Comprehensive Physiology Wiley Online Library

Cilia and Related Microtubular Arrays in the Eukaryotic Cell

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Cell Biology of Microtubules
1.1 Microtubules and the Cytoskeleton
1.2 Structure, Assembly, and Disassembly
1.3 Stability and Pattern Formation
1.4 Primary Cilia
2 Evolution of Centrioles, Cilia, and Microtubules
3 Motor Molecules of Cilia and Microtubule‐Based Arrays
3.1 Dynein‐ and Microtubule‐Based Motility
3.2 Axonemal Dynein
3.3 Cytoplasmic Dynein
3.4 Kinesin
3.5 The Kinesin Superfamily
3.6 Interactions Between Dynein and Kinesin
3.7 Other Putative Motors
4 Motile Cilia and the Mechanism of Motility
4.1 Introduction to Ciliary Structure
4.2 Experimental Analysis of Motility
4.3 Cellular Control of Ciliary Motility
Figure 1. Figure 1.

Some representative microtubule patterns in cells with (+) and (−) ends of microtubules indicated. A: Cycling, motile interphase cells. B: Mitotic cell. C: G0 cell with 1° cilium. D: G0 cell with centrioles. E: Neuron.

From Satir et al. 175 with permission
Figure 2. Figure 2.

A: Domain organization of tubulin dimers and protofilaments. α and β subunits of heterodimers are shown adding to ends of two protofilaments. One end has cap of exposed β subunits; other, a cap of α subunits. B: Outside and inside views of microtubule protofilament. Speculative model based on x‐ray diffraction analysis. C: Model of microtubule calculated by 3D reconstruction methods. D: Summary of some structural features of tubulin. Representations of the 1° structure of α and β tubulin. N (open) and C (black) terminal domains are defined by cleavage sites at arg 339 and cys 354. Regions I‐IV are predicted to participate in nucleotide binding; regions of Tau, MAP2, and monoclonal antibody binding are indicated.

From Mandelkow and Mandelkow 115 with permission. From Amos and Amos 5 with permission. From Amos and Amos 5 with permission. From Mandelkow and Mandelkow 116 with permission
Figure 3. Figure 3.

A: Treadmilling in microtubule. Thickened region moves through microtubule toward (−) end. Bar, 10 μm. B: Dynamic instability of microtubules. At 84 s, (+) end undergoes catastrophic shortening. Bar, 2 μm C: Effect of MAPs on dynamic instability of microtubules. Changes in microtubule length with time at (+) (black symbols) and (−) (open symbols) ends of microtubule are shown. In absence of MAPs (circles) catastrophic depolymerization is seen. This is suppressed in presence of MAPs (squares).

From Hotani and Horio 84 with permission. From Walker et al. 225 with permission. From Hotani and Horio 84 with permission
Figure 4. Figure 4.

A: Microtubule distribution in cultured hepatocytes. Confocal microscopic reconstruction of group of cells showing tubulin immunofluorescent pattern. Arrow marks cell where array radiating from centrioles is seen. Bar, 10 μm. B: Model of microtubule distribution in cultured hepatocyte. C: Vesicular trafficking along microtubule. Top: Kinesin‐based motility. Bottom: Cytoplasmic dynein‐based motility. The (+) and (−) ends of the microtubule are indicated. D: Model of microtubule‐based vesicular trafficking in a polarized epithelial cell with 1° cilium. Microtubule‐based motors could move vesicles in basal to apical direction or apical to basal direction along polarized array of microtubules. This would require, respectively, (−) end‐directed motor, such as cytoplasmic dynein and (+) end‐directed motor such as kinesin to interact with vesicular membranes.

From Novikoff et al. 128 with permission. From Satir et al. 175 with permission. From Phillips and Satir 141 with permission
Figure 5. Figure 5.

Top: Demonstration of microtubule sliding in beating sea urchin sperm axoneme. Gold beads placed on different doublets of axoneme move apart as sliding proceeds. Bottom: Diagram of in vitro translocation system at high magnification. Individual three‐headed dynein molecules are placed on substratum. Microtubules are introduced. Dynein binds to microtubules, translocating them across field when ATP is added. Inset: Two structural forms of dynein.

From Brokaw 33 with permission. Courtesy K. Barkalow and T. Hamasaki
Figure 6. Figure 6.

Molecular motors. Left: Rotary shadowed images of (a) ciliary dynein, (b) cytoplasmic dynein, (c) myosin II, and (d) kinesin.

Courtesy of John Heuser, Washington University. Bar, 40 nm. Right: Diagrams. From Vale 212 with permission. Adapted from Vale 212
Figure 7. Figure 7.

A: a: Alignment of putative nucleotide‐binding sites in dynein β heavy chain. Residues identical in two or more sites appear in boxes. b: Alignment of probable hydrolytic ATP‐binding sites of dynein β chain (GKT2) with other motors and E. coli Clp protease A subunit. Residues identical to dynein GKT2 sequence appear in boxes. B: Map of principal tryptic and proteolytic cleavage sites on dynein β chain. Numbers above middle line give masses of tryptic peptides (M X10−3) for comparison to numbers in parentheses calculated from derived sequence. N‐termini of the 110k, 215k, 130k, and 124k tryptic peptides are indicated as T4, T1, T2, and T3, respectively. V1 and V2 vanadate‐sensitive photocleavage sites are indicated. Thick regions of map indicate peptides that are stable to trypsin at 37°C. 6S region may represent tail, 12S region the globular domain of heavy chain.

From Gibbons et al. 57 with permission. From Gibbons et al. 57 with permission
Figure 8. Figure 8.

Above: Cross sections of an intact cilium (left) and axoneme after detergent treatment (right). Bar = 0.1 μm. Below: Three‐dimensional computer model of ciliary axoneme at resolution approaching 4 nm, based on electron micrographs of ciliary axoneme.

From Satir 170 with permission. See Sugrue et al. 199 for details. With permission
Figure 9. Figure 9.

Sliding of axonemal microtubules captured in negative stain electron microscopy; active arms on subfiber A of doublet N push doublet N+1 in a tipward (+) direction, while doublet N moves relatively baseward. Bar, 0.1 μm.

Satir 170 with permission
Figure 10. Figure 10.

Axonemal splitting in “hands down” vs. “hands up” axonemes supports “switch point hypothesis” of dynein arm activity. Above: Predictions of arm activity in axonemes arrested by ions shown. Shaded areas and black arms indicate predicted active arms. Below: Split axonemes Left: “hands down.” Right: “hands up.” The central pair splits with active half axoneme. Bar = 0.1 μm.

From Satir 171 with permission
Figure 11. Figure 11.

Top: Cross and longitudinal sections of mussel gill filaments with active (left panels) and arrested (middle, right panels) lateral cilia (arrows). Repeating pattern shows metachronal waves of beating cilia captured by fixation. Arrested cilia are in either “hands down” (middle panels) or “hands up” (right panels) configuration, corrresponding to end of effective and recovery strokes, respectively. Bar, 10 μm. Bottom: Rat sperm flagellar axonemes reactivated in low ATP concentrations (0.3 mM) under conditions where only half beats are present (a) in EGTA with no added Ca2+ or (b) with Ca2+, balancing chelator concentration. Bends form in one direction only. At higher ATP concentrations, full beating resumes.

