Comprehensive Physiology Wiley Online Library

Characterization and Regulation of Mechanical Loading‐Induced Compensatory Muscle Hypertrophy

Full Article on Wiley Online Library


In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber‐type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study. © 2012 American Physiological Society. Compr Physiol 2:2829‐2870, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images

Figure 1. Figure 1.

Satellite cells and muscle hypertrophy. (A) The initial hypertrophy adaptation to a chronic increase in the loading state of myofibers is accomplished by accretion of cellular protein via upregulated protein synthesis. This would be expected to result in the recruitment of all intrinsic myonuclei for transcriptional activity. Over time, some threshold is thought to be reached at which all myonuclei are maximally involved in transcription and diffusion/localization of mRNA becomes limiting for further expansion of myofiber size. The activation of satellite cells and the incorporation of some of their progeny into myofibers would relieve this restriction. The addition of new myonuclei would facilitate continued protein synthesis to fill out new myonuclear domains. (B) The myonuclear domains of small myofibers may not reach a critical threshold with regard to the distribution of mRNA; and thus may not demand nuclear addition even in cases of extreme hypertrophy (e.g., via compensatory overload). However, human myofibers are much larger in size and appear to manifest domain size limitations.

Figure 2. Figure 2.

Translational signaling intracellular mechanisms converge to regulate the translational activity necessary to initiate hypertrophic responses. These (and other) pathways and effectors are known to be sensitive to a number of stimuli including mechanical forces on the cytoskeleton and cell membrane, growth factor receptor activity, and nutritional (primarily amino acid) status. Abbreviations: ECM, extracellular matrix; DGC, dystrophin‐associated glycoprotein complex; MEK, MAP kinase; ERK, extracellular response kinase; PI3‐kinase, phosphoinositide 3‐kinase; Akt, cellular homolog of the v‐Akt oncogene; mTOR, mammalian target of rapamycin; S6K1, ribosomal S6 kinase; 4E‐BP, eukaryotic initiation factor (eIF) 4E binding protein; GSK3, glycogen synthase kinase 3; FOXO, forkhead box O3 transcription factor; eIF2Bɛ, eukaryotic initiation factor 2Bɛ; eIF2, eukaryotic initiation factor 2.

Figure 3. Figure 3.

Elements of mechanotransduction. A number of components of the dystrophin‐associated glycoprotein complex (DGC), as well as transmembrane integrins, have been posited to contribute to the transduction of loading into biochemical and biological processes, that is, mechanotransduction. In particular, DGC‐associated nitric oxide synthase may be critical to the hypertrophic process.

Figure 1.

Satellite cells and muscle hypertrophy. (A) The initial hypertrophy adaptation to a chronic increase in the loading state of myofibers is accomplished by accretion of cellular protein via upregulated protein synthesis. This would be expected to result in the recruitment of all intrinsic myonuclei for transcriptional activity. Over time, some threshold is thought to be reached at which all myonuclei are maximally involved in transcription and diffusion/localization of mRNA becomes limiting for further expansion of myofiber size. The activation of satellite cells and the incorporation of some of their progeny into myofibers would relieve this restriction. The addition of new myonuclei would facilitate continued protein synthesis to fill out new myonuclear domains. (B) The myonuclear domains of small myofibers may not reach a critical threshold with regard to the distribution of mRNA; and thus may not demand nuclear addition even in cases of extreme hypertrophy (e.g., via compensatory overload). However, human myofibers are much larger in size and appear to manifest domain size limitations.

Figure 2.

Translational signaling intracellular mechanisms converge to regulate the translational activity necessary to initiate hypertrophic responses. These (and other) pathways and effectors are known to be sensitive to a number of stimuli including mechanical forces on the cytoskeleton and cell membrane, growth factor receptor activity, and nutritional (primarily amino acid) status. Abbreviations: ECM, extracellular matrix; DGC, dystrophin‐associated glycoprotein complex; MEK, MAP kinase; ERK, extracellular response kinase; PI3‐kinase, phosphoinositide 3‐kinase; Akt, cellular homolog of the v‐Akt oncogene; mTOR, mammalian target of rapamycin; S6K1, ribosomal S6 kinase; 4E‐BP, eukaryotic initiation factor (eIF) 4E binding protein; GSK3, glycogen synthase kinase 3; FOXO, forkhead box O3 transcription factor; eIF2Bɛ, eukaryotic initiation factor 2Bɛ; eIF2, eukaryotic initiation factor 2.

Figure 3.

Elements of mechanotransduction. A number of components of the dystrophin‐associated glycoprotein complex (DGC), as well as transmembrane integrins, have been posited to contribute to the transduction of loading into biochemical and biological processes, that is, mechanotransduction. In particular, DGC‐associated nitric oxide synthase may be critical to the hypertrophic process.

