Comprehensive Physiology Wiley Online Library

Chloride Transport

Full Article on Wiley Online Library



Abstract

Chloride transport along the nephron is one of the key actions of the kidney that regulates extracellular volume and blood pressure. To maintain steady state, the kidney needs to reabsorb the vast majority of the filtered load of chloride. This is accomplished by the integrated function of sequential chloride transport activities along the nephron. The detailed mechanisms of transport in each segment generate unique patterns of interactions between chloride and numerous other individual components that are transported by the kidney. Consequently, chloride transport is inextricably intertwined with that of sodium, potassium, protons, calcium, and water. These interactions not only allow for exquisitely precise regulation but also determine the particular patterns in which the system can fail in disease states. © 2012 American Physiological Society. Compr Physiol 2:1061‐1092, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Reabsorption of chloride along the nephron. The approximate fraction of the filtered load of chloride reabsorbed in various segments is shown (adapted from reference 229: Schwiebert. Current Topics in Membranes 1994 Academic Press, with permission).

Figure 2. Figure 2.

Profile of ratio of solute concentrations in tubule fluid to those in plasma (TF/P) (top), or transepithelial potential difference (bottom), along the proximal tubule (adapted from reference 201: Rector. Am J Physiol Renal Physiol, 1983, with permission).

Figure 3. Figure 3.

Chloride flux across proximal tubules as a function of its electrochemical driving force (meq/liter) (adapted from reference 6: Alpern. J. Clin Invest, 1985, with permission).

Figure 4. Figure 4.

Model of coupled chloride‐hydroxide and sodium‐proton exchangers in the apical membrane of proximal tubule cells supporting sodium gradient‐driven chloride absorption. The red oval represents a chloride‐hydroxide exchanger, the blue box represents the sodium proton exchanger, NHE3. Note the separately extruded protons and hydroxide combine to form water in the tubule lumen and no apical recycling mechanism is necessary.

Figure 5. Figure 5.

Mechanism of formate recycling to sustain sodium‐coupled chloride reabsorption by chloride/formate exchange across the apical membrane of proximal tubule cells. The red oval represents the sodium proton exchanger, NHE3, the blue rectangle represents a proton‐formate cotransporter, and the green hexagon represents a chloride‐formate exchanger (modified from reference 192: Planelles. Pflugers Arch, 2004, Springer‐Verlag, with permission).

Figure 6. Figure 6.

Mechanism of oxalate recycling to sustain sodium‐coupled chloride reabsorption by chloride/oxalate exchange across the apical membrane. The red oval represents a sodium‐sulfate cotransporter, the blue rectangle represents a sulfate‐oxalate exchanger, and the green hexagon represents the chloride‐oxalate exchanger, CFEX (modified from reference 192: Planelles. Pflugers Arch, 2004, Springer‐Verlag, with permission).

Figure 7. Figure 7.

Possible pathways for chloride exit across the basolateral membrane of proximal tubule cells, including a chloride channel (top), a potassium chloride cotransporter (middle), and a sodium dependent chloride bicarbonate exchanger (bottom) (modified from reference 192: Planelles. Pflugers Arch, 2004, Springer‐Verlag, with permission).

Figure 8. Figure 8.

Sodium chloride transport pathways in the thin ascending limb (adapted from reference 136: Kramer. Nature Clin Prac Nephrol, 2007, Nature Publishing Group, with permission).

Figure 9. Figure 9.

Chloride transport in the thick ascending limb. Sodium potassium ATPase in the basolateral membrane provides the energy for transport. NKCC2 (the target of loop diuretics) in the apical domain allows the sodium gradient to drive potassium and chloride into the cell. Potassium recycles across the apical membrane via ROMK. Chloride leaves across the basolateral membrane via the ClC‐KB/Barttin chloride channel. The lumen negative potential drives cation absorption through the paracellular pathway. Vasopressin or parathyroid hormone increase intracellular cAMP, activating the apical transporters while activation of the calcium‐sensing receptor has the opposite effect (adapted from reference 64: Gamba. Pflugers Arch, 2009, Springer‐Verlag, with permission).

Figure 10. Figure 10.

Topology and transport modes of NKCC2 alternate splice forms. (A) C‐terminal variant Long form. (B) C‐terminal variant Short form, illustrating the replacement of the terminal 329 amino acids with a 55 amino acid segment, shown in yellow. The site of alternate version of encoded by the fourth exon is shown in red (adapted from reference 64: Gamba. Pflugers Arch, 2009, Springer‐Verlag, with permission).

Figure 11. Figure 11.

Distribution of the various splice variants along the thick ascending limb (adapted from reference 64: Gamba. Pflugers Arch, 2009, Springer‐Verlag, with permission).

Figure 12. Figure 12.

Differences in the kinetics of transport supported by the three exon 4 isoforms of NKCC2. The effect of varying extra cellular ion concentrations is shown for sodium (A), rubidium (B), and chloride (C). Normalized 86Rb uptake by oocytes injected with NKCC2B (red circles), NKCC2A (green triangles), or NKCC2F (blue squares) is presented. Horizontal bars at the bottom of the graphs represent the approximate range of ion concentration in the tubule lumen in the portion of the mammalian thick ascending limb in which each variant is present using the same color code (adapted from reference 71: Gimeniz. J Biol Chem, 2002, with permission)

Figure 13. Figure 13.

(A) Relative contribution of NKCC2A and NKCC2B isoforms to the tubuloglomerular feedback (TGF) response. Relative response magnitudes for the flow ranges indicated along the x‐axis are expressed as percentage of the total stop‐flow pressure response. (B) TGF responses in wild‐type mice compared with the sum of TGF responses in NKCC2B−/− and NKCC2A−/− mice. Response magnitudes for the flow ranges indicated along the x‐axis are expressed as changes in stop flow pressure (adapted from reference 36: Castorp. Am J Physiol Renal Physiol, 2008, with permission).

Figure 14. Figure 14.

Cells of the distal convoluted tubule. Models of the more proximal DCT‐1 cells and more distal DCT‐2 cells are shown. Transepithelial voltage is near zero at the beginning of the DCT and becomes progressively more lumen‐negative. Identified ion transporters include (A) the sodium proton exchanger NHE3; (B) the thiazide‐sensitive sodium chloride cotransporter, NCC; (C) the apical potassium channel, ROMK; (D) the sodium potassium ATPase; (E) a basolateral potassium channel, Kir; (F) a basolateral chloride channel, ClCK‐B; (G) a sodium proton exchanger, NHE‐1; and (H) the apical epithelial sodium channel, ENaC. In addition, apical chloride‐formate exchanger and potassium‐chloride cotransport activities are depicted (modified from reference 205: Reilly. Physiol Rev, 2000, with permission).

Figure 15. Figure 15.

Traditional model of ion transport by cells of the cortical collecting duct. The type B intercalated cell (left) carries out electroneutral bicarbonate secretion and chloride absorption, using apical anion exchanger, pendrin, and basolateral proton ATPase and chloride channel. The principal cell (center) carries out electrogenic sodium reabsorption coupled with potassium secretion, using apical sodium and potassium channels and basolateral sodium‐potassium ATPase. The type A intercalated cell (right) carries out electrogenic proton secretion, using apical proton ATPase, basolateral anion exchanger, AE1, and basolateral chloride exit mechanisms including a chloride channel and a potassium‐chloride contransporter, KCC4. Lumen‐negative potential generated by the principal cells may drive chloride absorption through the paracellular pathway.

Figure 16. Figure 16.

Revised model of sodium chloride reabsorption by the collecting duct. The principal cells and type A intercalated cells are as in Figure 14. The type B intercalated cell (left) express both pendrin, a chloride‐bicarbonate exchanger, and NDCBE, a sodium‐dependent chloride‐bicarbonate exchanger in the apical membrane. The cell may carry out electroneutral bicarbonate secretion, electroneutral sodium chloride reabsorption, or a combination of the two depending on the relative activities of the two exchangers. The basolateral sodium exit pathway is undefined. There is minimal paracellular chloride movement.

Figure 17. Figure 17.

Models of sodium chloride absorption and secretion activities of the inner medullary collecting duct. Sodium chloride absorption (left) is occurs by transcellular active sodium transport and paracellular chloride movement. Sodium chloride secretion occurs via transcellular active chloride transport and paracellular sodium movement.

Figure 18. Figure 18.

Possible roles of the electrogenic chloride‐proton exchange activity of ClC‐5 in endosomes. Left: proton and electrical gradient generated by the proton ATPase drives chloride proton exchange, collapsing the electrical potential and increasing intravesicular chloride concentration. Right: the intravesicular to cytoplasmic chloride gradient immediately following endocytosis drives chloride proton exchange, acidifying the vesicle independent of the proton pump and reducing intravesicular chloride.



Figure 1.

Reabsorption of chloride along the nephron. The approximate fraction of the filtered load of chloride reabsorbed in various segments is shown (adapted from reference 229: Schwiebert. Current Topics in Membranes 1994 Academic Press, with permission).



Figure 2.

Profile of ratio of solute concentrations in tubule fluid to those in plasma (TF/P) (top), or transepithelial potential difference (bottom), along the proximal tubule (adapted from reference 201: Rector. Am J Physiol Renal Physiol, 1983, with permission).