From Satir and Matsuoka 176 with permission. From Lindemann and Goltz 110 with permission
Figure 12. Figure 12.

Computer‐generated bending patterns reconstructed for wild type (wt) and mutant Chlamydomonas. Each pattern shows images of 0.125 cycle intervals with cell body fixed in position. Above: Mutants missing outer dynein arms compared to wt in form and beat frequency. Below: Mutants missing inner dynein arms. Sample size indicated.

From Brokaw and Kamiya 35 with permission
Figure 13. Figure 13.

Velocity profiles of microtubule translocation over Paramecium 22S dynein comparing controls (open bars), dynein pretreated with cAMP to phosphorylate p29 (black bars), and dynein pretreated with cAMP and Ca2+ (hatched bars).

From Hamasaki et al. 74 with permission
Figure 14. Figure 14.

Transduction cascade by which cAMP activates 22S outer arm dynein to increase microtubule sliding velocity, beat frequency, and speed of ciliate swimming.

Adapted from Satir et al. 173 with permission


Figure 1.

Some representative microtubule patterns in cells with (+) and (−) ends of microtubules indicated. A: Cycling, motile interphase cells. B: Mitotic cell. C: G0 cell with 1° cilium. D: G0 cell with centrioles. E: Neuron.

From Satir et al. 175 with permission


Figure 2.

A: Domain organization of tubulin dimers and protofilaments. α and β subunits of heterodimers are shown adding to ends of two protofilaments. One end has cap of exposed β subunits; other, a cap of α subunits. B: Outside and inside views of microtubule protofilament. Speculative model based on x‐ray diffraction analysis. C: Model of microtubule calculated by 3D reconstruction methods. D: Summary of some structural features of tubulin. Representations of the 1° structure of α and β tubulin. N (open) and C (black) terminal domains are defined by cleavage sites at arg 339 and cys 354. Regions I‐IV are predicted to participate in nucleotide binding; regions of Tau, MAP2, and monoclonal antibody binding are indicated.

From Mandelkow and Mandelkow 115 with permission. From Amos and Amos 5 with permission. From Amos and Amos 5 with permission. From Mandelkow and Mandelkow 116 with permission


Figure 3.

A: Treadmilling in microtubule. Thickened region moves through microtubule toward (−) end. Bar, 10 μm. B: Dynamic instability of microtubules. At 84 s, (+) end undergoes catastrophic shortening. Bar, 2 μm C: Effect of MAPs on dynamic instability of microtubules. Changes in microtubule length with time at (+) (black symbols) and (−) (open symbols) ends of microtubule are shown. In absence of MAPs (circles) catastrophic depolymerization is seen. This is suppressed in presence of MAPs (squares).

From Hotani and Horio 84 with permission. From Walker et al. 225 with permission. From Hotani and Horio 84 with permission


Figure 4.

A: Microtubule distribution in cultured hepatocytes. Confocal microscopic reconstruction of group of cells showing tubulin immunofluorescent pattern. Arrow marks cell where array radiating from centrioles is seen. Bar, 10 μm. B: Model of microtubule distribution in cultured hepatocyte. C: Vesicular trafficking along microtubule. Top: Kinesin‐based motility. Bottom: Cytoplasmic dynein‐based motility. The (+) and (−) ends of the microtubule are indicated. D: Model of microtubule‐based vesicular trafficking in a polarized epithelial cell with 1° cilium. Microtubule‐based motors could move vesicles in basal to apical direction or apical to basal direction along polarized array of microtubules. This would require, respectively, (−) end‐directed motor, such as cytoplasmic dynein and (+) end‐directed motor such as kinesin to interact with vesicular membranes.

From Novikoff et al. 128 with permission. From Satir et al. 175 with permission. From Phillips and Satir 141 with permission


Figure 5.

Top: Demonstration of microtubule sliding in beating sea urchin sperm axoneme. Gold beads placed on different doublets of axoneme move apart as sliding proceeds. Bottom: Diagram of in vitro translocation system at high magnification. Individual three‐headed dynein molecules are placed on substratum. Microtubules are introduced. Dynein binds to microtubules, translocating them across field when ATP is added. Inset: Two structural forms of dynein.

From Brokaw 33 with permission. Courtesy K. Barkalow and T. Hamasaki


Figure 6.

Molecular motors. Left: Rotary shadowed images of (a) ciliary dynein, (b) cytoplasmic dynein, (c) myosin II, and (d) kinesin.

Courtesy of John Heuser, Washington University. Bar, 40 nm. Right: Diagrams. From Vale 212 with permission. Adapted from Vale 212


Figure 7.

A: a: Alignment of putative nucleotide‐binding sites in dynein β heavy chain. Residues identical in two or more sites appear in boxes. b: Alignment of probable hydrolytic ATP‐binding sites of dynein β chain (GKT2) with other motors and E. coli Clp protease A subunit. Residues identical to dynein GKT2 sequence appear in boxes. B: Map of principal tryptic and proteolytic cleavage sites on dynein β chain. Numbers above middle line give masses of tryptic peptides (M X10−3) for comparison to numbers in parentheses calculated from derived sequence. N‐termini of the 110k, 215k, 130k, and 124k tryptic peptides are indicated as T4, T1, T2, and T3, respectively. V1 and V2 vanadate‐sensitive photocleavage sites are indicated. Thick regions of map indicate peptides that are stable to trypsin at 37°C. 6S region may represent tail, 12S region the globular domain of heavy chain.

From Gibbons et al. 57 with permission. From Gibbons et al. 57 with permission


Figure 8.

Above: Cross sections of an intact cilium (left) and axoneme after detergent treatment (right). Bar = 0.1 μm. Below: Three‐dimensional computer model of ciliary axoneme at resolution approaching 4 nm, based on electron micrographs of ciliary axoneme.

From Satir 170 with permission. See Sugrue et al. 199 for details. With permission


Figure 9.

Sliding of axonemal microtubules captured in negative stain electron microscopy; active arms on subfiber A of doublet N push doublet N+1 in a tipward (+) direction, while doublet N moves relatively baseward. Bar, 0.1 μm.

Satir 170 with permission


Figure 10.

Axonemal splitting in “hands down” vs. “hands up” axonemes supports “switch point hypothesis” of dynein arm activity. Above: Predictions of arm activity in axonemes arrested by ions shown. Shaded areas and black arms indicate predicted active arms. Below: Split axonemes Left: “hands down.” Right: “hands up.” The central pair splits with active half axoneme. Bar = 0.1 μm.

From Satir 171 with permission


Figure 11.

Top: Cross and longitudinal sections of mussel gill filaments with active (left panels) and arrested (middle, right panels) lateral cilia (arrows). Repeating pattern shows metachronal waves of beating cilia captured by fixation. Arrested cilia are in either “hands down” (middle panels) or “hands up” (right panels) configuration, corrresponding to end of effective and recovery strokes, respectively. Bar, 10 μm. Bottom: Rat sperm flagellar axonemes reactivated in low ATP concentrations (0.3 mM) under conditions where only half beats are present (a) in EGTA with no added Ca2+ or (b) with Ca2+, balancing chelator concentration. Bends form in one direction only. At higher ATP concentrations, full beating resumes.

From Satir and Matsuoka 176 with permission. From Lindemann and Goltz 110 with permission


Figure 12.