 1. Aagaard P. Making muscles “stronger”: Exercise, nutrition, drugs. J Musculoskelet Neuronal Interact 4: 165‐174, 2004.
 2. ACSM. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41: 687‐708, 2009.
 3. Adams GR. Invited review: Autocrine/paracrine IGF‐I and skeletal muscle adaptation. J Appl Physiol 93: 1159‐1167, 2002.
 4. Adams GR, Caiozzo VJ, Haddad F, Baldwin KM. Cellular and molecular responses to increased skeletal muscle loading after irradiation. Am J Physiol 283: C1182‐C1195, 2002.
 5. Adams GR, Cheng DC, Haddad F, Baldwin KM. Skeletal muscle hypertrophy in response to isometric, lengthening and shortening training bouts of equivalent duration. J Appl Physiol 96: 1613‐1618, 2004.
 6. Adams GR, Haddad F. The relationships among IGF‐1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol 81: 2509‐2516, 1996.
 7. Adams GR, Haddad F, Baldwin KM. Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 87: 1705‐1712, 1999.
 8. Adams GR, Haddad F, Bodell PW, Tran PD, Baldwin KM. Combined isometric, concentric and eccentric resistance exercise prevents unloading induced muscle atrophy in rats. J Appl Physiol 103: 1644‐1654, 2007.
 9. Adams GR, McCue SA. Localized infusion of IGF‐I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84: 1716‐1722, 1998.
 10. Alexander WS. Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2: 410‐416, 2002.
 11. Allen DL, Roy RR, Edgerton VR. Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22: 1350‐1360, 1999.
 12. Allen DL, Teitelbaum DH, Kurachi K. Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am J Physiol Cell Physiol 284: C805‐C815, 2003.
 13. Allen RE, Temm‐Grove CJ, Sheehan SM, Rice G. Skeletal muscle satellite cell cultures. Meth Cell Biol 52: 155‐176, 1998.
 14. Al‐Shanti N, Stewart CE. Ca2+/calmodulin‐dependent transcriptional pathways: Potential mediators of skeletal muscle growth and development. Biol Rev Camb Philos Soc 84: 637‐652, 2009.
 15. Alway SE, Siu PM, Murlasits Z, Butler DC. Muscle hypertrophy models: Applications for research on aging. Can J Appl Physiol 30: 591‐624, 2005.
 16. Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A, Freyssenet D. Down‐regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150: 286‐294, 2009.
 17. Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbova G, Partridge T, Zammit P, Bunger L, Patel K. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A 104: 1835‐1840, 2007.
 18. Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J, Garcia L, Mouisel E, Hourdé C, Macharia R, Friedrichs M, Relaix F, Zammit PS, Matsakas A, Patel K, Partridge T. Muscle hypertrophy driven by myostatin blockade does not require stem/precursor‐cell activity. Proc Natl Acad Sci U S A 106: 7479‐7484, 2009.
 19. Anderson J, Pilipowicz O. Activation of muscle satellite cells in single‐fiber cultures. Nitric Oxide 2002: 36‐41, 2002.
 20. Apró W, Blomstrand E. Influence of supplementation with branched‐chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle. Acta Physiol (Oxf) 200: 237‐248, 2010.
 21. Armand AS, Laziz I, Chanoine C. FGF6 in myogenesis. Biochim Biophys Acta 1763: 773‐778, 2006.
 22. Armand AS, Lécolle S, Launay T, Pariset C, Fiore F, Della‐Gaspera B, Birnbaum D, Chanoine C, Charbonnier F. IGF‐II is up‐regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6. Exp Cell Res 297: 27‐38, 2004.
 23. Armstrong RB, Marum P, Tullson P, Saubert CW. Acute hypertrophic response of skeletal muscle to removal of synergists. J Appl Physio 46: 835‐842, 1979.
 24. Ates K, Yang SY, Orrell RW, Sinanan ACM, Simons P, Solomon A, Beech S, Goldspink G, Lewis MP. The IGF‐I splice variant MGF increases progenitor cells in ALS, dystrophic, and normal muscle. FEBS Lett 581: 2727‐2732, 2007.
 25. Austin L, Bower J, Kurek J, Vakakis N. Effects of leukaemia inhibitory factor and other cytokines on murine and human myoblast proliferation. J Neurol Sci 112: 185‐191, 1992.
 26. Baar K, Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276: C120‐C127, 1999.
 27. Baldwin KM, Haddad F. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90: 345‐357, 2001.
 28. Bamman MM, Newcomer BR, Larson‐Meyer DE, Weinsier RL, Hunter GR. Evaluation of the strength‐size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 32: 1307‐1313, 2000.
 29. Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol 102: 2232‐2239, 2007.
 30. Bamman MM, Ragan RC, Kim JS, Cross JM, Hill VJ, Tuggle SC, Allman RM. Myogenic protein expression before and after resistance loading in 26‐ and 64‐year‐old men and women. J Appl Physiol 97: 1329‐1337, 2004.
 31. Bamman MM, Shipp JR, Jiang J, Gower BA, Hunter GR, Goodman A, McLafferty CL, Urban RJ. Mechanical load increases muscle IGF‐I and androgen receptor mRNA concentrations in humans. Am J Physiol 280: E383‐E390, 2001.
 32. Barjot C, Cotten ML, Goblet C, Whalen RG, Bacou F. Expression of myosin heavy chain and of myogenic regulatory factor genes in fast or slow rabbit muscle satellite cell cultures. J Musc Res Cel Motil 16: 619‐628, 1995.
 33. Barreau C, Paillard L, Osborne HB. AU‐rich elements and associated factors: Are there unifying principles? Nucleic Acids Res 33: 7138‐7150, 2005.
 34. Barton‐Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL. Viral mediated expresion of insulin‐like growth factor I blocks the aging‐related loss of skeletal muscle function. Proc Nat Acad Sci U S A 95: 15603‐15607, 1998.
 35. Barton‐Davis ER, Shoturma DI, Sweeney HL. Contribution of satellite cells to IGF‐I induced hypertrophy of skeletal muscle. Acta Physiol Scand 167: 301‐305, 1999.
 36. Barton ER, DeMeo J, Lei H. The insulin‐like growth factor (IGF)‐I E‐peptides are required for isoform‐specific gene expression and muscle hypertrophy after local IGF‐I production. J Appl Physiol 108: 1069‐1076, 2010.
 37. Beitzel F, Gregorevic P, Ryall JG, Plant DR, Sillence MN, Lynch GS. Beta2‐adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury. J Appl Physiol 96: 1385‐1392, 2004.
 38. Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, Zierath JR, Stepto NK. Divergent cell signaling after short‐term intensified endurance training in human skeletal muscle. Am J Physiol 295: E1427‐E1438, 2008.
 39. Bickel C, Cross J, Bamman M. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc 43: 1177‐1187, 2011.
 40. Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol 98: 482‐488, 2005.
 41. Bickel CS, Slade JM, Haddad F, Adams GR, Dudley GA. Acute molecular responses of skeletal muscle to resistance exercise in able‐bodied and spinal cord‐injured subjects. J Appl Physiol 94: 2255‐2262, 2003.
 42. Bidlingmaier M, Strasburger CJ. Growth hormone. Handb Exp Pharmacol 195: 187‐200, 2010.
 43. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268: E514‐E520, 1995.
 44. Bischoff R. Enzymatic liberation of myogenic cells from adult rat muscle. Anat Rec 1974: 645‐661, 1974.
 45. Bischoff R. Proliferation of muscle satellite cells on intact myofibers in culture. Develop Biology 115: 129‐139, 1986.
 46. Bischoff R. Analysis of muscle regeneration using single myofibers in culture. Med Sci Sport Exerc 21: S164‐S172, 1989.
 47. Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, Masiero E, Abraham R, Sandri M, Schiaffino S, Reggiani C. Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23: 3896‐3905, 2009.
 48. Blair HC, Jordan SE, Peterson TG, Barnes S. Variable effects of tyrosine kinase inhibitors on avian osteoclastic activity and reduction of bone loss in ovariectomized rat. J Cellular Biochem 61: 629‐637, 1996.
 49. Blomstrand E, Eliasson J, Karlsson HK, Kohnke R. Branched‐chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 136: 269S‐273S, 2006.
 50. Bodell PW, Kodesh E, Haddad F, Zaldivar FP, Cooper DM, Adams GR. Skeletal muscle growth in young rats is inhibited by chronic exposure to IL‐6 but preserved by concurrent voluntary endurance exercise. J Appl Physiol 106: 443‐453, 2009.
 51. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014‐1019, 2001.
 52. Bolster DR, Jefferson LS, Kimball SR. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin‐, amino acid‐ and exercise‐induced signalling. Proc Nutr Soc 63: 351‐356, 2004.
 53. Bolster DR, Kubica N, Crozier SJ, Williamson DL, Farrell PA, Kimball SR, Jefferson LS. Immediate response of mammalian target of rapamycin (mTOR)‐mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol 553: 213‐220, 2003.
 54. Bonavaud S, Agbulut O, D'Honneur G, Nizard R, Mouly V, Butler‐Browne G. Preparation of isolated human muscle fibers: A technical report. In Vitro Cell Dev Biol Anim 38: 66‐72, 2002.
 55. Bonavaud S, Thibert P, Gherardi RK, Barlovatz‐Meimon G. Primary human muscle satellite cell culture: Variations of cell yield, proliferation and differentiation rates according to age and sex of donors, site of muscle biopsy, and delay before processing. Biol Cell 89: 233‐240, 1997.
 56. Booth FW, Tseng BS, Fluck M, Carson JA. Molecular and cellular adaptation of muscle in response to physical training. Acta Physiol Scand 162: 343‐350, 1998.
 57. Boxer LM, Prywes R, Roeder RG, Kedes L. The sarcomeric actin CArG‐binding factor is indistinguishable from the c‐fos serum response factor. Mol Cell Biol 9: 515‐522, 1989.
 58. Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age‐related muscle atrophy. J Cell Sci 118: 4813‐4821, 2005.
 59. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317: 807‐810, 2007.
 60. Briata P, Forcales SV, Ponassi M, Corte G, Chen CY, Karin M, Puri PL, Gherzi R. p38‐dependent phosphorylation of the mRNA decay‐promoting factor KSRP controls the stability of select myogenic transcripts. Mol Cell 20: 891‐903, 2005.
 61. Brosig M, Ferralli J, Gelman L, Chiquet M, Chiquet‐Ehrismann R. Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis. Int J Biochem Cell Biol 42: 1717‐1728, 2010.
 62. Brunetti A, Goldfine ID. Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem 265: 5960‐5963, 1990.
 63. Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K. Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Nat Acad Sci U S A 107: 15111‐15116, 2010.
 64. Buchowicz B, Yu T, Nance DM, Zaldivar FP, Cooper DM, Adams GR. Increased rat neonatal activity influences adult cytokine levels and relative muscle mass. Ped Res 68: 399‐404, 2010.
 65. Buford T, Cooke M, Willoughby D. Resistance exercise‐induced changes of inflammatory gene expression within human skeletal muscle. Eur J Appl Physiol 107: 463‐471, 2009.
 66. Burd NA, Holwerda AM, Selby KC, West DWD, Staples AW, Cain NE, Cashaback JGA, Potvin JR, Baker SK, Phillips SM. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol 588: 3119‐3130 2010.
 67. Burgomaster K, Moore D, Schofield L, Phillips S, Sale D, Gibala M. Resistance training with vascular occlusion: Metabolic adaptations in human muscle. Med Sci Sports Exerc 35: 203‐208, 2003.
 68. Busse M, Schwarzburger M, Berger F, Hacker C, Munz B. Strong induction of the Tis11B gene in myogenic differentiation. Eur J Cell Biol 87: 31‐38, 2008.
 69. Cabric M, Appell HJ, Resic A. Efects of electrical stimulation of different frequencies on the myonuclei and fiber size in human muscle. Int J Sports Med 8: 323‐326, 1987.
 70. Caiozzo VJ, Haddad F, Baker M, McCue S, Baldwin KM. MHC polymorphism in rodent plantaris muscle: Effects of mechanical overload and hypothyroidism. Am J Physiol Cell Physiol 278: C709‐C717, 2000.
 71. Camera DM, Edge J, Short MJ, Hawley JA, Coffey VG. Early time‐course of akt phosphorylation following endurance and resistance exercise. Med Sci Sports Exerc 42: 1843‐1852, 2010.
 72. Cantini M, Massimino ML, Rapizzi E, Rossini K, Catani C, Libera LD, Carraro U. Human satellite cell proliferation in vitro is regulated by autocrine secretion of IL‐6 stimulated by a soluble factor(s) released by activated monocytes. Biochem Biophys Res Com 216: 49‐53, 1995.
 73. Carpenter V, Matthews K, Devlin G, Stuart S, Jensen J, Conaglen J, Jeanplong F, Goldspink P, Yang S‐Y, Goldspink G, Bass J, McMahon C. Mechano‐Growth factor reduces loss of cardiac function in acute myocardial infarction. Heart Lung Circ 17: 33‐39, 2008.
 74. Carpinelli RN. Challenging the american college of sports medicine 2009 position stand on resistance training. Med Sport 13: 131‐137, 2009.
 75. Carson JA, Schwartz RJ, Booth FW. SRF and TEF‐1 control of chicken skeletal alpha‐actin gene during slow‐muscle hypertrophy. Am J Physiol 270: C1624‐C1633, 1996.
 76. Cassano M, Biressi S, Finan A, Benedetti L, Omes C, Boratto R, Martin F, Allegretti M, Broccoli V, Cusella‐DeAngelis G, Comoglio PM, Basilico C, Torrente Y, Michieli P, Cossu G, Sampaolesi M. Magic‐factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis. PLoS ONE 3: e3223, 2009.
 77. Cavalier‐Smith T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C‐value paradox. J Cell Sci 34: 247‐278, 1978.
 78. Chakravarthy MV, Spangenburg EE, Booth FW. Culture in low levels of oxygen enhances in vitro proliferation potential of satellite cells from old skeletal muscles. Cell Mol Life Sci 58: 1150‐1158, 2001.
