Comprehensive Physiology Wiley Online Library

Claudins and Other Tight Junction Proteins

Full Article on Wiley Online Library



Abstract

Epithelial transport relies on the proper function and regulation of the tight junction (TJ), other‐wise uncontrolled paracellular leakage of solutes and water would occur. They also act as a fence against mixing of membrane proteins of the apical and basolateral side. The proteins determining paracellular transport consist of four transmembrane regions, intracellular N and C terminals, one intracellular and two extracellular loops (ECLs). The ECLs interact laterally and with counterparts of the neighboring cell and by this achieve a general sealing function. Two TJ protein families can be distinguished, claudins, comprising 27 members in mammals, and TJ‐associated MARVEL proteins (TAMP), comprising occludin, tricellulin, and MarvelD3. They are linked to a multitude of TJ‐associated regulatory and scaffolding proteins. The major TJ proteins are classified according to the physiological role they play in enabling or preventing paracellular transport. Many TJ proteins have sealing functions (claudins 1, 3, 5, 11, 14, 19, and tricellulin). In contrast, a significant number of claudins form channels across TJs which feature selectivity for cations (claudins 2, 10b, and 15), anions (claudin‐10a and ‐17), or are permeable to water (claudin‐2). For several TJ proteins, function is yet unclear as their effects on epithelial barriers are inconsistent (claudins 4, 7, 8, 16, and occludin). TJs undergo physiological and pathophysiological regulation by altering protein composition or abundance. Major pathophysiological conditions which involve changes in TJ protein composition are (1) effects of pathogens binding to TJ proteins, (2) altered TJ protein composition during inflammation and infection, and (3) altered TJ protein expression in cancers. © 2012 American Physiological Society. Compr Physiol 2:1819‐1852, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Features of bicellular and tricellular tight junctions. (A) Freeze fracture electron micrograph of a bicellular (bTJ) and a tricellular (tTJ) TJ of the colon carcinoma cell line HT‐29/B6. MV, microvilli (S.M. Krug, unpublished). (B) Confocal laser scanning micrograph (xy scan) of occludin (red) marking the bTJ, and tricellulin (green; yellow in merged image) marking the tTJ of the colon carcinoma cell line Caco‐2 (S.M. Krug, unpublished). (C) Confocal laser scanning micrograph (xz scan) of the canine kidney cell line MDCK II. 10 kDa (green) and 4 kDa (red) dextran was added to the basolateral side of the cell layer. Diffusion of 10 kDa dextran along the paracellular space is stopped at the TJ (barrier function of the TJ). In contrast, 4 kDa dextran is able to pass the TJ and to enter the apical space (channel function of the TJ). Together, these two features mark the gate function of the epithelial cell layer. (D) Confocal laser scanning micrograph (xy and xz scan) of an HT‐29/B6 cell layer in the absence (left) and presence (right) of the Ca2+ chelator EGTA. In the intact layer, E‐cadherin (green) is confined to the (baso)lateral membrane by the TJ (red, claudin‐5) visualizing the fence function of the TJ. Reduction of the extracellular Ca2+ concentration causes internalization of the TJ proteins and diffusion of E‐cadherin into the apical membrane compartment (J.F. Richter, unpublished).

Figure 2. Figure 2.

Features of bicellular and tricellular tight junctions. (A) Freeze fracture electron micrograph of a bicellular (bTJ) and a tricellular (tTJ) TJ of the colon carcinoma cell line HT‐29/B6. MV, microvilli (S.M. Krug, unpublished). (B) Confocal laser scanning micrograph (xy scan) of occludin (red) marking the bTJ, and tricellulin (green; yellow in merged image) marking the tTJ of the colon carcinoma cell line Caco‐2 (S.M. Krug, unpublished). (C) Confocal laser scanning micrograph (xz scan) of the canine kidney cell line MDCK II. 10 kDa (green) and 4 kDa (red) dextran was added to the basolateral side of the cell layer. Diffusion of 10 kDa dextran along the paracellular space is stopped at the TJ (barrier function of the TJ). In contrast, 4 kDa dextran is able to pass the TJ and to enter the apical space (channel function of the TJ). Together, these two features mark the gate function of the epithelial cell layer. (D) Confocal laser scanning micrograph (xy and xz scan) of an HT‐29/B6 cell layer in the absence (left) and presence (right) of the Ca2+ chelator EGTA. In the intact layer, E‐cadherin (green) is confined to the (baso)lateral membrane by the TJ (red, claudin‐5) visualizing the fence function of the TJ. Reduction of the extracellular Ca2+ concentration causes internalization of the TJ proteins and diffusion of E‐cadherin into the apical membrane compartment (J.F. Richter, unpublished).

Figure 3. Figure 3.

Tight junctions and associated proteins. Integral membrane proteins of the TJ are binding to numerous intracellular TJ‐associated proteins that serve scaffolding and regulatory functions.

Figure 4. Figure 4.

Phylogenetic classification of claudins. (A) Classification according to references 105, 135, 139, 144, 149, 167, 245, 278. (B) Classification according to Loh et al. (reference 149). (C) Phylogenetic tree introduced by the present review.

Figure 5. Figure 5.

Phylogenetic classification of claudins. (A) Classification according to references 105, 135, 139, 144, 149, 167, 245, 278. (B) Classification according to Loh et al. (reference 149). (C) Phylogenetic tree introduced by the present review.

Figure 6. Figure 6.

Phylogenetic classification of claudins. (A) Classification according to references 105, 135, 139, 144, 149, 167, 245, 278. (B) Classification according to Loh et al. (reference 149). (C) Phylogenetic tree introduced by the present review.

Figure 7. Figure 7.

Phylogenetic classification of the tight junction‐associated MARVEL proteins (TAMP) family (red) as part of the MARVEL‐domain superfamily. Used and modified with kind permission of Mary Ann Liebert, Inc., from Antioxidants & Redox Signaling 15: 1196, Figure 1, Blasig et al. 2011, Occludin protein family: oxidative stress and reducing conditions.

Figure 8. Figure 8.

Effect of tricellulin overexpression on permeability to paracellular tracers of various sizes. Tricellulin was overexpressed to various degrees in MDCK II cells. Week overexpression (blue) resulted in purely tricellular localization while strong overexpression (red) resulted in tricellular and bicellular localization of tricellulin. Vector‐transfected control cells (black) showed very weak, tricellular localization of endogenous tricellulin. Purely tricellular distribution caused a sealing of the paracellular space against larger solutes (diameter > 10 Å, cf. blue shaded area). In contrast, bicellular distribution caused additional sealing against small solutes (diameter < 10 Å, cf. red shaded area). (Based on data by reference 140.)

Figure 9. Figure 9.

Eisenman sequences for monovalent cations as determined by dilution potential measurements (based on data from references 92 and 198). MDCK C7 cells were transfected either with claudin‐2, claudin‐10a, claudin‐10b, or the empty vector (control). Under control conditions and when transfected with claudin‐10a (not shown) permeability sequence followed Eisenman sequence IV (i.e., highest permeability to K+, least permeability to Li+). When transfected with claudin‐2 or ‐10b, cation permeability increased greatly and permeability sequences changed to Eisenman sequence IX and X, respectively (highest permeability to Na+, least permeability to Cs+), indicating an almost complete removal of the ion's hydration shell within the pore. Coculture of cells expressing claudin‐10a and ‐10b also caused an increase in cation permeability; however, this was associated with a complete loss of selectivity, as indicated by a reversal of the permeability sequence to Eisenman sequence I (highest permeability to Cs+, least permeability to Li+).

Figure 10. Figure 10.

ECL1 amino acid sequence of channel‐forming claudins. δ, charge found to be important for ion selectivity in mutation approach; /, charge found not to be important for ion selectivity in mutation approach; ?, potentially important for ion selectivity, but not yet investigated (based on data by references 46,263, and 284).

Figure 11. Figure 11.

Claudin‐claudin interactions. (A, B) Model of two claudin‐5 ECL2 interacting in trans by hydrophobic interaction of amino acids F147, Y148, and Y158 (viewed from two different angles). Used with kind permission of FASEB, from Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22: 155, Figure 7D and E; permission conveyed through Copyright Clearance Center, Inc. (C) Model of cis and trans interactions between the claudins 1, 2, 3, 5, and 12 and working hypothesis for TJ assembly. Step 1 and 2, cis homo‐ and hetero‐oligomers (dimers to hexamers, i.e., n = 2‐6) are formed in the endoplasmic reticulum (ER) and/or Golgi apparatus. Documented hetero‐cis‐interactions comprise claudin‐1/‐5, claudin‐2/‐5, claudin‐3/‐5, and claudin‐1/‐3, but not claudin‐2/‐3. Claudin‐12 was not observed to interact with any of of the other claudins investigated. Step 3, insertion of cis‐oligomers into the plasma membrane. Steps 4 and 5, trans‐interactions initiate TJ strand formation. As claudin‐12 neither interacted with claudins‐1, 2, 3, or 5, nor with ZO‐1 due to its lack of a PDZ binding motif, interaction with a yet unidentified claudin‐X is postulated that recruits claudin‐12 into the TJ. Used with kind permission from Springer Science+Business Media B.V., from Cell Mol Life Sci 2011 DOI: 10.1007/s00018‐011‐0680‐z, Elucidating the principles of the molecular organization of heteropolymeric tight junction strands.

Figure 10a, © Springer Basel AG.
Figure 12. Figure 12.