Computer‐generated bending patterns reconstructed for wild type (wt) and mutant Chlamydomonas. Each pattern shows images of 0.125 cycle intervals with cell body fixed in position. Above: Mutants missing outer dynein arms compared to wt in form and beat frequency. Below: Mutants missing inner dynein arms. Sample size indicated.

From Brokaw and Kamiya 35 with permission


Figure 13.

Velocity profiles of microtubule translocation over Paramecium 22S dynein comparing controls (open bars), dynein pretreated with cAMP to phosphorylate p29 (black bars), and dynein pretreated with cAMP and Ca2+ (hatched bars).

From Hamasaki et al. 74 with permission


Figure 14.

Transduction cascade by which cAMP activates 22S outer arm dynein to increase microtubule sliding velocity, beat frequency, and speed of ciliate swimming.

Adapted from Satir et al. 173 with permission
References
 1. Afzelius, B. A. Electron microscopy of the sperm tail: results obtained with a new fixative. J. Biophys. Biochem. Cytol. 5: 269–278, 1959.
 2. Albrecht‐Buehler, G. The orientation of centrioles in migrating 3T3 cells. Exp. Cell Res. 120: 111–118, 1979.
 3. Allen, R. D., D. G. Weiss, J. H. Hayden, D. T. Brown, H. Fujiwake, and M. Simpson. Gliding movement of and bidirectional organelle transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J. Cell Biol. 100: 1736–1752, 1985.
 4. Amos, L. A. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J. Cell Biol. 72: 642–654, 1977.
 5. Amos, L. A., and W. B. Amos. Molecules of the Cytoskeleton. New York: Guilford Press, 1991, 253 pp.
 6. Asai, D. J., and C. J. Brokaw. Dynein heavy chain isoforms and axonemal motility. Trends Cell Biol. 3: 398–402, 1993.
 7. Asai, D. J., S. M. Beckwith, K. A. Kandl, H. H. Keating, H. Tjandra, and J. D. Forny. The dynein genes of Paramecium tetraurelia. J. Cell Sci. 107: 839–847.
 8. Avolio, J., S. Lebduska, and P. Satir. Dynein arm substructure and the orientation of arm‐microtubule attachments. J. Mol. Biol. 173: 389–401, 1984.
 9. Bacallao, R., C. Anthony, C. Dotti, E. Karsenti, E. H. Stelzer, and K. Simons. The subcellular organization of Madin‐Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109: 2817–2832, 1989.
 10. Bailey, E., and N. Bornens. Centrosome and cell division. Nature 355: 300–301, 1992.
 11. Ballowitz, E. Untersuchungen uber die Structur der Spermatozoen, zugleich ein Beitrag zur Lehre von Feineren bau der contractilen Elemente. Arch. Mikr. Anat. 32: 401–473, 1888.
 12. Barkalow, K., J. Avolio, M.E.J. Holwill, and P. Satir. Structural and geometrical constraints on the outer dynein arm in situ. Cell Motil. Cytoskeleton 27: 299–312, 1994.
 13. Barkalow, K., T. Hamasaki, and P. Satir. Regulation of 22S dynein by a 29 kDa light chain. J. Cell Biol. 126: 727–735, 1994.
 14. Beckwith, S., K. Kandl, J. Forney, and D. Asai. Ciliary and cytoplasmic dynein isoform expression in Paramecium tetraurelia, 1993 (personal communication).
 15. Beese, L., G. Stubbs, and C. Cohen. Microtubule structure at 18Å resolution. J. Mol. Biol. 194: 257–264, 1987.
 16. Behnke, O., and A. Forer. Evidence for four classes of microtubules in individual cells. J. Cell Sci. 2: 169–192, 1967.
 17. Bessen, M., R. B. Fay, and G. B. Witman. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J. Cell Biol. 86: 446–455, 1980.
 18. Block, S. M., L.S.B. Goldstein, and B. J. Schnapp. Bead movement by single kinesin molecules. Studied with optical tweezers. Nature 348: 348–352, 1990.
 19. Bloodgood, R. A. Ciliary and Flagellar Membranes. New York: Plenum, 1990, 431 pp.
 20. Bloom, G. S., M. C. Wagner, K. K. Pfister, and S. T. Brady. Native structure and physical properties of bovine brain kinesin, and identification of the ATP‐binding subunit polypeptide. Biochemistry 27: 3409–3416, 1988.
 21. Bonini, N. M., T. C. Evan, L.A.P. Miglietta, and D. L. Nelson. The regulation of ciliary motility in Paramecium by Ca2+ and cyclic nucleotides. Adv. 2nd Messenger Phosphoprotein Res. 23: 227–272, 1991.
 22. Bonini, N. M., M. C. Gustin, and D. L. Nelson. Regulation of ciliary motility by membrane potential in Paramecium: a role for cyclic AMP. Cell Motil. Cytoskeleton 6: 256–272, 1986.
 23. Bonini, N. M., and D. L. Nelson. Differential regulation of Paramecium ciliary motility by cAMP and cGMP. J. Cell Biol. 106: 1615–1623, 1988.
 24. Bonini, N. M., and D. L. Nelson. Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium. J. Cell Sci. 95: 219–230, 1990.
 25. Borisy, G. G., and E. W. Taylor. The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34: 535–548, 1967.
 26. Bowser, S. S., and L. Leonard. Properties of primary (9 + 0) cilia in cultured kidney epithelial cells. Anat. Rec. 232: 14A, 1992.
 27. Bozkurt, H. H., and D. M. Woolley. Morphology of nexin links in relation to interdoublet sliding in the sperm flagellum. Cell Motil. Cytoskeleton 24: 109–118, 1993.
 28. Bradfield, J. R. G. Fibre patterns in animal flagella and cilia. Soc. Exp. Biol. Symp. 9: 306–334, 1955.
 29. Bre, M., and E. Karsenti. Effect of brain microtubule‐associated proteins on microtubule dynamics and nucleating activity of centrosomes. Cell Motil. Cytoskeleton 15: 88–98, 1990.
 30. Brinkley, B. R. Microtubule‐organizing centers. Annu. Rev. Cell Biol. 1: 145–172, 1985.
 31. Brokaw, C. J. Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella. Science 243: 1593–1596, 1989a.
 32. Brokaw, C. J., Operation and regulation of the flagellar oscillator. In: Cell Movement, edited by F. D. Warner, P. Satir, and I. R. Gibbons. New York: Alan Liss, 1989b, vol. 1, p. 267–278.
 33. Brokaw, C. J. Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa. J. Cell Biol. 114: 1201–1215, 1991.
 34. Brokaw, C. J., and I. R. Gibbons. Mechanisms of movement in flagella and cilia. In: Swimming and Flying in Nature, edited by T. Y‐T Wu, C. J. Brokaw, and C. Brennan. New York: Plenum, 1975, vol. 1, p. 89–126.
 35. Brokaw, C. J., and R. Kamiya. Bending patterns of Chlamydomonas flagella IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil. Cytoskeleton 8: 68–75, 1987.