 79. Chambers RL, McDermott JC. Molecular basis fo skeletal muscle regeneration. Can J Appl Physiol 21: 155‐184, 1996.
 80. Changeux JP. Compartmentalized transcription of acetylcholine receptor genes during motor endplate epigenesis. New Biol 3: 413‐429, 1991.
 81. Cheek D. The control of cell mass and replication. The DNA unit ‐ a personal 20‐year study. Early Hum Dev 12: 211‐239, 1985.
 82. Chelh I, Meunier B, Picard B, Reecy MJ, Chevalier C, Hocquette JF, Cassar‐Malek I. Molecular profiles of Quadriceps muscle in myostatin‐null mice reveal PI3K and apoptotic pathways as myostatin targets. BMC Genomics 10: 196, 2009.
 83. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA‐1 and microRNA‐133 in skeletal muscle proliferation and differentiation. Nat Genet 38: 228‐233, 2006.
 84. Chen J‐F, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang D‐Z. microRNA‐1 and microRNA‐206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190: 867‐879, 2010.
 85. Chen YW, Nader GA, Baar KR, Fedele MJ, Hoffman EP, Esser KA. Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling. J Physiol 545: 27‐41, 2002.
 86. Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel‐Duby R, Williams RS. A calcineurin‐dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12: 2499‐2509, 1998.
 87. Cho M, Webster SG, Blau HM. Evidence for myoblast‐extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic de. J Cel Biol 121: 785‐810, 1993.
 88. Chretien F, Dreyfus PA, Christov C, Caramelle P, Lagrange JL, Chazaud B, Gherardi RK. In vivo fusion of circulating fluorescent cells with dystrophin‐deficient myofibers results in extensive sarcoplasmic fluorescence expression but limited dystrophin sarcolemmal expression. Am J Pathol 166: 1741‐1748, 2005.
 89. Christov C, Chrétien F, Abou‐Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18: 1397‐1409, 2007.
 90. Claassen H, Gerber C, Hoppeler H, Lüthi JM, Vock P. Muscle filament spacing and short‐term heavy‐resistance exercise in humans. J Physiol 409: 491‐495, 1989.
 91. Clark A, Dean J, Tudor C, Saklatvala J. Post‐transcriptional gene regulation by MAP kinases via AU‐rich elements. Front Biosci 14: 847‐871, 2009.
 92. Clarke MS, Feeback DL. Mechanical load induces sarcoplasmic wounding and FGF relase in differentiated human skeleltal muscle cultures. FASEB J 10: 502‐509, 1996.
 93. Cleasby ME, Reinten TA, Cooney GJ, James DE, Kraegen EW. Functional studies of akt isoform specificity in skeletal muscle in vivo; maintained insulin sensitivity despite reduced insulin receptor substrate‐1 expression. Mol Endocrinol 21: 215‐228, 2007.
 94. Close RI. Dynamic properties of mammalian skeletal muscles. Physiol Rev 51: 129‐183, 1972.
 95. Coffer P, Lutticken C, van Puijenbroek A, Klop‐de Jonge M, Horn F, Kruijer W. Transcriptional regulation of the junB promoter: Analysis of STAT‐mediated signal transduction. Oncogene 10: 985‐994, 1995.
 96. Coffey VG, Pilegaard H, Garnham AP, O'Brien BJ, Hawley JA. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J Appl Physiol 106: 1187‐1197, 2009.
 97. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Bio Chem 271: 736‐741, 1996.
 98. Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ. Myogenic vector expression of insulin‐like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270: 12109‐12116, 1995.
 99. Collins CA, Partridge TA. Self‐renewal of the adult skeletal muscle satellite cell. Cell Cycle 4: 1338‐1341, 2005.
 100. Conte C, Ainaoui N, Delluc‐Clavières A, Khoury MP, Azar R, Pujol F, Martineau Y, Pyronnet S, Prats A‐C. Fibroblast growth factor 1 induced during myogenesis by a transcription–translation coupling mechanism. Nucleic Acids Res 37: 5267‐5278, 2009.
 101. Cornelison DD. Context matters: In vivo and in vitro influences on muscle satellite cell activity. J Cell Biochem 105: 663‐669, 2008.
 102. Cornelison DD, Olwin BB, Rudnicki MA, Wold BJ. MyoD(‐/‐) satellite cells in single‐fiber culture are differentiation defective and MRF4 deficient. Dev Biol 224: 122‐137, 2000.
 103. Cossu G, Biressi S. Satellite cells, myoblasts and other occasional myogenic progenitors: Possible origin, phenotypic features and role in muscle regeneration. Semin Cell Dev Biol 16: 623‐631, 2005.
 104. Credeur D, Hollis B, Welsch M. Effects of handgrip training with venous restriction on brachial artery vasodilation. Med Sci Sports Exerc 42: 1296‐1302, 2010.
 105. Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol 99: 950‐956, 2005.
 106. Crepaldi T, Bersani F, Scuoppo C, Accornero P, Prunotto C, Taulli R, Forni PE, Leo C, Chiarle R, Griffiths J, Glass DJ, Ponzetto C. Conditional activation of MET in differentiated skeletal muscle induces atrophy. J Biol Chem 282: 6812‐6822, 2007.
 107. Crewther B, Keogh J, Cronin J, Cook C. Possible stimuli for strength and power adaptation: Acute hormonal responses. Sports Med 36: 215‐238, 2006.
 108. Crowley MA, Matt KS. Hormonal regulation of skeletal muscle hypertrophy in rats: The testosterone to cortisol ratio. Eur J Appl Physiol Occup Physiol 73: 66‐72, 1996.
 109. Csete M, Walikonis J, Slawny N, Wei Y, Korsnes S, Doyle JC, Wold B. Oxygen‐mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol 189: 189‐196, 2001.
 110. Cuervo AM, Wong ESP, Martinez‐Vicente M. Protein degradation, aggregation, and misfolding. Mov Disord 25: S49‐S54, 2010.
 111. Dalla Costa AP, Clemente CF, Carvalho HF, Carvalheira JB, Nadruz W, Jr., Franchini KG. FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovasc Res 86: 421‐431.
 112. Dangott B, Schultz E, Mozdziak PE. Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int J Sports Med 21: 13‐16, 2000.
 113. Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA, Phillips SM. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol 110: 309‐317, 2010.
 114. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987‐1000, 1987.
 115. Davuluri RV, Suzuki Y, Sugano S, Zhang MQ. CART classification of human 5′ UTR sequences. Genome Res 10: 1807‐1816, 2000.
 116. DeBenedetti F, Alonzi T, Moretta A, Lazzaro D, Costa P, Poli V, Martini A, Ciliberto G, Fattori E. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin‐like growth factor‐1. A model for stunted growth in children with chronic inflammation. J Clin Invest 99: 643‐650, 1997.
 117. DeBenedetti F, Meazza C, Oliveri M, Pignatti P, Vivarelli M, Alonzi T, Fattori E, Garrone S, Barreca A, Martini A. Effect of IL‐6 on IGF binding protein‐3: A study in IL‐6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology 142: 4818‐4826, 2001.
 118. Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ, Francaux M. Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. Eur J Appl Physiol 104: 57‐65, 2008.
 119. Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ, Francaux M. Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle. J Appl Physiol 104: 371‐378, 2008.
 120. Deldicque L, De Bock K, Maris M, Ramaekers M, Nielens H, Francaux M, Hespel P. Increased p70s6k phosphorylation during intake of a protein–carbohydrate drink following resistance exercise in the fasted state. Eur J Appl Physiol 108: 791‐800, 2010.
 121. Dennis PB, Pullen N, Pearson RB, Kozma SC, Thomas G. Phosphorylation sites in the autoinhibitory domain participate in p70(s6k) activation loop phosphorylation. J Biol Chem 273: 14845‐14852, 1998.
 122. Deschenes MR, Judelson DA, Kraemer WJ, Meskaitis VJ, Volek JS, Nindl BC, Harman FS, Deaver DR. Effects of resistance training on neuromuscular junction morphology. Muscle Nerve 23: 1576‐1581, 2000.
 123. Deschenes MR, Maresh CM, Armstrong LE, Covault J, Kraemer WJ, Crivello JF. Endurance and resistance exercise induce muscle fiber type specific responses in androgen binding capacity. J Steroid Biochem Mol Biol 50: 175‐179, 1994.
 124. DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ. Activation of insulin like growth factor gene expression during work induced skeletal muscle growth. Am J Physiol 259: E89‐E95, 1990.
 125. Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, Smith K, Reitelseder S, Kappelgaard AM, Rasmussen MH, Flyvbjerg A, Kjaer M. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol 588: 341‐351, 2010.
 126. Drake JC, Alway SE, Hollander JM, Williamson DL. AICAR treatment for 14 days normalizes obesity‐induced dysregulation of TORC1 signaling and translational capacity in fasted skeletal muscle. Am J Physiol Regul Inteqr Comp Physiol 299: R1546‐R1554, 2010.
 127. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB. Leucine‐enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol 294: E392‐E400, 2008.
 128. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB. Resistance exercise increases AMPK activity and reduces 4E‐BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiology 576: 613‐624, 2006.
 129. Dreyer HC, Fujita S, Glynn EL, Drummond MJ, Volpi E, Rasmussen BB. Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex. Acta Physiol (Oxf) 199: 71‐81, 2010.
 130. Drummond MJ, Conlee RK, Mack GW, Sudweeks S, Schaalje GB, Parcell AC. Myogenic regulatory factor response to resistance exercise volume in skeletal muscle. Eur J Appl Physiol 108: 771‐778, 2010.
 131. Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol 295: E1333‐E1340, 2008.
 132. Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB. Aging and microRNA expression in human skeletal muscle: A microarray and bioinformatics analysis. Physiol Genomics 43: 595‐603, 2010.
 133. Duncan ND, Williams DA, Lynch GS. Adaptations in rat skeletal muscle following long‐term resistance exercise training. Eur J Appl Physiol Occup Physiol 77: 372‐378, 1998.
 134. Dunn SE, Burns JL, Michel RN. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 274: 21908‐21912, 1999.
 135. Dunn SE, Simard AR, Bassel‐Duby R, Williams RS, Michel RN. Nerve activity‐dependent modulation of calcineurin signaling in adult fast and slow skeletal muscle fibers. J Biol Chem 276: 45243‐45254, 2001.
 136. Dupont‐Versteegden EE, Knox M, Gurley CM, Houle JD, Peterson CA. Maintenance of muscle mass is not dependent on the calcineurin‐NFAT pathway. Am J Physiol 282: C1387‐C1395, 2002.
 137. Ecob‐Prince MS, Jenkison M, Butler‐Browne GS, Whalen RG. Neonatal and adult myosin heavy chain isoforms in a nerve‐muscle culture system. J Cell Biol 103: 995‐1005, 1986.
 138. Edwards J, Pasqualini R, Arap W, Calin G. MicroRNAs and ultraconserved genes as diagnostic markers and therapeutic targets in cancer and cardiovascular diseases. J Cardiovasc Transl Res 3: 271‐279, 2010.
 139. Ehrnborg C, Ellegård L, Bosaeus I, Bengtsson BA, Rosén T. Supraphysiological growth hormone: Less fat, more extracellular fluid but uncertain effects on muscles in healthy, active young adults. Clin Endocrinol (Oxf) 62: 449‐457, 2005.
 140. Elder GCB, Bradbury K, Roberts R. Variability of fiber type distributions within human muscles. J Appl Physiol 53: 1473‐1480, 1982.
 141. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79: 351‐379, 2010.
 142. Farrell PA, Fedele MJ, Hernandez J, Fluckey JD, Miller JL, Lang CH, Vary TC, Kimball SR, Jefferson LS. Hypetrophy of skeletal muscle in diabetic rats in response to chronic resistance exercise. J Appl Physiol 87: 1075‐1082, 1999.
 143. Farrell PA, Hernandez JM, Fedele MJ, Vary TC, Kimball SR, Jefferson LS. Eukaryotic initiation factors and protein synthesis after resistance exercise in rats. J Appl Physiol 88: 1036‐1042, 2000.
 144. Faulkner J. Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol 95: 455‐459, 2003.
 145. Favier FB, Benoit H, Freyssenet D. Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflugers Arch 456: 587‐600, 2008.
 146. Fernández AM, Dupont J, Farrar RP, Lee S, Stannard B, LeRoith D. Muscle‐specific inactivation of the IGF‐I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest 109: 347‐355, 2002.
 147. Ferrari S, Thomas G. S6 phosphorylation and the p70s6k/p85s6k. Crit Rev Biochem Mol Biol 29: 385‐413, 1994.
 148. Figueras M, Busquets S, Carbó N, Barreiro E, Almendro V, Argilés JM, López‐Soriano FJ. Interleukin‐15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour‐bearing rats. FEBS Lett 569: 201‐206, 2004.
 149. Figueroa A, Cuadrado A, Fan J, Atasoy U, Muscat GE, Muñoz‐Canoves P, Gorospe M, Muñoz A. Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol Cell Biol 23: 4991‐5004, 2003.
 150. Fiore F, Sebille A, Birnbaum D. Skeletal muscle regeneration is not impaired in Fgf6‐/‐ mutant mice. Biochem Biophys Res Commun 272: 138‐143, 2000.
 151. Firth SM, Baxter RC. Cellular actions of the insulin‐like growth factor binding proteins. Endocr Rev 23: 824‐854, 2002.
 152. Fitts RH, Trappe SW, Costill DL, Gallagher PM, Creer AC, Colloton PA, Peters JR, Romatowski JG, Bain JL, Riley DA. Prolonged space flight‐induced alterations in the structure and function of human skeletal muscle fibres. J Physiol 588: 3567‐3592, 2010.
 153. Flores EA, Bistrian BR, Pomposelli JJ, Dinarello CA, Blackburn GL, Istfan NW. Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. A synergistic effect with interleukin 1. J Clin Invest 83: 1614‐1622, 1989.