Figure 3.

Chloride flux across proximal tubules as a function of its electrochemical driving force (meq/liter) (adapted from reference 6: Alpern. J. Clin Invest, 1985, with permission).



Figure 4.

Model of coupled chloride‐hydroxide and sodium‐proton exchangers in the apical membrane of proximal tubule cells supporting sodium gradient‐driven chloride absorption. The red oval represents a chloride‐hydroxide exchanger, the blue box represents the sodium proton exchanger, NHE3. Note the separately extruded protons and hydroxide combine to form water in the tubule lumen and no apical recycling mechanism is necessary.



Figure 5.

Mechanism of formate recycling to sustain sodium‐coupled chloride reabsorption by chloride/formate exchange across the apical membrane of proximal tubule cells. The red oval represents the sodium proton exchanger, NHE3, the blue rectangle represents a proton‐formate cotransporter, and the green hexagon represents a chloride‐formate exchanger (modified from reference 192: Planelles. Pflugers Arch, 2004, Springer‐Verlag, with permission).



Figure 6.

Mechanism of oxalate recycling to sustain sodium‐coupled chloride reabsorption by chloride/oxalate exchange across the apical membrane. The red oval represents a sodium‐sulfate cotransporter, the blue rectangle represents a sulfate‐oxalate exchanger, and the green hexagon represents the chloride‐oxalate exchanger, CFEX (modified from reference 192: Planelles. Pflugers Arch, 2004, Springer‐Verlag, with permission).



Figure 7.

Possible pathways for chloride exit across the basolateral membrane of proximal tubule cells, including a chloride channel (top), a potassium chloride cotransporter (middle), and a sodium dependent chloride bicarbonate exchanger (bottom) (modified from reference 192: Planelles. Pflugers Arch, 2004, Springer‐Verlag, with permission).



Figure 8.

Sodium chloride transport pathways in the thin ascending limb (adapted from reference 136: Kramer. Nature Clin Prac Nephrol, 2007, Nature Publishing Group, with permission).



Figure 9.

Chloride transport in the thick ascending limb. Sodium potassium ATPase in the basolateral membrane provides the energy for transport. NKCC2 (the target of loop diuretics) in the apical domain allows the sodium gradient to drive potassium and chloride into the cell. Potassium recycles across the apical membrane via ROMK. Chloride leaves across the basolateral membrane via the ClC‐KB/Barttin chloride channel. The lumen negative potential drives cation absorption through the paracellular pathway. Vasopressin or parathyroid hormone increase intracellular cAMP, activating the apical transporters while activation of the calcium‐sensing receptor has the opposite effect (adapted from reference 64: Gamba. Pflugers Arch, 2009, Springer‐Verlag, with permission).



Figure 10.

Topology and transport modes of NKCC2 alternate splice forms. (A) C‐terminal variant Long form. (B) C‐terminal variant Short form, illustrating the replacement of the terminal 329 amino acids with a 55 amino acid segment, shown in yellow. The site of alternate version of encoded by the fourth exon is shown in red (adapted from reference 64: Gamba. Pflugers Arch, 2009, Springer‐Verlag, with permission).



Figure 11.

Distribution of the various splice variants along the thick ascending limb (adapted from reference 64: Gamba. Pflugers Arch, 2009, Springer‐Verlag, with permission).



Figure 12.

Differences in the kinetics of transport supported by the three exon 4 isoforms of NKCC2. The effect of varying extra cellular ion concentrations is shown for sodium (A), rubidium (B), and chloride (C). Normalized 86Rb uptake by oocytes injected with NKCC2B (red circles), NKCC2A (green triangles), or NKCC2F (blue squares) is presented. Horizontal bars at the bottom of the graphs represent the approximate range of ion concentration in the tubule lumen in the portion of the mammalian thick ascending limb in which each variant is present using the same color code (adapted from reference 71: Gimeniz. J Biol Chem, 2002, with permission)



Figure 13.

(A) Relative contribution of NKCC2A and NKCC2B isoforms to the tubuloglomerular feedback (TGF) response. Relative response magnitudes for the flow ranges indicated along the x‐axis are expressed as percentage of the total stop‐flow pressure response. (B) TGF responses in wild‐type mice compared with the sum of TGF responses in NKCC2B−/− and NKCC2A−/− mice. Response magnitudes for the flow ranges indicated along the x‐axis are expressed as changes in stop flow pressure (adapted from reference 36: Castorp. Am J Physiol Renal Physiol, 2008, with permission).



Figure 14.

Cells of the distal convoluted tubule. Models of the more proximal DCT‐1 cells and more distal DCT‐2 cells are shown. Transepithelial voltage is near zero at the beginning of the DCT and becomes progressively more lumen‐negative. Identified ion transporters include (A) the sodium proton exchanger NHE3; (B) the thiazide‐sensitive sodium chloride cotransporter, NCC; (C) the apical potassium channel, ROMK; (D) the sodium potassium ATPase; (E) a basolateral potassium channel, Kir; (F) a basolateral chloride channel, ClCK‐B; (G) a sodium proton exchanger, NHE‐1; and (H) the apical epithelial sodium channel, ENaC. In addition, apical chloride‐formate exchanger and potassium‐chloride cotransport activities are depicted (modified from reference 205: Reilly. Physiol Rev, 2000, with permission).



Figure 15.

Traditional model of ion transport by cells of the cortical collecting duct. The type B intercalated cell (left) carries out electroneutral bicarbonate secretion and chloride absorption, using apical anion exchanger, pendrin, and basolateral proton ATPase and chloride channel. The principal cell (center) carries out electrogenic sodium reabsorption coupled with potassium secretion, using apical sodium and potassium channels and basolateral sodium‐potassium ATPase. The type A intercalated cell (right) carries out electrogenic proton secretion, using apical proton ATPase, basolateral anion exchanger, AE1, and basolateral chloride exit mechanisms including a chloride channel and a potassium‐chloride contransporter, KCC4. Lumen‐negative potential generated by the principal cells may drive chloride absorption through the paracellular pathway.



Figure 16.

Revised model of sodium chloride reabsorption by the collecting duct. The principal cells and type A intercalated cells are as in Figure 14. The type B intercalated cell (left) express both pendrin, a chloride‐bicarbonate exchanger, and NDCBE, a sodium‐dependent chloride‐bicarbonate exchanger in the apical membrane. The cell may carry out electroneutral bicarbonate secretion, electroneutral sodium chloride reabsorption, or a combination of the two depending on the relative activities of the two exchangers. The basolateral sodium exit pathway is undefined. There is minimal paracellular chloride movement.



Figure 17.

Models of sodium chloride absorption and secretion activities of the inner medullary collecting duct. Sodium chloride absorption (left) is occurs by transcellular active sodium transport and paracellular chloride movement. Sodium chloride secretion occurs via transcellular active chloride transport and paracellular sodium movement.



Figure 18.

Possible roles of the electrogenic chloride‐proton exchange activity of ClC‐5 in endosomes. Left: proton and electrical gradient generated by the proton ATPase drives chloride proton exchange, collapsing the electrical potential and increasing intravesicular chloride concentration. Right: the intravesicular to cytoplasmic chloride gradient immediately following endocytosis drives chloride proton exchange, acidifying the vesicle independent of the proton pump and reducing intravesicular chloride.