 36. Burnside, B., Microtubule sliding and the generation of force for cell shape change. In: Cell Movement, edited by F. D. Warner and J. R. McIntosh. New York: Alan Liss, 1989, vol. 2, p. 169–189.
 37. Caplow, M. Microtubule dynamics. Curr. Opin. Cell Biol. 4: 58–65, 1992.
 38. Carlier, M. F., D. Didry, and D. Pantaloni. Microtubule elongation and guanosine 5′‐triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. Biochemistry 26: 4428–4437, 1987.
 39. Chen, Y.‐T., and M. Schliwa. Direct observation of microtubule dynamics in Reticulomyxa: unusually rapid length changes and microtubule sliding. Cell Motil. Cytoskeleton 17: 214–226, 1990.
 40. Collins, C. A. Dynamin: a novel microtubule‐associated GTPase. Trends Cell Biol. 1: 57–60, 1991.
 41. Davidson, L. A. Studies of the Actinopods Heterophyrs marina and Ciliophyrs Marina: Energetic and Structural Analysis of Their Contractile Axopods, General Ultrastructure and Phylogenetic Relationships. Berkeley: University of California, 1975. PhD thesis.
 42. Dellinger, O. P. The cilium as a key to the structure of contractile protoplasm. J. Morphol. 20: 171–210, 1909.
 43. Dirksen, E. Centriole and basal body formation during ciliogenesis revisited. Biol. Cell 72: 31–38, 1991.
 44. Dustin, P. Microtubules (2nd ed.) New York: Springer‐Verlag, 1984, 482 pp.
 45. Eshel, D., S. Shingyoji, K. Yoshimura, C. R. Gibbons, and K. Takahashi. The phase of sperm flagellar beating is not conserved over a brief imposed interruption. Exp. Cell Res. 202: 552, 1992.
 46. Fawcett, D. W., and K. R. Porter. A study of the fine structure of ciliated epithelia. J. Morphol. 94: 221–281, 1954.
 47. Fey, E. G., D. G. Capeo, G. Krochmalnic, and S. Penman. Epithelial structure revealed by clinical dissection and unembedded electron microscopy. J. Cell Biol. 99: 203s–208s, 1984.
 48. Fonte, V. G., R. L. Searls, and S. R. Hilfer. The relationship of cilia with cell division and differentiation. J. Cell Biol. 49: 226–229, 1971.
 49. Gelfand, V. I. Cytoplasmic microtubular motors. Curr. Opin. Cell Biol. 1: 63–66, 1989.
 50. Gelfand, V. I., and A. D. Bershadsky. Microtubule dynamics: mechanisms, regulation and function. Annu. Rev. Cell Biol. 7: 93–116, 1991.
 51. Gibbons, B. H., and I. R. Gibbons. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X‐100. J. Cell Biol. 54: 75–97, 1972.
 52. Gibbons, I. R. The relationship between fine structure and beat in the gill cilia of a lammelibranch mollusc. J. Biophys. Biochem. Cytol. 11: 179–205, 1961.
 53. Gibbons, I. R. Studies on the protein components of cilia from Tetrahymena pyriformis. Proc. Natl. Acad. Sci. USA 50: 1002–1010, 1963.
 54. Gibbons, I. R. Cilia and flagella of eukaryotes. J. Cell Biol. 91 (3) 2: 107s–124s, 1981.
 55. Gibbons, I. R. Sliding and bending in sea urchin flagella. Symp. Soc. Exp. Biol. 35: 225–287, 1982.
 56. Gibbons, I. R., M. P. Cosson, J. A. Evans, B. H. Gibbons, B. Houck, K. H. Martinson, W. S. Sale, and W. J‐Y. Tang. Potent inhibition of dynein adenosine triphosphatase and of the motility of cilia and flagella by vanadate. Proc. Natl. Acad. Sci. U.S.A. 75: 2220–2224, 1978.
 57. Gibbons, I. R., B. H. Gibbons, G. Mocz, and D. J. Asai. Multiple nucleotide‐binding sites in the sequence of dynein β‐heavy chain. Nature 352: 640–643, 1991.
 58. Gibbons, I. R., and A. V. Grimstone. On flagellar structure in certain flagellates. J. Biophys. Biochem. Cytol. 7: 697–716, 1960.
 59. Gibbons, I. R., A. Lee Eiford, G. Mocz, C. A. Phillipson, W.J.Y. Tang, and B. H. Gibbons. Photosensitized cleavage of dynein heavy chains. J. Biol. Chem. 262: 2780–2786, 1987.
 60. Gibbons, I. R., and A. J. Rowe. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149: 424–425, 1965.
 61. Gilula, N. B., and P. Satir. The ciliary necklace: a ciliary membrane specialization. J. Cell Biol. 53: 494–509, 1972.
 62. Goldstein, L.S.B. The kinesin superfamily: tails of functional redundancy. Trends Cell Biol. 1: 93–98, 1991.
 63. Goldstein, S. F., Morphology of developing bends in sperm flagella. In: Swimming and Flying in Nature, edited by T. Y‐T Wu, C. J. Brokaw, and C. Brennan. New York: Plenum, 1975, vol. 1, p. 127–132.
 64. Goldstein, S. F., M.E.J. Holwill, N. R. Silvester. The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti. J. Exp. Biol. 53: 401–409, 1970.
 65. Goltz, J. S., A. W. Wolkoff, P. Novikoff, R. J. Stockert, and P. Satir. A role for microtubules in sorting of endocytic vesicles in rat hepatocytes. Proc. Natl. Acad. Sci. 89: 7026–7030, 1992.
 66. Goodenough, U. W., and J. E. Heuser. Structural comparison of purified dynein proteins with in situ dynein arms. J. Mol. Biol. 180: 1083–1118, 1984.
 67. Goodenough, U. W., and J. E. Heuser. Structure of the soluble and in situ ciliary dyneins visualized by quick‐freeze deep etch microscopy In: Cell Movement, edited by F. D. Warner, P. Satir, and I. R. Gibbons. New York: Alan Liss, 1989, vol. 1, p. 121–140.
 68. Gray, J. Ciliary Movement. U.K.: Cambridge University Press, 1928, 162 pp.
 69. Gray, J. The movement of sea‐urchin spermatozoa. J. Exp. Biol. 32: 775–801, 1955.
 70. Greer, K., and J. L. Rosenbaum. Post‐translational modifications of tubulin. In: Cell Movement, edited by F. D. Warner and J. R. McIntosh. New York: Alan Liss, 1989, vol. 2, p. 47–66.
 71. Gyoeva, F. K., and V. I. Gelfand. Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature 353: 445–448, 1991.
 72. Haimo, L. T., B. R. Telzer, and J. L. Rosenbaum. Dynein binds to and crossbridges cytoplasmic microtubules. Proc. Natl. Acad. Sci. U.S.A. 76: 5759–5763, 1979.
 73. Hall, J. L., Z. Ramanis, and D. J. L. Luck. Basal body/centriolar DNA: molecular genetic studies in Chlamydomonas. Cell 59: 121–132, 1989.
 74. Hamasaki, T., K. Barkalow, J. Richmond, and P. Satir. A cAMP‐stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc. Natl. Acad. Sci. U.S.A. 88: 7918–7922, 1991.
 75. Hamasaki, T., T. Murtaugh, B. H. Satir, and P. Satir. In vitro phosphorylation of paramecium axonemes and permeabilized cells. Cell Motil. Cytoskeleton 12: 1–11, 1989.
 76. Hill, T., and M. F. Carlier. Steady‐state theory of the interference of GTP hydrolysis in the microtubule assembly. Proc. Natl. Acad. Sci. U.S.A. 80: 7234–7238, 1983.