Claudin‐claudin interactions. (A, B) Model of two claudin‐5 ECL2 interacting in trans by hydrophobic interaction of amino acids F147, Y148, and Y158 (viewed from two different angles). Used with kind permission of FASEB, from Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22: 155, Figure 7D and E; permission conveyed through Copyright Clearance Center, Inc. (C) Model of cis and trans interactions between the claudins 1, 2, 3, 5, and 12 and working hypothesis for TJ assembly. Step 1 and 2, cis homo‐ and hetero‐oligomers (dimers to hexamers, i.e., n = 2‐6) are formed in the endoplasmic reticulum (ER) and/or Golgi apparatus. Documented hetero‐cis‐interactions comprise claudin‐1/‐5, claudin‐2/‐5, claudin‐3/‐5, and claudin‐1/‐3, but not claudin‐2/‐3. Claudin‐12 was not observed to interact with any of of the other claudins investigated. Step 3, insertion of cis‐oligomers into the plasma membrane. Steps 4 and 5, trans‐interactions initiate TJ strand formation. As claudin‐12 neither interacted with claudins‐1, 2, 3, or 5, nor with ZO‐1 due to its lack of a PDZ binding motif, interaction with a yet unidentified claudin‐X is postulated that recruits claudin‐12 into the TJ. Used with kind permission from Springer Science+Business Media B.V., from Cell Mol Life Sci 2011 DOI: 10.1007/s00018‐011‐0680‐z, Elucidating the principles of the molecular organization of heteropolymeric tight junction strands.

Figure 10a, © Springer Basel AG.
Figure 13. Figure 13.

Claudin‐3 ECL2 interaction with CPE. (A) Helix‐turn‐helix model of claudin‐3 ECL2. (B) Model of the interaction between claudin‐3 ECL2 and a binding pocket within the C‐terminus of Clostridium perfringens enterotoxin (CPE), formed by amino acid Y306, Y310, and Y312. Used with kind permission of MDPI, Basel, Switzerland from Toxins 2, 1350, Figure 1, doi:10.3390/toxins20613362010 (266). On the interaction of Clostridium perfringens enterotoxin with claudins.



Figure 1.

Features of bicellular and tricellular tight junctions. (A) Freeze fracture electron micrograph of a bicellular (bTJ) and a tricellular (tTJ) TJ of the colon carcinoma cell line HT‐29/B6. MV, microvilli (S.M. Krug, unpublished). (B) Confocal laser scanning micrograph (xy scan) of occludin (red) marking the bTJ, and tricellulin (green; yellow in merged image) marking the tTJ of the colon carcinoma cell line Caco‐2 (S.M. Krug, unpublished). (C) Confocal laser scanning micrograph (xz scan) of the canine kidney cell line MDCK II. 10 kDa (green) and 4 kDa (red) dextran was added to the basolateral side of the cell layer. Diffusion of 10 kDa dextran along the paracellular space is stopped at the TJ (barrier function of the TJ). In contrast, 4 kDa dextran is able to pass the TJ and to enter the apical space (channel function of the TJ). Together, these two features mark the gate function of the epithelial cell layer. (D) Confocal laser scanning micrograph (xy and xz scan) of an HT‐29/B6 cell layer in the absence (left) and presence (right) of the Ca2+ chelator EGTA. In the intact layer, E‐cadherin (green) is confined to the (baso)lateral membrane by the TJ (red, claudin‐5) visualizing the fence function of the TJ. Reduction of the extracellular Ca2+ concentration causes internalization of the TJ proteins and diffusion of E‐cadherin into the apical membrane compartment (J.F. Richter, unpublished).



Figure 2.

Features of bicellular and tricellular tight junctions. (A) Freeze fracture electron micrograph of a bicellular (bTJ) and a tricellular (tTJ) TJ of the colon carcinoma cell line HT‐29/B6. MV, microvilli (S.M. Krug, unpublished). (B) Confocal laser scanning micrograph (xy scan) of occludin (red) marking the bTJ, and tricellulin (green; yellow in merged image) marking the tTJ of the colon carcinoma cell line Caco‐2 (S.M. Krug, unpublished). (C) Confocal laser scanning micrograph (xz scan) of the canine kidney cell line MDCK II. 10 kDa (green) and 4 kDa (red) dextran was added to the basolateral side of the cell layer. Diffusion of 10 kDa dextran along the paracellular space is stopped at the TJ (barrier function of the TJ). In contrast, 4 kDa dextran is able to pass the TJ and to enter the apical space (channel function of the TJ). Together, these two features mark the gate function of the epithelial cell layer. (D) Confocal laser scanning micrograph (xy and xz scan) of an HT‐29/B6 cell layer in the absence (left) and presence (right) of the Ca2+ chelator EGTA. In the intact layer, E‐cadherin (green) is confined to the (baso)lateral membrane by the TJ (red, claudin‐5) visualizing the fence function of the TJ. Reduction of the extracellular Ca2+ concentration causes internalization of the TJ proteins and diffusion of E‐cadherin into the apical membrane compartment (J.F. Richter, unpublished).



Figure 3.

Tight junctions and associated proteins. Integral membrane proteins of the TJ are binding to numerous intracellular TJ‐associated proteins that serve scaffolding and regulatory functions.



Figure 4.

Phylogenetic classification of claudins. (A) Classification according to references 105, 135, 139, 144, 149, 167, 245, 278. (B) Classification according to Loh et al. (reference 149). (C) Phylogenetic tree introduced by the present review.



Figure 5.

Phylogenetic classification of claudins. (A) Classification according to references 105, 135, 139, 144, 149, 167, 245, 278. (B) Classification according to Loh et al. (reference 149). (C) Phylogenetic tree introduced by the present review.



Figure 6.

Phylogenetic classification of claudins. (A) Classification according to references 105, 135, 139, 144, 149, 167, 245, 278. (B) Classification according to Loh et al. (reference 149). (C) Phylogenetic tree introduced by the present review.



Figure 7.

Phylogenetic classification of the tight junction‐associated MARVEL proteins (TAMP) family (red) as part of the MARVEL‐domain superfamily. Used and modified with kind permission of Mary Ann Liebert, Inc., from Antioxidants & Redox Signaling 15: 1196, Figure 1, Blasig et al. 2011, Occludin protein family: oxidative stress and reducing conditions.



Figure 8.

Effect of tricellulin overexpression on permeability to paracellular tracers of various sizes. Tricellulin was overexpressed to various degrees in MDCK II cells. Week overexpression (blue) resulted in purely tricellular localization while strong overexpression (red) resulted in tricellular and bicellular localization of tricellulin. Vector‐transfected control cells (black) showed very weak, tricellular localization of endogenous tricellulin. Purely tricellular distribution caused a sealing of the paracellular space against larger solutes (diameter > 10 Å, cf. blue shaded area). In contrast, bicellular distribution caused additional sealing against small solutes (diameter < 10 Å, cf. red shaded area). (Based on data by reference 140.)



Figure 9.

Eisenman sequences for monovalent cations as determined by dilution potential measurements (based on data from references 92 and 198). MDCK C7 cells were transfected either with claudin‐2, claudin‐10a, claudin‐10b, or the empty vector (control). Under control conditions and when transfected with claudin‐10a (not shown) permeability sequence followed Eisenman sequence IV (i.e., highest permeability to K+, least permeability to Li+). When transfected with claudin‐2 or ‐10b, cation permeability increased greatly and permeability sequences changed to Eisenman sequence IX and X, respectively (highest permeability to Na+, least permeability to Cs+), indicating an almost complete removal of the ion's hydration shell within the pore. Coculture of cells expressing claudin‐10a and ‐10b also caused an increase in cation permeability; however, this was associated with a complete loss of selectivity, as indicated by a reversal of the permeability sequence to Eisenman sequence I (highest permeability to Cs+, least permeability to Li+).



Figure 10.

ECL1 amino acid sequence of channel‐forming claudins. δ, charge found to be important for ion selectivity in mutation approach; /, charge found not to be important for ion selectivity in mutation approach; ?, potentially important for ion selectivity, but not yet investigated (based on data by references 46,263, and 284).



Figure 11.

Claudin‐claudin interactions. (A, B) Model of two claudin‐5 ECL2 interacting in trans by hydrophobic interaction of amino acids F147, Y148, and Y158 (viewed from two different angles). Used with kind permission of FASEB, from Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22: 155, Figure 7D and E; permission conveyed through Copyright Clearance Center, Inc. (C) Model of cis and trans interactions between the claudins 1, 2, 3, 5, and 12 and working hypothesis for TJ assembly. Step 1 and 2, cis homo‐ and hetero‐oligomers (dimers to hexamers, i.e., n = 2‐6) are formed in the endoplasmic reticulum (ER) and/or Golgi apparatus. Documented hetero‐cis‐interactions comprise claudin‐1/‐5, claudin‐2/‐5, claudin‐3/‐5, and claudin‐1/‐3, but not claudin‐2/‐3. Claudin‐12 was not observed to interact with any of of the other claudins investigated. Step 3, insertion of cis‐oligomers into the plasma membrane. Steps 4 and 5, trans‐interactions initiate TJ strand formation. As claudin‐12 neither interacted with claudins‐1, 2, 3, or 5, nor with ZO‐1 due to its lack of a PDZ binding motif, interaction with a yet unidentified claudin‐X is postulated that recruits claudin‐12 into the TJ. Used with kind permission from Springer Science+Business Media B.V., from Cell Mol Life Sci 2011 DOI: 10.1007/s00018‐011‐0680‐z, Elucidating the principles of the molecular organization of heteropolymeric tight junction strands.

Figure 10a, © Springer Basel AG.


Figure 12.