References
 1. Adachi S, Uchida S, Ito H, Hata M, Hiroe M, Marumo F, Sasaki S. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle's loop and collecting ducts of rat kidney. J Biol Chem 269: 17677‐17683, 1994.
 2.al‐Awqati Q, Barasch J, Landry D. Chloride channels of intracellular organelles and their potential role in cystic fibrosis. J Exp Biol 172: 245‐266, 1992.
 3. Allen F, Tisher CC. Morphology of the ascending thick limb of Henle. Kidney Int 9: 8‐22, 1976.
 4. Allen GG, Barratt LJ. Effect of aldosterone on the transepithelial potential difference of the rat distal tubule. Kidney Int 19: 678‐686, 1981.
 5. Alper SL, Natale J, Gluck S, Lodish HF, Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+‐ATPase. Proc Natl Acad Sci U S A 86: 5429‐5433, 1989.
 6. Alpern RJ, Howlin KJ, Preisig PA. Active and passive components of chloride transport in the rat proximal convoluted tubule. J Clin Invest 76: 1360‐1366, 1985.
 7. Amlal H, Petrovic S, Xu J, Wang Z, Sun X, Barone S, Soleimani M. Deletion of the anion exchanger Slc26a4 (pendrin) decreases apical Cl(‐)/HCO3(‐) exchanger activity and impairs bicarbonate secretion in kidney collecting duct. Am J Physiol 299: C33‐C41, 2010.
 8. Aronson PS. Essential roles of CFEX‐mediated Cl(‐)‐oxalate exchange in proximal tubule NaCl transport and prevention of urolithiasis. Kidney Int 70: 1207‐1213, 2006.
 9. Aronson PS, Giebisch G. Mechanisms of chloride transport in the proximal tubule. Am J Physiol 273: F179‐192, 1997.
 10. Bachmann S, Velazquez H, Obermuller N, Reilly RF, Moser D, Ellison DH. Expression of the thiazide‐sensitive Na‐Cl cotransporter by rabbit distal convoluted tubule cells. J Clin Invest 96: 2510‐2514, 1995.
 11. Barratt LJ, Rector FC, Jr, Kokko JP, Tisher CC, Seldin DW. Transepithelial potential difference profile of the distal tubule of the rat kidney. Kidney Int 8: 368‐375, 1975.
 12. Barriere H, Bagdany M, Bossard F, Okiyoneda T, Wojewodka G, Gruenert D, Radzioch D, Lukacs GL. Revisiting the role of cystic fibrosis transmembrane conductance regulator and counterion permeability in the pH regulation of endocytic organelles. Mol Biol Cell 20: 3125‐3141, 2009.
 13. Bartter FC, Pronove P, Gill JR, Jr, Maccardle RC. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med 33: 811‐828, 1962.
 14. Bastani B, Purcell H, Hemken P, Trigg D, Gluck S. Expression and distribution of renal vacuolar proton‐translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest 88: 126‐136, 1991.
 15. Baum M. Evidence that parallel Na+‐H+ and Cl(‐)‐HCO3‐(OH‐) antiporters transport NaCl in the proximal tubule. Am J Physiol 252: F338‐345, 1987.
 16. Baum M, Berry CA. Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit proximal convoluted tubule. J Clin Invest 74: 205‐211, 1984.
 17. Baum M, Quigley R. Maturation of rat proximal tubule chloride permeability. Am J Physiol Regul Integr Comp Physiol 289: R1659‐R1664, 2005a.
 18. Baum M, Quigley R. Proximal tubule water transport‐lessons from aquaporin knockout mice. Am J Physiol Renal Physiol 289: F1193‐F1194, 2005b.
 19. Bello‐Reuss E. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J Physiol 326: 49‐63, 1982.
 20. Berg U, Kusoffsky E, Strandvik B. Renal function in cystic fibrosis with special reference to the renal sodium handling. Acta Paediatr Scand 71: 833‐838, 1982.
 21. Biner HL, Arpin‐Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B. Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 13: 836‐847, 2002.
 22. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier‐Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29: 310‐314, 2001.
 23. Bobulescu IA, Moe OW. Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch 458: 5‐21, 2009.
 24. Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in mice lacking the K‐Cl co‐transporter Kcc4. Nature 416: 874‐878, 2002.
 25. Brown D, Hirsch S, Gluck S. An H+‐ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331: 622‐624, 1988.
 26. Burckhardt BC, Sato K, Fromter E. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. Pflugers Arch 401: 34‐42, 1984.
 27. Burg M, Stoner L. Renal tubular chloride transport and the mode of action of some diuretics. Annu Rev Physiol 38: 37‐45, 1976.
 28. Burg M, Stoner L, Cardinal J, Green N. Furosemide effect on isolated perfused tubules. Am J Physiol 225: 119‐124, 1973.
 29. Burg MB. Thick ascending limb of Henle's loop. Kidney Int 22: 454‐464, 1982.
 30. Burg MB, Green N. Function of the thick ascending limb of Henle's loop. Am J Physiol 224: 659‐668, 1973.
 31. Campean V, Kricke J, Ellison D, Luft FC, Bachmann S. Localization of thiazide‐sensitive Na(+)‐Cl(‐) cotransport and associated gene products in mouse DCT. Am J Physiol Renal Physiol 281: F1028‐F1035, 2001.
 32. Cardinal J, Lapointe JY, Laprade R. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule. Am J Physiol 247: F352‐F364, 1984.
 33. Carota I, Theilig F, Oppermann M, Kongsuphol P, Rosenauer A, Schreiber R, Jensen BL, Walter S, Kunzelmann K, Castrop H. Localization and functional characterization of the human NKCC2 isoforms. Acta Physiol (Oxford) 199: 327‐338, 2010.
 34. Carraro‐Lacroix LR, Lessa LM, Fernandez R, Malnic G. Physiological implications of the regulation of vacuolar H+‐ATPase by chloride ions. Braz J Med Biol Res 42: 155‐163, 2009.
 35. Cassola AC, Mollenhauer M, Fromter E. The intracellular chloride activity of rat kidney proximal tubular cells. Pflugers Arch 399: 259‐265, 1983.
 36. Castrop H, Schnermann J. Isoforms of renal Na‐K‐2Cl cotransporter NKCC2: expression and functional significance. Am J Physiol Renal Physiol 295: F859‐F866, 2008.
 37. Chantrelle BM, Cogan MG, Rector FC, Jr. Active and passive components of NaCl absorption in the proximal convoluted tubule of the rat kidney. Miner Electrolyte Metab 11: 209‐214, 1985.
 38. Chou CL, Knepper MA. In vitro perfusion of chinchilla thin limb segments: urea and NaCl permeabilities. Am J Physiol 264: F337‐F343, 1993.
 39. Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ. Loss of chloride channel ClC‐5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci U S A 100: 8472‐8477, 2003.
 40. Christensen EI, Verroust PJ, Nielsen R. Receptor‐mediated endocytosis in renal proximal tubule. Pflugers Arch 458: 1039‐1048, 2009.
 41. Costanzo LS. Comparison of calcium and sodium transport in early and late rat distal tubules: effect of amiloride. Am J Physiol 246: F937‐F945, 1984.
 42. Costanzo LS, Windhager EE. Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol 235: F492‐F506, 1978.
 43. Dahl LK. Salt and hypertension. Am J Clin Nutr 25: 231‐244, 1972.
 44. Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ. The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int 50: 208‐218, 1996.
 45. Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV. Intra‐renal and subcellular distribution of the human chloride channel, CLC‐5, reveals a pathophysiological basis for Dent's disease. Hum Mol Genet 8: 247‐257, 1999.
 46. Devuyst O, Guggino WB. Chloride channels in the kidney: lessons learned from knockout animals. Am J Physiol Renal Physiol 283: F1176‐F1191, 2002.
 47. Dietl P, Schwiebert E, Stanton BA. Cellular mechanisms of chloride transport in the cortical collecting duct. Kidney Int Suppl 33: S125‐S130, 1991.
 48. Donckerwolcke RA, van Diemen‐Steenvoorde R, van der Laag J, Koomans HA, Boer WH. Impaired diluting segment chloride reabsorption in patients with cystic fibrosis. Child Nephrol Urol 12: 186‐191, 1992.
 49. Dorup J. Ultrastructure of three‐dimensionally localized distal nephron segments in superficial cortex of the rat kidney. J Ultrastruct Mol Struct Res 99: 169‐187, 1988.
 50. Eladari D, Chambrey R, Frische S, Vallet M, Edwards A. Pendrin as a regulator of ECF and blood pressure. Curr Opin Nephrol Hypertens 18: 356‐362, 2009.
 51. Ellison DH, Velazquez H, Wright FS. Unidirectional potassium fluxes in renal distal tubule: effects of chloride and barium. Am J Physiol 250: F885‐F894, 1986.
 52. Ellison DH, Velazquez H, Wright FS. Thiazide‐sensitive sodium chloride cotransport in early distal tubule. Am J Physiol 253: F546‐F554, 1987.
 53. Emmons C, Kurtz I. Functional characterization of three intercalated cell subtypes in the rabbit outer cortical collecting duct. J Clin Invest 93: 417‐423, 1994.
 54. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ. Barttin is a Cl‐ channel beta‐subunit crucial for renal Cl‐ reabsorption and inner ear K+ secretion. Nature 414: 558‐561, 2001.
 55. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17: 411‐422, 1997.