 77. Hirokawa, N., K. K. Pfister, H. Yori Fuji, M. C. Wagner, S. T. Brady, and G. S. Bloom. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56: 867–878, 1989.
 78. Hirokawa, N., R. Sato‐Yoshitake, T. Yoshida, and T. Kawashima. Brain dynein (MAP 1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J. Cell Biol. 111: 1027–1037, 1990.
 79. Ho, P. T‐C., and R. M. Tucker. Centriole ciliation and cell cycle variability during G1 phase of BALB/C 3T3 cells. J. Cell Physiol. 139: 398–406, 1989.
 80. Hoffmann‐Berling, H. Geisselmodele und Adenosinetriphosphate. Biochem. Biophys. Acta 16: 146–154, 1955.
 81. Holwill, M. E. J., and P. Satir. A physical model of microtubule sliding in ciliary axonemes. Biophys. J. 58: 905–918, 1990.
 82. Horio, T., and H. Hotani. Visualization of the dynamic instability of individual microtubules by dark‐field microscopy. Nature 321: 605–607, 1986.
 83. Horwitz, S. B., J. Parness, P. B. Schiff, and J. J. Manfredi. Taxol: a new probe for studying the structure and function of microtubules. Cold Spring Harb. Symp. Quant. Biol. 46: 219–226, 1981.
 84. Hotani, H., and T. Horio. Dynamics of microtubules visualized by darkfield microscopy, treadmilling and dynamic instability. Cell Motil. Cytoskeleton 10: 229–236, 1988.
 85. Hoyle, H. D., and E. C. Raff. Two Drosophila beta tubulin isoforms are not functionally equivalent. J. Cell Biol. 111: 1009–1026, 1990.
 86. Huang, B. P‐H. Chlamydomonas reinhardtii: a model system for the genetic analysis of flagellar motility. Int. Rev. Cytol. 99: 181–215, 1986.
 87. Hyams, J., and G. G. Borisy. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of wave form and reversal of swimming by calcium ions in vitro. J. Cell Sci. 33: 235–253, 1978.
 88. Inoue, S. Cell division and the mitotic spindle. J. Cell Biol. 91 (3) 2: 131s–147s, 1981.
 89. Inoue, S., and H. Sato. Cell motility by labile association of molecules: the nature of the mitotic spindle fibers and their role in chromosome movement. J. Gen. Physiol. 50 (6) 2: 259–288, 1967.
 90. Johnson, K. A. Pathway of the microtubule‐dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu. Rev. Biophys. Chem. 14: 161–188, 1985.
 91. Johnson, K. A., and J. L. Rosenbaum. Basal bodies and DNA. Trends Cell Biol. 1: 145–149, 1991.
 92. Johnson, K. A., and J. L. Rosenbaum. Replication of basal bodies and centrioles. Curr. Opin. Cell Biol. 4: 80–85, 1992a.
 93. Johnson, K. A., and J. L. Rosenbaum. Polarity of flagellar assembly in Chlamydomonas. J. Cell Biol. 119: 1605–1611, 1992b.
 94. Johnson, K. A., and J. S. Wall. Structure and molecular weight of the dynein ATPase. J. Cell Biol. 96: 669–678, 1983.
 95. Kalt, A., and M. Schliwa. Molecular components of the centrosome. Trends Cell Biol. 3: 118–128, 1993.
 96. Kamimura, S., and E. Mandelkow. Tubulin protofilaments and kinesin‐dependent motility. J. Cell Biol. 118: 865–875, 1992.
 97. Kamimura, S., and K. Takahashi. Direct measurement of the force of microtubule sliding in flagella. Nature 293: 566–568, 1981.
 98. Kamiya, R., and G. B. Witman. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J. Cell Biol. 98: 97–107, 1984.
 99. King, S., and G. B. Witman. Localization of an intermediate chain of outer arm dynein by immunoelectron microscopy. J. Biol. Chem. 265: 19807–19811, 1990.
 100. Kobayashi, T., T. Martensen, J. Nath, and M. Flavin. Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem. Biophy. Res. Commun. 81: 1313–1318, 1978.
 101. Koonce, M. P., P. M. Grissom, and J. R. McIntosh. Dynein from Dictyostelium: primary structure comparisons between a cytoplasmic motor enzyme and flagellar dynein. J. Cell Biol. 119: 1597–1604, 1992.
 102. Kosik, K. S. Tau protein and Alzheimer's disease. Curr. Opin. Cell Biol. 2: 101–104, 1990.
 103. Kuznetsov, S. A., and V. I. Gelfand. Bovine brain kinesin is a microtubule‐activated ATPase. Proc. Natl. Acad. Sci. USA 83: 8530–8534, 1986.
 104. Kuznetsov, S. A., E. A. Vaisberg, N. A. Sharina, N. N. Magretova, V. Y. Chenryak, and V. I. Gelfand. The quarternary structure of bovine brain kinesin. EMBO J. 7: 353–356, 1988.
 105. Lasek, R. J., and S. T. Brady. Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP‐PNP. Nature 316: 645–647, 1985.
 106. Leadbeater, B. S. C. Developmental studies on the loricate choanoflagellate Stephanoeca diplocosta. Protoplasma 136: 1–15, 1987.
 107. Lee Eiford, A., R. A. Ow, and I. R. Gibbons. Specific cleavage of dynein heavy chains by ultraviolet irradiation in the presence of ATP and vanadate. J. Biol. Chem. 261: 2337–2342, 1986.
 108. Lieberman, S. J., T. Hamasaki, and P. Satir. Ultrastructure and motion analysis of permeabilized Paramecium capable of motility and regulation of motility. Cell Motil. Cytoskeleton 9: 73–84, 1988.
 109. Lin, S.X.H., and C. A. Collins. Immunolocalization of cytoplasmic dynein to lysosomes in cultured cells. J. Cell. Sci. 101: 125–137, 1992.
 110. Lindemann, C. B., and J. S. Goltz. Calcium regulation of flagellar curvature and swimming pattern in Triton X‐100 extracted rat sperm. Cell Motil. Cytoskeleton 10: 420–431, 1988.
 111. Lindemann, C. B., A. Orlando, and K. S. Kanous. The flagellar beat of rat sperm is organized by the interaction of two functionally distinct populations of dynein bridges with a stable central axonemal partition. J. Cell Sci. 102: 249–260, 1992.
 112. Little, M., and T. Seehaus. Comparative analysis of tubulin sequence. Compar. Biochem. Physiol. 90B: 655–670, 1988.
 113. Luck, D. Genetic and biochemical dissection of the eucaryotic flagellum. J. Cell Biol. 98: 789–794, 1984.
 114. Maeda, K., T. Nakata, Y. Noda, R. Sato‐Yoshitake, and N. Hirokawa. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Mol. Biol. Cell 3: 1181–1194, 1992.
 115. Mandelkow, E., and E.‐M. Mandelkow. Microtubular structure and tubulin polymerization. Curr. Opin. Cell Biol. 1: 5–9, 1989.
 116. Mandelkow, E., and E.‐M. Mandelkow. Microtubular structure and tubulin polymerization. Curr. Opin. Cell Biol. 2: 3–9, 1990.
 117. Mandelkow, E. M., E. Mandelkow, and R. A. Milligan. Microtubule dynamics and microtubule caps: a time‐resolved cryo‐electron microscopy study. J. Cell Biol. 114: 977–991, 1991.