Claudin‐claudin interactions. (A, B) Model of two claudin‐5 ECL2 interacting in trans by hydrophobic interaction of amino acids F147, Y148, and Y158 (viewed from two different angles). Used with kind permission of FASEB, from Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22: 155, Figure 7D and E; permission conveyed through Copyright Clearance Center, Inc. (C) Model of cis and trans interactions between the claudins 1, 2, 3, 5, and 12 and working hypothesis for TJ assembly. Step 1 and 2, cis homo‐ and hetero‐oligomers (dimers to hexamers, i.e., n = 2‐6) are formed in the endoplasmic reticulum (ER) and/or Golgi apparatus. Documented hetero‐cis‐interactions comprise claudin‐1/‐5, claudin‐2/‐5, claudin‐3/‐5, and claudin‐1/‐3, but not claudin‐2/‐3. Claudin‐12 was not observed to interact with any of of the other claudins investigated. Step 3, insertion of cis‐oligomers into the plasma membrane. Steps 4 and 5, trans‐interactions initiate TJ strand formation. As claudin‐12 neither interacted with claudins‐1, 2, 3, or 5, nor with ZO‐1 due to its lack of a PDZ binding motif, interaction with a yet unidentified claudin‐X is postulated that recruits claudin‐12 into the TJ. Used with kind permission from Springer Science+Business Media B.V., from Cell Mol Life Sci 2011 DOI: 10.1007/s00018‐011‐0680‐z, Elucidating the principles of the molecular organization of heteropolymeric tight junction strands.

Figure 10a, © Springer Basel AG.


Figure 13.

Claudin‐3 ECL2 interaction with CPE. (A) Helix‐turn‐helix model of claudin‐3 ECL2. (B) Model of the interaction between claudin‐3 ECL2 and a binding pocket within the C‐terminus of Clostridium perfringens enterotoxin (CPE), formed by amino acid Y306, Y310, and Y312. Used with kind permission of MDPI, Basel, Switzerland from Toxins 2, 1350, Figure 1, doi:10.3390/toxins20613362010 (266). On the interaction of Clostridium perfringens enterotoxin with claudins.

