, P. De Weer and B. M. Salzberg. New York: John Wiley and Sons, 1986, p. 311–325.
 429. Thomas, J. A., R. N. Buchsbaum, A. Zimniak, and E. Racker. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18: 2210–2218, 1979.
 430. Thomas, J. A., R. E. Cole, and T. A. Langworthy. Intracellular pH measurements with a spectroscopic probe generated in situ. Federation Proc. 35: 1455, 1976.
 431. Thomas, R. C. Intracellular pH of snail neurones measured with a new pH‐sensitive glass micro‐electrode. J. Physiol. (Lond.) 238: 159–180, 1974.
 432. Thomas, R. C. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J. Physiol. (Lond.) 255: 715–735, 1976a.
 433. Thomas, R. C. Ionic mechanism of the H+ pump in a snail neurone. Nature 262: 54–55, 1976b.
 434. Thomas, R. C. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J. Physiol. (Lond.) 273: 317–338, 1977.
 435. Thomas, R. C. Ion‐sensitive Intracellular Microelectrodes: How to Make and Use Them. San Francisco: Academic Press, 1978.
 436. Thomas, R. C., and R. W. Meech. Hydrogen ion currents and intracellular pH in depolarized voltage‐clamped snail neurones. Nature 299: 826–828, 1982.
 437. Tilney, L. G., D. P. Kiehart, C. Sardet, and M. Tilney. Polymerization of actin. IV. Role of Ca++ and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm. J. Cell Biol. 77: 536–550, 1978.
 438. Tosteson, D. C. Halide transport in red blood cells. Acta Physiol. Scand. 46: 19–41, 1959.
 439. Tosteson, D. C., and J. F. Hoffman. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44: 169–194, 1960.
 440. Trayhurn, P., and D. G. Nicholls, eds. Brown Adipose Tissue. London: Edward Arnold, 1986.
 441. Trivedi, B., and W. H. Danforth. Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241: 4110–4112, 1966.
 442. Tse, C. M., A. I. Ma, V. W. Yang, A.J.M. Watson, S. Levine, M. H. Montrose, J. Potter, C. Sardet, J. Pouysségur, and M. Donowitz. 1991. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J. 10: 1957–1967, 1991.
 443. Tse, C. M., S. R. Brant, M. S. Walker, J. Pouysségur, and M. Donowitz. Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney‐specific Na+/H+ exchanger isoform (NHE‐3). J. Biol. Chem. 267: 9340–9346, 1992.
 444. Tse, C. M., S. A. Levine, C.H.C. Yun, M. H. Montrose, P. J. Little, J. Pouysségur, and M. Donowitz. Cloning and expression of a rabbit cDNA encoding a serum‐activated ethylisopropylamiloride‐resistant epithelial Na+/H+ exchanger isoform (NHE‐2). J. Biol. Chem. 268: 11917–11924, 1993.
 445. Tse, C. M., S. A. Levine, C.H.C. Yun, S. R. Brant, J. Pouysségur, M. H. Montrose, and M. Donowitz. Functional characteristics of a cloned epithelial Na+/H+ exchanger (NHE3): Resistance to amiloride and inhibition by protein kinase C. Proc. Natl. Acad. Sci. USA 90: 9110–9114, 1993.
 446. Tse, M., S. Levine, C. Yun, S. Brant, L. T. Counillon, J. Pouysségur, and M. Donowitz. Structure/function studies of the epithelial isoforms of the mammalian Na+/H+ exchanger gene family. J. Membr. Biol. 135: 93–108, 1993.
 447. Tse, C.‐M., S. A. Levine, C.H.C. Yun, S. R. Brant, S. Nath, J. Pouysségur, and M. Donowitz. Molecular properties, kinetics and regulation of mammalian Na+/H+ exchangers. Cell Physiol. Biochem. 4: 282–300, 1994.
 448. Tsien, R. Y. 1989. Fluorescent indicators of ion concentrations. In: Fluorescence Microscopy of Living Cells in Culture, edited by Y. L. Wang and D. L. Taylor. New York: Academic Press, 1989, p. 127–156.
 449. Turin, L., and A. E. Warner. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature 270: 56–57, 1977.
 450. Turin, L., and A. E. Warner. Intracellular pH in early Xenopus embryos: Its effect on current flow between blastomeres. J. Physiol. (Lond.) 300: 489–504, 1980.
 451. Tycko, B., and F. R. Maxfield. Rapid acidification of endocytic vesicles containing α2‐macroglobulin. Cell 26: 643–651, 1982.
 452. Unwin, P.N.T. Gap junction structure and the control of cell‐to‐cell communication. In: Junctional Complexes of Epithelial Cells, edited by G. Bock and S. Clark (Ciba Foundation Symp. 125). New York: Wiley, 1987, p. 78–91.
 453. Unwin, P.N.T., and G. Zampighi. Structure of the gap junction between communicating cells. Nature 283: 545–549, 1980.
 454. Van Slyke, D. D. On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. J. Biol. Chem. 52: 525–570, 1922.
 455. Vanheel, B., A. De Hemptinne, and I. Leusen. Acidification and intracellular sodium ion activity during simulated myocardial ischemia. Am. J. Physiol. 259 (Cell Physiol. 28): C169–C179, 1990.
 456. Vaughan‐Jones, R. D. Chloride activity and its control in skeletal and cardiac muscle. Philos. Trans. R. Soc. Lond. Biol. 299: 537–548, 1982.
 457. Wadsworth, W. G., and D. L. Riddle. Acidic intracellular pH shift during Caenorhabditis elegans larval development. Proc. Natl. Acad. Sci. USA 85: 8435–8438, 1988.