 56. Farfel Z, Iaina A, Rosenthal T, Waks U, Shibolet S, Gafni J. Familial hyperpotassemia and hypertension accompanied by normal plasma aldosterone levels: possible hereditary cell membrane defect. Arch Intern Med 138: 1828‐1832, 1978.
 57. Fava C, Montagnana M, Almgren P, Rosberg L, Guidi GC, Berglund G, Melander O. The functional variant of the CLC‐Kb channel T481S is not associated with blood pressure or hypertension in Swedes. J Hypertens 25: 111‐116, 2007.
 58. Fisher SE, Black GC, Lloyd SE, Hatchwell E, Wrong O, Thakker RV, Craig IW. Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X‐linked hereditary nephrolithiasis). Hum Mol Genet 3: 2053‐2059, 1994.
 59. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8: 917‐929, 2007.
 60. Fuller CM, Benos DJ. CFTR. Am J Physiol 263: C267‐C286, 1992.
 61. Galla JH, Bonduris DN, Luke RG. Effects of chloride and extracellular fluid volume on bicarbonate reabsorption along the nephron in metabolic alkalosis in the rat. Reassessment of the classical hypothesis of the pathogenesis of metabolic alkalosis. J Clin Invest 80: 41‐50, 1987.
 62. Gamba G. Molecular physiology and pathophysiology of electroneutral cation‐chloride cotransporters. Physiol Rev 85: 423‐493, 2005.
 63. Gamba G. The thiazide‐sensitive Na+‐Cl‐ cotransporter: molecular biology, functional properties, and regulation by WNKs. Am J Physiol Renal Physiol 297: F838‐F848, 2009.
 64. Gamba G, Friedman PA. Thick ascending limb: the Na(+):K (+):2Cl (‐) co‐transporter, NKCC2, and the calcium‐sensing receptor, CaSR. Pflugers Arch 458: 61‐76, 2009.
 65. Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium‐(potassium)‐chloride cotransporter family expressed in kidney. J Biol Chem 269: 17713‐17722, 1994.
 66. Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Hediger MA, Brenner BM, Hebert SC. Primary structure and functional expression of a cDNA encoding the thiazide‐sensitive, electroneutral sodium‐chloride cotransporter. Proc Natl Acad Sci U S A 90: 2749‐2753, 1993.
 67. Garg LC, Knepper MA, Burg MB. Mineralocorticoid effects on Na‐K‐ATPase in individual nephron segments. Am J Physiol 240: F536‐F544, 1981.
 68. Gesek FA, Friedman PA. Calcitonin stimulates calcium transport in distal convoluted tubule cells. Am J Physiol 264: F744‐F751, 1993.
 69. Ghishan FK, Knobel S, Barnard JA, Breyer M. Expression of a novel sodium‐hydrogen exchanger in the gastrointestinal tract and kidney. J Membr Biol 144: 267‐271, 1995.
 70. Gifford JD, Sharkins K, Work J, Luke RG, Galla JH. Total CO2 transport in rat cortical collecting duct in chloride‐depletion alkalosis. Am J Physiol 258: F848‐F853, 1990.
 71. Gimenez I, Isenring P, Forbush B. Spatially distributed alternative splice variants of the renal Na‐K‐Cl cotransporter exhibit dramatically different affinities for the transported ions. J Biol Chem 277: 8767‐8770, 2002.
 72. Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79: 221‐235, 1966.
 73. Glorioso N, Filigheddu F, Troffa C, Soro A, Parpaglia PP, Tsikoudakis A, Myers RH, Herrera VL, Ruiz‐Opazo N. Interaction of alpha(1)‐Na,K‐ATPase and Na,K,2Cl‐cotransporter genes in human essential hypertension. Hypertension 38: 204‐209, 2001.
 74. Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 8: 93‐102, 1986.
 75. Gordon RD, Geddes RA, Pawsey CG, O'Halloran MW. Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med 19: 287‐294, 1970.
 76. Gordon RD, Ravenscroft PJ, Klemm SA, Tunny TJ, Hamlet SM. A new Australian kindred with the syndrome of hypertension and hyperkalaemia has dysregulation of atrial natriuretic factor. J Hypertens Suppl 6: S323‐326, 1988.
 77. Grantham JJ, Ye M, Gattone VH, 2nd, Sullivan LP. In vitro fluid secretion by epithelium from polycystic kidneys. J Clin Invest 95: 195‐202, 1995.
 78. Greger R. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pflugers Arch 390: 38‐43, 1981.
 79. Greger R. Physiology of renal sodium transport. Am J Med Sci 319: 51‐62, 2000.
 80. Greger R, Mall M, Bleich M, Ecke D, Warth R, Riedemann N, Kunzelmann K. Regulation of epithelial ion channels by the cystic fibrosis transmembrane conductance regulator. J Mol Med 74: 527‐534, 1996.
 81. Greger R, Oberleithner H, Schlatter E, Cassola AC, Weidtke C. Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflugers Arch 399: 29‐34, 1983.
 82. Greger R, Schlatter E. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 392: 92‐94, 1981.
 83. Greger R, Schlatter E. Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle's loop. Klin Wochenschr 61: 1019‐1027, 1983a.
 84. Greger R, Schlatter E. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch 396: 325‐334, 1983b.
 85. Greger R, Schlatter E. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 396: 315‐324, 1983c.
 86. Greger R, Schlatter E, Lang F. Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 396: 308‐314, 1983.
 87. Gross JB, Imai M, Kokko JP. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J Clin Invest 55: 1284‐1294, 1975.
 88. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ. ClC‐5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci U S A 95: 8075‐8080, 1998.
 89. Haggie PM, Verkman AS. Defective organellar acidification as a cause of cystic fibrosis lung disease: reexamination of a recurring hypothesis. Am J Physiol Lung Cell Mol Physiol 296: L859‐L867, 2009.
 90. Hamm LL, Hering‐Smith KS, Vehaskari VM. Control of bicarbonate transport in collecting tubules from normal and remnant kidneys. Am J Physiol 256: F680‐F687, 1989.
 91. Hanaoka K, Devuyst O, Schwiebert EM, Wilson PD, Guggino WB. A role for CFTR in human autosomal dominant polycystic kidney disease. Am J Physiol 270: C389‐C399, 1996.
 92. Hanzlik RP, Fowler SC, Eells JT. Absorption and elimination of formate following oral administration of calcium formate in female human subjects. Drug Metab Dispos 33: 282‐286, 2005.
 93. Hara‐Chikuma M, Wang Y, Guggino SE, Guggino WB, Verkman AS. Impaired acidification in early endosomes of ClC‐5 deficient proximal tubule. Biochem Biophys Res Commun 329: 941‐946, 2005.
 94. Hayashi M, Schuster VL, Stokes JB. Absence of transepithelial anion exchange by rabbit OMCD: evidence against reversal of cell polarity. Am J Physiol 255: F220‐F228, 1988.
 95. Hayslett JP, Boulpaep EL, Giebisch GH. Factors influencing transepithelial potential difference in mammalian distal tubule. Am J Physiol 234: F182‐F191, 1978.
 96. Hebert SC, Culpepper RM, Andreoli TE. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH‐stimulated NaCl cotransport. Am J Physiol 241: F412‐F431, 1981a.
 97. Hebert SC, Culpepper RM, Andreoli TE. NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport; origin of transepithelial voltage. Am J Physiol 241: F432‐F442, 1981b.
 98. Herrera VL, Lopez LV, Ruiz‐Opazo N. Alpha1 Na,K‐ATPase and Na,K,2Cl‐cotransporte/D3mit3 loci interact to increase susceptibility to salt‐sensitive hypertension in Dahl S(HSD) rats. Mol Med 7: 125‐134, 2001.
 99. Hogan MC, Masyuk TV, Page LJ, Kubly VJ, Bergstralh EJ, Li X, Kim B, King BF, Glockner J, Holmes DR, III, Rossetti S, Harris PC, LaRusso NF, Torres VE. Randomized clinical trial of long‐acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol 21: 1052‐1061, 2010.
 100. Holmberg C, Kokko JP, Jacobson HR. Determination of chloride and bicarbonate permeabilities in proximal convoluted tubules. Am J Physiol 241: F386‐F394, 1981.
 101. Huang CL, Kuo E. Mechanisms of disease: WNK‐ing at the mechanism of salt‐sensitive hypertension. Nat Clin Pract Nephrol 3: 623‐630, 2007.
 102. Hughey RP, Kleyman TR. Functional cross talk between ENaC and pendrin. Am J Physiol Renal Physiol 293: F1439‐F1440, 2007.
 103. Igarashi P, Vanden Heuvel GB, Payne JA, Forbush B, III. Cloning, embryonic expression, and alternative splicing of a murine kidney‐specific Na‐K‐Cl cotransporter. Am J Physiol 269: F405‐F418, 1995.
 104. Imai M. Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro. Am J Physiol 232: F201‐F209, 1977.
 105. Imai M, Kokko JP. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J Clin Invest 53: 393‐402, 1974.
 106. Imai M, Kokko JP. Mechanism of sodium and chloride transport in the thin ascending limb of Henle. J Clin Invest 58: 1054‐1060, 1976.
 107. Imai M, Taniguchi J, Tabei K. Function of thin loops of Henle. Kidney Int 31: 565‐579, 1987.
 108. Ishibashi K, Rector FC, Jr, Berry CA. Chloride transport across the basolateral membrane of rabbit proximal convoluted tubules. Am J Physiol 258: F1569‐F1578, 1990.