 1. Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M. Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol 291: F1132‐F1141, 2006.
 2. Acharya P, Beckel J, Ruiz WG, Wang E, Rojas R, Birder L, Apodaca G. Distribution of the tight junction proteins ZO‐1, occludin, and claudin‐4, ‐8, and ‐12 in bladder epithelium. Am J Physiol Renal Physiol 287: F305‐F318, 2004.
 3. Aijaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. Int Rev Cytol 248: 261‐298, 2006.
 4. Alexandre MD, Jeansonne BG, Renegar RH, Tatum R, Chen YH. The first extracellular domain of claudin‐7 affects paracellular Cl− permeability. Biochem Biophys Res Commun 357: 87‐91, 2007.
 5. Alexandre MD, Lu Q, Chen YH. Overexpression of claudin‐7 decreases the paracellular Cl‐conductance and increases the paracellular Na+ conductance in LLC‐PK1 cells. J Cell Sci 118: 2683‐2693, 2005.
 6. Amasheh M, Grotjohann I, Amasheh S, Fromm A, Söderholm JD, Zeitz M, Fromm M, Schulzke JD. Regulation of mucosal structure and barrier function in rat colon exposed to tumor necrosis factor alpha and interferon gamma in vitro: A novel model for studying the pathomechanisms of inflammatory bowel disease cytokines. Scand J Gastroent 44: 1226‐1235. 2009.
 7. Amasheh M, Fromm A, Krug SM, Amasheh S, Andres S, Zeitz M, Fromm M, Schulzke JD. TNFα‐induced and berberine‐antagonized tight junction barrier impairment via tyrosine kinase, pAkt, and NFkB signaling. J Cell Sci 123: 4145‐4155, 2010.
 8. Amasheh S, Dullat S, Fromm M, Schulzke JD, Buhr HJ, Kroesen AJ. Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. Int J Colorectal Dis 24: 1149‐1156, 2009.
 9. Amasheh S, Fromm M, Günzel D. Claudins of intestine and nephron ‐ a correlation of molecular tight junction structure and barrier function. Acta Physiol 201: 133‐140. 2011.
 10. Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M. Claudin‐2 expression induces cation‐selective channels in tight junctions of epithelial cells. J Cell Sci 115: 4969‐4976, 2002.
 11. Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, Fromm M. Na+ absorption defends from paracellular back‐leakage by claudin‐8 upregulation. Biochem Biophys Res Comm 378: 45‐50, 2009.
 12. Amasheh S, Schmidt T, Mahn M, Florian P, Mankertz J, Tavalali S, Gitter AH, Schulzke JD, Fromm M. Contribution of caludin‐5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res 321: 89‐96, 2005.
 13. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S. Disruption of the epithelial apical‐junctional complex by Helicobacter pylori CagA. Science 300: 1430‐1434, 2003.
 14. Anderson JM, Van Itallie CM, Fanning AS. Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16: 140‐145, 2004.
 15. Anderson W J, Zhou Q, Alcalde V, Kaneko OF, Blank LJ, Sherwood RI, Guseh JS, Rajagopal J, Melton DA. Genetic targeting of the endoderm with claudin‐6CreER. Dev Dyn 237: 504‐512, 2008.
 16. Angelow S, El‐Husseini R, Kanzawa SA, Yu AS. Renal localization and function of the tight junction protein, claudin‐19. Am J Physiol Renal Physiol 293: F166‐F177, 2007.
 17. Angelow S, Kim KJ, Yu AS. Claudin‐8 modulates paracellular permeability to acidic and basic ions in MDCK II cells. J Physiol 571: 15‐26, 2006.
 18. Angelow S, Schneeberger EE, Yu AS. Claudin‐8 expression in renal epithelial cells augments the paracellular barrier by replacing endogenous claudin‐2. J Membr Biol 215: 147‐159, 2007.
 19. Angelow S, Yu AS. Structure‐function studies of claudin extracellular domains by cysteine‐scanning mutagenesis. J Biol Chem 284: 29205‐29017, 2009.
 20. Aono S, Hirai Y. Phosphorylation of claudin‐4 is required for tight junction formation in a human keratinocyte cell line. Exp Cell Res 314: 3326‐3339, 2008.
 21. Arabzadeh A, Troy TC, Turksen K. Role of the Cldn6 cytoplasmic tail domain in membrane targeting and epidermal differentiation in vivo. Mol Cell Biol 26: 5876‐5887, 2006.
 22. Bagnoli F, Buti L, Tompkins L, Covacci A, Amieva MR. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci U S A 102: 16339‐16344, 2005.
 23. Balda MS, Matter K. Tight junctions at a glance. J Cell Sci 121: 3677‐3682, 2008.
 24. Barmeyer C, Amasheh S, Tavalali S, Mankertz J, Zeitz M, Fromm M, Schulzke JD. IL‐1beta and TNFalpha regulate sodium absorption in rat distal colon. Biochem Biophys Res Comm 317: 500‐507, 2004.
 25. Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS. Junction adhesion molecule is a receptor for reovirus. Cell 104: 441‐451, 2001.
 26. Bauer HC, Traweger A, Zweimueller‐Mayer J, Lehner C, Tempfer H, Krizbai I, Wilhelm I, Bauer H. New aspects of the molecular constituents of tissue barriers. J Neural Transm 118: 7‐21, 2011.
 27. Baum M. Developmental changes in proximal tubule NaCl transport. Pediatr Nephrol 23: 185‐194, 2008.
 28. Benedicto I, Molina‐Jiménez F, Bartosch B, Cosset FL, Lavillette D, Prieto J, Moreno‐Otero R, Valenzuela‐Fernández A, Aldabe R, López‐Cabrera M, Majano PL. The tight junction‐associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. J Virol 83: 8012‐8020, 2009.
 29. Ben‐Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12: 2049‐2061, 2003.
 30. Blasig IE, Bellmann C, Cording J, del Vecchio G, Zwanziger D, Huber O, Haseloff RF. Occludin protein family ‐ oxidative stress and reducing conditions. Antioxid Redox Signal 15: 1195‐1219, 2011.
 31. Blasig IE, Winkler L, Lassowski B, Mueller SL, Zuleger N, Krause E, Krause G, Gast K, Kolbe M, Piontek J. On the self‐association potential of transmembrane tight junction proteins. Cell Mol Life Sci 63: 505‐514, 2006.
 32. Boylan KLM, Misemer B, DeRycke MS, Andersen JD, Harrington KM, Kalloger SE, Gilks CB, Pambuccian SE, Skubitz APN. Claudin 4 is differentially expressed between ovarian cancer subtypes and plays a role in spheroid formation. Int J Mol Sci 12: 1334‐1358, 2011.
 33. Brandner JM, Kief S, Grund C, Rendl M, Houdek P, Kuhn C, Tschachler E, Franke WW, Moll I. Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol 81: 253‐263, 2002.
 34. Brandner JM. Tight junctions and tight junction proteins in mammalian epidermis. Eur J Pharm Biopharm 72: 289‐294, 2009.
 35. Brandner JM, McIntyre M, Kief S, Wladykowski E, Moll I. Expression and localization of tight junction‐associated proteins in human hair follicles. Arch Dermatol Res 295: 211‐221, 2003.
 36. Bücker R, Schumann M, Amasheh S, Schulzke JD. Claudins in intestinal function and disease. Curr Top Membr 65: 195‐227, 2010.
 37. Bücker R, Troeger H, Kleer J, Fromm M, Schulzke JD. Arcobacter butzleri induces barrier dysfunction in intestinal epithelial cells. J Infect Dis 200: 756‐764, 2009.
 38. Bürgel N, Bojarski C, Mankertz J, Zeitz M, Fromm M, Schulzke JD. Mechanisms of diarrhea in collagenous colitis. Gastroenterology 123: 433‐443, 2002.
 39. Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. Biochim Biophys Acta 1778: 588‐600, 2008.
 40. Chishti MS, Bhatti A, Tamim S, Lee K, McDonald ML, Leal SM, Ahmad W. Splice‐site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. J Hum Genet 53: 101‐105, 2008.
 41. Chtcheglova LA, Wildling L, Waschke J, Drenckhahn D, Hinterdorfer P. AFM functional imaging on vascular endothelial cells. J Mol Recognit 23: 589‐596, 2010.
 42. Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol 39: 219‐232, 1978.
 43. Claude P, Goodenough DA. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58: 390‐400, 1973.
 44. Clarkson TW. The transport of salt and water across isolated rat ileum. Evidence for at least two distinct pathways. J Gen Physiol 50: 695‐727, 1967.
 45. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 98: 15191‐15196, 2001.
 46. Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge‐selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 283: C142‐C147, 2002.
 47. Cordenonsi M, D'Atri F, Hammar E, Parry DA, Kendrick‐Jones J, Shore D, Citi S. Cingulin contains globular and coiled‐coil domains and interacts with ZO‐1, ZO‐2, ZO‐3, and myosin. J Cell Biol 147: 1569‐1582, 1999.
 48. Coyne CB, Bergelson JM. CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev 57: 869‐882, 2005.
 49. Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG. Role of claudin interactions in airway tight junctional permeability. Am J Physiol Lung Cell Mol Physiol 285: L1166‐L1178, 2003.
 50. Cunningham SC, Kamangar F, Kim MP, Hammoud S, Haque R, Iacobuzio‐Donahue CA, Maitra A, Ashfaq R, Hustinx S, Heitmiller RE, Choti MA, Lillemoe KD, Cameron JL, Yeo CJ, Schulick RD, Montgomery E. Claudin‐4, mitogen‐activated protein kinase kinase 4, and stratifin are markers of gastric adenocarcinoma precursor lesions. Cancer Epidemiol Biomarkers Prev 15: 281‐287, 2006.
 51. D'Atri F, Citi S. Cingulin interacts with F‐actin in vitro. FEBS Lett 507: 21‐24, 2001.
 52. D'Atri F, Nadalutti F, Citi S. Evidence for a functional interaction between cingulin and ZO‐1 in cultured cells. J Biol Chem 277: 27757‐27764, 2002.
 53. Daugherty BL, Ward C, Smith T, Ritzenthaler JD, Koval M. Regulation of heterotypic claudin compatibility. J Biol Chem 282: 30005‐30013, 2007.
 54. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 127: 773‐786, 2011.
 55. de Groot BL, Grubmüller H. The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15: 176‐183, 2005.
 56. de Oliveira SS, de Oliveira IM, De Souza W, Morgado‐Díaz JA. Claudins upregulation in human colorectal cancer. FEBS Lett 579: 6179‐6185. 2005.
 57. de Rouffignac C, Quamme G. Renal magnesium handling and its hormonal control. Physiol Rev 74: 305‐322, 1994.
 58. Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington K, Beauchamp RD. Claudin‐1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 115: 1765‐1776. 2005.
 59. Diamond JM. Twenty‐first Bowditch lecture. The epithelial junction: bridge, gate, and fence. Physiologist 20: 10‐18, 1977.
 60. Diamond JM, Wright EM. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol 31: 581‐646, 1969.
 61. Dörfel MJ, Westphal JK, Huber O. Differential phosphorylation of occludin and tricellulin by CK2 and CK1. Ann NY Acad Sci 1165: 69‐73, 2009.
 62. D'Souza T, Agarwal R, Morin PJ. Phosphorylation of claudin‐3 at threonine 192 by cAMP‐dependent protein kinase regulates tight junction barrier function in ovarian cancer cells. J Biol Chem 280: 26233‐26240, 2005.
 63. Easter DW, Wade JB, Boyer JL. Structural integrity of hepatocyte tight junctions. J Cell Biol 96: 745‐749, 1983.
 64. Ebnet K. Organization of multiprotein complexes at cell‐cell junctions. Histochem Cell Biol 130: 1‐20, 2008.
 65. Eisenman G. Cation selective glass electrodes and their mode of operation. Biophys J 2: 259‐323, 1962.
 66. Elias BC, Suzuki T, Seth A, Giorgianni F, Kale G, Shen L, Turner JR, Naren A, Desiderio DM, Rao R. Phosphorylation of Tyr‐398 and Tyr‐402 in occludin prevents its interaction with ZO‐1 and destabilizes its assembly at the tight junctions. J Biol Chem 284: 1559‐1569, 2009.
 67. Elkouby‐Naor L, Abassi Z, Lagziel A, Gow A, Ben‐Yosef T. Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins. Cell Tissue Res 333: 427‐438, 2008.
 68. Epple HJ, Schneider T, Troeger H, Kunkel D, Allers K, Moos V, Amasheh M, Loddenkemper C, Fromm M, Zeitz M, Schulzke JD. Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV‐infected patients. Gut 58: 220‐227, 2009.
 69. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM. Claudin‐1 is a hepatitis C virus co‐receptor required for a late step in entry. Nature 446: 801‐805, 2007.
 70. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO‐1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273: 29745‐29753, 1998.
 71. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 17: 375‐412, 1963.
 72. Fontijn RD, Rohlena J, van Marle J, Pannekoek H, Horrevoets AJ. Limited contribution of claudin‐5‐dependent tight junction strands to endothelial barrier function. Eur J Cell Biol 85: 1131‐1144, 2006.
 73. French AD, Fiori JL, Camilli TC, Leotlela PD, O'Connell MP, Frank BP, Subaran S, Indig FE, Taub DD, Weeraratna AT. PKC and PKA phosphorylation affect the subcellular localization of claudin‐1 in melanoma cells. Int J Med Sci 6: 93‐101, 2009.
 74. Frömter E, Diamond J. Route of passive ion permeation in epithelia. Nat New Biol 235: 9‐13, 1972.
 75. Fujibe M, Chiba H, Kojima T, Soma T, Wada T, Yamashita T, Sawada N. Thr203 of claudin‐1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. Exp Cell Res 295: 36‐47, 2004.
 76. Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N. Differential expression and subcellular localization of claudin‐7, ‐8, ‐12, ‐13, and ‐15 along the mouse intestine. J Histochem Cytochem 54: 933‐944, 2006.
 77. Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H. Tight junction proteins claudin‐2 and ‐12 are critical for vitamin D‐dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19: 1912‐1921, 2008.