 154. Florini JR, Ewton DZ, Magri KA. Hormones, growth factors, and myogenic differentiation. Ann Rev Physiol 53: 201‐216, 1991.
 155. Flück M, Waxham MN, Hamilton MT, Booth FW. Skeletal muscle Ca(2+)‐independent kinase activity increases during either hypertrophy or running. J Appl Physiol 88: 352‐358, 2000.
 156. Folland JP, Williams AG. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med 37: 145‐168, 2007.
 157. Fong Y, Moldawer LL, Marano M, Wei H, Barber A, Manogue K, Tracey KJ, Kuo G, Fischman DA, Cerami A, Lowry SF. Cachectin/TNF or IL‐1 alpha induces cachexia with redistribution of body proteins. Am J Physiol 256: R659‐R665, 1989.
 158. Friday BB, Horsley V, Pavlath GK. Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149: 657‐665, 2000.
 159. Friday BB, Pavlath GK. A calcineurin‐ and NFAT‐dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J Cell Sci 114: 303‐310, 2001.
 160. Fry AC, Allemeier CA, Staron RS. Correlation between percentage fiber type area and myosin heavy chain content in human skeletal muscle. Eur J Appl Physiol Occup Physiol 68: 246‐251, 1994.
 161. Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, Dhanani S, Volpi E, Rasmussen BB. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol 108: 1199‐1209, 2010.
 162. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E, Rasmussen BB. Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J Appl Physiol 106: 1730‐1739, 2009.
 163. Funai K, Parkington JD, Carambula S, Fielding RA. Age‐associated decrease in contraction‐induced activation of downstream targets of Akt/mTor signaling in skeletal muscle. Am J Physiol 290: R1080‐R1086, 2006.
 164. Furmanczyk PS, Quinn LS. Interleukin‐15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol Int 27: 845‐851, 2003.
 165. García‐Mayoral MF, Díaz‐Moreno I, Hollingworth D, Ramos A. The sequence selectivity of KSRP explains its flexibility in the recognition of the RNA targets. Nucleic Acids Res 36: 5290‐5296, 2008.
 166. Garma T, Kobayashi C, Haddad F, Adams GR, Bodell PW, Baldwin KM. Similar acute molecular responses to equivalent volumes of isometric, lengthening, or shortening mode resistance exercise. J Appl Physiol 102: 135‐143, 2007.
 167. Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5: 827‐835, 2004.
 168. Gherzi R, Trabucchi M, Ponassi M, Gallouzi IE, Rosenfeld MG, Briata P. Akt2‐mediated phosphorylation of Pitx2 controls Ccnd1 mRNA decay during muscle cell differentiation. Cell Death Differ 17: 975‐983, 2010.
 169. Giger JM, Haddad F, Qin AX, Baldwin KM. Functional overload increases beta‐MHC promoter activity in rodent fast muscle via the proximal MCAT (betae3) site. Am J Physiol Cell Physiol 282: C518‐C527, 2002.
 170. Gilson H, Schakman O, Kalista S, Lause P, Tsuchida K, Thissen JP. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am J Physiol 297: E157‐E164, 2009.
 171. Giraud S, Greco A, Brink M, Diaz J‐J, Delafontaine P. Translation initiation of the insulin‐like growth factor I receptor mRNA is mediated by an internal ribosome entry site. J Biol Chem 276: 5668‐5675, 2001.
 172. Glass D. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 346: 267‐278, 2011.
 173. Glover EI, Oates BR, Tang JE, Moore DR, Tarnopolsky MA, Phillips SM. Resistance exercise decreases eIF2Bɛ phosphorylation and potentiates the feeding‐induced stimulation of p70S6K1 and rpS6 in young men. Am J Physiol 295: R604‐R610, 2008.
 174. Gokhin DS, Ward SR, Bremner SN, Lieber RL. Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse. J Exp Biol 211: 837‐843, 2008.
 175. Goldberg AL. Protein synthesis in tonic and phasic skeletal muscles. Nature 216: 1219‐1220, 1967.
 176. Goldberg AL. Work induced growth of skeletal muscle in normal and hypophsectomized rats. Am J Physiol 213: 1193‐1198, 1967.
 177. Gollnick PD, Timson BF, Moore RL, Riedy M. Muscular enlargement and number of fibers in skeletal muscles of rats. J Appl Physiol 50: 936‐943, 1981.
 178. Goncalves MD, Pistilli EE, Balduzzi A, Birnbaum MJ, Lachey J, Khurana TS, and Ahima RS. Akt deficiency attenuates muscle size and function but not the response to ActRIIB inhibition. PLoS ONE 5: e12707, 2010.
 179. Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y, Chen J, Hornberger TA. A Phosphatidylinositol 3‐Kinase/protein kinase B‐independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21: 3258‐3268, 2010.
 180. Goodman MN. Interleukin‐6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med 205: 182‐185, 1994.
 181. Gordon S, Fluck M, Booth F. elected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90: 1174‐1183, 2001.
 182. Gordon SE, Westerkamp CM, Savage KJ, Hickner RC, George SC, Fick CA, McCormick KM. Basal, but not overload‐induced, myonuclear addition is attenuated by NG‐nitro‐L‐arginine methyl ester (L‐NAME) administration. Can J Physiol Pharmacol 85: 646‐651, 2007.
 183. Greenhalgh CJ, Rico‐Bautista E, Lorentzon M, Thaus AL, Morgan PO, Willson TA, Zervoudakis P, Metcalf D, Street I, Nicola NA, Nash AD, Fabri LJ, Norstedt G, Ohlsson C, Flores‐Morales A, Alexander WS, Hilton DJ. SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Invest 115: 397‐406, 2005.
 184. Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C‐value enigma. Biol Rev Camb Philos Soc 76: 65‐101, 2001.
 185. Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW. Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267: 99‐104, 1992.
 186. Grounds MD, Sorokin L, White J. Strength at the extracellular matrix‐muscle interface. Scand J Med Sci Sports 15: 381‐391, 2005.
 187. Guller I, Russell AP. MicroRNAs in skeletal muscle: Their role and regulation in development, disease and function. J Physiol 588: 4075‐4087, 2010.
 188. Gundermann DM, Fry CS, Dickinson JM, Walker DK, Timmerman KL, Drummond MJ, Volpi E, Rasmussen BB. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. J Appl Physiol 112: 1520‐1528, 2012.
 189. Gundersen K, Bruusgaard JC. Nuclear domains during muscle atrophy: Nuclei lost or paradigm lost? J Physiol 586: 2675‐2681, 2008.
 190. Gutiérrez J, Brandan E. A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation. Mol Cell Biol 30: 1634‐1649, 2010.
 191. Haddad F, Adams GR. Selected contribution: Acute cellular and molecular responses to resistance exercise. J Appl Physiol 93: 394‐403, 2002.
 192. Haddad F, Adams GR. Inhibition of MAP/ERK kinase prevents IGF‐I induced hypertrophy in rat muscles. J Appl Physiol 96: 203‐210, 2004.
 193. Haddad F, Adams GR. Aging sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol 100: 1188‐1203, 2006.
 194. Haddad F, Baldwin KM, Tesch PA. Pretranslational markers of contractile protein expression in human skeletal muscle: Effect of limb unloading plus resistance exercise. J Appl Physiol 98: 46‐52, 2005.
 195. Haddad F, Qin AX, Bodell PW, Zhang LY, Guo H, Giger JM, Baldwin KM. Regulation of antisense RNA expression during cardiac MHC gene switching in response to pressure overload. Am J Physiol Heart Circ Physiol 290: H2351‐2361, 2006.
 196. Haddad F, Roy RR, Zhong H, Edgerton VR, Baldwin KM. Atrophy responses to muscle inactivity. I. Cellular markers of protein deficits. J Appl Physiol 95: 781‐790, 2003.
 197. Haddad F, Zaldivar FP, Cooper DM, Adams GR. IL‐6 Induced skeletal muscle atrophy. J Appl Physiol 98: 911‐917, 2005.
 198. Hakkinen K, Alen M, Komi PV. Changes in isometric force‐ and relaxation‐time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand 125: 573‐585, 1985.
 199. Hall ZW, Ralston E. Nuclear domains in muscle cells. Cell 59: 771‐772, 1989.
 200. Hameed M, Orrell R, Cobbold M, Goldspink G, Harridge S. Expression of IGF‐I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547: 247‐254, 2003.
 201. Hamilton DL, Philp A, MacKenzie MG, Baar K. A limited role for PI(3,4,5)P3 regulation in controlling skeletal muscle mass in response to resistance exercise. PLoS ONE 5: e11624, 2010.
 202. Hamosch M LM, Baron J, Kaufman S. Enhanced protein synthesis in a cell‐free system from hypertrophied skeletal muscle. Science 157 (3791): 935‐937, 1967.
 203. Hannan KM, Hannan RD, Rothblum LI. Transcription by RNA polymerase I. Front Biosci 3: 376‐398, 1998.
 204. Hansen JM, Klass M, Harris C, Csete M. A reducing redox environment promotes C2C12 myogenesis: implications for regeneration in aged muscle. Cell Biol Int 31: 546‐553, 2007.
 205. Harcourt LJ, Holmes AG, Gregorevic P, Schertzer JD, Stupka N, Plant DR, Lynch GS. Interleukin‐15 administration improves diaphragm muscle pathology and function in dystrophic mdx mice. Am J Pathol 166: 1131‐1141, 2005.
 206. Hardt SE, Tomita H, Katus HA, Sadoshima J. Phosphorylation of eukaryotic translation initiation factor 2B{epsilon} by glycogen synthase kinase‐3{beta} regulates {beta}‐adrenergic cardiac myocyte hypertrophy. Circ Res 94: 926‐935, 2004.
 207. Hartgens F, Kuipers H. Effects of androgenic‐anabolic steroids in athletes. Sports Med 34: 513‐554, 2004.
 208. Hartman JW, Tang JE, Wilkinson SB, Tarnopolsky MA, Lawrence RL, Fullerton AV, Phillips SM. Consumption of fat‐free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr 86: 373‐381, 2007.
 209. Hawke TJ. Muscle stem cells and exercise training. Exerc Sport Sci Rev 33: 63‐68, 2005.
 210. Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, Kjaer M. Short‐term strength training and the expression of myostatin and IGF‐I isoforms in rat muscle and tendon: Differential effects of specific contraction types. J Appl Physiol 102: 573‐581, 2007.
 211. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller‐Newen G, Schaper F. Principles of IL‐6‐type cytokine signalling and its regulation. Biochem J 374: 1‐20, 2003.
 212. Hellen CUT, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15: 1593‐1612, 2001.
 213. Herbst KL, Bhasin S. Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care 7: 271‐277, 2004.
 214. Heron‐Milhavet L, Mamaeva D, Leroith D, Lamb NJ, Fernandez A. Impaired muscle regeneration and myoblast differentiation in mice with a muscle‐specific KO of IGF‐IR. J Cell Physio 225: 1‐6, 2010.
 215. Hickson RC, Galassi TM, Kurowski TT, Daniels DG, Chatterton RT. Skeletal muscle cytosol [3H]methyltrienolone receptor binding and serum androgens: Effects of hypertrophy and hormonal state. J Steroid Biochem 19: 1705‐1712, 1983.
 216. Himpe E, Kooijman R. Insulin‐like growth factor‐I receptor signal transduction and the janus kinase/signal transducer and activator of transcription (JAK‐STAT) pathway. BioFactors 35: 76‐81, 2009.
 217. Holm L, Reitelseder S, Pedersen TG, Doessing S, Petersen SG, Flyvbjerg A, Andersen JL, Aagaard P, Kjaer M. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol 105: 1454‐1461, 2008.
 218. Holm L, van Hall G, Rose AJ, Miller BF, Doessing S, Richter EA, Kjaer M. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. Am J Physiol 298: E257‐E269, 2010.
 219. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123: 569‐580, 2005.
 220. Hornberger TA. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int J Biochem Cell Biol 43: 1267‐1276, 2011.
 221. Hornberger TA, Chien S. Mechanical stimuli and nutrients regulate rapamycin‐sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem 97: 1207‐1216, 2006.
 222. Hornberger TA, Farrar RP. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can J Appl Physiol 29: 16‐31, 2004.
 223. Hornberger TA, Sukhija KB, Wang X‐R, Chien S. mTOR is the rapamycin‐sensitive kinase that confers mechanically‐induced phosphorylation of the hydrophobic motif site Thr(389) in p70S6k. FEBS Lett 581: 4562‐4566, 2007.
 224. Horsley V, Jansen KM, Mills ST, Pavlath GK. IL‐4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113: 483‐494, 2003.
 225. Howells KF, Jordan TC, Howells JD. Myofibril content of histochemical fibre types in rat skeletal muscle. Acta Histochem 1978: 177‐182, 1978.
 226. Huey KA, Haddad F, Qin AX, Baldwin KM. Transcriptional regulation of the type I myosin heavy chain gene in denervated rat soleus. Am J Physiol Cell Physiol 284: C738‐C748, 2003.
 227. Huey KA, Roy RR, Haddad F, Edgerton VR, Baldwin KM. Transcriptional regulation of the type I myosin heavy chain promoter in inactive rat soleus. Am J Physiol Cell Physiol 282: C528‐537, 2002.
 228. Hughes SM, Schiaffino S. Control of muscle fiber size: A crucial factor in ageing. Acta Physiol Scand 167: 307‐312, 1999.
 229. Huichalaf C, Schoser B, Schneider‐Gold C, Jin B, Sarkar P, Timchenko L. Reduction of the rate of protein translation in patients with myotonic dystrophy 2. J Neurosci 29: 9042‐9049, 2009.
 230. Hulmi JJ, Kovanen V, Lisko I, Selänne H, Mero AA. The effects of whey protein on myostatin and cell cycle‐related gene expression responses to a single heavy resistance exercise bout in trained older men. Eur J Appl Physiol 102: 205‐213, 2008.
 231. Hulmi JJ, Tannerstedt J, Selänne H, Kainulainen H, Kovanen V, Mero AA. Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. J Appl Physiol 106: 1720‐1729, 2009.
 232. Hunt LC, Tudor EM, White JD. Leukemia inhibitory factor‐dependent increase in myoblast cell number is associated with phosphotidylinositol 3‐kinase‐mediated inhibition of apoptosis and not mitosis. Exp Cell Res 316: 1002‐1009, 2010.