 109. Ishibashi K, Rector FC, Jr, Berry CA. Role of Na‐dependent Cl/HCO3 exchange in basolateral Cl transport of rabbit proximal tubules. Am J Physiol 264: F251‐F258, 1993.
 110. Isozaki T, Yoshitomi K, Imai M. Effects of Cl‐ transport inhibitors on Cl‐ permeability across hamster ascending thin limb. Am J Physiol 257: F92‐F98, 1989.
 111. Jeck N, Waldegger P, Doroszewicz J, Seyberth H, Waldegger S. A common sequence variation of the CLCNKB gene strongly activates ClC‐Kb chloride channel activity. Kidney Int 65: 190‐197, 2004.
 112. Jeck N, Waldegger S, Lampert A, Boehmer C, Waldegger P, Lang PA, Wissinger B, Friedrich B, Risler T, Moehle R, Lang UE, Zill P, Bondy B, Schaeffeler E, Asante‐Poku S, Seyberth H, Schwab M, Lang F. Activating mutation of the renal epithelial chloride channel ClC‐Kb predisposing to hypertension. Hypertension 43: 1175‐1181, 2004.
 113. Jentsch TJ. Chloride and the endosomal‐lysosomal pathway: emerging roles of CLC chloride transporters. J Physiol 578: 633‐640, 2007.
 114. Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38: 474‐478, 2006.
 115. Jiang Z, Grichtchenko, II, Boron WF, Aronson PS. Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem 277: 33963‐33967, 2002.
 116. Jouret F, Bernard A, Hermans C, Dom G, Terryn S, Leal T, Lebecque P, Cassiman JJ, Scholte BJ, de Jonge HR, Courtoy PJ, Devuyst O. Cystic fibrosis is associated with a defect in apical receptor‐mediated endocytosis in mouse and human kidney. J Am Soc Nephrol 18: 707‐718, 2007.
 117. Jouret F, Devuyst O. CFTR and defective endocytosis: new insights in the renal phenotype of cystic fibrosis. Pflugers Arch 457: 1227‐1236, 2009.
 118. Karniski LP, Aronson PS. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc Natl Acad Sci U S A 82: 6362‐6365, 1985.
 119. Karniski LP, Aronson PS. Anion exchange pathways for Cl‐ transport in rabbit renal microvillus membranes. Am J Physiol 253: F513‐F521, 1987.
 120. Khuri RN, Agulian SK, Bogharian K. Electrochemical potentials of chloride in distal renal tubule of the rat. Am J Physiol 227: 1352‐1355, 1974.
 121. Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A 91: 6943‐6947, 1994.
 122. Kim YH, Kwon TH, Frische S, Kim J, Tisher CC, Madsen KM, Nielsen S. Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and mouse kidney. Am J Physiol Renal Physiol 283: F744‐F754, 2002.
 123. Kizer NL, Lewis B, Stanton BA. Electrogenic sodium absorption and chloride secretion by an inner medullary collecting duct cell line (mIMCD‐K2). Am J Physiol 268: F347‐F355, 1995.
 124. Knauf F, Yang CL, Thomson RB, Mentone SA, Giebisch G, Aronson PS. Identification of a chloride‐formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci U S A 98: 9425‐9430, 2001.
 125. Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F. Intrarenal and cellular localization of CLC‐K2 protein in the mouse kidney. J Am Soc Nephrol 12: 1327‐1334, 2001.
 126. Koeppen B, Pappas C, Manger T, Oyler A. Cellular mechanisms of Cl‐ transport in outer medullary collecting duct. Kidney Int Suppl 33: S131‐S135, 1991.
 127. Koeppen BM. Conductive properties of the rabbit outer medullary collecting duct: inner stripe. Am J Physiol 248: F500‐F506, 1985.
 128. Koeppen BM. Conductive properties of the rabbit outer medullary collecting duct: outer stripe. Am J Physiol 250: F70‐F76, 1986.
 129. Koeppen BM. Electrophysiology of collecting duct H+ secretion: effect of inhibitors. Am J Physiol 256: F79‐F84, 1989.
 130. Kokko JP. Sodium chloride and water transport in the descending limb of Henle. J Clin Invest 49: 1838‐1846, 1970.
 131. Kokko JP. Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3, and amino acids. J Clin Invest 52: 1362‐1367, 1973.
 132. Kokubo Y, Iwai N, Tago N, Inamoto N, Okayama A, Yamawaki H, Naraba H, Tomoike H. Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population–the Suita Study. Circ J 69: 138‐142, 2005.
 133. Kondo Y, Fromter E. Evidence of chloride/bicarbonate exchange mediating bicarbonate efflux from S3 segments of rabbit renal proximal tubule. Pflugers Arch 415: 726‐733, 1990.
 134. Kondo Y, Yoshitomi K, Imai M. Effect of Ca2+ on Cl‐ transport in thin ascending limb of Henle's loop. Am J Physiol 254: F232‐F239, 1988.
 135. Kone BC, Madsen KM, Tisher CC. Ultrastructure of the thick ascending limb of Henle in the rat kidney. Am J Anat 171: 217‐226, 1984.
 136. Kramer BK, Bergler T, Stoelcker B, Waldegger S. Mechanisms of Disease: the kidney‐specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance. Nat Clin Pract Nephrol 4: 38‐46, 2008.
 137. Kunau RT, Jr, Weller DR, Webb HL. Clarification of the site of action of chlorothiazide in the rat nephron. J Clin Invest 56: 401‐407, 1975.
 138. Kunchaparty S, Palcso M, Berkman J, Velazquez H, Desir GV, Bernstein P, Reilly RF, Ellison DH. Defective processing and expression of thiazide‐sensitive Na‐Cl cotransporter as a cause of Gitelman's syndrome. Am J Physiol 277: F643‐F649, 1999.
 139. Kuo SM, Aronson PS. Pathways for oxalate transport in rabbit renal microvillus membrane vesicles. J Biol Chem 271: 15491‐15497, 1996.
 140. Kurtz I, Nagami G, Yanagawa N, Li L, Emmons C, Lee I. Mechanism of apical and basolateral Na(+)‐independent Cl‐/base exchange in the rabbit superficial proximal straight tubule. J Clin Invest 94: 173‐183, 1994.
 141. Kurtz TW, Al‐Bander HA, Morris RC, Jr. “Salt‐sensitive” essential hypertension in men. Is the sodium ion alone important? N Engl J Med 317: 1043‐1048, 1987.
 142. Kurtz TW, Morris RC, Jr. Dietary chloride as a determinant of “sodium‐dependent” hypertension. Science 222: 1139‐1141, 1983.
 143. Lebeau C, Hanaoka K, Moore‐Hoon ML, Guggino WB, Beauwens R, Devuyst O. Basolateral chloride transporters in autosomal dominant polycystic kidney disease. Pflugers Arch 444: 722‐731, 2002.
 144. Leviel F, Hubner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hatim H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D. The Na+‐dependent chloride‐bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120: 1627‐1635, 2010.
 145. Levine DZ, Iacovitti M, Harrison V. Bicarbonate secretion in vivo by rat distal tubules during alkalosis induced by dietary chloride restriction and alkali loading. J Clin Invest 87: 1513‐1518, 1991.
 146. Levy J, Smith AL, Koup JR, Williams‐Warren J, Ramsey B. Disposition of tobramycin in patients with cystic fibrosis: a prospective controlled study. J Pediatr 105: 117‐124, 1984.
 147. Light DB, McCann FV, Keller TM, Stanton BA. Amiloride‐sensitive cation channel in apical membrane of inner medullary collecting duct. Am J Physiol 255: F278‐F286, 1988.
 148. Lipkowitz MS, Abramson RG. Modulation of the ionic permeability of renal cortical brush‐border membranes by cAMP. Am J Physiol 257: F769‐F776, 1989.
 149. Liu W, Morimoto T, Kondo Y, Iinuma K, Uchida S, Sasaki S, Marumo F, Imai M. Analysis of NaCl transport in thin ascending limb of Henle's loop in CLC‐K1 null mice. Am J Physiol Renal Physiol 282: F451‐F457, 2002.
 150. Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV. A common molecular basis for three inherited kidney stone diseases. Nature 379: 445‐449, 1996.
 151. Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458: 111‐135, 2009.
 152. Loffing J, Loffing‐Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281: F1021‐F1027, 2001.
 153. Lopez‐Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez‐Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 79: 33‐45, 2011.
 154. Lourdel S, Paulais M, Marvao P, Nissant A, Teulon J. A chloride channel at the basolateral membrane of the distal‐convoluted tubule: a candidate ClC‐K channel. J Gen Physiol 121: 287‐300, 2003.
 155. Lu M, Dong K, Egan ME, Giebisch GH, Boulpaep EL, Hebert SC. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP‐PKA‐regulated apical chloride channels in cortical collecting duct. Proc Natl Acad Sci U S A 107: 6082‐6087, 2010.
 156. Lucci MS, Warnock DG. Effects of anion‐transport inhibitors on NaCl reabsorption in the rat superficial proximal convoluted tubule. J Clin Invest 64: 570‐579, 1979.
 157. Madsen KM, Verlander JW, Kim J, Tisher CC. Morphological adaptation of the collecting duct to acid‐base disturbances. Kidney Int Suppl 33: S57‐S63, 1991.
 158. Malnic G, Giebisch G. Some electrical properties of distal tubular epithelium in the rat. Am J Physiol 223: 797‐808, 1972.
 159. Mangoo‐Karim R, Ye M, Wallace DP, Grantham JJ, Sullivan LP. Anion secretion drives fluid secretion by monolayers of cultured human polycystic cells. Am J Physiol 269: F381‐F388, 1995.