 78. Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S. Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin‐3, a tight junction integral membrane protein. FEBS Lett 476: 258‐261, 2000.
 79. Furuse M, Furuse K, Sasaki H, Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin‐2 into Madin‐Darby canine kidney I cells. J Cell Biol 153: 236‐272, 2001.
 80. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S. Claudin‐based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin‐1‐deficient mice. J Cell Biol 156: 1099‐1111, 2002
 81. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123: 1777‐1788, 1993.
 82. Furuse M, Sasaki H, Fujimoto K, Tsukita S. A single gene product, claudin‐1 or ‐2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 141: 1539‐1550, 1998.
 83. Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147: 891‐903, 1999.
 84. Gao F, Duan X, Lu X, Liu Y, Zheng L, Ding Z, Li J. Novel binding between pre‐membrane protein and claudin‐1 is required for efficient dengue virus entry. Biochem Biophys Res Commun 391: 952‐957, 2010.
 85. Georges R, Bergmann F, Hamdi H, Zepp M, Eyol E, Hielscher T, Berger MR, Adwan H. Sequential biphasic changes in claudin1 and claudin4 expression are correlated to colorectal cancer progression and liver metastasis. J Cell Mol Med 16: 142‐151, 2011.
 86. Gitter AH, Bendfeldt K, Schulzke JD, Fromm M. Leaks in the epithelial barrier caused by spontaneous and TNFα‐induced single‐cell apoptosis. FASEB J 14: 1749‐1753, 2000.
 87. Gröne J, Weber B, Staub E, Heinze M, Klaman I, Pilarsky C, Hermann K, Castanos‐Velez E, Röpcke S, Mann B, Rosenthal A, Buhr HJ. Differential expression of genes encoding tight junction proteins in colorectal cancer: Frequent dysregulation of claudin‐1, ‐8 and ‐12. Int J Colorect Dis 22: 651‐659. 2007.
 88. González‐Mariscal L, Garay E, Quirós M. Regulation of claudins by posttranslational modifications and cell‐signaling cascades. Curr Top Membr 65: 113‐150, 2010.
 89. Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B. Deafness in claudin 11‐null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24: 7051‐7062, 2004.
 90. Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM, Kachar B, Lazzarini, RA. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin‐11 null mice. Cell 99: 649‐659, 1999.
 91. Günzel D, Amasheh S, Pfaffenbach S, Richter JF, Kausalya PJ, Hunziker W, Fromm M. Claudin‐16 affects transcellular Cl− secretion in MDCK cells. J Physiol (Lond) 587: 3777‐3793, 2009.
 92. Günzel D, Haisch L, Pfaffenbach S, Krug SM, Milatz S, Amasheh S, Hunziker W, Müller D. Claudin function in the thick ascending limb of Henle's loop. Ann NY Acad Sci 1165: 152‐162, 2009. c
 93. Günzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, Meij IC, Hunziker W, Fromm M, Müller D. Claudin‐10 exists in six alternatively spliced isoforms which exhibit distinct localization and function. J Cell Sci 122: 1507‐1517, 2009.
 94. Günzel D, Yu ASL. Function and regulation of claudins in the thick ascending limb of Henle. Pflügers Arch. 458: 77‐88, 2009.
 95. Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S. The cytoplasmic plaque of tight junctions: A scaffolding and signalling center. Biochim Biophys Acta 1778: 601‐613, 2008.
 96. Haller W. Critical permeation size of dextran molecules. Macromolecules 10: 83‐86, 1977.
 97. Han CL, Chen JS, Chan EC, Wu CP, Yu KH, Chen KT, Tsou CC, Tsai CF, Chien CW, Kuo YB, Lin PY, Yu JS, Hsueh C, Chen MC, Chan CC, Chang YS, Chen YJ. An informatics‐assisted label‐free approach for personalized tissue membrane proteomics: Case study on colorectal cancer. Mol Cell Proteomics 10: M110.003087, 2011.
 98. Han G, Ye M, Liu H, Song C, Sun D, Wu Y, Jiang X, Chen R, Wang C, Wang L, Zou H. Phosphoproteome analysis of human liver tissue by long‐gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31: 1080‐1089, 2010.
 99. Han M, Pendem S, Teh SL, Sukumaran DK, Wu F, Wilson JX. Ascorbate protects endothelial barrier function during septic insult: role of protein phosphatase type 2A. Free Radic Biol Med 48: 128‐135, 2010.
 100. Harder JL, Margolis B. SnapShot: Tight and adherens junction signaling. Cell 133: 1118.e1‐2, 2008.
 101. Hartsock A, Nelson WJ. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778: 660‐669, 2008.
 102. Hashimoto K, Oshima T, Tomita T, Kim Y, Matsumoto T, Joh T, Miwa H. Oxidative stress induces gastric epithelial permeability through claudin‐3. Biochem Biophys Res Commun 376: 154‐157, 2008.
 103. Heller F, Fromm A, Gitter AH, Mankertz J, Schulzke JD. Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: Effect of pro‐inflammatory interleukin‐13 on epithelial cell function. Mucosal Immunol 1(Suppl 1): S58‐S61, 2008.
 104. Hering NA, Andres S, Fromm A, van Tol EA, Amasheh M, Mankertz J, Fromm M, Schulzke JD. Transforming growth factor β, a whey protein component, strengthens the intestinal barrier by upregulating claudin‐4 in HT‐29/B6 cells. J Nutr 141: 783‐789, 2011.
 105. Hering NA, Richter JF, Krug SM, Günzel D, Fromm A, Bohn E, Rosenthal R, Bücker R, Fromm M, Troeger H, Schulzke JD. Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT‐29/B6 cell monolayers. Lab Invest 91: 310‐324, 2011.
 106. Hewitt KJ, Agarwal R, Morin PJ. The claudin gene family: Expression in normal and neoplastic tissues. BMC Cancer 6: 186, 2006.
 107. Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 6: 581‐588, 2006.
 108. Hossain Z, Hirata T. Molecular mechanism of intestinal permeability: Interaction at tight junctions. Mol Biosyst 4: 1181‐1185, 2008.
 109. Hou J, Paul DL, Goodenough DA. Paracellin‐1 and the modulation of ion selectivity of tight junctions. J Cell Sci 118: 5109‐5118, 2005.
 110. Hou J, Gomes AS, Paul DL, Goodenough DA. Study of claudin function by RNA interference. J Biol Chem 281: 36117‐36123, 2006.
 111. Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA. Claudin‐16 and claudin‐19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 106: 15350‐15355, 2009.
 112. Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA. Claudin‐16 and claudin‐19 interact and form a cation‐selective tight junction complex. J Clin Invest 118: 619‐628, 2008.
 113. Hou J, Renigunta A, Yang J, Waldegger S. Claudin‐4 forms paracellular chloride channel in the kidney and requires claudin‐8 for tight junction localization. Proc Natl Acad Sci U S A 107: 18010‐18015, 2010.
 114. Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA. Transgenic RNAi depletion of claudin‐16 and the renal handling of magnesium. J Biol Chem 282: 17114‐17122, 2007.
 115. Ikari A, Hirai N, Shiroma M, Harada H, Sakai H, Hayashi H, Suzuki Y, Degawa M, Takagi K. Association of paracellin‐1 with ZO‐1 augments the reabsorption of divalent cations in renal epithelial cells. J Biol Chem 279: 54826‐54832, 2004.
 116. Ikari A, Kinjo K, Atomi K, Sasaki Y, Yamazaki Y, Sugatani J. Extracellular Mg2+ regulates the tight junctional localization of claudin‐16 mediated by ERK‐dependent phosphorylation. Biochim Biophys Acta 1798: 415‐21, 2010.
 117. Ikari A, Matsumoto S, Harada H, Takagi K, Hayashi H, Suzuki Y, Degawa M, Miwa M. Phosphorylation of paracellin‐1 at Ser217 by protein kinase A is essential for localization in tight junctions. J Cell Sci 119: 1781‐1789, 2006.
 118. Ikari A, Okude C, Sawada H, Sasaki Y, Yamazaki Y, Sugatani J, Degawa M, Miwa M. Activation of a polyvalent cation‐sensing receptor decreases magnesium transport via claudin‐16. Biochim Biophys Acta 1778: 283‐290, 2008.
 119. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171: 939‐945, 2005.
 120. Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S. Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell 19: 4687‐4693, 2008.
 121. Inai T, Kobayashi J, Shibata Y. Claudin‐1 contributes to the epithelial barrier function in MDCK cells. Eur J Cell Biol 78: 849‐855, 1999.
 122. Inai T, Kamimura T, Hirose E, Iida H, Shibata Y. The protoplasmic or exoplasmic face association of tight junction particles cannot predict paracellular permeability or heterotypic claudin compatibility. Eur J Cell Biol 89: 547‐556, 2010.
 123. Inai T, Sengoku A, Guan X, Hirose E, Iida H, Shibata Y. Heterogeneity in expression and subcellular localization of tight junction proteins, claudin‐10 and ‐15, examined by RT‐PCR and immunofluorescence microscopy. Arch Histol Cytol 68: 349‐360, 2005.
 124. Inai T, Sengoku A, Hirose E, Iida H, Shibata Y. Comparative characterization of mouse rectum CMT93‐I and ‐II cells by expression of claudin isoforms and tight junction morphology and function. Histochem Cell Biol 129: 223‐232, 2008.
 125. Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, Nagasawa K, Wada I, Sawada N. Cyclic AMP induces phosphorylation of claudin‐5 immunoprecipitates and expression of claudin‐5 gene in blood‐brain‐barrier endothelial cells via protein kinase A‐dependent and ‐independent pathways. Exp Cell Res 290: 275‐288, 2003.
 126. John LJ, Fromm M, Schulzke JD. Epithelial barriers in intestinal inflammation. Antioxid Redox Signal 15: 1255‐1270, 2011.
 127. Jovov B, Van Itallie CM, Shaheen NJ, Carson JL, Gambling TM, Anderson JM, Orlando RC. Claudin‐18: A dominant tight junction protein in Barrett's esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol 293: G1106‐G1113, 2007.
 128. Jungmann P, Wilhelmi M, Oberleithner H, Riethmüller C. Bradykinin does not induce gap formation between human endothelial cells. Pflügers Arch 455: 1007‐1016, 2008.
 129. Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol 136: 1239‐1247, 1997.
 130. Kausalya PJ, Amasheh S, Günzel D, Wurps H, Müller D, Fromm M, Hunziker W. Disease‐associated mutations affect intracellular traffic and paracellular Mg2+ transport function of claudin‐16. J Clin Invest 116: 878‐891, 2006.
 131. Kawaguchi M, Hager HA, Wada A, Koyama T, Chang MS, Bader DM. Identification of a novel intracellular interaction domain essential for Bves function. PLoS One 3: e2261, 2008.
 132. Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S. Compartmentalization established by claudin‐11‐based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117: 5087‐5096, 2004.
 133. Kiuchi‐Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13: 875‐886, 2002.
 134. Knight RF, Bader DM, Backstrom JR. Membrane topology of Bves/Pop1A, a cell adhesion molecule that displays dynamic changes in cellular distribution during development. J Biol Chem 278: 32872‐3289, 2003.
 135. Köhler K, Zahraoui A. Tight junction: A co‐ordinator of cell signalling and membrane trafficking. Biol Cell 97: 659‐665, 2005.
 136. Kollmar R, Nakamura SK, Kappler JA, Hudspeth AJ. Expression and phylogeny of claudins in vertebrate primordia. Proc Natl Acad Sci U S A 98: 10196‐10201, 2001.
 137. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez‐Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nürnberg P, Weber S. Mutations in the tight‐junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79: 949‐957, 2006.
 138. Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, Okada Y, Ikeda E. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin‐5 in endothelial cells. Am J Pathol 170: 1389‐1397, 2007.
 139. Kojima T, Takano K, Yamamoto T, Murata M, Son S, Imamura M, Yamaguchi H, Osanai M, Chiba H, Himi T, Sawada N. Transforming growth factor‐beta induces epithelial to mesenchymal transition by down‐regulation of claudin‐1 expression and the fence function in adult rat hepatocytes. Liver Int 28: 534‐545, 2008.
 140. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochim Biophys Acta 1778: 631‐645, 2008.
 141. Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20: 3713‐3724, 2009a.
 142. Krug SM, Fromm M, Günzel D. Two‐path impedance spectroscopy for measurement of paracellular and transcellular epithelial resistance. Biophys J 97: 2202‐2211, 2009b.
 143. Krug SM, Günzel D, Conrad MP, Rosenthal R, Fromm A, Amasheh S, Schulzke JD, Fromm M. Claudin‐17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci 69: (in press), 2012.
 144. Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, Babbin BA, Williams IR, Koval M, Peatman E, Campbell JA, Dermody TS, Nusrat A, Parkos CA. JAM‐A regulates permeability and inflammation in the intestine in vivo. J Exp Med 204: 3067‐3076, 2007.
 145. Lal‐Nag M, Morin PJ. The claudins. Genome Biol 10: 235.1‐235.7, 2009.
 146. Lemmers C, Michel D, Lane‐Guermonprez L, Delgrossi MH, Médina E, Arsanto JP, Le Bivic A. CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 15: 1324‐1333, 2004.
 147. Le Moellic C, Boulkroun S, González‐Nunez D, Dublineau I, Cluzeaud F, Fay M, Blot‐Chabaud M, Farman N. Aldosterone and tight junctions: Modulation of claudin‐4 phosphorylation in renal collecting duct cells. Am J Physiol Cell Physiol 289: C1513‐1521, 2005.
 148. Lim TS, Vedula SR, Hui S, Kausalya PJ, Hunziker W, Lim CT. Probing effects of pH change on dynamic response of Claudin‐2 mediated adhesion using single molecule force spectroscopy. Exp Cell Res 314: 2643‐2651, 2008.