 118. Manton, I. The fine structure of plant cilia. Soc. Exp. Biol. Symp. 6: 306–319, 1952.
 119. Margolis, R. L., and L. Wilson. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13: 1–8, 1978.
 120. Mitchison, T. J., and M. W. Kirschner. Dynamic instability of microtubule growth. Nature 312: 237–242, 1984.
 121. Mohri, H. Amino acid composition of ‘tubulin’ constituting microtubules of sperm flagella. Nature 217: 1053–1054, 1968.
 122. Moran, D. T., F. G. Varela, and J. C. Rowley III.. Evidence for an active role of cilia in sensory transduction. Proc. Natl. Acad. Sci. U.S.A. 74: 793–797, 1977.
 123. Moss, A., W. S. Sale, L. A. Fox, and G. B. Witman. The α subunit of sea urchin outer arm dynein mediates structural and rigor binding to microtubules. J. Cell Biol. 118: 1189–200, 1992.
 124. Multigner, L., J. Gagnon, A. Dorsselaer, and D. Job. Stabilization of sea urchin flagellar microtubules by histone H1. Nature 360: 33–39, 1992.
 125. Murakami, A. Control of ciliary beat frequency in the gill of Mytilus—I. Activation of the lateral cilia by cyclic AMP. Compar. Biochem. Physiol. 86C: 273–279, 1987.
 126. Nasr, A., and P. Satir. Alloaffinity filtration: a general approach to the purification of dynein and dynein‐like molecules. Anal. Biochem. 151: 97–108, 1985.
 127. Nislow, C., V. Lombillo, R. Kuriyama, and J. R. McIntosh. A plus‐end directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359: 543–547, 1992.
 128. Novikoff, P., M. Cammer, L. Tao, H. Oda, R. Stockert, A. W. Wolkoff and P. Satir. Three dimensional organization of the rat hepatocyte cytoskeleton: relation to the asialoglycoprotein endocytosis pathway. J. Cell Sci. 109: 21–32, 1996.
 129. Nurse, P. Universal control mechanism regulating onset of M phase. Nature 344: 503–507, 1990.
 130. Oakley, B. R. γ‐tubulin: the microtubule organizer? Trends Cell Biol. 2: 1–5, 1992.
 131. Ogawa, K. Four ATP‐binding sites in the midregion of the β‐heavy chain of dynein. Nature 352: 643–645, 1991.
 132. Olmsted, J. B. Microtubule‐associated proteins. Annu. Rev. Cell Biol. 2: 421–457, 1986.
 133. Olmsted, J. B. Non‐motor microtubule‐associated proteins. Curr. Opin. Cell Biol. 3: 52–58, 1991.
 134. Omoto, C. K., and K. A. Johnson. Activation of the dynein adenosine triphasphatase by microtubules. Biochemistry 25: 419–427, 1986.
 135. Omoto, C. K., and C. Kung. Rotation and twist of the central‐pair microtubules in the cilia of Paramecium. Nature 279: 532–534, 1980.
 136. Otter, T., Calmodulin and control of flagellar movement in: Cell Movement, edited by F. D. Warner, P. Satir, and I. R. Gibbons. New York: Alan Liss, 1989, vol. 1, p. 281–289.
 137. Otter, T., B. H. Satir, and P. Satir. Trifluoperazine‐induced changes in swimming behavior of Paramecium: evidence for two sites of drug action. Cell Motil. 4: 249–267, 1984.
 138. Pallini, V., M. Bugnoli, C. Mencarelli, and G. Scapigliati. Biochemical properties of ciliary, flagellar and cytoplasmic dyneins. Symp. Soc. Exp. Biol. 35: 339–352, 1982.
 139. Paschal, B. M., S. M. King, A. G. Moss, C. A. Collins, R. B. Vallee, and G. B. Witman. Isolated flagella outer arm dynein translocates brain microtubules in vitro. Nature 330: 672–674, 1987.
 140. Pfarr, C. M., M. Cove, P. M. Grissom, T. S. Hays, M. E. Porter, and J. R. McIntosh. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345: 263–265, 1990.
 141. Phillips, M. J., and P. Satir. The cytoskeleton of the hepatocyte: organization, relationship, and pathology In: The Liver: Biology and Pathobiology (2nd ed.), edited by I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafritz. New York: Raven Press, 1988, p. 11–27.
 142. Piperno, G., K. Mead, and W. Shestak. The inner dynein arms 12 interact with a “dynein regulatory complex” in Chlamydomonas flagella. J. Cell Biol. 118: 1455–1463, 1992.
 143. Piperno, G., Z. Ramanis, E. F. Smith, and W. S. Sale. Three distinct inner dynein arms in Chlamydomonas flagella: molecular composition and location in the axoneme. J. Cell Biol. 110: 379–389, 1990.
 144. Poole, C. A., M. H. Flint, and B. W. Beaumont. Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe? Cell Motil. 5: 175–193, 1985.
 145. Porter, K. R. The submicroscopic morphology of protoplasm. Harvey Lect. Ser. 51: 175–228, 1957.
 146. Porter, K. R., Cytoplasmic microtubules and their functions. In: Principles of Biomolecular Organization, edited by G. E. W. Wolstenholme, and M. O'Connor. Ciba Foundation Symp., Boston: Little Brown, 1966, p. 308–335.
 147. Porter, M. E., and K. A. Johnson. Dynein structure and function. Annu. Rev. Cell Biol. 5: 119–151, 1989.
 148. Redenbach, D. M., and A. W. Vogl. Microtubule polarity in Sertoli cells: a model for microtubule‐based spermatid transport. Eur. J. Cell Biol. 54: 277–290, 1991.
 149. Reed, W., J. Avolio, and P. Satir. The cytoskeleton of the apical border of the lateral cells of freshwater mussel gill: integration of microtubule‐ and the microfilament‐based organelles. J. Cell Sci. 68: 1–33, 1984.
 150. Reed, W., and P. Satir. Spreading ciliary arrest in a mussel gill epithelium: characterization by quick fixation. J. Cell Physiol. 126: 191–205, 1986.
 151. Rieder, C. L. Mitosis: towards a molecular understanding of chromosome behavior. Curr. Opin. Cell Biol. 3: 59–66, 1991.
 152. Roberts, K., and J. S. Hyams. Microtubules. New York: Academic Press, 1979, 595pp.
 153. Roth, K. E., C. L. Reider, and S. S. Bowser. Flexible‐substratum technique for viewing cells from the side: some in vivo properties of primary (9 + 0) cilia in cultured kidney epithelia. J. Cell Sci. 89: 457–466, 1988.
 154. Sabatini, D. O., K. Bensch, and R. J. Barnett. Cytochemistry and electron microscopy. The preservation of cellular ultra‐structure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17: 19–58, 1963.
 155. Sakakibara, H., D. R. Mitchell, and R. Kamiya. Chlamydomonas outer arm dynein mutant missing the α‐heavy chain. J. Cell Biol. 113: 615–622, 1991.
 156. Sakakibara, H., S. Takada, S. M. King, G. B. Witman, and R. Kamiya. A Chlamydomonas outer arm dynein mutant lacking the β heavy chain. J. Cell Biol. 122: 653–661, 1993.