 160. Marshansky V, Ausiello DA, Brown D. Physiological importance of endosomal acidification: potential role in proximal tubulopathies. Curr Opin Nephrol Hypertens 11: 527‐537, 2002.
 161. Marshansky V, Vinay P. Proton gradient formation in early endosomes from proximal tubules. Biochim Biophys Acta 1284: 171‐180, 1996.
 162. Matsumura Y, Uchida S, Kondo Y, Miyazaki H, Ko SB, Hayama A, Morimoto T, Liu W, Arisawa M, Sasaki S, Marumo F. Overt nephrogenic diabetes insipidus in mice lacking the CLC‐K1 chloride channel. Nat Genet 21: 95‐98, 1999.
 163. Mayan H, Vered I, Mouallem M, Tzadok‐Witkon M, Pauzner R, Farfel Z. Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab 87: 3248‐3254, 2002.
 164. McCormick JA, Ellison DH. The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev 91: 177‐219, 2011.
 165. Mellman I. The importance of being acid: the role of acidification in intracellular membrane traffic. J Exp Biol 172: 39‐45, 1992.
 166. Meneton P, Loffing J, Warnock DG. Sodium and potassium handling by the aldosterone‐sensitive distal nephron: the pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol 287: F593‐F601, 2004.
 167. Moestrup SK, Cui S, Vorum H, Bregengard C, Bjorn SE, Norris K, Gliemann J, Christensen EI. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J Clin Invest 96: 1404‐1413, 1995.
 168. Monroy A, Plata C, Hebert SC, Gamba G. Characterization of the thiazide‐sensitive Na(+)‐Cl(‐) cotransporter: a new model for ions and diuretics interaction. Am J Physiol Renal Physiol 279: F161‐F169, 2000.
 169. Morales MM, Falkenstein D, Lopes AG. The cystic fibrosis transmembrane regulator (CFTR) in the kidney. An Acad Bras Cienc 72: 399‐406, 2000.
 170. Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol 240: F159‐F164, 1981.
 171. Mount DB, Baekgaard A, Hall AE, Plata C, Xu J, Beier DR, Gamba G, Hebert SC. Isoforms of the Na‐K‐2Cl cotransporter in murine TAL I. Molecular characterization and intrarenal localization. Am J Physiol 276: F347‐F358, 1999.
 172. Mount DB, Gamba G. Renal potassium‐chloride cotransporters. Curr Opin Nephrol Hypertens 10: 685‐691, 2001.
 173. Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, Kusano E, Tsukita S, Furuse M. Claudin‐2‐deficient mice are defective in the leaky and cation‐selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 107: 8011‐8016, 2010.
 174. Muto S, Yasoshima K, Yoshitomi K, Imai M, Asano Y. Electrophysiological identification of alpha‐ and beta‐intercalated cells and their distribution along the rabbit distal nephron segments. J Clin Invest 86: 1829‐1839, 1990.
 175. Naesens M, Steels P, Verberckmoes R, Vanrenterghem Y, Kuypers D. Bartter's and Gitelman's syndromes: from gene to clinic. Nephron Physiol 96: 65‐78, 2004.
 176. Nagao S, Nishii K, Katsuyama M, Kurahashi H, Marunouchi T, Takahashi H, Wallace DP. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J Am Soc Nephrol 17: 2220‐2227, 2006.
 177. Nissant A, Lourdel S, Baillet S, Paulais M, Marvao P, Teulon J, Imbert‐Teboul M. Heterogeneous distribution of chloride channels along the distal convoluted tubule probed by single‐cell RT‐PCR and patch clamp. Am J Physiol Renal Physiol 287: F1233‐F1243, 2004.
 178. Nissant A, Paulais M, Lachheb S, Lourdel S, Teulon J. Similar chloride channels in the connecting tubule and cortical collecting duct of the mouse kidney. Am J Physiol Renal Physiol 290: F1421‐F1429, 2006.
 179. Novarino G, Weinert S, Rickheit G, Jentsch TJ. Endosomal chloride‐proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328: 1398‐1401, 2010.
 180. O'Sullivan DA, Torres VE, Gabow PA, Thibodeau SN, King BF, Bergstralh EJ. Cystic fibrosis and the phenotypic expression of autosomal dominant polycystic kidney disease. Am J Kidney Dis 32: 976‐983, 1998.
 181. Obermuller N, Bernstein P, Velazquez H, Reilly R, Moser D, Ellison DH, Bachmann S. Expression of the thiazide‐sensitive Na‐Cl cotransporter in rat and human kidney. Am J Physiol 269: F900‐F910, 1995.
 182. Oppermann M, Mizel D, Huang G, Li C, Deng C, Theilig F, Bachmann S, Briggs J, Schnermann J, Castrop H. Macula densa control of renin secretion and preglomerular resistance in mice with selective deletion of the B isoform of the Na,K,2Cl co‐transporter. J Am Soc Nephrol 17: 2143‐2152, 2006.
 183. Oppermann M, Mizel D, Kim SM, Chen L, Faulhaber‐Walter R, Huang Y, Li C, Deng C, Briggs J, Schnermann J, Castrop H. Renal function in mice with targeted disruption of the A isoform of the Na‐K‐2Cl co‐transporter. J Am Soc Nephrol 18: 440‐448, 2007.
 184. Paver WK, Pauline GJ. Hypertension and Hyperpotassaemia without Renal Disease in a Young Male. Med J Aust 2: 305‐306, 1964.
 185. Payne JA, Forbush B, III. Alternatively spliced isoforms of the putative renal Na‐K‐Cl cotransporter are differentially distributed within the rabbit kidney. Proc Natl Acad Sci U S A 91: 4544‐4548, 1994.
 186. Pech V, Kim YH, Weinstein AM, Everett LA, Pham TD, Wall SM. Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin‐dependent mechanism. Am J Physiol Renal Physiol 292: F914‐F920, 2007.
 187. Persu A, Devuyst O. Transepithelial chloride secretion and cystogenesis in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 15: 747‐750, 2000.
 188. Persu A, Devuyst O, Lannoy N, Materne R, Brosnahan G, Gabow PA, Pirson Y, Verellen‐Dumoulin C. CF gene and cystic fibrosis transmembrane conductance regulator expression in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 11: 2285‐2296, 2000.
 189. Petrovic S, Barone S, Weinstein AM, Soleimani M. Activation of the apical Na+/H+ exchanger NHE3 by formate: a basis of enhanced fluid and electrolyte reabsorption by formate in the kidney. Am J Physiol Renal Physiol 287: F336‐F346, 2004.
 190. Petrovic S, Ma L, Wang Z, Soleimani M. Identification of an apical Cl‐/HCO‐3 exchanger in rat kidney proximal tubule. Am J Physiol Cell Physiol 285: C608‐C617, 2003.
 191. Picollo A, Pusch M. Chloride/proton antiporter activity of mammalian CLC proteins ClC‐4 and ClC‐5. Nature 436: 420‐423, 2005.
 192. Planelles G. Chloride transport in the renal proximal tubule. Pflugers Arch 448: 561‐570, 2004.
 193. Plans V, Rickheit G, Jentsch TJ. Physiological roles of CLC Cl(‐)/H (+) exchangers in renal proximal tubules. Pflugers Arch 458: 23‐37, 2009.
 194. Plata C, Meade P, Hall A, Welch RC, Vazquez N, Hebert SC, Gamba G. Alternatively spliced isoform of apical Na(+)‐K(+)‐Cl(‐) cotransporter gene encodes a furosemide‐sensitive Na(+)‐Cl(‐)cotransporter. Am J Physiol Renal Physiol 280: F574‐F582, 2001.
 195. Plata C, Meade P, Vazquez N, Hebert SC, Gamba G. Functional properties of the apical Na+‐K+‐2Cl‐ cotransporter isoforms. J Biol Chem 277: 11004‐11012, 2002.
 196. Plata C, Mount DB, Rubio V, Hebert SC, Gamba G. Isoforms of the Na‐K‐2Cl cotransporter in murine TAL II. Functional characterization and activation by cAMP. Am J Physiol 276: F359‐F366, 1999.
 197. Plotkin MD, Kaplan MR, Verlander JW, Lee WS, Brown D, Poch E, Gullans SR, Hebert SC. Localization of the thiazide sensitive Na‐Cl cotransporter, rTSC1 in the rat kidney. Kidney Int 50: 174‐183, 1996.
 198. Proctor G, Linas S. Type 2 pseudohypoaldosteronism: new insights into renal potassium, sodium, and chloride handling. Am J Kidney Dis 48: 674‐693, 2006.
 199. Purkerson JM, Tsuruoka S, Suter DZ, Nakamori A, Schwartz GJ. Adaptation to metabolic acidosis and its recovery are associated with changes in anion exchanger distribution and expression in the cortical collecting duct. Kidney Int 78: 993‐1005, 2010.
 200. Quentin F, Chambrey R, Trinh‐Trang‐Tan MM, Fysekidis M, Cambillau M, Paillard M, Aronson PS, Eladari D. The Cl‐/HCO3‐ exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol 287: F1179‐F1188, 2004.
 201. Rector FC, Jr. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol 244: F461‐F471, 1983.
 202. Rector FC, Jr, Clapp JR. Evidence for active chloride reabsorption in the distal renal tubule of the rat. J Clin Invest 41: 101‐107, 1962.
 203. Reeves WB, Winters CJ, Andreoli TE. Chloride channels in the loop of Henle. Annu Rev Physiol 63: 631‐645, 2001.
 204. Reeves WB, Winters CJ, Filipovic DM, Andreoli TE. Cl‐ channels in basolateral renal medullary vesicles. IX. Channels from mouse MTAL cell patches and medullary vesicles. Am J Physiol 269: F621‐F627, 1995.
 205. Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80: 277‐313, 2000.
 206. Ridderstrale Y, Kashgarian M, Koeppen B, Giebisch G, Stetson D, Ardito T, Stanton B. Morphological heterogeneity of the rabbit collecting duct. Kidney Int 34: 655‐670, 1988.
 207. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066‐1073, 1989.