 149. Lim TS, Vedula SR, Hunziker W, Lim CT. Kinetics of adhesion mediated by extracellular loops of claudin‐2 as revealed by single‐molecule force spectroscopy. J Mol Biol 381: 681‐691, 2008.
 150. Loh YH, Christoffels A, Brenner S, Hunziker W, Venkatesh B. Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes. Genome Res 14: 1248‐1257, 2004.
 151. Mandell KJ, Parkos CA. The JAM family of proteins. Adv Drug Deliv Rev 57: 857‐867, 2005.
 152. Mankertz J, Waller JS, Hillenbrand B, Tavalali S, Florian P, Schöneberg T, Fromm M, Schulzke JD. Gene expression of the tight junction protein occludin includes differential splicing and alternative promoter usage. Biochem Biophys Res Comm 298: 657‐666, 2002.
 153. Markov AG, Voronkova MA, Volgin GN, Yablonsky PK, Fromm M, Amasheh S. Tight junction proteins contribute to barrier properties in human pleura. Resp Physiol Neurobiol 175: 331‐335, 2011.
 154. Martinez‐Palomo A, Erlij D, Bracho H. Localization of permeability barriers in the frog skin epithelium. J Cell Biol 50: 277‐287, 1971.
 155. Martinez‐Palomo A, Meza I, Beaty G, Cereijido M. Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci USA 72: 4487‐4491, 1975.
 156. Matsuda M, Kubo A, Furuse M, Tsukita S. A peculiar internalization of claudins, tight junction‐specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci 117: 1247‐1257, 2004. Supplemental movies: http://jcs.biologists.org/content/117/7/1247/suppl/DC1.
 157. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160‐1166, 2007.
 158. Matter K, Aijaz S, Tsapara A, Balda MS. Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol 17: 453‐458, 2005.
 159. McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE. Occludin is a functional component of the tight junction. J Cell Sci 109: 2287‐2298, 1996.
 160. Medigeshi GR, Hirsch AJ, Brien JD, Uhrlaub JL, Mason PW, Wiley C, Nikolich‐Zugich J, Nelson JA. West nile virus capsid degradation of claudin proteins disrupts epithelial barrier function. J Virol 83: 6125‐6134, 2009.
 161. Meertens L, Bertaux C, Cukierman L, Cormier E, Lavillette D, Cosset FL, Dragic T. The tight junction proteins claudin‐1, ‐6, and ‐9 are entry cofactors for hepatitis C virus. J Virol 82: 3555‐3560, 2008.
 162. Mees ST, Mennigen R, Spieker T, Rijcken E, Senninger N, Haier J, Bruewer M. Expression of tight and adherens junction proteins in ulcerative colitis associated colorectal carcinoma: Upregulation of claudin‐1, claudin‐3, claudin‐4, and beta‐catenin. Int J Colorect Dis 24: 361‐368. 2009.
 163. Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, Bruewer M. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 296: G1140‐G1149, 2009.
 164. Michel D, Arsanto JP, Massey‐Harroche D, Béclin C, Wijnholds J, Le Bivic A. PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells. J Cell Sci 118: 4049‐4057, 2005.
 165. Michl P, Buchholz M, Rolke M, Kunsch S, Löhr M, McClane B, Tsukita S, Leder G, Adler G, Gress TM. Claudin‐4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin. Gastroenterol 121: 678‐84. 2001.
 166. Michlig S, Damak S, Le Coutre J. Claudin‐based permeability barriers in taste buds. J Comp Neurol 502: 1003‐1011, 2007.
 167. Milatz S, Krug SM, Rosenthal R, Günzel D, Müller D, Schulzke JD, Amasheh S, Fromm M. Claudin‐3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta Biomembr 1798: 2048‐2057, 2010.
 168. Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K, Tamura A, Igarashi M, Endo T, Takeuchi K, Tsukita S. Predicted expansion of the claudin multigene family. FEBS Lett 585: 606‐612, 2011.
 169. Mitic LL, Unger VM, Anderson JM. Expression, solubilization, and biochemical characterization of the tight junction transmembrane protein claudin‐4. Protein Sci 12: 218‐227, 2003.
 170. Miyamoto T, Morita D, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, Nakayama K, Okamura Y, Sasaki H, Miyachi Y, Furuse M, Tsukita S. Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin‐19‐deficient mice. J Cell Biol 169: 527‐538, 2005.
 171. Miyoshi J, Takai Y. Molecular perspective on tight‐junction assembly and epithelial polarity. Adv Drug Deliv Rev 57: 815‐855, 2005.
 172. Morin PJ. Claudin proteins in human cancer: Promising new targets for diagnosis and therapy. Cancer Res 65: 9603‐9606, 2005.
 173. Morin PJ. Claudin proteins in ovarian cancer. Dis Markers 23: 453‐457, 2007.
 174. Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four‐transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96: 511‐516, 1999.
 175. Morita K, Furuse M, Yoshida Y, Itoh M, Sasaki H, Tsukita S, Miyachi Y. Molecular architecture of tight junctions of periderm differs from that of the maculae occludentes of epidermis. J Invest Dermatol 118: 1073‐1079, 2002.
 176. Müller SL, Portwich M, Schmidt A, Utepbergenov DI, Huber O, Blasig IE, Krause G. The tight junction protein occludin and the adherens junction protein α‐catenin share a common interaction mechanism with ZO‐1. J Biol Chem 280: 3747‐3756, 2005.
 177. Mullin JM. Epithelial barriers, compartmentation, and cancer. Science STKE 2004: pe2, 2004.
 178. Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor‐induced permeability. J Biol Chem 284: 21036‐21046, 2009.
 179. Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, Kusano E, Tsukita S, Furuse M. Claudin‐2‐deficient mice are defective in the leaky and cation‐selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 107: 8011‐8016, 2010.
 180. Nava P, López S, Arias CF, Islas S, González‐Mariscal L. The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. J Cell Sci 117: 5509‐5519, 2004.
 181. Niimi T, Nagashima K, Ward JM, Minoo P, Zimonjic DB, Popescu NC, Kimura S. Claudin‐18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung‐ and stomach‐specific isoforms through alternative splicing. Mol Cell Biol 21: 7380‐7390, 2001.
 182. Nitta T, Masaki Hata M, Shimpei Gotoh S, Yoshiteru Seo Y, Hiroyuki Sasaki H, Nobuo Hashimoto N, Mikio Furuse M, Shoichiro Tsukita S. Size‐selective loosening of the blood‐brain barrier in claudin‐5‐deficient mice. J Cell Biol 161: 653‐660, 2003
 183. Nunbhakdi‐Craig V, Machleidt T, Ogris E, Bellotto D, White CL, Sontag E. Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight jucntion complex. J Cell Biol 158: 967‐978, 2002.
 184. Ohtsuki S, Yamaguchi H, Katsukura Y, Asashima T, Terasaki T. mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. J Neurochem 104: 147‐154, 2008.
 185. Oliveira SS, Morgado‐Díaz JA. Claudins: Multifunctional players in epithelial tight junctions and their role in cancer. Cell Mol Life Sci 64: 17‐28, 2006.
 186. Oshima T, Miwa H, Takashi Joh T. Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol 23(Suppl. 2): S146‐S150, 2008.
 187. Osler ME, Smith TK, Bader DM. Bves, a member of the Popeye domain‐containing gene family. Dev Dyn 235: 586‐593, 2006.
 188. Ouban A, Ahmed AA. Claudins in human cancer: A review. Histol Histopathol 25: 83‐90, 2010.
 189. Paperna T, Peoples R, Wang YK, Kaplan P, Francke U. Genes for the CPE receptor (CPETR1) and the human homolog of RVP1 (CPETR2) are localized within the Williams‐Beuren Syndrome deletion. Genomics 54: 453‐459, 1998.
 190. Peng S, Rao VS, Adelman RA, Rizzolo LJ. Claudin‐19 and the barrier properties of the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 52: 1392‐1403, 2011.
 191. Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, Shimokawa H, Kaibuchi K, Ikezu T. Rho‐mediated regulation of tight junctions during monocyte migration across the blood‐brain barrier in HIV‐1 encephalitis (HIVE). Blood 107: 4770‐4780, 2006.
 192. Piehl C, Piontek J, Cording J, Wolburg H, Blasig IE. Participation of the second extracellular loop of claudin‐5 in paracellular tightening against ions, small and large molecules. Cell Mol Life Sci 67: 2131‐2140, 2010.
 193. Piontek J, Fritzsche S, Cording J, Richter S, Hartwig J, Walter M, Yu D, Turner JR, Gehring C, Rahn HP, Wolburg H, Blasig IE. Elucidating the principles of the molecular organization of heteropolymeric tight junction strands. Cell Mol Life Sci 68: 3903‐3918, 2011.
 194. Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE. Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22: 146‐158, 2008.
 195. Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, Wang Y, Wu L, Schneeberger EE, Shen L, Turner JR. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J Cell Biol 193: 565‐582, 2011.
 196. Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR. Tight junction‐associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 21: 1200‐1213, 2010.
 197. Resnick MB, Konkin T, Routhier J, Sabo E, Pricolo VE. Claudin‐1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod Pathol 18: 511‐518. 2004.
 198. Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Riazuddin S, Friedman TB. Tricellulin is a tight‐junction protein necessary for hearing. Am J Hum Genet 79: 1040‐1051, 2006.
 199. Rizzolo LJ, Chen X, Weitzman M, Sun R, Zhang H. Analysis of the RPE transcriptome reveals dynamic changes during the development of the outer blood‐retinal barrier. Mol Vis 13: 1259‐1273, 2007.
 200. Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Günzel D. Fromm M. The tight junction protein claudin‐2 forms a paracellular water channel. J Cell Sci 123: 1913‐1921, 2010.
 201. Roxas JL, Koutsouris A, Bellmeyer A, Tesfay S, Royan S, Falzari K, Harris A, Cheng H, Rhee KJ, Hecht G. Enterohemorrhagic E. coli alters murine intestinal epithelial tight junction protein expression and barrier function in Shiga toxin independent manner. Lab Invest 90: 1152‐1168, 2010.
 202. Ruddy SB, Hadzija BW. Iontophoretic permeability of polyethylene glycols through hairless rat skin: application of hydrodynamic theory for hindered transport through liquid filled pores. Drug Des Discov 8: 207–224. 1992.
 203. Russ PK, Pino CJ, Williams CS, Bader DM, Haselton FR, Chang MS. Bves modulates tight junction associated signaling. PLoS One 6: e14563, 2011.
 204. Saeki R, Kondoh M, Kakutani H, Matsuhisa K, Takahashi A, Suzuki H, Kakamu Y, Watari A, Yagi K. A claudin‐targeting molecule as an inhibitor of tumor metastasis. J Pharmacol Exp Ther 334: 576‐582. 2010.
 205. Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S. Occludin‐deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141: 397‐408, 1998.
 206. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11: 4131‐4142, 2000.
 207. Sakakibara A, Furuse M, Saitou M, Ando‐Akatsuka Y, Tsukita S. Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137: 1393‐1401. 1997.
 208. Sallee JL, Burridge K. Density‐enhanced phosphatase 1 regulates phosphorylation of tight junction proteins and enhances barrier function of epithelial cells. J Biol Chem 284: 14997‐15006, 2009.
 209. Sander GR, Cummins AG, Powell BC. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Letters 579: 4851‐4855, 2005.
 210. Sandle GI. Pathogenesis of diarrhea in ulcerative colitis: new views on an old problem. J Clin Gastroenterol 39: S49‐S52, 2005.
 211. Sas D, Hu M, Moe OW, Baum M. Effect of claudins 6 and 9 on paracellular permeability in MDCK II cells. Am J Physiol Regul Integr Comp Physiol 295: 1713‐1719, 2008.
 212. Schmitz H, Barmeyer C, Fromm M, Runkel N, Foss HD, Bentzel CJ, Riecken EO, Schulzke JD. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116: 301‐309, 1999.
 213. Schultz SG. Electrical potential differences and electromotive forces in epithelial tissues. J Gen Physiol 59: 794‐798, 1972.
 214. Schulzke JD, Gitter AH, Mankertz J, Spiegel S, Seidler U, Amasheh S, Saitou M, Tsukita S, Fromm M. Epithelial transport and barrier function in occludin‐deficient mice. Biochim Biophys Acta 1669: 34‐42, 2005.
 215. Schulzke JD, Ploeger S, Amasheh M, Fromm A, Zeissig S, Troeger H, Richter J, Bojarski C, Schumann M, Fromm M. Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci 1165: 294‐300, 2009.
 216. Severson EA, Jiang L, Ivanov AI, Mandell KJ, Nusrat A, Parkos CA. Cis‐dimerization mediates function of junctional adhesion molecule A. Mol Biol Cell 19: 1862‐1872, 2008.
 217. Severson EA, Parkos CA. Mechanisms of outside‐in signaling at the tight junction by junctional adhesion molecule A. Ann N Y Acad Sci 1165: 10‐18, 2009.
 218. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: A dynamic duo. Annu Rev Physiol 73: 283‐309, 2011.
 219. Shen L, Weber CR, Turner JR. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol 181: 683‐695, 2008.
 220. Seth A, Sheth P, Elias BC, Rao R. Protein phosphatase 2A and 1 interact with occludin and negatively regulate the assembly of tight junctions in the CACO‐2 cell monolayer. J Biol Chem 282: 11487‐11498, 2007.
 221. Sheth P, Delos Santos N, Seth A, LaRusso NF, Rao RK. Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c‐Src‐, TLR4‐, and LBP‐dependent mechanism. Am J Physiol Gastrointest Liver Physiol 293: 308‐318, 2007.