 233. Ihle JN. Janus kinases in cytokine signaling. Phil Trans R Soc Lond B 351: 159‐166, 1996.
 234. Inaba M, Saito H, Fujimoto M, Sumitani S, Ohkawara T, Tanaka T, Kouhara H, Kasayama S, Kawase I, Kishimoto T, Naka T. Suppressor of cytokine signaling 1 suppresses muscle differentiation through modulation of IGF‐I receptor signal transduction. Biochem Biophys Res Commun 328: 953‐961, 2005.
 235. Iversen E, Røstad V. Low‐load ischemic exercise‐induced rhabdomyolysis. Clin J Sport Med 20: 218‐219, 2010.
 236. Ivy JL, Ding Z, Hwang H, Cialdella‐Kam LC, Morrison PJ. Post exercise carbohydrate–protein supplementation: Phosphorylation of muscle proteins involved in glycogen synthesis and protein translation. Amino Acids 35: 89‐97, 2008.
 237. Iyer D, Chang D, Marx J, Wei L, Olson EN, Parmacek MS, Balasubramanyam A, Schwartz RJ. Serum response factor MADS box serine‐162 phosphorylation switches proliferation and myogenic gene programs. Proc Natl Acad Sci U S A 103: 4516‐4521, 2006.
 238. Jacquemin V, Furling D, Bigot A, Butler‐Browne GS, Mouly V. IGF‐1 induces human myotube hypertrophy by increasing cell recruitment. Exp Cell Res 299: 148‐158, 2004.
 239. Jefferies HBJ, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G. Rapamycin suppresses 5[prime]TOP mRNA translation through inhibition of p70s6k. EMBO J 3693‐3704, 1997.
 240. Jefferson LS, Vary TC, Kimball SR. Supplement 21: Handbook of Physiology: Regulation of Protein Metabolism in Muscle Hoboken, NJ USA: John Wiley & Sons, Inc., 2010.
 241. Jo C, Kim H, Jo I, Choi I, Jung SC, Kim J, Kim SS, Jo SA. Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Bochim Biophys Acta 1743: 187‐197, 2005.
 242. Kadi F, Eriksson A, Holmner S, Butler‐Browne GS, Thornell LE. Cellular adaptation of the trapezius muscle in strength‐trained athletes. Histochem Cell Biol 111: 189‐195, 1999.
 243. Kadi F, Schjerling P, Andersen LL, Charifi N, Madsen JL, Christensen LR, Andersen JL. The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J Physiol 558: 1005‐1012, 2004.
 244. Kadi F, Thornell LE. Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Bio 113: 99‐103, 2000.
 245. Kakigi R, Naito H, Ogura Y, Kobayashi H, Saga N, Ichinoseki‐Sekine N, Yoshihara T, Katamoto S. Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J Physiol Sci 61: 131‐140, 2011.
 246. Kamanga‐Sollo E, Pampusch MS, White ME, Hathaway MR, Dayton WR. Insulin‐like growth factor binding protein (IGFBP)‐3 and IGFBP‐5 mediate TGF‐β‐ and myostatin‐induced suppression of proliferation in porcine embryonic myogenic cell cultures. Exp Cell Res 311: 167‐176, 2005.
 247. Kami K, Morikawa Y, Sekimoto M, Senba E. Gene expression of receptors for IL‐6, LIF and CNTF in regenerating skeletal muscles. J Histochem Cytoche 1203‐1213, 2000.
 248. Kandalla PK, Goldspink G, Butler‐Browne G, Mouly V. Mechano growth factor E peptide (MGF‐E), derived from an isoform of IGF‐1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages. Mech Ageing Dev 132: 154‐162, 2011.
 249. Karagounis L, Yaspelkis B, Reeder D, Lancaster G, Hawley J, Coffey V. Contraction‐induced changes in TNFα and Akt‐mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle. Eur J Appl Physiol 109: 839‐848, 2010.
 250. Kästner S, Elias MC, Rivera AJ, Yablonka‐Reuveni Z. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48: 1079‐1096, 2000.
 251. Kawada S, Tachi C, Ishii N. Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 22: 627‐633, 2001.
 252. Kelley G. Mechanical overload and skeletal muscle fiber hyperplasia: A meta‐analysis. J Appl Physiol 81: 1584‐1588, 1996.
 253. Kelly AM. Satellite cells and myofiber growth in the rat soleus and extensor digitorum longus muscles. Dev Biol 65: 1‐10, 1978.
 254. Kim H, Barton E, Muja N, Yakar S, Pennisi P, Leroith D. Intact insulin and insulin‐like growth factor‐I receptor signaling is required for growth hormone effects on skeletal muscle growth and function in vivo. Endocrinology 146: 1772‐1779, 2005.
 255. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle‐specific microRNA miR‐206 promotes muscle differentiation. J Cell Biol 2006: 677‐687, 2006.
 256. Kim JS, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol 288: E1110‐E1119, 2005.
 257. Kim JS, Petrella JK, Cross JM, Bamman MM. Load‐mediated down‐regulation of myostatin mrna is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. J Appl Physiol 103: 1488‐1495, 2007.
 258. Kim MJ, Froehner SC, Adams ME, Kim HS. alpha‐Syntrophin is required for the hepatocyte growth factor‐induced migration of cultured myoblasts. Exp Cell Res 317: 2914‐2924.
 259. Kim MJ, Hwang SH, Lim JA, Froehner SC, Adams ME, Kim HS. Alpha‐syntrophin modulates myogenin expression in differentiating myoblasts. PLoS One 5: e15355.
 260. Kim PL, Staron RS, Phillips SM. Fasted‐state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol 568: 283‐290, 2005.
 261. Kimball SR, Horetsky RL, Jefferson LS. Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem 273: 30945‐30953, 1998.
 262. Klossner S, Durieux A‐C, Freyssenet D, Flueck M. Mechano‐transduction to muscle protein synthesis is modulated by FAK. Eur J Appl Physiol 106: 389‐398, 2009.
 263. Kollias HD, Perry RLS, Miyake T, Aziz A, McDermott JC. Smad7 promotes and enhances skeletal muscle differentiation. Mol Cell Biol 26: 6248‐6260, 2006.
 264. Kook SH, Lee HJ, Chung WT, Hwang IH, Lee SA, Kim BS, Lee JC. Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol Cells 25: 479‐486, 2008.
 265. Kosek DJ, Bamman MM. Modulation of the dystrophin‐associated protein complex in response to resistance training in young and older men. J Appl Physiol 104: 1476‐1484, 2008.
 266. Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101: 531‐544, 2006.
 267. Kostek MC, Delmonico MJ, Reichel JB, Roth SM, Douglass L, Ferrell RE, Hurley BF. Muscle strength response to strength training is influenced by insulin‐like growth factor 1 genotype in older adults. J Appl Physiol 98: 2147‐2154, 2005.
 268. Kozak M. Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 423: 108‐115, 2008.
 269. Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, Frykman P, McCurry D, Fleck SJ. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 69: 1442‐1450, 1990.
 270. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med 2005: 339‐361, 2005.
 271. Krisan AD, Collins DE, Crain AM, Kwong CC, Singh MK, Bernard JR, Yaspelkis BB. Resistance training enhances components of the insulin signaling cascade in normal and high‐fat‐fed rodent skeletal muscle. J Appl Physiol 96: 1691‐1700, 2004.
 272. Kuang W, Tan J, Duan Y, Duan J, Wang W, Jin F, Jin Z, Yuan X, Liu Y. Cyclic stretch induced miR‐146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem Biophys Res Commun 2009: 259‐263, 2009.
 273. Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bɛ mRNA in a mammalian target of rapamycin‐dependent manner. J Biol Chem 280: 7570‐7580, 2005.
 274. Kumar A, Murphy R, Robinson P, Wei L, Boriek AM. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac‐1 GTPase, and NF‐kappaB transcription factor. FASEB J 18: 1524‐1535, 2004.
 275. Kumar V, Atherton P, Smith K, Rennie MJ. Human muscle protein synthesis and breakdown during and after exercise. J Appl Physiol 106: 2026‐2039, 2009.
 276. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ. Age‐related differences in the dose‐response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 587: 211‐217, 2009.
 277. Kupa EJ, Roy SH, Kandarian SC, DeLuca CJ. Effects of muscle fiber type and size on EMG median frequency and conduction velocity. J Appl Physiol 79: 23‐32, 1995.
 278. Kurowski TT, Chatterton RT, Hickson RC. Countereffects of compensatory overload and glucocorticoids in skeletal muscle: Androgen and glucocorticoid cytosol receptor binding. J Steroid Biochem 21: 137‐145, 1984.
 279. Kvorning T, Andersen M, Brixen K, Schjerling P, Suetta C, Madsen K. Suppression of testosterone does not blunt mRNA expression of myoD, myogenin, IGF, myostatin or androgen receptor post strength training in humans. J Physiol 578: 579‐593, 2007.
 280. LaFramboise WA, Guthrie RD, Scalise D, Elborne V, Bombach KL, Armanious CS, Magovern JA. Effect of muscle origin and phenotype on satellite cell muscle‐specific gene expression. J Mol Cell Cardiol 35: 1307‐1318, 2003.
 281. Lafreniere JF, Mills P, Bouchentouf M, Tremblay JP. Interleukin‐4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Re 2006.
 282. Lahoute C, Sotiropoulos A, Favier M, Guillet‐Deniau I, Charvet C, Ferry A, Butler‐Browne G, Metzger D, Tuil D, Daegelen D. Premature aging in skeletal muscle lacking serum response factor. PLoS ONE 3: e3910, 2008.
 283. Lambert CP, Wright NR, Finck BN, Villareal DT. Exercise but not diet‐induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol 105: 473‐478, 2008.
 284. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R. Myostatin inhibits myoblast differentiation by down‐regulating MyoD expression. J Biol Chem 277: 49831‐49840, 2002.
 285. Lee S, Barton ER, Sweeney HL, Farrar RP. Viral expression of insulin‐like growth factor‐I enhances muscle hypertrophy in resistance‐trained rats. J Appl Physiol 96: 1097‐1104, 2004.
 286. Lees SJ, Childs TE, Booth FW. p21(Cip1) expression is increased in ambient oxygen, compared to estimated physiological (5%) levels in rat muscle precursor cell culture. Cell Prolif 41: 193‐507, 2008.
 287. Leshem Y, Gitelman I, Ponzetto C, Halevy O. Preferential binding of Grb2 or phosphatidylinositol 3‐kinase to the met receptor has opposite effects on HGF‐induced myoblast proliferation. Exp Cell Res 274: 288‐298, 2002.
 288. Leshem Y, Spicer DB, Gal‐Levi R, Halevy O. Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: A role for the bHLH protein twist and the cdk inhibitor p27. J Cellular Physiol 184: 101‐109, 2000.
 289. Lexell J, Taylor CC. Variability in muscle fibre areas in whole human quardiceps muscle: effects of increasing age. J Anat 174: 239‐249, 1991.
 290. Li L, Chambard J, Karin M, Olson E. Fos and Jun repress transcriptional activation by myogenin and MyoD: The amino terminus of Jun can mediate repression. Genes Dev 6: 676‐689, 1992.
 291. Li P, Akimoto T, Zhang M, Williams RS, Yan Z. Resident stem cells are not required for exercise‐induced fiber type‐switching and angiogenesis, but required for activity‐dependent muscle growth. Am J Physio 290: C1461‐C1468, 2006.
 292. Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB. Skeletal muscle myocytes undergo protein loss and reactive‐oxygen mediated NF‐kB activation in response to tumor necrosis factor‐alpha. FASEB 12: 871‐880, 1998.
 293. Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier‐Chapman EM, Wang X‐F. Smads bind directly to the Jun family of AP‐1 transcription factors. Proc Natl Acad Sci U S A 96: 4844‐4849, 1999.
 294. Lieskovska J, Guo D, Derman E. IL‐6‐overexpression brings about growth impairment potentially through a GH receptor defect. Growth Horm IGF Res 12: 388‐398, 2002.
 295. Ling PR, Schwartz JH, Bistrian BR. Mechanisms of host wasting induced by administration of cytokines in rats. Am J Physiol 272: E333‐E339, 1997.
 296. Liu Y, Heinichen M, Wirth K, Schmidtbleicher D, Steinacker JM. Response of growth and myogenic factors in human skeletal muscle to strength training. Br J Sports Med 42: 989‐993, 2008.
 297. Liu Y, Schlumberger A, Wirth K, Schmidtbleicher D, Steinacker JM. Different effects on human skeletal myosin heavy chain isoform expression: Strength vs. combination training. J Appl Physiol 94: 2282‐2288, 2003.
 298. Lodish HF. Translational control of protein synthesis. Annu Rev Biochem 45: 39‐72, 1976.
 299. Lowe DA, Alway SE. Stretch‐induced myogenin, MyoD, and MRF4 expression and acute hypertrophy in quail slow‐tonic muscle are not dependent upon satellite cell proliferation. Cell Tis Res 296: 531‐539, 1999.
 300. Lueders TN, Zou K, Huntsman HD, Meador B, Mahmassani Z, Abel M, Valero MC, Huey KA, Boppart MD. The alpha7beta1‐integrin accelerates fiber hypertrophy and myogenesis following a single bout of eccentric exercise. Am J Physiol Cell Physiol 301: C938‐946.
 301. Ma XM, Blenis J. Molecular mechanisms of mTOR‐mediated translational control. Nat Rev Mol Cell Biol 10: 307‐318, 2009.
 302. MacDougall JD, Sale DG, Moroz JR, Elder GC, Sutton JR, Howald H. Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med Sci Sports 11: 164‐166, 1979.
 303. Mackey AL, Heinemeier KM, Koskinen SO, Kjaer M. Dynamic adaptation of tendon and muscle connective tissue to mechanical loading. Connect Tissue Res 49: 165‐168, 2008.
 304. Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Døssing S, Kadi F, Koskinen SO, Jensen CH, Schrøder HD, Langberg H. The influence of anti‐inflammatory medication on exercise‐induced myogenic precursor cell responses in humans. J Appl Physiol 103: 425‐431, 2007.
 305. Madarame H, Kurano M, Takano H, Iida H, Sato Y, Ohshima H, Abe T, Ishii N, Morita T, Nakajima T. Effects of low‐intensity resistance exercise with blood flow restriction on coagulation system in healthy subjects. Clin Physiol Funct Imaging 30: 210‐213, 2010.