 208. Rocha AS, Kokko JP. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J Clin Invest 52: 612‐623, 1973.
 209. Rose BD. Clinical Physiology of Acid‐Base and Electrolyte Disorders. New York: McGraw‐Hill, 1994.
 210. Rosen RA, Julian BA, Dubovsky EV, Galla JH, Luke RG. On the mechanism by which chloride corrects metabolic alkalosis in man. Am J Med 84: 449‐458, 1988.
 211. Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 98: 4221‐4226, 2001.
 212. Saleh AM, Rudnick H, Aronson PS. Mechanism of H(+)‐coupled formate transport in rabbit renal microvillus membranes. Am J Physiol 271: F401‐F407, 1996.
 213. Samaniego‐Picota MD, Whelton A. Aminoglycoside‐induced nephrotoxicity in cystic fibrosis: a case presentation and review of the literature. Am J Ther 3: 248‐257, 1996.
 214. Sansom SC, Weinman EJ, O'Neil RG. Microelectrode assessment of chloride‐conductive properties of cortical collecting duct. Am J Physiol 247: F291‐F302, 1984.
 215. Sasaki S, Ishibashi K, Yoshiyama N, Shiigai T. KCl co‐transport across the basolateral membrane of rabbit renal proximal straight tubules. J Clin Invest 81: 194‐199, 1988.
 216. Schafer JA, Patlak CS, Andreoli TE. A component of fluid absorption linked to passive ion flows in the superficial pars recta. J Gen Physiol 66: 445‐471, 1975.
 217. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ. Voltage‐dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436: 424‐427, 2005.
 218. Scheinman SJ. X‐linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int 53: 3‐17, 1998.
 219. Schild L, Aronson PS, Giebisch G. Effects of apical membrane Cl(‐)‐formate exchange on cell volume in rabbit proximal tubule. Am J Physiol 258: F530‐F536, 1990.
 220. Schild L, Aronson PS, Giebisch G. Basolateral transport pathways for K+ and Cl‐ in rabbit proximal tubule: effects on cell volume. Am J Physiol 260: F101‐F109, 1991.
 221. Schild L, Giebisch G, Karniski LP, Aronson PS. Effect of formate on volume reabsorption in the rabbit proximal tubule. J Clin Invest 79: 32‐38, 1987.
 222. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350: 1314‐1319, 2004.
 223. Schneider EG, Durham JC, Sacktor B. Sodium‐dependent transport of inorganic sulfate by rabbit renal brush‐border membrane vesicles. Effects of other ions. J Biol Chem 259: 14591‐14599, 1984.
 224. Schnermann J, Briggs J, Schubert G. In situ studies of the distal convoluted tubule in the rat. I. Evidence for NaCl secretion. Am J Physiol 243: F160‐F166, 1982.
 225. Schnermann J, Briggs JP. Tubuloglomerular feedback: mechanistic insights from gene‐manipulated mice. Kidney Int 74: 418‐426, 2008.
 226. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS. Defective proximal tubular fluid reabsorption in transgenic aquaporin‐1 null mice. Proc Natl Acad Sci U S A 95: 9660‐9664, 1998.
 227. Schuster VL, Stokes JB. Chloride transport by the cortical and outer medullary collecting duct. Am J Physiol 253: F203‐F212, 1987.
 228. Schwiebert EM, Benos DJ, Fuller CM. Cystic fibrosis: a multiple exocrinopathy caused by dysfunctions in a multifunctional transport protein. Am J Med 104: 576‐590, 1998.
 229. Schwiebert EM, Lopes AG, Guggino WB. Chloride channels along the nephron. In: Guggino WB, editor. Chloride Channels. San Diego: Academic Press, 1994, pp. 265‐316.
 230. Scott DA, Karniski LP. Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am J Physiol Cell Physiol 278: C207‐C211, 2000.
 231. Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP. The Pendred syndrome gene encodes a chloride‐iodide transport protein. Nat Genet 21: 440‐443, 1999.
 232. Seifter JL, Knickelbein R, Aronson PS. Absence of Cl‐OH exchange and NaCl cotransport in rabbit renal microvillus membrane vesicles. Am J Physiol 247: F753‐F759, 1984.
 233. Seki G, Taniguchi S, Uwatoko S, Suzuki K, Kurokawa K. Evidence for conductive Cl‐ pathway in the basolateral membrane of rabbit renal proximal tubule S3 segment. J Clin Invest 92: 1229‐1235, 1993.
 234. Seki G, Taniguchi S, Uwatoko S, Suzuki K, Kurokawa K. Activation of the basolateral Cl‐ conductance by cAMP in rabbit renal proximal tubule S3 segments. Pflugers Arch 430: 88‐95, 1995.
 235. Seki G, Yamada H, Taniguchi S, Uwatoko S, Suzuki K, Kurokawa K. Mechanism of anion permeation in the basolateral membrane of isolated rabbit renal proximal tubule S3 segment. Am J Physiol 272: C837‐C846, 1997.
 236. Sheu JN, Baum M, Bajaj G, Quigley R. Maturation of rabbit proximal convoluted tubule chloride permeability. Pediatr Res 39: 308‐312, 1996.
 237. Shi LB, Fushimi K, Verkman AS. Solvent drag measurement of transcellular and basolateral membrane NaCl reflection coefficient in kidney proximal tubule. J Gen Physiol 98: 379‐398, 1991.
 238. Shimizu T, Yoshitomi K, Nakamura M, Imai M. Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro. J Clin Invest 82: 721‐730, 1988.
 239. Sile S, Velez DR, Gillani NB, Narsia T, Moore JH, George AL, Jr, Vanoye CG, Williams SM. CLCNKBS and essential hypertension in a Ghanaian population. J Hypertens 27: 298‐304, 2009.
 240. Simon DB, Bindra RS, Mansfield TA, Nelson‐Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez‐Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet 17: 171‐178, 1997.
 241. Simon DB, Karet FE, Rodriguez‐Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14: 152‐156, 1996.
 242. Simon DB, Lifton RP. The molecular basis of inherited hypokalemic alkalosis: Bartter's and Gitelman's syndromes. Am J Physiol 271: F961‐966, 1996.
 243. Simon DB, Nelson‐Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitleman HJ, Lifton RP. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide‐sensitive Na‐Cl cotransporter. Nat Genet 12: 24‐30, 1996.
 244. Smith AJ, Lippiat JD. Direct endosomal acidification by the outwardly rectifying CLC‐5 Cl(‐)/H(+) exchanger. J Physiol 588: 2033‐2045, 2010.
 245. Soleimani M, Greeley T, Petrovic S, Wang Z, Amlal H, Kopp P, Burnham CE. Pendrin: an apical Cl‐/OH‐/HCO3‐ exchanger in the kidney cortex. Am J Physiol Renal Physiol 280: F356‐F364, 2001.
 246. Speirs HJ, Wang WY, Benjafield AV, and Morris BJ. No association with hypertension of CLCNKB and TNFRSF1B polymorphisms at a hypertension locus on chromosome 1p36. J Hypertens 23: 1491‐1496, 2005.
 247. Stanton BA. Characterization of apical and basolateral membrane conductances of rat inner medullary collecting duct. Am J Physiol 256: F862‐F868, 1989.
 248. Stanton BA. Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function. Wien Klin Wochenschr 109: 457‐464, 1997.
 249. Stokes JB. Sodium and potassium transport by the collecting duct. Kidney Int 38: 679‐686, 1990.
 250. Stokes JB. Ion transport by the collecting duct. Semin Nephrol 13: 202‐212, 1993.
 251. Stone DK, Seldin DW, Kokko JP, Jacobson HR. Anion dependence of rabbit medullary collecting duct acidification. J Clin Invest 71: 1505‐1508, 1983a.
 252. Stone DK, Seldin DW, Kokko JP, Jacobson HR. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium‐independent effect. J Clin Invest 72: 77‐83, 1983b.
 253. Suzuki M, Morita T, Hanaoka K, Kawaguchi Y, Sakai O. A Cl‐ channel activated by parathyroid hormone in rabbit renal proximal tubule cells. J Clin Invest 88: 735‐742, 1991.
 254. Takahashi N, Kondo Y, Fujiwara I, Ito O, Igarashi Y, Abe K. Characterization of Na+ transport across the cell membranes of the ascending thin limb of Henle's loop. Kidney Int 47: 789‐794, 1995.
 255. Take C, Ikeda K, Kurasawa T, Kurokawa K. Increased chloride reabsorption as an inherited renal tubular defect in familial type II pseudohypoaldosteronism. N Engl J Med 324: 472‐476, 1991.
 256. Teng‐umnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM. Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol 7: 260‐274, 1996.
 257. Terada Y, Knepper MA. Thiazide‐sensitive NaCl absorption in rat cortical collecting duct. Am J Physiol 259: F519‐F528, 1990.
 258. Terryn S, Ho A, Beauwens R, Devuyst O. Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1818: 1314‐1321, 2011.
 259. Thomson SC, Blantz RC. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis. J Am Soc Nephrol 19: 2272‐2275, 2008.
 260. Tisher CC, Bulger RE, Trump BF. Human renal ultrastructure. 3. The distal tubule in healthy individuals. Lab Invest 18: 655‐668, 1968.
 261. Tomita K, Pisano JJ, Burg MB, Knepper MA. Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest 77: 136‐141, 1986.
 262. Tomita K, Pisano JJ, Knepper MA. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest 76: 132‐136, 1985.