 222. Sheth P, Samak G, Shull JA, Seth A, Rao R. Protein phosphatase 2A plays a role in hydrogen peroxide‐induced disruption of tight junctions in Caco‐2 cell monolayers. Biochem J 421: 59‐70, 2009.
 223. Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, Ueda M, Ohtsuki S, Terasaki T, Obinata M, Kanda T. Peripheral nerve pericytes originating from the blood‐nerve barrier expresses tight junctional molecules and transporters as barrier‐forming cells. J Cell Physiol 217: 388‐399, 2008.
 224. Shin K, Fogg VC, Margolis B. Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22: 207‐235, 2006.
 225. Simon DB, Lu Y, Choate KA, Velazquez H, Al Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez‐Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin‐1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285: 103‐106, 1999.
 226. Singh AB, Sharma A, Dhawan P. Claudin family of proteins and cancer: An overview. J Oncol 2010: 541957, 2010.
 227. Soma T, Chiba H, Kato‐Mori Y, Wada T, Yamashita T, Kojima T, Sawada N. Thr207 of claudin‐5 is involved in size‐selective loosening of the endothelial barrier by cyclic AMP. Exp Cell Res 300: 202‐212, 2004.
 228. Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147: 195‐204, 1999.
 229. Staehelin LA. Further observations of the fine structure of freezecleaved tight junctions. J Cell Sci 13: 763‐786, 1973.
 230. Staehelin LA, Mukherjee TM, Williams AW. Freeze‐etch appearance of tight junctions in the epithelium of small and large intestine of mice. Protoplasma 67: 165‐184, 1969.
 231. Steed E, Rodrigues NT, Balda MS, Matter K. Identification of MarvelD3 as a tight junction‐associated transmembrane protein of the occludin family. BMC Cell Biol 10: 95, 2009.
 232. Stevenson BR, Anderson JM, Goodenough DA, Mooseker MS. Tight junction structure and ZO‐1 content are identical in two strains of Madin‐Darby canine kidney cells which differ in transepithelial resistance. J Cell Biol 107: 2401‐2408, 1988.
 233. Stiffler MA, Chen JR, Grantcharova VP, Lei Y, Fuchs D, Allen JE, Zaslavskaia LA, MacBeath G. PDZ domain binding selectivity is optimized across the mouse proteome. Science 317: 364‐369, 2007.
 234. Stockmann M, Schmitz H, Fromm M, Schmidt W, Rokos K, Pauli G, Scholz P, Riecken EO, Schulzke JD. The mechanism of diarrhea in HIV is based on an impaired epithelial barrier function that could be induced by a specific cytokine pattern. Ann N Y Acad Sci 859: 267‐270, 1998.
 235. Strauman MC, Harper JM, Harrington SM, Boll EJ, Nataro JP. Enteroaggregative escherichia coli disrupts epithelial cell tight junctions. Infect Immun 78: 4958‐4964, 2010.
 236. Sundstrom JM, Tash BR, Murakami T, Flanagan JM, Bewley MC, Stanley BA, Gonsar KB, Antonetti DA. Identification and analysis of occludin phosphosites: A combined mass spectrometry and bioinformatics approach. J Proteome Res 8: 808‐817, 2009.
 237. Swisshelm K, Macek R, Kubbies M. Role of claudins in tumorigenesis. Adv Drug Delivery Rev 57: 919‐ 928, 2005.
 238. Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R. PKCη regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci U S A 106: 61‐66, 2009.
 239. Szakál DN, Győrffy H, Arató A, Cseh A, Molnár K, Papp M, Dezsőfi A, Veres G. Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease. Virchows Arch 456: 245‐250, 2010.
 240. Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I. IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol 85: 1801‐1813, 2004.
 241. Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y, Tsukita S. Loss of claudin‐15, but not claudin‐2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology 140: 913‐923, 2011.
 242. Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S, Tsukita S. Megaintestine in claudin‐15‐deficient mice. Gastroenterology 134: 523‐534, 2008.
 243. Tanaka M, Kamata R, Sakai R. EphA2 phosphorylates the cytoplasmic tail of claudin‐4 and mediates paracellular permeability. J Biol Chem 280: 42375‐42382, 2005.
 244. Tang W, Dou T, Zhong M, Wu Z. Dysregulation of Claudin family genes in colorectal cancer in a Chinese population. Biofactors 37: 65‐73. 2011.
 245. Tatum R, Zhang Y, Lu Q, Kim K, Jeansonne BG, Chen YH. WNK4 phosphorylates ser(206) of claudin‐7 and promotes paracellular Cl− permeability. FEBS Lett 581: 3887‐3891, 2007.
 246. Tatum R, Zhang Y, Salleng K, Lu Z, Lin J, Lu Q, Jeansonne BG, Ding L, Chen YH. Renal salt wasting and chronic dehydration in claudin‐7‐deficient mice. Am J Physiol Renal Physiol 298: F24‐F34, 2010.
 247. Thompson PD, Tipney H, Brass A, Noyes H, Kemp S, Naessens J, Tassabehji M. Claudin 13, a member of the claudin family regulated in mouse stress induced erythropoiesis. PLoS One 5: e12667, 2010.
 248. Tieleman DP, Biggin PC, Smith GR, Sansom MS. Simulation approaches to ion channel structure‐function relationships. Q Rev Biophys 34: 473‐561, 2001.
 249. Troeger H, Epple HJ, Schneider T, Wahnschaffe U, Ullrich R, Burchard GD, Jelinek T, Zeitz M, Fromm M, Schulzke JD. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 56: 328‐335, 2007.
 250. Troeger H, Loddenkemper C, Schneider T, Schreier E, Epple HJ, Zeitz M, Fromm M, Schulzke JD. Structural and functional changes of the duodenum in human norovirus infection. Gut 58: 1070‐1077, 2009.
 251. Tsukita S, Furuse M. Occludin and claudins in tight‐junction strands: Leading or supporting players? Trends Cell Biol 9: 268‐273, 1999.
 252. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285‐293, 2001.
 253. Tsukita S, Yamazaki Y, Katsuno T, Tamura A, Tsukita S. Tight junction‐based epithelial microenvironment and cell proliferation. Oncogene 27: 6930‐6938, 2008.
 254. Turksen K, Troy TC. Permeability barrier dysfunction in transgenic mice overexpressing claudin 6. Development 129: 1775‐1784, 2002.
 255. Ueda J, Semba S, Chiba H, Sawada N, Seo Y, Kasuga M, Yokozaki H. Heterogeneous expression of claudin‐4 in human colorectal cancer: Decreased claudin‐4 expression at the invasive front correlates cancer invasion and metastasis. Pathobiology 74: 32‐41, 2007.
 256. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9: 799‐809, 2009.
 257. Valle BL, Morin PJ. Claudins in cancer biology. Curr Top Membr 65: 293‐333, 2010.
 258. Van Deurs B, Koehler JK. Tight junctions in the choroid plexus epithelium. A freeze‐fracture study including complementary replicas. J Cell Biol 80: 662‐673, 1979.
 259. Van Itallie C, Rahner C, Anderson JM. Regulated expression of claudin‐4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107: 1319‐1327, 2001.
 260. Van Itallie CM, Fanning AS, Anderson JM. Reversal of charge selectivity in cation or anion‐selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol 285: F1078‐F1084, 2003.
 261. Van Itallie CM, Fanning AS, Holmes J, Anderson JM. Occludin is required for cytokine‐induced regulation of tight junction barriers. J Cell Sci 123: 2844‐2852, 2010.
 262. Van Itallie CM, Gambling TM, Carson JL Anderson JM. Palmitoylation of claudins is required for efficient tight‐junction localization. J Cell Sci 118: 1427‐1436, 2005.
 263. Van Itallie CM, Holmes J, Bridges A, Gookin JL, Coccaro MR, Proctor W, Colegio OR, Anderson JM. The density of small tight junction pores varies among cell types and is increased by expression of claudin‐2. J Cell Sci 121: 298‐305, 2008.
 264. Van Itallie CM, Mitic LL, Anderson JM. Claudin‐2 forms homodimers and is a component of a high molecular weight protein complex. J Biol Chem 286: 3442‐3450, 2011.
 265. Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM. Two splice variants of claudin‐10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 291: F1288‐F1299, 2006.
 266. van Raaij MJ, Chouin E, van der Zandt H, Bergelson JM, Cusack S. Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Structure 8: 1147‐1155, 2000.
 267. Verma S, Kumar M, Gurjav U, Lum S, Nerurkar VR. Reversal of West Nile virus‐induced blood‐brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397: 130‐138, 2010.
 268. Veshnyakova A, Protze J, Rossa J, Blasig IE, Krause G, Piontek J. On the interaction of clostridium perfringens enterotoxin with claudins. Toxins 2: 1336‐1356. 2010.
 269. Vetrano S, Danese S. The role of JAM‐A in inflammatory bowel disease: Unrevealing the ties that bind. Ann N Y Acad Sci 1165: 308‐313, 2009.
 270. Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391: 17‐24, 2005.
 271. Walker DC, MacKenzie A, Hulbert WC, Hogg JC. A re‐assessment of the tricellular region of epithelial cell tight junctions in trachea of guinea pig. Acta Anat (Basel) 122: 35‐38, 1985.
 272. Wang X, Tully O, Ngo B, Zitin M, Mullin JM. Epithelial tight junctional changes in colorectal cancer tissues. ScientificWorldJournal 11: 826‐841, 2011.
 273. Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol 281: C388‐C397, 2001.
 274. Wen H, Watry DD, Marcondes MC, Fox HS. Selective decrease in paracellular conductance of tight junctions: Role of the first extracellular domain of claudin‐5. Mol Cell Biol 24: 8408‐8417, 2004.
 275. Wessells H, Sullivan CJ, Tsubota Y, Engel KL, Kim B, Olson NE, Thorner D, Chitaley K. Transcriptional profiling of human cavernosal endothelial cells reveals distinctive cell adhesion phenotype and role for claudin 11 in vascular barrier function. Physiol Genomics 39: 100‐108, 2009.
 276. Westphal JK, Dörfel MJ, Krug SM, Cording JD, Piontek J, Blasig IE, Tauber R, Fromm M, Huber O. Tricellulin forms homomeric and heteromeric tight junctional complexes. Cell Mol Life Sci 67: 2057‐2068, 2010.
 277. Will C, Breiderhoff T, Thumfart J, Stuiver M, Kopplin K, Sommer K, Günzel D, Querfeld U, Meij IC, Shan Q, Bleich M, Willnow TE, Müller D. Targeted deletion of murine Cldn16 identifies extra‐ and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. Am J Physiol Renal Physiol 298: F1152‐F1161, 2010.
 278. Winkler L, Gehring C, Wenzel A, Müller SL, Piehl C, Krause G, Blasig IE, Piontek J. Molecular determinants of the interaction between Clostridium perfringens enterotoxin fragments and claudin‐3. J Biol Chem 284: 18863‐18872, 2009.
 279. Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO‐1 forms independent complexes with ZO‐2 and ZO‐3. J Biol Chem 274: 35179‐35185, 1999.
 280. Wu VM, Schulte J, Hirschi A, Tepass U, Beitel GJ. Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J Cell Biol 164: 313‐323, 2004.
 281. Yamamoto M, Ramirez SH, Sato S, Kiyota T, Cerny RL, Kaibuchi K, Persidsky Y, Ikezu T. Phosphorylation of claudin‐5 and occludin by rho kinase in brain endothelial cells. Am J Pathol 172: 521‐533, 2008.
 282. Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S. Disease‐causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci U S A 101: 4690‐4694, 2004.
 283. Yoshida Y, Ban Y, Kinoshita S. Tight junction transmembrane protein claudin subtype expression and distribution in human corneal and conjunctival epithelium. Invest Ophthalmol Vis Sci 50: 2103‐2108, 2009.
 284. Yu AS. Molecular basis for cation selectivity in claudin‐2‐based pores. Ann N Y Acad Sci 1165: 53‐57, 2009.
 285. Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 288: C1231‐C1241, 2005.
 286. Yu ASL, Cheng, MH, Angelow S, Günzel D, Kanzawa SA, Schneeberger EE, Fromm M, Coalson RD. Molecular basis for cation selectivity in claudin‐2‐based paracellular pores: Identification of an electrostatic interaction site. J Gen Physiol 133: 111‐127, 2009.
 287. Yu ASL, Enck AH, Lencer WI, Schneeberger EE. Claudin‐8 expression in Madin‐Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278: 17350‐17359, 2003.
 288. Zeissig S, Bürgel N, Günzel D, Richter JF, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut 56: 61‐72, 2007.
 289. Zheng A, Yuan F, Li Y, Zhu F, Hou P, Li J, Song X, Ding M, Deng H. Claudin‐6 and claudin‐9 function as additional coreceptors for hepatitis C virus. J Virol 81: 12465‐12471, 2007.
 290. Zheng J, Xie Y, Campbell R, Song J, Massachi S, Razi M, Chiu R, Berenson J, Yang OO, Chen IS, Pang S. Involvement of claudin‐7 in HIV infection of CD4(‐) cells. Retrovirology 2: 79, 2005.
 291. Zorko MS, Veranic P, Leskovec NK, Pavlović MD, Lunder T. Expression of tight‐junction proteins in the inflamed and clinically uninvolved skin in patients with venous leg ulcers. Clin Exp Dermatol 34: e949‐e952, 2009.
Further Reading
 1. Günzel D, Krug SM, Rosenthal R, Fromm M. Biophysical methods to study tight junction permeability. Curr Top Membr 65: 39‐78, 2010.
 2. Turksen K (ed). Claudins: Methods and protocols. Methods in Molecular Biology 762: 1‐461, 2011.
 3. Fromm M, Schulzke JD (eds). Molecular structure and function of the tight junction. Ann NY Acad Sci 1165: 1‐346, 2009. (A follow‐up volume will be published by the Ann NY Acad Sci in 2012.)
 4. Yu AS (ed). Claudins. Curr Top Membr 65: 1‐341, 2010.