 458. Wagner, J., and J. Keizer. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67: 447–456, 1994.
 459. Waisbren, S. J., J. P. Geibel, I. M. Modlin, and W. F. Boron. Unusual permeability properties of gastric gland cells. Nature 368: 332–335, 1994.
 460. Waisbren, S. J., J. P. Geibel, W. F. Boron, and I. M. Modlin. Luminal perfusion of isolated gastric glands. Am. J. Physiol. 266 (Cell Physiol. 35): C1013–C1027, 1994.
 461. Wakabayashi, S., P. Fafournoux, C. Sardet, and J. Pouysségur. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls “H+‐sensing.” Proc. Natl. Acad. Sci. USA 89: 2424–2428, 1992.
 462. Wang, W., Y. Wang, S. Siblernagl, and H. Oberleithner. Fused cells of frog proximal tubule: II. Voltage‐dependent intracellular pH. J. Membr. Biol. 101: 259–265, 1988.
 463. Wang, Z., J. Orlowski, and G. E. Shull. Primary structure and functional expression of a novel gastrointestinal isoform of the rat Na/H exchanger. J. Biol. Chem. 268: 11925–11928, 1993.
 464. Wanke, E., E. Carbone, and P. L. Testa. K+ conductance modified by a titratable group accessible to protons from the intracellular side of the squid axon membrane. Biophys. J. 26: 319–324, 1979.
 465. Wanke, E., E. Carbone, and P. L. Testa. The sodium channel and intracellular H+ blockage in squid axons. Nature 287: 62–63, 1980.
 466. Wei, L.‐Y., and P. D. Roepe. Low external pH and osmotic‐shock increase the expression of human MDR protein. Biochemistry 33: 7229–7238, 1994.
 467. Wei, L. Y., M. J. Stutts, M. M. Hoffman, and P. D. Roepe. Overexpression of the cystic fibrosis transmembrane conductance regulator in NIH 3T3 cells lowers membrane potential and intracellular pH and confers a multidrug resistance phenotype. Biophys. J. 69: 883–895, 1995.
 468. Whitaker, J. E., R. P. Haugland, and F. G. Pendergast. Spectral and photophysical studies of Benzo{c}xanthene dyes: dual emission pH sensors. Anal. Biochem. 194: 330–344, 1991.
 469. White, R. L., J. E. Doeller, V. K. Verselis, and B. A. Wittenberg. Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ and Ca++. J. Gen. Physiol. 95: 1061–1075, 1990.
 470. Wilding, T. J., B. Cheng, and A. Roos. pH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium and potassium. J. Gen. Physiol. 100: 593–608, 1992.
 471. Wingo, C. S., and B. D. Cain. The renal H‐K‐ATPase: Physiological significance and role in potassium homeostasis. Ann. Revu. Physiol. 55: 323–347, 1993.
 472. Winkel, G. K., C. Sardet, J. Pouysségur, and H. E. Ives. Role of cytoplasmic domain of the Na+/H+ exchanger in hormonal activation. J. Biol. Chem. 268: 3396–3400, 1993.
 473. Winkler, M. M., and R. A. Steinhardt. Activation of protein synthesis in a sea urchin cell‐free system. Dev. Biol. 84: 432–439, 1981.
 474. Wittenberg, J. B. The molecular mechanism of hemoglobin‐facilitated oxygen diffusion. J. Biol. Chem. 241: 104–114, 1966.
 475. Yun, C.H.C., S. Gurubhagavatula, S. A. Levine, J.L.M. Montgomery, S. R. Brant, M. E. Cohen, E. J. Cragoe, Jr., J. Pouysségur, C. M. Tse, and M. Donowitz. Glucocorticoid stimulation of ileal Na+ absorptive cell brush border Na+/H+ exchange and association with an increase in message for NHE‐3, an epithelial Na+/H+ exchanger isoform. J. Biol. Chem. 268: 206–211, 1993.
 476. Yun, C.H.C., P. J. Little, S. K. Nath, S. A. Levine, J. Pouysségur, C. M. Tse, and M. Donowitz. Leu143 in the putative fourth membrane spanning domain is critical for amiloride inhibition of an epithelial Na+/H+ exchanger isoform (NHE‐2). Biochem. Biophys. Res. Commun. 193: 532–539, 1993.
 477. Yun, C.H.C., C.‐M. Tse, S. K. Nath, S. A. Levine, S. R. Brant, and M. Donowitz. Mammalian Na+/H+ exchanger gene family: structure and function studies. Am. J. Physiol. 269 (Gas‐trointest. Liver Physiol. 32): G1–G11, 1995.
 478. Zhang, J., R. M. Robson, J. M. Schmidt, and M. H. Stromer. Talin can crosslink actin filaments into both networks and bundles. Biochem. Biophys. Res. Commun. 218: 530–537, 1996.
 479. Zhao, J., E. M. Hogan, M. O. Bevensee, and W. F. Boron. Out‐of‐equilibrium CO2/HCO3− solutions and their use in characterizing a new K/HCO3 cotransporter. Nature 374: 636–639, 1995.
 480. Zimmerle, C. T., and C. Frieden. Effect of pH on the mechanism of actin polymerization. Biochemistry 27: 7766–7772, 1988.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert W. Putnam, Albert Roos. Intracellular pH. Compr Physiol 2011, Supplement 31: Handbook of Physiology, Cell Physiology: 389-440. First published in print 1997. doi: 10.1002/cphy.cp140109