 157. Sale, W. S. The axonemal axis and Ca2+‐induced asymmetry of active microtubule sliding in sea urchin sperm tails. J. Cell Biol. 102: 2042–2052, 1986.
 158. Sale, W. S., and L. A. Fox. The isolated β‐heavy chain subunit of dynein translocates microtubules in vitro. J. Cell Biol. 107: 1793–1797, 1988.
 159. Sale, W. S., U. W. Goodenough, and J. E. Heuser. The substructure of isolated and in situ outer dynein arms of sea urchin sperm flagella. J. Cell Biol. 101: 1400–1422, 1985.
 160. Sale, W. S. and P. Satir. Direction of active sliding of microtubules in Tetrahymena cilia. Proc. Natl. Acad. Sci. U.S.A. 74: 2045–2049, 1977.
 161. Sanders, M. A., and J. L. Salisbury. Centrin‐mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J. Cell Biol. 108: 1751–1760, 1989.
 162. Sanderson, M., and E. R. Dirksen. Mechanosensitive and beta‐adrenergic control of ciliary beat frequencies of mammalian respiratory tract cells in culture. Am. Rev. Respir. Dis. 139: 432–440, 1989.
 163. Satir, P. Structure and function in cilia and flagella. Protoplamatologia III‐E: 52, 1965a.
 164. Satir, P. Studies on cilia: II. Examination of the distal region of the ciliary shaft and the role of filaments in motility. J. Cell Biol. 26: 805–834, 1965b.
 165. Satir, P. Studies on cilia. III. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J. Cell Biol. 39: 77–94, 1968.
 166. Satir, P. Approaches to potential sliding mechanisms of cytoplasmic microtubules. Cold Spring Harb. Symp. Quant. Biol. 46: 285–292, 1982.
 167. Satir, P. The cytoplasmic matrix: old and new questions. J. Cell Biol. 99: 235s–238s, 1984.
 168. Satir, P. Switching mechanisms in the control of ciliary motility, Modern Cell Biology 4: 1–46, 1985.
 169. Satir, P., Structural analysis of the dynein cross‐bridge cycle. In: Cell Movement, Vol. 1: The Dynein ATPases, edited by F. D. Warner et al. New York: Alan Liss, 1989a, p. 219–234.
 170. Satir, P. The role of axonemal components in ciliary motility. Compar. Biochem. Physiol. 94A: 351–357, 1989b.
 171. Satir, P. Mechanisms of ciliary movement: contributions from electron microscopy. Scanning Microsc. Intl. 6: 573–579, 1992.
 172. Satir, P., Motor molecules of the cytoskeleton: possible functions in the hepatocyte. In: The Liver Biology and Pathology (3rd ed.), edited by I. Arias et al. New York: Raven Press, 1994, p. 45–52.
 173. Satir, P., K. Barkalow, and T. Hamasaki. The control of ciliary beat frequency. Trends Cell Biol. 3: 409–412, 1993.
 174. Satir, P., J. S. Goltz, N. Isaac, and C. B. Lindemann. Switching arrest in cilia and the calcium response of rat sperm: a comparison. In: Comparative Spermatology 20 Years After, edited by B. Baccetti. New York: Raven Press, 1991, vol. 75, p. 377–384.
 175. Satir, P., J. S. Goltz, and A. W. Wolkoff. Microtubule‐based cell motility: the role of microtubules in cell motility and differentiation. Cancer Invest. 8: 685–690, 1990.
 176. Satir, P., and T. Matsuoka. Splitting the ciliary axoneme: implications for a ‘switch point’ model of dynein arm activity in ciliary motion. Cell Motil. Cytoskeleton. 14: 345–358, 1989.
 177. Satir, P., and M. A. Sleigh. The physiology of cilia and mucociliary interactions. Annu. Rev. Physiol. 52: 137–155, 1990.
 178. Satir, P., J. Wais‐Steider, S. Lebduska, A. Nasr, and J. Avolio. The mechanochemical cycle of the dynein arm. Cell Motil. 1: 303–327, 1981.
 179. Saxton, W. M., J. Hicks, L. S. B. Goldstein, and E. C. Raff. Kinesin heavy chain is essential for viability and neuromuscular function in Drosophila, but mutants show no defect in mitosis. Cell 64: 1093–1102, 1991.
 180. Schultz, J. E., S. Klumpp, R. Benz, W.J. Ch. Schürhoff‐Goeters, and A. Schmid. Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science 255: 600–603, 1992.
 181. Shingyoji, C., J. Katada, K. Takahashi, and I. R. Gibbons. Rotating the plane of imposed vibration can rotate the plane of flagellar bending in sea‐urchin sperm without twisting the axoneme. J. Cell Sci. 98: 175–182, 1991.
 182. Shingyoji, C., A. Murakawi, and K. Takahashi. Local reactivation of Triton‐extracted flagella by iontophoretic application of ATP. Nature 265: 269–270, 1977.
 183. Singer, S. J., E. H. Ball, B. Geiger, and W‐T Chen. Immunolabelling studies of cytoskeletal associations in cultured cells. Cold Spring Harb. Symp. Quant. Biol. 46: 303–316, 1981.
 184. Slautterback, D. B. Cytoplasmic microtubules I. Hydra. J. Cell Biol. 18: 367–388, 1963.
 185. Sleigh, M. A. The Biology of Cilia and Flagella. New York: Macmillan, 1962, 242 pp.
 186. Sleigh, M. A. Cilia and Flagella. New York: Academic Press, 1974, 500 pp.
 187. Sleigh, M. A. The origin of flagella—autogenous or symbiontic? Cell Motil. Cytoskeleton 6: 96–98, 1986.
 188. Sloboda, R. D., S. A. Rudolph, J. L. Rosenbaum, and P. Greengard. Cyclic AMP‐dependent endogenous phosphorylation of a microtubule‐associated protein. Proc. Natl. Acad. Sci. U.S.A. 72: 177–181, 1975.
 189. Smith, E. F., and W. S. Sale. Structural and functional reconsitututon of inner dyneins arms in Chlamydomonas flagellar axonemes. J. Cell Biol. 117: 573–581, 1992.
 190. Soifer, D. The Biology of Cytoplasmic Microtubules. Ann. NY Acad. Sci. 253: 848 pp. 1975.
 191. Soifer, D. Dynamic Aspects of Microtubule Biology. Ann. NY Acad. Sci. 466: 978 pp. 1986.
 192. Spungin, B., J. Avolio, S. Arden, and P. Satir. Dynein arm attachment probed with a non‐hydrolyzable ATP analog: Structural evidence of patterns of activity. J. Mol. Biol. 197: 671–677, 1987.
 193. Steffen, W., and R. W. Linck. Tektins in ciliary and flagellar microtubules and their association with other cytoskeletal systems. In: Cell Movement, edited by F. D. Warner and J. R. McIntosh. New York: Alan Liss, 1989, vol. 2, p. 67–81.
 194. Stephens, R. E., and E. W. Stommel. Role of cyclic adenosine monophosphate in ciliary and flagellar motility In: Cell Movement, edited by F. D. Warner, P. Satir, and I. R. Gibbons. New York: Alan Liss, 1989, vol. 1, p. 299–316.
 195. Steuer, E. R., L. Wordeman, T. A. Schroer, and M. P. Sheetz. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345: 266–268, 1990.