 263. Torres VE, Harris PC. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76: 149‐168, 2009.
 264. Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F. Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem 268: 3821‐3824, 1993.
 265. Uchida S, Sasaki S, Nitta K, Uchida K, Horita S, Nihei H, Marumo F. Localization and functional characterization of rat kidney‐specific chloride channel, ClC‐K1. J Clin Invest 95: 104‐113, 1995.
 266. Van Itallie CM, Anderson JM. The molecular physiology of tight junction pores. Physiology (Bethesda) 19: 331‐338, 2004.
 267. Vandorpe D, Kizer N, Ciampollilo F, Moyer B, Karlson K, Guggino WB, Stanton BA. CFTR mediates electrogenic chloride secretion in mouse inner medullary collecting duct (mIMCD‐K2) cells. Am J Physiol 269: C683‐C689, 1995.
 268. Velazquez H, Ellison DH, Wright FS. Chloride‐dependent potassium secretion in early and late renal distal tubules. Am J Physiol 253: F555‐F562, 1987.
 269. Velazquez H, Ellison DH, Wright FS. Luminal influences on potassium secretion: chloride, sodium, and thiazide diuretics. Am J Physiol 262: F1076‐F1082, 1992.
 270. Velazquez H, Good DW, Wright FS. Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Physiol 247: F904‐F911, 1984.
 271. Velazquez H, Naray‐Fejes‐Toth A, Silva T, Andujar E, Reilly RF, Desir GV, Ellison DH. Rabbit distal convoluted tubule coexpresses NaCl cotransporter and 11 beta‐hydroxysteroid dehydrogenase II mRNA. Kidney Int 54: 464‐472, 1998.
 272. Velazquez H, Silva T. Cloning and localization of KCC4 in rabbit kidney: expression in distal convoluted tubule. Am J Physiol Renal Physiol 285: F49‐F58, 2003.
 273. Velazquez H, Wright FS, Good DW. Luminal influences on potassium secretion: chloride replacement with sulfate. Am J Physiol 242: F46‐F55, 1982.
 274. Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid‐induced hypertension. Hypertension 42: 356‐362, 2003.
 275. Verlander JW, Madsen KM, Galla JH, Luke RG, Tisher CC. Response of intercalated cells to chloride depletion metabolic alkalosis. Am J Physiol 262: F309‐F319, 1992.
 276. Wagner CA, Finberg KE, Stehberger PA, Lifton RP, Giebisch GH, Aronson PS, Geibel JP. Regulation of the expression of the Cl‐/anion exchanger pendrin in mouse kidney by acid‐base status. Kidney Int 62: 2109‐2117, 2002.
 277. Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW. Barttin increases surface expression and changes current properties of ClC‐K channels. Pflugers Arch 444: 411‐418, 2002.
 278. Waldegger S, Jentsch TJ. Functional and structural analysis of ClC‐K chloride channels involved in renal disease. J Biol Chem 275: 24527‐24533, 2000.
 279. Wall SM. Recent advances in our understanding of intercalated cells. Curr Opin Nephrol Hypertens 14: 480‐484, 2005.
 280. Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, Verlander JW. Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol 284: F229‐F241, 2003.
 281. Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, Verlander JW. NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl‐ conservation. Hypertension 44: 982‐987, 2004.
 282. Wall SM, Pech V. The interaction of pendrin and the epithelial sodium channel in blood pressure regulation. Curr Opin Nephrol Hypertens 17: 18‐24, 2008.
 283. Wallace DP, Grantham JJ, Sullivan LP. Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney Int 50: 1327‐1336, 1996.
 284. Wang T, Agulian SK, Giebisch G, Aronson PS. Effects of formate and oxalate on chloride absorption in rat distal tubule. Am J Physiol 264: F730‐F736, 1993.
 285. Wang T, Egbert AL, Jr., Abbiati T, Aronson PS, Giebisch G. Mechanisms of stimulation of proximal tubule chloride transport by formate and oxalate. Am J Physiol 271: F446‐F450, 1996.
 286. Wang T, Giebisch G. Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. Am J Physiol 271: F143‐F149, 1996.
 287. Wang T, Malnic G, Giebisch G, Chan YL. Renal bicarbonate reabsorption in the rat. IV. Bicarbonate transport mechanisms in the early and late distal tubule. J Clin Invest 91: 2776‐2784, 1993.
 288. Wang T, Segal AS, Giebisch G, Aronson PS. Stimulation of chloride transport by cAMP in rat proximal tubules. Am J Physiol 268: F204‐F210, 1995.
 289. Wang T, Yang CL, Abbiati T, Shull GE, Giebisch G, Aronson PS. Essential role of NHE3 in facilitating formate‐dependent NaCl absorption in the proximal tubule. Am J Physiol Renal Physiol 281: F288‐F292, 2001.
 290. Wang Z, Wang T, Petrovic S, Tuo B, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS, Soleimani M. Renal and intestinal transport defects in Slc26a6‐null mice. Am J Physiol Cell Physiol 288: C957‐C965, 2005.
 291. Wangemann P, Wittner M, Di Stefano A, Englert HC, Lang HJ, Schlatter E, Greger R. Cl(‐)‐channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflugers Arch 407 (Suppl 2): S128‐S141, 1986.
 292. Warden DH, Schuster VL, Stokes JB. Characteristics of the paracellular pathway of rabbit cortical collecting duct. Am J Physiol 255: F720‐F727, 1988.
 293. Warnock DG, Yee VJ. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex. Coupling to proton gradients and K+ diffusion potentials. J Clin Invest 67: 103‐115, 1981.
 294. Weiner ID, Frank AE, Wingo CS. Apical proton secretion by the inner stripe of the outer medullary collecting duct. Am J Physiol 276: F606‐F613, 1999.
 295. Weinstein AM. A mathematical model of the outer medullary collecting duct of the rat. Am J Physiol Renal Physiol 279: F24‐F45, 2000.
 296. Whitescarver SA, Ott CE, Jackson BA, Guthrie GP, Jr., Kotchen TA. Salt‐sensitive hypertension: contribution of chloride. Science 223: 1430‐1432, 1984.
 297. Wilson FH, Disse‐Nicodeme S, Choate KA, Ishikawa K, Nelson‐Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science 293: 1107‐1112, 2001.
 298. Wingo CS. Active and passive chloride transport by the rabbit cortical collecting duct. Am J Physiol 258: F1388‐F1393, 1990.
 299. Winters CJ, Reeves WB, Andreoli TE. Cl‐ channels in basolateral renal medullary membrane vesicles: IV. Analogous channel activation by Cl‐ or cAMP‐dependent protein kinase. J Membr Biol 122: 89‐95, 1991.
 300. Winters CJ, Reeves WB, Andreoli TE. Cl‐ channels in basolateral renal medullary membranes. VII. Characterization of the intracellular anion binding sites. J Membr Biol 135: 145‐152, 1993.
 301. Winters CJ, Reeves WB, Andreoli TE. Cl‐ channels in basolateral TAL membranes. XIII. Heterogeneity between basolateral MTAL and CTAL Cl‐ channels. Kidney Int 55: 593‐601, 1999.
 302. Wright FS. Increasing magnitude of electrical potential along the renal distal tubule. Am J Physiol 220: 624‐638, 1971.
 303. Xie Q, Welch R, Mercado A, Romero MF, Mount DB. Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am J Physiol Renal Physiol 283: F826‐F838, 2002.
 304. Xu J, Song P, Nakamura S, Miller M, Barone S, Alper SL, Riederer B, Bonhagen J, Arend LJ, Amlal H, Seidler U, Soleimani M. Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem 284: 29470‐29479, 2009.
 305. Xu N, Glockner JF, Rossetti S, Babovich‐Vuksanovic D, Harris PC, Torres VE. Autosomal dominant polycystic kidney disease coexisting with cystic fibrosis. J Nephrol 19: 529‐534, 2006.
 306. Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS. Small‐molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol 19: 1300‐1310, 2008.
 307. Yang T, Huang YG, Singh I, Schnermann J, Briggs JP. Localization of bumetanide‐ and thiazide‐sensitive Na‐K‐Cl cotransporters along the rat nephron. Am J Physiol 271: F931‐F939, 1996.
 308. Ye M, Grantham JJ. The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med 329: 310‐313, 1993.
 309. Yoshitomi K, Kondo Y, Imai M. Evidence for conductive Cl‐ pathways across the cell membranes of the thin ascending limb of Henle's loop. J Clin Invest 82: 866‐871, 1988.
 310. Yoshitomi K, Shimizu T, Taniguchi J, Imai M. Electrophysiological characterization of rabbit distal convoluted tubule cell. Pflugers Arch 414: 457‐463, 1989.
 311. Zelikovic I, Szargel R, Hawash A, Labay V, Hatib I, Cohen N, Nakhoul F. A novel mutation in the chloride channel gene, CLCNKB, as a cause of Gitelman and Bartter syndromes. Kidney Int 63: 24‐32, 2003.

Related Articles:

Control of Sodium Excretion: An Integrative Approach
Principles of Electrolyte Transport Across Plasma Membranes of Renal Tubular Cells
Renal Acidification: Cellular Mechanisms of Tubular Transport and Regulation
Renal Acidification: Integrated Tubular Responses

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John C. Edwards. Chloride Transport. Compr Physiol 2012, 2: 1061-1092. doi: 10.1002/cphy.c110027