 306. Manini T, Clark B. Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev 37: 78‐85, 2009.
 307. Marino JS, Tausch BJ, Dearth CL, Manacci MV, McLoughlin TJ, Rakyta SJ, Linsenmayer MP, Pizza FX. Beta2‐integrins contribute to skeletal muscle hypertrophy in mice. Am J Physiol 295: C1026‐C1036, 2008.
 308. Martin SD, Collier FM, Kirkland MA, Walder K, Stupka N. Enhanced proliferation of human skeletal muscle precursor cells derived from elderly donors cultured in estimated physiological (5%) oxygen. Cytotechnology 61: 93‐107, 2009.
 309. Martineau LC, Gardiner PF. Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J Appl Physiol 91: 693‐702, 2001.
 310. Mascher H, Tannerstedt J, Brink‐Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF‐1 in human skeletal muscle. E43‐E51, 2008.
 311. Matheny RW, Nindl BC, Adamo ML. Minireview: Mechano‐growth factor: A putative product of IGF‐I gene expression involved in tissue repair and regeneration. Endocrinology 151: 865‐875, 2010.
 312. Mavalli MD, DiGirolamo DJ, Fan Y, Riddle RC, Campbell KS, van Groen T, Frank SJ, Sperling MA, Esser KA, Bamman MM, Clemens TL. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J Clin Invest 120: 4007‐4020, 2010.
 313. Mayhew DL, Hornberger TA, Lincoln HC, Bamman MM. Eukaryotic initiation factor 2B∈ (eIF2B∈) induces cap‐dependent translation and skeletal muscle hypertrophy. J Physiol 589: 3023‐3037, 2011.
 314. Mayhew DL, Kim JS, Cross JM, Ferrando AA, Bamman MM. Translational signaling responses preceding resistance training‐mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107: 1655‐1662, 2009.
 315. McCall GE, Haddad F, Roy RR, Zhong H, Edgerton VR, Baldwin KM. Transcriptional regulation of the myosin heavy chain IIb gene in inactive rat soleus. Muscle Nerve 40: 411‐419, 2009.
 316. McCarthy JJ, Esser KA. Counterpoint: Satellite cell addition is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103: 1102‐1103, 2007.
 317. McCarthy JJ, Esser KA. MicroRNA‐1 and microRNA‐133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102: 306‐313, 2007.
 318. McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont‐Versteegden EE, Peterson CA. Effective fiber hypertrophy in satellite cell‐depleted skeletal muscle. Development 138: 3657‐3666, 2011.
 319. McFarland DC. Cell culture as a tool for the study of poultry skeletal muscle development. J Nut 122: 818‐829, 1992.
 320. McFarlane C, Hui GZ, Amanda WZW, Lau HY, Lokireddy S, XiaoJia G, Mouly V, Butler‐Browne G, Gluckman PD, Sharma M, Kambadur R. Human myostatin negatively regulates human myoblast growth and differentiation. Am J Physiol 301: C195‐C203, 2011.
 321. McKay BR, O'Reilly CE, Phillips SM, Tarnopolsky MA, Parise G. Co‐expression of IGF‐1 family members with myogenic regulatory factors following acute damaging muscle‐lengthening contractions in humans. J Physiol 586: 5549‐5560, 2008.
 322. McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Dorfman AL, Longnus S, Pende M, Martin KA, Blenis J, Thomas G, Izumo S. Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin‐like growth factor 1 receptor‐phosphoinositide 3‐kinase‐induced cardiac hypertrophy. Mol Cell Biol 24: 6231‐6240, 2004.
 323. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF‐b superfamily member. Nature 387: 83‐90, 1997.
 324. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94: 12457‐12461, 1997.
 325. Meech R, Gomez M, Woolley C, Barro M, Hulin JA, Walcott EC, Delgado J, Makarenkova HP. The homeobox transcription factor barx2 regulates plasticity of young primary myofibers. PLoS ONE 5: e11612, 2010.
 326. Menconi MJ, Arany ZP, Alamdari N, Aversa Z, Gonnella P, O'Neal P, Smith IJ, Tizio S, Hasselgren PO. Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor pgc‐1{beta} in skeletal muscle. Am J Physiol Endocrinol Metab 299: E533‐E543, 2010.
 327. Merrick WC. Eukaryotic protein synthesis: Still a mystery. J Biol Chem 285: 21197‐21201, 2010.
 328. Mientjes E, Willemsen R, Kirkpatrick L, Nieuwenhuizen I, Hoogeveen‐Westerveld M, Verweij M, Reis S, Bardoni B, Hoogeveen A, Oostra B, Nelson D. Fxr1 knockout mice show a striated muscle phenotype: Implications for Fxr1p function in vivo. Hum Mol Genet 13: 1291‐1302, 2004.
 329. Miller AM, Brestoff JR, Phelps CB, Berk EZ, Reynolds TH, IV. Rapamycin does not improve insulin sensitivity despite elevated mammalian target of rapamycin complex 1 activity in muscles of ob/ob mice. Am J Physiol 295: R1431‐R1438, 2008.
 330. Miller GR, Stauber WT. Use of computer‐assisted analysis for myofiber size measurements of rat soleus muscles from photographed images. J Histochem Cytochem 42: 377‐382, 1994.
 331. Miller KJ, Thaloor D, Matteson S, Pavlath GK. Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol 278: C174‐C181, 2000.
 332. Millward DJ, Garlick PJ, Stewart RJ, Nnanyelugo DO, Waterlow JC. Skeletal‐muscle growth and protein turnover. Biochem J 150: 235‐243, 1975.
 333. Min H, Turck CW, Nikolic JM, Black DL. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev 11: 1023‐1036, 1997.
 334. Miura P, Coriati A, Bélanger G, De Repentigny Y, Lee J, Kothary R, Holcik M, Jasmin BJ. The utrophin A 5′‐UTR drives cap‐independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2. Hum Mol Genet 19: 1211‐1220, 2010.
 335. Miyazaki M, Esser KA. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol 106: 1367‐1373, 2009.
 336. Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA. Early activation of mTORC1 in response to mechanical overload is independent of PI3K/Akt signaling. J Physiol 589: 1831‐1846, 2011.
 337. Montagne J. Genetic and molecular mechanisms of cell size control. Mol Cell Biol Res Commun 4: 195‐202, 2000.
 338. Moore DR, Atherton PJ, Rennie MJ, Tarnopolsky MA, Phillips SM. Resistance exercise enhances mTOR and MAPK signalling in human muscle over that seen at rest after bolus protein ingestion. Acta Physiol (Oxf) 201: 365‐372, 2010.
 339. Moore DR, Burgomaster KA, Schofield LM, Gibala MJ, Sale DG, Phillips SM. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol 92: 399‐406, 2004.
 340. Morkin E. Postnatal muscle fiber assembly: Localization of newly synthesized myofibrillar proteins. Science 167: 1499‐1501, 1970.
 341. Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV. In vivo physiological cross‐sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol 99: 1050‐1055, 2005.
 342. Moss FP. The relationship between the dimensions of the fibres and the number of nuclei during restricted growth, degrowth and compensatory growth of skeletal muscle. Am J Anat 122: 555‐564, 1968.
 343. Mozdziak PE, Schultz E, Cassens RG. The effect of in vivo and in vitro irradiation (25 Gy) on the subsequent in vitro growth of satellite cells. Cell Tissue Res 283: 203‐208, 1996.
 344. Musarò A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N. Localized Igf‐1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27: 195‐200, 2001.
 345. Nader GA, McLoughlin TJ, Esser KA. mTOR function in skeletal muscle hypertrophy: Increased ribosomal RNA via cell cycle regulators. Am J Physiol 289: C1457‐C1465, 2005.
 346. Nagatomo Y, Carabello BA, Hamawaki M, Nemoto S, Matsuo T, McDermott PJ. Translational mechanisms accelerate the rate of protein synthesis during canine pressure‐overload hypertrophy. Am J Physiol 277: H2176‐H2184, 1999.
 347. Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, Conti M, Cerretelli P. Human quadriceps cross‐sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand 157: 175‐186, 1996.
 348. Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN. Stimulation of slow skeletal muscle fiber expression by calcineurin in vivo. J Biol Chem 275: 4545‐4548, 2000.
 349. Neville C, Rosenthal N, McGrew M, Bogdanova N, Hauschka S. Skeletal muscle cultures. Methods Cell Biol 52: 85‐116, 1997.
 350. Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, Pilegaard H, Pedersen BK. Expression of interleukin‐15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 584: 305‐312, 2007.
 351. Nieman DC, Davis JM, Brown VA, Henson DA, Dumke CL, Utter AC, Vinci DM, Downs MF, Smith JC, Carson J, Brown A, McAnulty SR, McAnulty LS. Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training. J Appl Physiol 96: 1292‐1298, 2004.
 352. Niu W, Bilan PJ, Yu J, Gao J, Boguslavsky S, Schertzer JD, Chu G, Yao Z, Klip A. PKCepsilon regulates contraction‐stimulated GLUT4 traffic in skeletal muscle cells. J Cell Physiol 226: 173‐180, 2010.
 353. O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3‐kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587: 3691‐3701, 2009.
 354. Oh YM, Kim JK, Choi Y, Choi S, Yoo J‐Y. Prediction and experimental validation of novel STAT3 target genes in human cancer cells. PLoS ONE 4: e6911, 2009.
 355. Olwin BB, Arthur K, Hannon K, Hein P, McFall A, Riley B, Szebenyi G, Zhou Z, Zuber ME, Rapraeger AC. Role of FGF's in skeletal muscle and limb development. Mol Repro Dev 39: 90‐101, 1994.
 356. Ono Y, Calhabeu F, Morgan JE, Katagiri T, Amthor H, Zammit PS. BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ 18: 222‐234, 2011.
 357. Ouyang X, Fujimoto M, Nakagawa R, Serada S, Tanaka T, Nomura S, Kawase I, Kishimoto T, Naka T. SOCS‐2 interferes with myotube formation and potentiates osteoblast differentiation through upregulation of JunB in C2C12 cells. J Cell Physiol 207: 428‐436, 2006.
 358. Pandorf CE, Haddad F, Roy RR, Qin AX, Edgerton VR, Baldwin KM. Dynamics of myosin heavy chain gene regulation in slow skeletal muscle: Role of natural antisense RNA. J Biol Chem 281: 38330‐38342, 2006.
 359. Pandorf CE, Haddad F, Wright C, Bodell PW, Baldwin KM. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading. Am J Physiol Cell Physiol 297: C6‐C16, 2009.
 360. Parkington JD, LeBrasseur NK, Siebert AP, Fielding RA. Contraction‐mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol 97: 243‐248, 2004.
 361. Parsons SA, Millay DP, Wilkins BJ, Bueno OF, Tsika GL, Neilson JR, Liberatore CM, Yutzey KE, Crabtree GR, Tsika RW, Molkentin JD. Genetic loss of calcineurin blocks mechanical overload‐induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 279: 26192‐26200, 2004.
 362. Patursky‐Polischuk I, Stolovich‐Rain M, Hausner‐Hanochi M, Kasir J, Cybulski N, Avruch J, Ruegg MA, Hall MN, Meyuhas O. The TSC‐mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor‐ or rictor‐independent manner. Mol Cell Biol 29: 640‐649, 2009.
 363. Paul AC, Rosenthal N. Different modes of hypertrophy in skeletal muscle fibers. J Cell Biol 156: 751‐760, 2002.
 364. Pavlath GK, Rich K, Webster SG, Blau HM. Localization of muscle gene products in nuclear domains. Nature 337: 570‐573, 1989.
 365. Pedersen BK. IL‐6 signalling in exercise and disease. Biochem Soc Trans 35: 1295‐1297, 2007.
 366. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC, Thomas G. S6K1(‐/‐)/S6K2(‐/‐) mice exhibit perinatal lethality and rapamycin‐sensitive 5′‐terminal oligopyrimidine mRNA translation and reveal a mitogen‐activated protein kinase‐dependent S6 kinase pathway. Mol Cell Biol 24: 3112‐3124, 2004.
 367. Percival JM, Anderson KN, Huang P, Adams ME, Froehner SC. Golgi and sarcolemmal neuronal NOS differentially regulate contraction‐induced fatigue and vasoconstriction in exercising mouse skeletal muscle. J Clin Invest 120: 816‐826, 2010.
 368. Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM. Efficacy of myonuclear addition may explain differential myofiber growth among resistance‐trained young and older men and women. Am J Physiol 291: E937‐E946, 2006.
 369. Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell‐mediated myonuclear addition: A cluster analysis. J Appl Physiol 104: 1736‐1742, 2008.
 370. Phelan JN, Gonyea WJ. Effect of radiation on satellite cell activity and protein expresion in overloaded mammalian skeletal muscle. Anat Rec 247: 179‐188, 1997.
 371. Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tamopolsky MA. Resistance‐training‐induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol 80: 1045‐1053, 2002.
 372. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273: E99‐E107, 1997.
 373. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR. Resistance training reduces the acute exercise‐induced increase in muscle protein turnover. Am J Physiol 276: E118‐E124, 1999.
 374. Philp A, Hamilton D, Baar K. Signals mediating skeletal muscle remodeling by resistance exercise: PI3‐kinase independent activation of mTORC1. J Appl Physiol 110: 561‐568, 2011.
 375. Pierce JR, Tuckow AP, Alemany JA, Rarick KR, Staab JS, Harman EA, Nindl BC. Effects of acute and chronic exercise on disulfide‐linked growth hormone variants. Med Sci Sports Exerc 41: 581‐587, 2009.
 376. Pistilli EE, Alway SE. Systemic elevation of interleukin‐15 in vivo promotes apoptosis in skeletal muscles of young adult and aged rats. Biochem Biophys Res Commun 373: 20‐24, 2008.