 196. Stewart, R. J., P. A. Pesavento, D. N. Woerpel, and L.S.B. Goldstein. Identification and partial characterization of six new members of the kinesin superfamily in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 88: 8470–8471, 1991.
 197. Sugino, K., and H. Machemer. Axial view recordings: an approach to assess the third dimension of the ciliary cycle. J. Theor. Biol. 25: 67–82, 1987.
 198. Sugino, K., and H. Machemer. Depolarization‐controlled parameters of the ciliary cycle and axonemal function. Cell Motil. Cytoskeleton 16: 251–265, 1990.
 199. Sugrue, P., J. Avolio, P. Satir, and M.E.J. Holwill. Computer modelling of Tetrahymena axonemes at macromolecular resolution: interpretation of electron micrographs. J. Cell Sci. 98: 5–16, 1991.
 200. Sullivan, K. F. Structure and utilization of tubulin isotypes. Annu. Rev. Cell Biol. 4: 687–716, 1988.
 201. Summers, K. E., and I. R. Gibbons. Adenosine triphosphate‐induced sliding of tubules in trypsin‐treated flagella of sea‐urchin sperm. Proc. Natl. Acad. Sci. U.S.A. 68: 3092–3096, 1971.
 202. Summers, K. E., and I. R. Gibbons. Effects of trypsin digestion on flagellar structures and their relationship to motility. J. Cell Biol. 58: 618–629, 1973.
 203. Svoboda, K., C. F. Schmidt, B. J. Schapp, and S. M. Block. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365: 721–727, 1993.
 204. Takahashi, K., C. Shingyoji, and S. Kamimura. Microtubule sliding in reactivated flagella. Symp. Soc. Exp. Biol. 35: 159–177, 1982.
 205. Takahashi, M., and Y. Tonomura. Binding of 30S dynein with a B‐tubule of the outer doublet of axonemes from Tetrahymena pyriformis and adenosine triphosphate‐induced dissociation of the complex. J. Biochem. (Tokyo) 84: 1339–1355, 1978.
 206. Tamm, S. L., and S. Tamm. Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J. Cell Biol. 89: 495–509, 1981.
 207. Tamm, S. L., and S. Tamm. Alternate patterns of doublet microtubule sliding in ATP‐disintegrated macrocilia of the ctenophore Beröe. J. Cell Biol. 99: 1364–1371, 1984.
 208. Tilney, L. G., Y. Hiramoto, and D. Marsland. Studies on the microtubules in heliozoa. III. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett) J. Cell Biol. 29: 77–96, 1966.
 209. Tucker, R. W., A. B. Pardee, and K. Fujiwara. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17: 527–535, 1979a.
 210. Tucker, R. W., C. D. Scher, and C. D. Stiles. Centriole deciliation associated with the early response of 3T3 cells to growth factors but not to SV40. Cell 18: 1065–1072, 1979.
 211. Vale, R. D. Intracellular transport using microtubule‐based motors. Annu. Rev. Cell Biol. 3: 347–378, 1987.
 212. Vale, R. D. Microtubule‐based motor proteins. Curr. Opin. Cell Biol. 2: 15–22, 1990.
 213. Vale, R. D., F. Malik, and D. Brown. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motors. J. Cell Biol. 119: 1589–1596, 1992.
 214. Vale, R. D., T. S. Reese, and M. P. Sheetz. Identification of a novel force‐generating protein, kinesin, involved in microtubule‐based motility. Cell 42: 39–50, 1985a.
 215. Vale, R. D., B. J. Schapp, T. J. Mitchison, E. Steuer, T. S. Reese, and M. P. Sheetz. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell 43: 623–632, 1985b.
 216. Vale, R. D., D. M. Soil, and I. R. Gibbons. One dimensional diffusion of microtubules bound to flagellar dynein. Cell 59: 915–925, 1989.
 217. Vale, R. D., and Y. Y. Toyoshima. Rotation and translocation of microtubules in vitro induced by dyneins in Tetrahymena cilia. Cell 52: 459–469, 1988.
 218. Vallee, R. B. Cytoplasmic dynein: advances in microtubule‐based motility. Trends Cell Biol. 1: 25–29, 1991.
 219. Vallee, R. B. Dynamin: motor protein or regulatory GTPase. Muscle Res. Cell Motil. 13: 493–496, 1992.
 220. Vallee, R. B., and G. S. Bloom. High molecular weight microtubule‐associated proteins (MAPs). Mod. Cell Biol. 3: 21–75, 1984.
 221. Vallee, R. B., G. S. Bloom, and W. E. Theurkauf. Microtubule‐associated proteins: subunits of the cytomatrix. J. Cell Biol. 99: 385s–445s, 1984.
 222. Vallee, R. B., J. S. Wall, B. M. Paschal, and H. S. Shpetner. Microtubule‐associated protein 1C from brain is a two‐headed cytosolic dynein. Nature 332: 561–563, 1988.
 223. Wadsworth, P., and M. McGrail. Interphase microtubule dynamics are cell specific. J. Cell Sci. 95: 23–32, 1990.
 224. Wais‐Steider, C., N. S. White, D. S. Gilbert, and P.A.M. Eagles. X‐ray diffraction patterns from microtubules and neurofilaments in axoplasm. J. Mol. Biol. 197: 205–218, 1989.
 225. Walker, R. A., E. T. O'Brien, N. K. Pryer, and M. F. Soboeiro. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107: 1437–1448, 1988.
 226. Walter, M. F., and P. Satir. Calcium does not inhibit active sliding of microtubules from mussel gill cilia. Nature 278: 69–70, 1979.
 227. Warner, F. D. Organization of interdoublet links in Tetrahymena cilia. Cell Motil. 3: 321–332, 1983.
 228. Warner, F. D., and J. R. McIntosh. Kinesin, Dynein and Microtubule Dynamics, Cell Movement, New York: Alan Liss, 1989, vol. 2.
 229. Weingarten, M. D., A. H. Lockwood, S‐Y Hwo, and M. W. Kirschner. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. U.S.A. 72: 1858–1862, 1975.
 230. Wheatley, D. N. The Centriole. A Central Enigma of Cell Biology. New York: Elsevier, 1982, 232 pp.
 231. Yen, T. J., G. Li, B. Schaar, I. Szilak, and D. W. Cleveland. CENP‐E is a putative kinetochore motor that accumulates just before mitosis. Nature 359: 540–543, 1992.
 232. Yen, T. J., P. S. Machlin, and D. W. Cleveland. Autoregulated instability of β‐tubulin mRNAs by recognition of the nascent amino terminus of β‐tubulin. Nature 334: 580–584, 1988.
 233. Yeung, C. H., and D. M. Woolley. Localized reactivation of the principal piece of demembranated hamster sperm by iontophoretic application of ATP. J. Submicrosc. Cytol. 15: 327–331, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Peter Satir. Cilia and Related Microtubular Arrays in the Eukaryotic Cell. Compr Physiol 2011, Supplement 31: Handbook of Physiology, Cell Physiology: 787-817. First published in print 1997. doi: 10.1002/cphy.cp140120