Futher Reading

Methods in tight junction research:

Günzel D, Krug SM, Rosenthal R, Fromm M. Biophysical methods to study tight junction permeability. Curr Top Membr 65: 39-78, 2010.

Turksen K (ed). Claudins: Methods and protocols. Methods in Molecular Biology 762: pp 1-461, 2011.

Overview of the field:

Fromm M, Schulzke JD (eds). Molecular structure and function of the tight junction. Ann NY Acad Sci 1165: pp 1-346, 2009. (A follow-up volume will be published by the Ann NY Acad Sci in 2012)

Yu AS (ed). Claudins. Current Topics in Membranes 65: pp 1-341, 2010.

 


Related Articles:

Comparative Physiology of Colonic Electrolyte Transport
The Gastric Mucosal Barrier
Ion Transport Across Mammalian Small Intestine
Ion Transport Across the Large Intestine
Principles of Membrane Transport
Mechanisms of Fluid Transport Across Renal Tubules
Epithelial Transport
Epithelial Organization: The Gut and Beyond
Basic Principles of Transport
Epithelial Cell Polarity: Challenges and Methodologies

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Dorothee Günzel, Michael Fromm. Claudins and Other Tight Junction Proteins. Compr Physiol 2012, 2: 1819-1852. doi: 10.1002/cphy.c110045