 377. Prokopchuk O, Liu Y, Wang L, Wirth K, Schmidtbleicher D, Steinacker JM. Skeletal muscle IL‐4, IL‐4Ralpha, IL‐13 and IL‐13Ralpha1 expression and response to strength training. Exerc Immunol Rev 13: 67‐75, 2007.
 378. Proud C. mTORC1 signalling and mRNA translation. Biochem Soc Trans 37: 227‐231, 2009.
 379. Proud CG. Signalling to translation: How signal transduction pathways control the protein synthetic machinery. Biochem J 403: 217‐234, 2007.
 380. Prunotto C, Crepaldi T, Forni PE, Ieraci A, Kelly RG, Tajbakhsh S, Buckingham M, Ponzetto C. Analysis of Mlc‐lacZ Met mutants highlights the essential function of Met for migratory precursors of hypaxial muscles and reveals a role for Met in the development of hyoid arch‐derived facial muscles. Dev Dyn 231: 582‐591, 2004.
 381. Psilander N, Damsgaard R, Pilegaard H. Resistance exercise alters MRF and IGF‐I mRNA content in human skeletal muscle. J Appl Physiol 95: 1038‐1044, 2003.
 382. Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k. FEBS Lett 410: 78‐82, 1997.
 383. Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argilés JM. Overexpression of interleukin‐15 induces skeletal muscle hypertrophy in vitro: Implications for treatment of muscle wasting disorders. Exp Cell Res 280: 55‐63, 2002.
 384. Quinn LS, Anderson BG, Plymate SR. Muscle‐specific overexpression of the type 1 IGF receptor results in myoblast‐independent muscle hypertrophy via PI3K, and not calcineurin, signaling. Am J Physiol 293: E1538‐E1551, 2007.
 385. Quinn LS, Anderson BG, Strait‐Bodey L, Stroud AM, Argilés JM. Oversecretion of interleukin‐15 from skeletal muscle reduces adiposity. Am J Physiol 296: E191‐E202, 2009.
 386. Quinn LS, Haugk KL, Grabstein KH. Interleukin‐15: A novel anabolic cytokine for skeletal muscle. Endocrinol 136: 3669‐3672, 1995.
 387. Raffaello A, Milan G, Masiero E, Carnio S, Lee D, Lanfranchi G, Goldberg AL, Sandri M. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J Cell Biol 191: 101‐113, 2010.
 388. Raj DS, Shah H, Shah VO, Ferrando A, Bankhurst A, Wolfe R, Zager PG. Markers of inflammation, proteolysis, and apoptosis in ESRD. Am J Kidney Dis 42: 1212‐1220, 2003.
 389. Ralston E, Hall ZW. Restricted distribution of mRNA produced from a single nucleus in hybrid myotubes. J Cell Biol 119: 1063‐1068, 1992.
 390. Rantanen J, Hurme T, Lukka R, Heino J, Kalimo H. Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 72: 341‐347, 1995.
 391. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle‐specific microRNAs. Proc Natl Acad Sci U S A 103: 8721‐8726, 2006.
 392. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid‐carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 88: 386‐392, 2000.
 393. Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S. Myogenic gene expression at rest and after a bout of resistance exercise in young (18‐30 yr) and old (80‐89 yr) women. J Appl Physiol 101: 53‐59, 2006.
 394. Raue U, Slivka D, Minchev K, Trappe S. Improvements in whole muscle and myocellular function are limited with high‐intensity resistance training in octogenarian women. J Appl Physiol 106: 1611‐1617, 2009.
 395. Reeves GV, Kraemer RR, Hollander DB, Clavier J, Thomas C, Francois M, Castracane VD. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol 101: 1616‐1622, 2006.
 396. Rennie MJ. Claims for the anabolic effects of growth hormone: A case of the emperor's new clothes? Br J Sports Med 37: 100‐105, 2003.
 397. Reynolds TH, Bodine SC, Lawrence JC, Jr. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 277: 17657‐17662, 2002.
 398. Riechman SE, Balasekaran G, Roth SM, Ferrell RE. Association of interleukin‐15 protein and interleukin‐15 receptor genetic variation with resistance exercise training responses. J Appl Physiol 97: 2214‐2219, 2004.
 399. Rigamonti AE, Locatelli L, Cella SG, Bonomo SM, Giunta M, Molinari F, Sartorio A, Müller EE. Muscle expressions of MGF, IGF‐IEa, and myostatin in intact and hypophysectomized rats: Effects of rhGH and testosterone alone or combined. Horm Metab Res 41: 23‐29, 2009.
 400. Roberts M, Dalbo V, Sunderland K, Poole C, Hassell S, Bemben D, Cramer J, Stout J, Kerksick C. IGF‐1 splice variant and IGF‐1 peptide expression patterns in young and old human skeletal muscle prior to and following sequential exercise bouts. Eur J Appl Physiol 110: 961‐969, 2010.
 401. Roberts MD, Dalbo VJ, Hassell SE, Kerksick CM. Effects of pre‐exercise feeding on markers of satellite cell activation. Med Sci Sports Exerc 42: 1861‐1869, 2010.
 402. Robertson TA, Grounds MD, Papadimitriou JM. Elucidation of aspects of murine skeletal muscle regeneration using local and whole body irradiaiton. J Anat 181: 265‐276, 1992.
 403. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ. Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biol 3: 1009‐1013, 2001.
 404. Rose AJ, Alsted TJ, Kobberø JB, Richter EA. Regulation and function of Ca2+–calmodulin‐dependent protein kinase II of fast‐twitch rat skeletal muscle. J Physiol 580: 993‐1005, 2007.
 405. Rose AJ, Richter EA. Regulatory mechanisms of skeletal muscle protein turnover during exercise. J Appl Physiol 106: 1702‐1711, 2009.
 406. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA. Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31: 773‐779, 1995.
 407. Rosenblatt JD, Parry DJ. Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus msucle. J Appl Physiol 73: 2538‐2543, 1992.
 408. Rosenblatt JD, Parry DJ. Adaptation of rat extensor digitorum longus muscle to gamma irradiation and overload. Pflugers Arch 423: 255‐264, 1993.
 409. Rosenblatt JD, Parry DJ, Partridge TA. Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin. Differentiation 60: 39‐45, 1996.
 410. Rosenblatt JD, Yong D, Parry DJ. Satellite cell activity is required for hypertrophy of overloaded adult rat skeletal muscle. Muscle Nerve 17: 608‐613, 1994.
 411. Rotwein P, Wilson EM. Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation. J Cell Physiol 219: 503‐511, 2009.
 412. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, Sonenberg N, Blenis J. RAS/ERK signaling promotes site‐specific ribosomal p‐rotein S6 phosphorylation via RSK and stimulates cap‐dependent translation. J Biol Chem 282: 14056‐14064, 2007.
 413. Roy RR WR, Edgerton VR. Architectural and mechanical properties of the rat adductor longus: response to weight‐lifting training. Anat Rec 247: 170‐178, 1997.
 414. Ruggiero T, Trabucchi M, Ponassi M, Corte G, Chen CY, al‐Haj L, Khabar KS, Briata P, Gherzi R. Identification of a set of KSRP target transcripts upregulated by PI3K‐AKT signaling. BMC Mol Bio 8: 28, 2007.
 415. Ryder JW, Fahlman R, Wallberg‐Henriksson H, Alessi DR, Krook A, Zierath JR. Effect of contraction on mitogen‐activated protein kinase signal transduction in skeletal muscle. J Biol Chem 275: 1457‐1462, 2000.
 416. Sakuma K, Nishikawa J, Nakao R, Nakano H, Sano M, Yasuhara M. Serum response factor plays an important role in the mechanically overloaded plantaris muscle of rats. Histochem Cell Biol 119: 149‐160, 2003.
 417. Sakuma K, Watanabe K, Hotta N, Koike T, Ishida K, Katayama K, Akima H. The adaptive responses in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans. Acta Physiol (Oxf) 197: 151‐159, 2009.
 418. Sakuma K, Watanabe K, Totsuka T, Uramoto I, Sano M, Sakamoto K. Differential adaptations of insulin‐like growth factor‐I, basic fibroblast growth factor, and leukemia inhibitory factor in the plantaris muscle of rats by mechanical overloading: an immunohistochemical study. Acta Neuropathol 95: 123‐130, 1998.
 419. Salviati G, Biasia E, Aloisi M. Synthesis of fast myosin induced by fast ectopic innervation of rat soleus muscle is restricted to the ectopic endplate region. Nature 322: 637‐639, 1986.
 420. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol 296: C1248‐C1257, 2009.
 421. Sasai N, Agata N, Inoue‐Miyazu M, Kawakami K, Kobayashi K, Sokabe M, Hayakawa K. Involvement of PI3K/Akt/TOR pathway in stretch‐induced hypertrophy of myotubes. Muscle Nerve 41: 100‐106, 2010.
 422. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med 119: e9‐e17, 2006.
 423. Schakman O, Gilson H, deConinck V, Lause P, Verniers J, Havaux X, Ketelslegers JM, Thissen JP. Insulin‐like growth factor‐I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid‐treated rats. Endocrinology 2005: 1789‐1797, 2005.
 424. Seale P, Rudnicki MA. A new look at the origin, function, and “stem‐cell” status of muscle satellite cells. Devel Bio 218: 115‐124, 2000.
 425. Sellman JE, DeRuisseau KC, Betters JL, Lira VA, Soltow QA, Selsby JT, Criswell DS. In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol 100: 258‐265, 2006.
 426. Semsarian C, Wu MJ, Ju YK, Marciniec T, Yeoh T, Allen DG, Harvey RP, Graham RM. Skeletal muscle hypertrophy is mediated by a Ca2+‐dependent calcineurin signalling pathway. Nature 400: 576‐581, 1999.
 427. Serrano AL, Baeza‐Raja B, Perdiguero E, Jardí M, Muñoz‐Cánoves P. Interleukin‐6 is an essential regulator of satellite cell‐mediated skeletal muscle hypertrophy. Cell Metab 27: 33‐44, 2008.
 428. Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T, Schiaffino S. Calcineurin controls nerve activity‐dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci U S A 98: 13108‐13113, 2001.
 429. Sheehan SM, Tatsumi R, Temm‐Grove CJ, Allen RE. HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23: 239‐245, 2000.
 430. Shinohara M, Kouzaki M, Yoshihisa T, Fukunaga T. Efficacy of tourniquet ischemia for strength training with low resistance. Eur J Appl Physiol Occup Physiol 77: 189‐191, 1997.
 431. Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DD. 3D timelapse analysis of muscle satellite cell motility. Stem Cells 2009: 2527‐2538, 2009.
 432. Siehl D, Chua BH, Lautensack‐Belser N, Morgan HE. Faster protein and ribosome synthesis in thyroxine‐induced hypertrophy of rat heart. Am J Physiol 248: C309‐C319, 1985.
 433. Sinha‐Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community‐dwelling older men. J Clin Endocrinol Metab 91: 3024‐3033, 2006.
 434. Sinha‐Hikim I, Roth SM, Lee MI, Bhasin S. Testosterone‐induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Meta 285: E197‐E205, 2003.
 435. Sjöholm A, Nyström T. Inflammation and the etiology of type 2 diabetes. Diabetes Metab Res Rev 22: 4‐10, 2006.
 436. Smith LW, Smith JD, Criswell DS. Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol 92: 2005‐2011, 2002.
 437. Smith MA, Moylan JS, Smith JD, Li W, Reid MB. IFN‐gamma does not mimic the catabolic effects of TNF‐alpha. Am J Physiol C 293: C1947‐C1952, 2007.
 438. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell 136: 731‐745, 2009.
 439. Spangenburg EE. SOCS‐3 induces myoblast differentiation. J Biol Chem 280: 10749‐10758, 2005.
 440. Spangenburg EE, Booth FW. Multiple signaling pathways mediate LIF‐induced skeletal muscle satellite cell proliferation. Am J Physiol 283: C204‐C211, 2002.
 441. Spangenburg EE, Booth FW. Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(‐/‐) mouse. Cytokine 34: 125‐130, 2006.
 442. Spangenburg EE, Chakravarthy MV, Booth FW. p27Kip1: a key regulator of skeletal muscle satellite cell proliferation. Clin Orthop 403: S221‐S227, 2002.
 443. Spangenburg EE, Le Roith D, Ward CW, Bodine SC. A functional insulin‐like growth factor receptor is not necessary for load‐induced skeletal muscle hypertrophy. J Physiol 586: 283‐291, 2008.
 444. Spangenburg EE, McBride TA. Inhibition of stretch‐activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol 100: 129‐135, 2006.
 445. Spiering B, Kraemer W, Anderson J, Armstrong L, Nindl B, Volek J, Judelson D, Joseph M, Vingren J, Hatfield D, Fragala M, Ho J, Maresh C. Effects of elevated circulating hormones on resistance exercise‐induced Akt signaling. Med Sci Sports Exerc 40: 1039‐1048, 2008.
 446. Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA. Muscle hypertrophy and fast fiber type conversions in heavy resistance‐trained women. Eur J Appl Physiol Occup Physiol 60: 71‐79, 1990.
 447. Starr R, Hilton DJ. Negative regulation of the JAK/STAT pathway. BioEssays 21: 47‐52, 1999.
 448. Steib S, Schoene D, Pfeifer K. Dose‐response relationship of resistance training in older adults: A meta‐analysis. Med Sci Sports Exerc 42: 902‐914.
 449. Steitz JA, Vasudevan S. miRNPs: Versatile regulators of gene expression in vertebrate cells. Biochem Soc Trans 037: 931‐935, 2009.
 450. Stewart CE, Pell JM, Flueck M, Goldspink G. Point:Counterpoint: IGF is/is not the major physiological regulator of muscle mass. Point: IGF is the major physiological regulator of muscle mass. J Appl Physiol 108: 1820‐1823.
 451. Stewart CE, Rittweger J. Adaptive processes in skeletal muscle: Molecular regulators and genetic influences. J Musculoskelet Neuronal Interact 6: 73‐86, 2006.
 452. Stiber JA, Seth M, Rosenberg PB. Mechanosensitive channels in striated muscle and the cardiovascular system: Not quite a stretch anymore. J Cardiovasc Pharmacol 54: 116‐122, 2009.
 453. Stockdale FE, Holtzer H. DNA synthesis and myogenesis. Exp Cell Res 24: 508‐520, 1961.
 454. Stuart CA, Howell MEA, Baker JD, Dykes RJ, Duffourc MM, Ramsey MW, Stone MH. Cycle training increased GLUT4 and activation of mammalian target of rapamycin in fast twitch muscle fibers. Med Sci Sports Exerc 42: 96‐106, 2010.
 455. Suetta C, Clemmensen C, Andersen JL, Magnusson SP, Schjerling P, Kjaer M. Coordinated increase in skeletal muscle fiber area and expression of IGF‐I with resistance exercise in elderly post‐operative patients. Growth Horm IGF Res 20: 134‐140, 2010.
 456. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Omokawa M, Kinugawa S, Tsutsui H. Dose effect on intramuscular metabolic stress during low‐intensity resistance exercise with blood flow restriction. J Appl Physiol 108: 1563‐1567, 2010.
 457. Sun L, Ma K, Wang H, Xiao F, Gao Y, Zhang W, Wang K, Gao X, Ip N, Wu Z. JAK1‐STAT1‐STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J Cell Biol 179: 129‐138, 2007.
 458. Sweetman D, Goljanek K, Rathjen T, Oustanina S, Braun T, Dalmay T, Münsterberg A. Specific requirements of MRFs for the expression of muscle specific microRNAs, miR‐1, miR‐206 and miR‐133. Dev Biol 321: 491‐499, 2008.
 459. Swoap SJ, Hunter RB, Stevenson EJ, Felton HM, Kansagra NV, Lang JM, Esser KA, Kandarian SC. The calcineurin‐NFAT pathway and muscle fiber‐type gene expression. Am J Physiol 279: C915‐C924, 2000.
 460. Takahashi T, Fukuda K, Pan J, Kodama H, Sano M, Makino S, Kato T, Manabe T, Ogawa S. Characterization of insulin‐like growth factor‐I‐induced activation of the JAK/STAT pathway in rat cardiomyocytes. Cir Res 85: 884‐891, 1999.
 461. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88: 2097‐2106, 2000.
 462. Tan JC, Rabkin R. Suppressors of cytokine signaling in health and disease. Pediatr Nephrol 20: 567‐575, 2005.
 463. Tanaka Y, Yamaguchi A, Fujikawa T, Sakuma K, Morita I, Ishii K. Expression of mRNA for specific fibroblast growth factors associates with that of the myogenic markers MyoD and proliferating cell nuclear antigen in regenerating and overloaded rat plantaris muscle. Acta Physiol (Oxf) 194: 149‐159, 2008.
 464. Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB. MyoD1: A nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242: 405‐411, 1988.
 465. Tatsumi R. Mechano‐biology of skeletal muscle hypertrophy and regeneration: Possible mechanism of stretch‐induced activation of resident myogenic stem cells. Anim Sci J 81: 11‐20, 2010.
 466. Taylor JA, Kandarian SC. Advantage of normalizing force production to myofibrillar protein in skeletal muscle cross‐sectional area. J Appl Physiol 76: 974‐978, 1994.
 467. Taylor‐Jones JM, McGehee RE, Rando TA, Lecka‐Czernik B, Lipschitz DA, Peterson CA. Activation of an adipogenic program in adult myoblasts with age. Mech Ageing Dev 123: 649‐661, 2002.
 468. Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E. Resistance exercise‐induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102: 145‐152, 2008.
 469. Thalacker‐Mercer AE, Petrella JK, Bamman MM. Does habitual dietary intake influence myofiber hypertrophy in response to resistance training? A cluster analysis. Appl Physiol Nutr Metab 34: 632‐639, 2009.
 470. Thomson DM, Gordon SE. Impaired overload‐induced muscle growth is associated with diminished translational signalling in aged rat fast‐twitch skeletal muscle. J Physiology 574: 291‐305, 2006.
 471. Tipton KD, Ferrando AA, Phillips SM, Doyle D, Jr., Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol 276: E628‐E634, 1999.
 472. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens‐Stovall SK, Petrini BE, Wolfe RR. Timing of amino acid‐carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 281: E197‐E206, 2001.
 473. Torsoni AS, Constancio SS, Nadruz W, Jr., Hanks SK, Franchini KG. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93: 140‐147, 2003.
 474. Trappe S, Costill D, Gallagher P, Creer A, Peters JR, Evans H, Riley DA, Fitts RH. Exercise in space: Human skeletal muscle after 6 months aboard the International Space Station. J Appl Physiol 106: 1159‐1168, 2009.
 475. Trappe T, Carroll C, Dickinson J, LeMoine J, Haus J, Sullivan B, Lee J, Jemiolo B, Weinheimer E, Hollon C. Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults. Am J Physiol 300: R655‐R662, 2011.
 476. Trappe TA, White F, Lambert CP, Cesar D, Hellerstein M, Evans WJ. Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. Am J Physiol 282: E551‐E556, 2002.
 477. Trendelenburg A, Meyer A, Jacobi C, Feige J, Glass D. TAK‐1/p38/nNFκB signaling inhibits myoblast differentiation by increasing levels of Activin A. Skelet Muscle 2: 2012.
 478. Trenerry M, Carey K, Ward A, Farnfield M, Cameron‐Smith D. Exercise‐induced activation of STAT3 signaling is increased with age. Rejuvenation Res 11: 717‐724, 2008.
 479. Trujillo RD, Yue S‐B, Tang Y, O'Gorman WE, Chen C‐Z. The potential functions of primary microRNAs in target recognition and repression. EMBO J 29: 3272‐3285, 2010.
 480. Umbel J, Hoffman R, Dearth D, Chleboun G, Manini T, Clark B. Delayed‐onset muscle soreness induced by low‐load blood flow‐restricted exercise. Eur J Appl Physiol 107: 687‐695, 2009.
 481. Urban RJ, Bodenburg YH, Gilkison C, Foxworth J, Coggan AR, Wolfe RR, Ferrando A. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol 269: E820‐E826, 1995.
 482. Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B. Regulation of capacitative calcium entries by alpha1‐syntrophin: Association of TRPC1 with dystrophin complex and the PDZ domain of alpha1‐syntrophin. FASEB J 21: 608‐617, 2007.
 483. Voelkel T, Linke WA. Conformation‐regulated mechanosensory control via titin domains in cardiac muscle. Pflugers Arch 462: 143‐154.
 484. Wagers AJ, Conboy IM. Cellular and molecular signatures of muscle regeneration: Current concepts and controversies in adult myogenesis. Cell 122: 659‐667, 2005.
 485. Wang XD, Kawano F, Matsuoka Y, Fukunaga K, Terada M, Sudoh M, Ishihara A, Ohira Y. Mechanical load‐dependent regulation of satellite cell and fiber size in rat soleus muscle. Am J Physiol 290: C981‐C999, 2006.
 486. Watt KI, Jaspers RT, Atherton P, Smith K, Rennie MJ, Ratkevicius A, Wackerhage H. SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force. Muscle Nerve 41: 624‐629, 2010.
 487. Weeds AG, Trentham DR, Kean CJC, Buller AJ. Myosin from cross‐reinnervated cat muscles. Nature 247: 135‐138, 1974.
 488. Wegrowski J, Lefaix JL, Lafuma C. Accumulation of glycosaminoglycans in radiation‐induced muscular fibrosis. Int J Radiat Biol 61: 685‐693, 1992.
 489. Welle S, Bhatt K, Thornton CA. Stimulation of myofibrillar synthesis by exercise is mediated by more efficient translation of mRNA. J Appl Physiol 86: 1220‐1225, 1999.
 490. Weng QP, Andrabi K, Kozlowski MT, Grove JR, Avruch J. Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol 15: 2333‐2340, 1995.
 491. Wernbom M, Augustsson J, Thomee R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross‐sectional area in humans. Sports Med 37: 225‐264, 2007.
 492. Wernbom M, Paulsen G, Nilsen T, Hisdal J, Raastad T. Contractile function and sarcolemmal permeability after acute low‐load resistance exercise with blood flow restriction. Eur J Appl Physiol 112: 2051‐2063, 2012.
 493. Wernig A, Zweyer M, Irintchev A. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles. J Physiol 522: 333‐345, 2000.
 494. West DW, Burd NA, Tang JE, Moore DR, Staples AW, Holwerda AM, Baker SK, Phillips SM. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training‐induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol 108: 60‐67, 2010.
 495. White JP, Reecy JM, Washington TA, Sato S, Le ME, Mark Davis J, Britt Wilson L, Carson JA. Overload‐induced skeletal muscle extracellular matrix remodeling and myofiber growth in mice lacking IL‐6. Acta Physiol (Oxf) 197: 321‐332, 2009.
 496. Widdowson WM, Healy ML, Sönksen PH, Gibney J. The physiology of growth hormone and sport. Growth Horm IGF Res 19: 308‐319, 2009.
 497. Wiesner RJ, Ehmke H, Faulhaber J, Zak R, Ruegg JC. Dissociation of left ventricular hypertrophy, ß‐myosin heavy chain gene expression, and myosin isoform switch in rats after ascending aortic stenosis. Circulation 95: 1253‐1259, 1997.
 498. Wilborn C, Taylor L, Greenwood M, Kreider R, Willoughby D. Effects of different intensities of resistance exercise on regulators of myogenesis. J Strength Cond Res 23: 2179‐2187, 2009.
 499. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586: 3701‐3717, 2008.
 500. Williamson D, Gallagher P, Harber M, Hollon C, Trappe S. Mitogen‐activated protein kinase (MAPK) pathway activation: Effects of age and acute exercise on human skeletal muscle. J Physiol 547: 977‐987, 2003.
 501. Wirth O, Gregory EW, Cutlip RG, Miller GR. Control and quantitation of voluntary weight‐lifting performance of rats. J Appl Physiol 95: 402‐412, 2003.
 502. Witard O, Tieland M, Beelen M, Tipton K, van Loon L, Koopman R. Resistance exercise increases postprandial muscle protein synthesis in humans. Med Sci Sports Exerc 41: 144‐154, 2009.
 503. Wojtaszewski JFP, Lynge J, Jakobsen AB, Goodyear LJ, Richter EA. Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: Metabolic implications. Am J Physiol 277: E724‐E732, 1999.
 504. Wong TS, Booth FW. Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. J Appl Physiol 69: 1709‐1717, 1990.
 505. Wong TS, Booth FW. Protein metabolism in rat tibialis anterior muscle after stimulated chronic eccentric exercise. J Appl Physiol 69: 1718‐1724, 1990.
 506. Wozniak AC, Anderson JE. Nitric oxide‐dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 236: 240‐250, 2007.
 507. Wozniak AC, Kong J, Bock E, Pilipowicz O, Anderson JE. Signaling satellite‐cell activation in skeletal muscle: Markers, models, stretch, and potential alternate pathways. Muscle Nerve 31: 283‐300, 2005.
 508. Wozniak AC, Pilipowicz O, Yablonka‐Reuveni Z, Greenway S, Craven S, Scott E, Anderson JE. C‐Met expression and mechanical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem 51: 1437‐1445, 2003.
 509. Wu Y, Zhao W, Zhao J, Pan J, Wu Q, Zhang Y, Bauman WA, Cardozo CP. Identification of androgen response elements in the insulin‐like growth factor I upstream promoter. Endocrinology 148: 2984‐2993, 2007.
 510. Yablonka‐Reuveni Z. Developmental and postnatal regulation of adult myoblasts. Microscopy Res Tech 30: 366‐380, 1995.
 511. Yamada M, Tatsumi R, Yamanouchi K, Hosoyama T, Shiratsuchi S, Sato A, Mizunoya W, Ikeuchi Y, Furuse M, Allen RE. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: A possible mechanism for reestablishing satellite cell quiescence in vivo. Am J Physiol 298: C465‐C476, 2010.
 512. Yamada S, Buffinger N, Dimario J, Strohman RC. Fibroblast growth factor is stored in the fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Med Sci Sport Exerc 21: S173‐S180, 1989.
 513. Yang SY, Goldspink G. Different roles of the IGF‐I Ec peptide (MGF) and mature IGF‐I in myoblast proliferation and differentiation. FEBS Lett 522: 156‐160, 2002.
 514. Yang W, Zhang Y, Li Y, Wu Z, Zhu D. Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3‐kinase/AKT/GSK‐3 beta pathway and is antagonized by insulin‐like growth factor 1. J Biol Chem 282: 3799‐3808, 2007.
 515. Yarasheski KE, Campbell JA, Smith K, Rennie MJ, Holloszy JO, Bier DM. Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol 262: E261‐E267, 1992.
 516. Yarasheski KE, Lemon PW, Gilloteaux J. Effect of heavy‐resistance exercise training on muscle fiber composition in young rats. J Appl Physiol 69: 434‐437, 1990.
 517. Yasuda N, Glover EI, Phillips SM, Isfort RJ, Tarnopolsky MA. Sex‐based differences in skeletal muscle function and morphology with short‐term limb immobilization. J Appl Physiol 99: 1085‐1092, 2005.
 518. Yoon M‐S, Sun Y, Arauz E, Jiang Y, Chen J. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect. J Biol Chem 286: 29568‐29574, 2011.
 519. Yoshizawa F, Kimball SR, Jefferson LS. Modulation of translation initiation in rat skeletal muscle and liver in response to food intake. Biochem Biophys Res Comm 240: 825‐831, 1997.
 520. Zammit PS, Partridge TA, Yablonka‐Reuveni Z. The skeletal muscle satellite cell: The stem cell that came in from the cold. J Histochem Cytochem 54: 1177‐1191, 2006.
 521. Zanchi NE, Lancha AH. Mechanical stimuli of skeletal muscle: Implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 102: 253‐263, 2010.
 522. Zhang X, Azhar G, Helms S, Wei J. Regulation of cardiac microRNAs by serum response factor. J Biomed Sci 18: 15, 2011.
 523. Zong C, Chan J, Levy DE, Horvath C, Sadowski HB, Wang L. Mechanism of STAT3 activation by insulin‐like growth factor I receptor. J Biol Chem 275: 15099‐15105, 2000.
 524. Zou K, Meador BM, Johnson B, Huntsman HD, Mahmassani Z, Valero MC, Huey KA, Boppart MD. The {alpha}7{beta}1 integrin increases muscle hypertrophy following multiple bouts of eccentric exercise. J Appl Physiol 111: 1134‐1141, 2011.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gregory R. Adams, Marcas M. Bamman. Characterization and Regulation of Mechanical Loading‐Induced Compensatory Muscle Hypertrophy. Compr Physiol 2012, 2: 2829-2870. doi: 10.1002/cphy.c110066